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Abstract. We present a refinement calculus for transforming object-oriented (OO) specifications (or ‘contracts’)
of classes into executable Eiffel programs. The calculus includes the usual collection of algorithmic refinement
rules for assignments, if-statements, and loops. However, the calculus also deals with some of the specific chal-
lenges of OO, namely rules for introducing feature calls and reference types (involving aliasing). The refinement
process is compositional in the sense that a class specification is refined to code based only on the specifications
(not the implementations) of the classes that the specification depends upon. We discuss how automated support
for such a process can be developed based on existing tools. This work is done in the context of a larger project
involving methods for the seamless design of OO software in the graphical design notation BON (akin to UML).
The goal is to maintain model and source code integrity, i.e., the software developer can work on either the model
or the code, where (ideally) changes in one view are reflected instantaneously and automatically in all views.
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1. Introduction

It has always been desired that formal methods be applicable to specifying, designing, and verifying large software
systems. While important theoretical gains and some practical benefits have been achieved, the application of for-
mal methods to industrial-scale software development has been for the most part limited to critical components
of fairly small subsystems or to safety-critical domains.

Object-oriented (OO) software development has been suggested as an important technique for building large,
reliable, and maintainable software systems [Lan95, Mey97]. However, the most popular formal notations and
methods such as Z [Spi92], VDM [Jon90], CSP [Hoa85], and B [Abr96] do not apply directly to OO software
development, since they lack fundamental features like classes, inheritance, and feature redefinition. Object-ori-
ented extensions of these languages, such as Object-Z [Smi00] and VDM++ [Lan95], while removing many of
these limitations, do not have realistic target implementation languages, and thus further translation is necessary
to produce executable code from refined specifications. Yet many software developers either already are or plan
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on using OO programming languages for their projects. What guidance can formal methodologists offer these
developers?

There is a method already available that casts many of the benefits of conventional formal methods – and
refinement in particular – into the OO realm. This method is applicable to specification and to the development
of immediately executable code. The method is Eiffel [Mey92]. Formal methodologists have paid little attention
to Eiffel despite the fact that it appears to be a viable platform for making formal methods directly usable in
large-scale software development.

A key element of Eiffel is design-by-contract (DbC) [Mey97]. The premise of DbC, in an OO setting, is that
routines (e.g., functions or procedures) of a class are given contracts. Contracts (a) describe the benefits offered
by the class to its clients without describing how these benefits are delivered; (b) define the obligations of the
author or supplier of the class to the clients, and the obligations of the clients when using the class; (c) allow for
better testing via assertion checking at runtime; (d) define precisely what an exception is (behaviour that does not
satisfy the contract); (e) allow for subcontracting so that the meaning of a redefined routine remains consistent
with inherited behaviour; and (f) provide documentation to both clients and suppliers of classes.

What is missing from Eiffel is the notion of refining an abstract specification of a class or set of classes
with contracts to an immediately executable Eiffel program along with a proof that the program satisfies the
specification.

What is missing in conventional formal languages and methods such as Z, B, or tabular specifications [Par92]
are the techniques and benefits provided by OO that promote reusability and maintainability, namely, the struc-
turing of large systems via classes, associations, inheritance, and polymorphism. Object-oriented extensions of
formal methods such as Object-Z, VDM++, and Larch/C++ [Lea97] do not yet have comprehensive rules for
refinement to industrial strength OO languages, but some work is in progress [Smi02].

The purpose of this paper is to present a refinement calculus for generating Eiffel programs. The calculus
benefits from use of Eiffel’s OO features for structuring specifications and programs. The calculus also targets an
immediately executable, industrial-strength programming language with compiler and tool support. The refine-
ment process is modular: systems are refined class by class. The refinement of a class proceeds in an environment
where only the specifications (and not implementations) of dependent classes, defined in what follows, need be
used. A class itself is refined routine by routine.

Informally, suppose that we have an OO system constructed from a universe of classes. One of these classes is
the ROOT CLASS [Mey92]; all classes on which this class depends must be in the system. The ROOT CLASS
provides a routine from which execution of the OO system will commence. Any class C in this universe can be
refined using only its contracts and the contracts of the classes that C depends upon via a restricted set of directed
relationships.

Because of modularity, we need only the contracts, and not the implementations, of a few classes to refine the
specification of C to an executable program. This is the OO version of the modularity principle of conventional
program development: the correctness of a system can be determined from the correctness of its parts without the
need to know the internal structure of its parts. In the case of an OO system constructed from the aforementioned
universe of classes, it is sufficient to refine the ROOT CLASS of the system. Doing this will recursively trigger
a process wherein all other classes in the system are eventually refined. At each step of the process, modularity
applies, and we can refine a class by using only the contracts of related classes.

1.1. Organization of the paper

In Section 2 we provide an overview of a significant subset of Eiffel’s syntax and semantics, concentrating on those
elements used for the specification of systems, as well as those that will be generated as output of the refinement
calculus. We also describe key elements of BON [WN95], a graphical modelling language that can be used to
visualize structural and behavioural aspects of Eiffel programs, and also to assist in making Eiffel easier to use
in the large.

Sections 3 and 4 contain the main contributions of the paper. Section 3 provides a fundamental set of refine-
ment rules for Eiffel, focusing on procedural language constructs, e.g., loops and sequencing. An important
contribution of Section 3 is a theorem that allows us to reuse Z and Morgan refinement rules, tranformed into
the predicative calculus of Hehner. Section 4 extends the rule set to include ones for introducing feature calls. As
is explained in Section 2, Eiffel possesses both reference types and expanded types (sometimes referred to as ‘sub-
object types’). We formulate a theory of reference types in Section 4, and by default assume that all types – except
primitives such as integers and booleans – are references. We also suggest how our approach can be extended
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to handle full expanded types as defined in Eiffel. In Section 5 we explain the modular nature of refinement in
Eiffel, and provide a process for refining a specification into executable Eiffel code; the process is demonstrated by
examples in the appendices. In Section 6 we discuss automation, and our ongoing work on supporting refinement
and verification with Eiffel using PVS. Finally, in Section 7, we discuss related work.

2. Eiffel and BON

Eiffel is OO programming language and method [Mey92, Mey97]; it provides constructs typical of OO para-
digm, including classes, objects, inheritance and client–supplier relationships, generic types, polymorphism and
dynamic binding, and automatic memory management. However, Eiffel is not just a programming language – the
notation also includes the notion of a contract. Since contracts can be used to specify software, Eiffel can also be
used as a notation for analysis and design. The basic unit of modularity in Eiffel is the class, whose features can
be specified via contracts. The notation is seamless in the sense that a single type of abstraction - the class - can be
used throughout development, and the contracts of classes can be refined and extended to implementation within
the same semantic framework. The basic concepts needed to model objects representing such external concepts
as hospitals and nuclear reactors are not essentially different from what is needed for objects representing floating
point numbers, stacks, and queues.

The BON modelling language [WN95] developed the ideas of Eiffel in the area of analysis and design. The
result is a method that contains a set of concepts and corresponding graphical notations to support OO mod-
elling centred around the three principles of seamlessness, reversibility (the ability to produce BON diagrams
automatically from Eiffel programs), and contracting. BON can be used independently of Eiffel. It has been
used successfully over the years at Enea in Sweden in industrial projects with such diverse languages as C++,
SmallTalk, and Object Pascal. Although BON is a language-independent method, its basic concepts are similar
enough to Eiffel that its graphical notation may be viewed as a graphical dialect of Eiffel for the purpose of
this article. While systems can be developed entirely using Eiffel only, the graphical facilities of BON can help
document and manage large-scale systems, can enable the use of tools, and are attractive to developers. We thus
view BON as a means of enabling the use of Eiffel – and refinement in an Eiffel context – in the large.

We start with a brief overview of Eiffel/BON, focusing on the programming constructs that can be introduced
during refinement. In order to understand these constructs and how to refine specifications, we need to under-
stand the effect that program constructs have when they execute. Thus, we provide a brief description of Eiffel’s
syntax and semantics.

2.1. Runtime structure of Eiffel programs

At runtime, Eiffel programs create values – which are either objects or references to objects – in the memory of a
machine. Objects can be basic (e.g., booleans, characters, integers, and reals) or complex, in which case they have
zero or more fields. In turn, a field also consists of a value. Every object is an instance of a type, e.g., the values
‘1’, ‘2’, etc., are all instances of type INTEGER.

A reference is a value which is either Void or attached to an object. If a reference is Void, then no further
information is available about it. If it is attached, then the reference gives access to the object. A reference is thus
attached to zero or one objects. An object may in turn be attached to zero, one, or more objects because its fields
may be references.

Computation proceeds by the creation of values, the attachment (or reattachment) of references to objects,
accessing objects or their fields, and routine computation, which might involve changing object fields. Hence, at
any instance during its execution, a machine executing an Eiffel program will have created a runtime structure
consisting of a number of references and objects, and a computation step (via creation, attachments, and feature
calls) will take us from one such runtime structure to a new one.

Procedural programming languages have the notion of a variable. An entity is OO generalization of the notion
of a variable. An entity is a name in a software text, meant to be associated at runtime with one or more successive
values, under the control of attachment and reattachment operations such as creation, assignment, and argument
passing. Every entity is declared to be a particular type, and thus every object (accessed via entities) is a direct
instance of some type.

An entity is either an attribute, the argument of a feature call, or a local entity of a routine (including the
local entity Result of a function routine, as will be discussed in what follows). Entities must be declared in the
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program text before they are used, e.g., e : BOOLEAN . Eiffel also provides support for expressions involving
prefix and infix operators, but these are just syntactic sugar for query calls. An entity can be declared expanded
(using the notation e1 : expanded C) or reference (using the notation e2 : C), where C is a type (i.e., a class).
Entity e1 denotes a reference which may become attached to an instance of C, whereas the expanded entity e1
directly denotes an object which is an instance of C.

Two consequences follow for the expanded entity e1: (a) the expression e1 � Void always yields the value
false, and (b) if e1 is associated with an instance of C called obj, then obj cannot be shared, i.e., no other entities
may be attached to obj.

As mentioned earlier, an entity e is associated with a value, and a value is either a reference to an object or
the object itself. If entity e is associated with a basic (respectively complex) object we write basic(e) (respectively
complex(e)). If the e is expanded we write expanded(e), and if e is a reference to an object, we write reference(e).
We use e1 r� e2 for reference equality and equal(e1, e2) for the weaker notion of object equality (field-by-field
equality) – these notions are defined more precisely in what follows. We use the notation same type(e1, e2) to
assert that e1 and e2 have precisely the same type (and hence the same fields).

It is normally clear from the context what we mean when using the unadorned equality symbol, i.e., e1 � e2.
We mean e1 r� e2 if e1 and e2 are both references. In all other cases we mean equal(e1, e2).

2.2. Specification constructs in Eiffel

The fundamental specification construct in Eiffel is the class. A class is both a module and a type.2 A class has a
name, an optional class invariant, and a collection of features that must preserve the invariant (as is described in
the following).

A system results from the assembly of one or more classes to produce an executable unit. A cluster is a set
of related classes. A universe is a set of clusters, out of which developers will pick classes to build systems. Of
these, only the class corresponds directly to a construct of the language. Clusters and universes are not language
constructs, but mechanisms for grouping and storing classes using facilities provided by the underlying operating
system such as files and directories.

Viewed as a type, a class describes the properties of a set of possible data structures (objects) which are instances
of the class. Viewed as a module, the class has a set of features. Some features, called attributes, represent fields
of the class’s direct instances; others, called routines, represent computations applicable to these instances.

Features can also be categorized as either queries or commands. A query is a side-effect-free function3 that
returns a value, but does not change the runtime structure. A command may change the runtime structure but
returns nothing. A query is either a function (i.e., it returns a computed value) or an attribute.

Figure 1 contains a short example of an interface of the class CITIZEN . Each feature section, introduced
with the key word feature, is followed by a selective export clause that specifies a list of accessor classes. The
feature salary, for example, can only be accessed by the client classes EMPLOYER and GOVERNMENT , or by
clients that are descendants of them.

Queries and commands may optionally have contracts, written in the Eiffel assertion language, as precon-
ditions (require clauses), postconditions (ensure clauses), and class invariants. In postconditions the keyword
old can be used to refer to the value of an expression when the feature was called. Query routines always have a
local entity Result of the same type as the return value of the query — the result returned by a call to the query
is the final value of Result. Result is the only local entity that can appear in routine postconditions.

The modifies clause of a routine is a frame indicating those attributes that may be changed by the routine.4

Preconditions and class invariants are called single-state assertions as they have no occurrences of old, whereas
the postcondition is a double-state assertion as it refers to the old state as well as the new state. The assertion
language is enhanced by the fact that assertions may refer to any query (e.g., the postcondition of divorce refers
to the query single).

A class invariant is an assertion (conjoined terms are separated by semicolons) that must be true whenever
an instance of the class is used by another object (i.e., whenever a client can call an accessible feature). Private

2 This definition of a class has received criticism; however, it makes the theory and programming language simple and practical.
3 Technically, Eiffel functions can also change the values of objects and references, but for the purposes of this paper we disallow such changes
and require that a query be a pure function. Functions in any case may change local entities including Result (defined in what follows).
4 Eiffel supports require and ensure assertions, but modifies is our addition. The modifies clause can be enforced by a suitable postcondition.
It is adopted from [Mor94] and [LB00], among others.
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class CITIZEN
feature {ANY }

name, sex : STRING
age : INTEGER
spouse : CITIZEN
children, parents : SET [CITIZEN ]
single : BOOLEAN

ensure Result � (spouse � Void)
divorce

modifies single, spouse
require¬ single
ensure single ∧ (old spouse).single

feature {EMPLOYER, GOVERNMENT }
salary : REAL

invariant
single or married: single ∨ spouse.spouse � Current;
number of parents: parents.count � 2;
symmetry: ∀ c ∈ children • Current ∈ c.parents

end

Fig. 1. The class CITIZEN

features local to a class may temporarily invalidate the class invariant. In the invariant the symbol Current refers
to the current object; it corresponds to this in C++ and Java. Clauses in the invariant may be given text labels
(see Fig. 1).

The basic mechanism of OO computation is the feature call target.f (x) where target is an expression and
f is a feature. The feature may have zero or more arguments. Current is always attached to the current object.
Current thus means ‘the target of the current call’. Thus, for the duration of the call target.f (x), Current denotes
the object attached to target.

The Eiffel assertion language allows quantified expressions such as ∀ e : T | R • P where variable e of type
T is the bound variable, R is the domain restriction, and P is the predicate part. The ‘it holds’ operator • is right
associative.5

In Fig. 1 the class CITIZEN has eight queries and one command. The attributes age, salary, and single
are basic, and hence by definition expanded; the remaining attributes are references (a non-basic attribute is a
reference unless declared expanded). The query single returns a value of type BOOLEAN (but does not change
any attributes), while divorce is a parameterless command that changes the state of a citizen object (i.e., changes
the attributes). The class SET [G] is a generic predefined class with generic parameter G and the usual operators
(e.g., ∈, add). The class SET [CITIZEN ] thus denotes a set of objects each of type CITIZEN .

Short forms of assertions are permitted. For example, consider a query children : SET [CITIZEN ]. Then
∀ c ∈ children • P is an abbreviation of ∀ c : SET [CITIZEN ] | c ∈ children • P. The last invariant clause of
CITIZEN (Fig. 1) thus asserts that each child of a citizen has the citizen as one of its parents. The first invariant
asserts that if you are a citizen, then you are either single or married to somebody who is married to you. The
second invariant asserts that a citizen has no more than two parents.6

Eiffel syntactic constructs may be divided into expressions (denoting values) and instructions (performing
computations). In contrast to instructions, expressions denote values (references or objects) determined at run-
time, but their evaluations do not change the runtime structure; in other words, expressions, including query calls,
do not have side - effects.

As mentioned earlier, an entity is either an attribute, the argument of a feature call, or a local entity of a
routine (including the local entity Result of a function routine). More complicated expressions are built from
entities using queries, e.g., e1.q(e2) or e1.q1(e2.q2(e3)). Entities must be declared in the program text before they

5 Our assertion language uses the BON notation for quantifiers; quantifiers over finite domains can be implemented in the current version
of the Eiffel compiler using tuples and agents [Mey00].
6 If we declared parents.count � 2, then it would make implementation of the specification difficult, as every parent would (recursively) have
to be created with references to their parents, leading to a possibly infinite data structure. With the current definition, a parent field can be
Void indicating that we have not yet specified who the parent is.
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Table 1. Naming conventions for entities and features

e entities (includes attributes a, arguments of routines x, local variables, Current, Result)
e.type the static type of the entity e
e. µ the syntactically legal multi-dots associated with e (see sequel)
c commands
q queries
a attributes
f features, i.e., queries, attributes, and commands
r routines (computation)
r.ρ bunch of reference entities associated with r (see sequel)
r.π bunch of entity groups associated with r (see sequel)
S single-state formulae
D double-state formulae
P, Q predicates including single-and double-state formulae
�e, �P abbreviation for old e and old P
�(e1, e2, . . .) abbreviations for modifies(e1, e2, . . .)
�(e1, e2, . . .) abbreviation for same(e1, e2, . . .)

Table 2. Precedences from highest (level 0) to lowest (level 9)

0 +, −, ¬ , pre, old (unary prefix operators), . (feature dot notation)
1 ∗, /

2 +, −, ∩, ∪, etc.
3 relations: �, r�, 	�, <, �, etc., as well as ∈ and and bunch union (‘.’)
4 ∧, ∨ (logical operators)
5 →,←, �
6 ≡, 	≡
7 •, |
8 :� (assignment), ∀, ∃
9 �̂ (definition); (assertion clause conjunction or sequential composition)

are used. Table 1 defines the notation that we use throughout the rest of the paper for describing entities and
features. Table 2 defines the precedence of operators in Eiffel.

By default, e : C is a reference declaration of entity e unless C is a basic type INTEGER, REAL, STRING,
BOOLEAN, CHARACTER, in which case it is expanded by default.

BON provides graphical syntax for representing expanded and reference types. In BON, expanded types are
called aggregations. For example, a class VEHICLE might have an attribute propulsion defined as propulsion :
expanded MOTOR. An engine belongs only to the specified vehicle. An expanded entity faithfully models the
fact that a motor is an integral and internal part of a particular vehicle and is not shared with any other vehicle.
The aggregation relation between VEHICLE and MOTOR is shown in Fig. 2.

The BON notation for representing reference types is called an association. In the figure the class VEHICLE
has a reference attribute owner with type ASSET HOLDER.

MOTOR ASSET_HOLDER*VEHICLE*
owner

CAR BUS

OWNERS

Fig. 2. BON diagram for aggregations, associations, inheritance, and clusters
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routine ::� routine name(expression : TYPE){: TYPE} is

{ modifies entity list }
{ require single state assertion }
deferred | body
{ ensure double state assertion }
end

body ::� {local entity list} do instruction

instruction ::� skip | create e | e.c(expression) | e :� expression |
instruction; instruction | selection | loop

selection ::� if bool then instruction

{ elseif bool then instruction. . .} { else instruction } end

loop ::� modifies entity list

from instruction

invariant double state assertion

variant integer expression

until bool

loop instruction end

Fig. 3. Syntax of a routine

A child class can inherit properties from one or more parent classes, thus defining a behavioural subtyping rela-
tionship between child and parents. Eiffel supports only strong behavioural subtyping [DL01]. Child classes are
always subtypes of parent classes, class invariants may be strengthened by child classes, preconditions of routines
may be weakened, and postconditions may be strengthened. The BON notation for representing inheritance is
drawn with a single-line arrow. Thus CAR and BUS inherit from VEHICLE. The compressed cluster OWNERS
contains a number of classes (e.g., PERSON , COMPANY , etc.) that all inherit from ASSET OWNER. All
arrows, whether aggregation, association, or inheritance, point in such a way as to show dependencies. Thus
CAR depends on VEHICLE, but not vice versa.

2.2.1. Routines

All features of a class other than attributes are routines. The syntax of a routine of a class is shown in Fig. 3.
Constructs in curly parentheses are optional, and bool denotes an expression of type BOOLEAN . The Eiffel
assertion language is used to express preconditions, postconditions, and class and loop invariants of routines. A
routine has zero or more parameters (though for conciseness, the grammar in Fig. 3 shows only one parameter).

The behaviour of create, the assignment, and procedure call instructions are described more precisely in later
sections. A loop in Eiffel is executed as follows: the initialization (the from statement) is executed; then the condi-
tion bool is evaluated, and the loop terminates if it is true; if it is false, the body of the loop is executed, and then
the condition is re-evaluated. The invariant, a double-state assertion7, must be established by the initialization
and must be true when the loop body finishes its execution. The variant must be decreased by each execution of
the loop body. A selection statement is executed in the usual way.

All computation is performed either by (a) object creation, (b) attachment and detachment (e.g., via an
assignment statement), or (c) by feature calls. A feature call target.f (x1, x2), where target is an expression, f is
a feature name of the appropriate class, and the arguments x1, x2 are expressions, means apply feature f to the
object represented by target using arguments x1 and x2. For simplicity, we can assume that target is either an
entity or a single-dot call. By not considering multi-dot expressions we are simply assuming that e1.e2.f (x1, x2)

7 In the implemented Eiffel language, invariants are single-state assertions. The use of a double-state assertion allows us to verify more
properties without having to use auxiliary variables.
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is equivalent to the compound code (local e3; e3 :� e1.e2 ; e3.f (x1, x2)). If the target is a complex expression,
then we can replace target.f (x1, x2) by

(local e : T ; e :� target; e.f (x1, x2))

where an appropriate type T has been chosen for entity e.
In what follows, we link Eiffel expressions to values (objects and references), and Eiffel instructions to com-

putation via object creation, attachment, and feature call. The informal semantics provided in this section are
used to motivate the axiomatic refinement calculus of Eiffel programs and specifications in the next section.

3. Fundamentals of the Eiffel Refinement Calculus

In order to be able to refine Eiffel specifications (consisting of classes with preconditions, postconditions, and
invariants) into programs, we need a theory of Eiffel programming. We call our theory the Eiffel Refinement
Calculus (ERC). ERC is based on the predicative calculus of Hehner [Heh93]. To Hehner’s calculus, we provide
a refinement rule for introducing loops. We also add new machinery for introducing Eiffel’s OO constructs, such
as object creation and feature calls.

3.1. Specifications and programs

In ERC a specification of a feature is expressed as a double-state predicate. The quantities of interest in speci-
fying the behaviour of an Eiffel construct are the poststate σ after the construct’s computation terminates (the
output), as well as the prestate old σ (the input). Given a routine r of a class C, we let r.σ denote the state
space of the routine, which includes the attributes of the class containing r, the routine arguments, the local
entities of the routine, and a conceptual global time variable t (note that Eiffel itself does not provide any notion
of a global variable, unlike, e.g., C++). Thus, σ is a bunch8 of entities σ �̂ e1, e2, . . . , en, t. Correspondingly,
old σ � old e1, old e2, . . . , old en, old t. If σ̄ is a sub-bunch of σ , then we define same(σ̄ ) by same(σ̄ ) �̂ (∀ ê ∈
σ̄ • ê � old ê). Provided t 	∈ σ̄ , then we define modifies(σ̄ ) �̂ (∀ ê ∈ σ − (σ̄ , t) • ê � old ê). We use the following
abbreviations: �e for old e, �(e) for same(e), and �(e) for modifies(e). We note that

�(σ̄ )→ �(σ − σ̄ , t) (1)

Hence, �(e1, e2) asserts that the entities e1, e2, and t may all change, while all other entities in σ remain the same.
Note that if entity e1 appears in a frame, and e1 is a reference variable, then the reference may change, but

attributes of the attached object cannot change. Thus it would be illegal to have e1 in the frame of a specification
with a postcondition that changes e1.a, for example. If a specifier explicitly wants to change e1.a in a postcondi-
tion then e1.a must be stated in the modifies clause. Similarly, supposing that A is an array of integers, A appearing
in a frame indicates that the reference of A may change, not the elements.9 Finally, Result appears in the modifies
clause of all queries, since it can be used like any other local entity (and may be assigned to repeatedly in the
course of execution of the body of the query).

A specification of a program construct (e.g., an assignment statement or feature call) should identify the set
of computations that the construct can execute. A computation is described by a given prestate and a computed
poststate that makes the specification true. Thus, suppose the routine r has a precondition r.pre (a single-state
predicate with free variables in σ ) identifying the prestates, and a postcondition r.post (a double-state predicate
with free variables in �σ and σ ) indicating the computed poststates, then we define the specification r.spec of the
routine as follows:

r.spec �̂ �(r.pre)→ r.post ∧ time (2)
time �̂ t � �t ∧ (�t <∞→ t <∞) (3)

8 The notion of a bunch is taken from [Heh93]. A set s, e.g., s � {e1, e2, e2} is a collection of entities in a package. A bunch is the contents of
a set without the package. Thus the bunch b corresponding to the set s is e1, e2, e3. The symbol∼ is used to obtain the contents of a set; thus
∼ s � b � e1, e2, e3. The standard operations of set theory are used for bunches, e.g., given a bunch b2 � e4, e5, then b∪b2 � e1, e2, e3, e4, e5
– we also write this union as ‘b, b2’ — and e5 ∈ b2 expresses the fact that bunch b2 contains e5.
9 Array elements in Eiffel are accessed via the call to the function item(i), and thus cannot appear in frames since the elements are not
attributes.



ERC – An object-oriented refinement calculus for Eiffel 59

where t is a conceptual global clock representing time, and t ∈ σ ; by default, t appears in the frame of every
specification. Operator precedences were given in Table 2. Various ontologies of time can be used (e.g., recursive
time, real time [Heh93]) but for our purposes we simply require that each program construct terminates in finite
time (provided it starts at a non-infinite time).

Specification r.spec states that if the routine precondition is satisfied in the prestate of a computation, then
the routine’s execution terminates in finite time with the postcondition true in the poststate. If the precondition
is not satisfied in the prestate, then any behaviour is permitted. A subset of programs in Eiffel can be described
in ERC as follows (we omit the OO constructs, which are covered in Section 4):

skip �̂ e1 � �e1 ∧ e2 � �e2 ∧ . . . ∧ en � �en ∧ time
e1:�exp �̂ defined(�exp) → e1 � �exp ∧ �(e1) ∧ time

if b then P else Q end �̂ defined(�b) → (�b→ P) ∧ (¬ �b→ Q)
P; Q �̂ ∃ σ̂ • P[σ :� σ̂ ] ∧ Q[�σ :� σ̂ ]

(local e : T ; P) �̂ (∃ e, �e : T • P)
check S end �̂ S → skip

(4)

where P and Q can themselves be specifications or programs; we can mix programs and specifications because they
are both described by predicates. The predicate defined(exp) describes the conditions under which the expression
exp can be evaluated (so, for example, defined(e1÷ e2) �̂ e2 	� 0). The notation P[e :� exp] means safely replace
every free occurrence of variable e in predicate P by the expression exp. A full range of program constructs is
defined in [Heh93]. The semantics of assignment defined in (4) only covers the case where both the entity e1 and
the expression exp are expanded. In the following, we develop special machinery for Eiffel reference assignments.
Note that for the local variable declaration, it is necessary to quantify over both pre- and poststate because
specification P may refer to both.

It is tedious to always write out the entities that do not change in a specification, so we use the Morgan
specification statement [Mor94] for writing specifications, and take advantage of its notation for writing frames.
However, we define the meaning of specification statements using timed predicates (rather than weakest precon-
ditions). The notation

e : 〈| S, D |〉 �̂ �S → D ∧ time ∧�(e)

denotes a specification10 for which e is the frame (the bunch of entities that may change between the prestate
and poststate), S is the precondition, and D is the postcondition. An equivalent (Larch-like) syntax for writing
specifications which cannot be written conveniently on one line is:

modifies e
require S
ensure D

Note that the variable e in the frame means that it may change, not that it must change. Using the specification
syntax, we can describe the program constructs in (4) more concisely. For example, the expanded assignment
statement e1 :� exp can be written as e1, t : 〈| defined(exp), e1 � �exp |〉. Many useful laws of programming can
be derived from the definitions of programs in (4). For example, it is straightforward to provide a proof using the
relevant predicative definitions for the following:

defined(�b)→ (if b then P else P end ≡ P) (5)
[D1 → S2]→ ((D1 ∧ time ; �S2 → D2 ∧ time) ≡ (D1 ; D2) ∧ time) (6)

D1 ∧ time; D2 ∧ time ≡ (D1; D2) ∧ time (7)
[D1 → D] → (D1; D2)→ (D; D2) (8)

where D1, D2 are double-state assertions, S2 is a single-state assertion in σ , and

[D(�σ, σ )] �̂ ∀ �σ, σ • D(�σ, σ )

The time sequencing rules ((6) and (7)) assert that we can ignore the embedded time components (under the stated
assumption, where necessary), provided that the execution of each construct in the sequence itself terminates in
finite time.

10 Morgan’s syntax is actually e : [S, D], but we use the square brackets for substitution and double-state quantification.
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The simple substitution rule is derived from the assignment definition and sequencing (4) and is similar to a
corresponding rule in [Heh93]. It is particularly useful in simplifying long sequences of assignments.

Rule 3.1 (Simple Substitution). For any expanded entity e1 not in bunch e, and expression exp whose type con-
forms to e1,

e1 :� exp; e : 〈| S, D |〉 ≡ e, e1 : 〈|S[e1 :� exp], (D ∧ e1 � �e1)[�e1 :� �exp ] |〉
An ERC specification spec can, in general, be any predicate with free variables in �σ and σ . The specification

false describes no computations, while true describes arbitrary behaviour, including non-terminating computa-
tions. In order to know if it is feasible to refine a specification to an executable program, we need to know when
a specification is implementable.

spec is implementable �̂ ∀ �σ • (∃ σ • spec ∧ t � �t) (9)

The definition asserts that (a) every prestate of an implementable specification must have at least one correspond-
ing poststate, and (b) time cannot decrease between the input and the output. For example, the specification
Q �̂ x � 2 ∧ t < ∞ is unimplementable, because Q ∧ t � �t is unsatisfiable for an initial value of �t � ∞.11

By contrast, given a prestate in which �t � ∞, the skip-like program e � �e ∧ time does have a corresponding
poststate (namely t � ∞).

3.2. Refinement

A specification spec is refined by an implementation impl if all the observations represented by impl are also
observations of spec. We write this as spec � impl. Our treatment of specifications as predicates leads to a very
simple definition of refinement:

spec � impl �̂ (∀ �σ, σ • impl → spec) (10)

3.3. Reuse of rules and loops in ERC

Given a specification e : 〈|S, D |〉, we would like to know under what condition we can write e : 〈|S, D |〉 � Loop,
where Loop is an Eiffel loop. Although there is a loop structure in [Heh93], the semantics is given in terms of
least fixed points. An alternative rule in [Heh93] unfolds loops using recursive calls (and this is actually the rec-
ommended technique used for producing looping computations). We desire a refinement rule stated in terms of
a variant and invariant of the loop, which is the way it appears in Eiffel. Morgan [Mor94] provides a loop refine-
ment rule in terms of a single-state invariant whereas we want the convenience of being able to use a double-state
invariant (since it allows us to include frame conditions in invariants, and it makes it easier to show that a loop
establishes a double-state postcondition). Z has such a loop refinement rule [Wor94], and we thus reuse the Z
rule in this work. However, we must first justify the fact that we can use Z refinement rules in ERC.

In the discussion below, we restrict our attention to feasible specifications and refinement rules. ERC can
express abort (the set of all non-terminating computions in ERC is described by t � ∞ and its refinements),
and a miracle (the set of no computations) is described in ERC by false. The miraculous Morgan specification
statement e : 〈| true, false |〉 cannot be expressed in Z; nor can the set of all non-terminating computations. Thus,
when converting between ERC, Z, and Morgan, we ban infeasible specifications (i.e., abort and miracle).

As mentioned earlier, a specification statement can be translated into a timed predicate as follows (assuming
that semantically equivalent expressions and operators can be translated appropriately):

e1, t : 〈|S, D |〉 �̂ �S → D ∧ �(e1) ∧ time (11)

Consider a Z schema specification, with predicate P (this predicate is just the conjunction of the type declara-
tions, precondition, and postcondition of the Z schema). The precondition P.pre of a Z predicate P is defined as
P.pre �̂ (∃ σ ′ • P), where σ ′ denotes the poststate. Thus, the Z schema can also be thought of as specified by a
pair (P.pre, P). We can translate any Z predicate P into ERC notation by prefixing the unprimed entities by old
or �, and by removing the primes from all primed entities.

11 Infinite starting times are possible, e.g., in the pathological program ‘infiniteloop; Q’, the program Q would start at time t � ∞.
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Given two Z schemas with predicates P1 and P2, respectively, then refinement, under the above mentioned
syntax translation, is [Wor94]

P1 �z P2 �̂ (∀ �σ, σ • P1.pre→ P2.pre ∧ (P2 → P1)) (12)

whereas the ERC version of refinement (10) was expressed as

P1 � P2 �̂ (∀ �σ, σ • (P2.pre→ P2)→ (P1.pre→ P1)) (13)

Since (12) entails (13), we have the following theorem:

Theorem 1 (Refinement Rule Reuse). Given two Z specifications expressed (under syntax translation) as specifi-
cation statements e : 〈|S1, D1 |〉 and e : 〈|S2, D2 |〉, it follows that

e : 〈|S1, D1 |〉 �z e : 〈|S2, D2 |〉 → e : 〈|S1, D1 |〉 � e : 〈|S2, D2 |〉
Since refinement in Morgan’s calculus is equivalent to (13) [LM99], it follows that any refinement rule for

feasible specifications from [Mor94] and [Wor94] will also work in ERC. For example, we can reuse the frame
change and local variable introduction rules (Rule 3.2) from [Mor94].

Rule 3.2 (Morgan Refinement Rules).

(a) Frame Change Rule: Let e1 and e2 be disjoint bunches of variables. Then

e1: 〈|S, D |〉 ≡ e1, e2: 〈|S, D ∧ e2 � �e2 |〉
(b) Local variable introduction: Let x be a fresh variable. Then

e : 〈|S, D |〉 � local x : T ; e, x : 〈|S, D |〉
We now consider loops. Before we present the refinement rule, we introduce some notation, allowing us to

talk about the intermediate states that arise during a loop computation. We annotate specifications with primes
(e.g., Q′) to indicate systematic addition of primes to free variable names used within the specification. A prime
applied to an old expression (or backprimed expression) removes the old keyword (or backprimes). Here is an
example.

(x � �y ∧ y � �(x + y))′ � (x′ � y) ∧ (y′ � (x + y))

We can now state the refinement rule for loops; it is shown in Rule 3.3. The rule is a reformulation of the
corresponding Z rule [Wor94, p. 218], and relies on Theorem 1.

The invariant I in Rule 3.3 is a relation between two points in the execution of the loop — the first point is
before the loop execution begins (at which point the state is denoted by �σ ) and the second point is when the
‘until’ exit test is made (and the state is σ ). The invariant must always hold true when the ‘until’ test is made at
the exit point.

The loop first executes the initialization instruction Init. The first ‘provided that’ clause is a safety condition
that says that any circumstances acceptable to the specification (precondition S) must also be acceptable to the
initialization (precondition Sinit).

Rule 3.3 (Initialized Loop Rule). Suppose we have an Eiffel loop as follows:

Loop ::� modifies e
from Init
invariant I
variant v
until b
loop

Body
end
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where Init is e, t : 〈|Sinit, Dinit |〉, Body is e, t : 〈|Sbody, Dbody |〉, b is a boolean expression, I is a double-state loop
invariant, and integer expression v is the loop variant. Let σ̄ � σ − e, t. Then, given a specification e, t : 〈|S, D |〉,
it follows that

e, t : 〈|S, D |〉 � Loop

provided that

S → Sinit

�S ∧ Dinit ∧ same(σ̄ ) → I
�S ∧ I ∧ b → D

�S ∧ I ∧ same(σ̄ ) → defined(b)
�S ∧ I ∧ ¬ b ∧ same(σ̄ ) → Sbody

�S ∧ I ∧ ¬ b ∧ (Dbody ∧ same(σ̄ ))′ → I [ :� ′]
�S ∧ I ∧ ¬ b ∧ same(σ̄ ) → v � 0

�S ∧ I ∧ ¬ b ∧ (Dbody ∧ same(σ̄ ))′ → v′ < v

The notation I [ :� ′] means ‘textually substitute primed versions of free variables for unprimed versions (and
do not change the old variables)’.

The second clause in the loop rule says that the initialization must establish the invariant. The third states
that the specification precondition S and the invariant must define b.

The fourth clause says that on exit (i.e., b true) the invariant must establish the required specification post-
condition D.

The fifth clause asserts that the body is only executed when it is safe to do so (i.e., when its precondition Sbody
holds). The sixth clause is a three-state formula. We assume that the invariant holds between the starting state
�σ and the exit test state σ . If under these conditions the body is executed taking us to a new state σ ′, then the
invariant must continue to hold between �σ and the new state σ ′.

The final two clauses assert that the variant must never be less than zero, and that every execution of the body
must decrease the variant. If the last two clauses hold, then the loop terminates in finite time and hence the time
condition (3) of the loop is satisfied.

The infrastructure provided with Hehner’s calculus is sufficient for proving termination of recursive calls. In
the case of cyclical calls (e.g., where routine a in class A calls routine b in class B, which then calls routine a in
class A) it may not be possible to determine statically whether a chain of calls terminates, but the refinement laws
of Hehner’s calculus – particularly those for refinement in place – will be of use here.

For loop termination we can use the loop rule. For other constructs, we can ignore time in our derivations
involving sequential computations by appealing to (7), provided we know that that cyclic calls are not involved.
Where we do not know that this is the case, the full timed version of sequential calls must be invoked. The exam-
ples in what follows do not involve the cyclic case; hence, except for the loop construct we can usually ignore the
time component.

4. Refinement rules for feature calls

The preceding sections laid the groundwork for the Eiffel refinement calculus including refinement rules for
introducing typical imperative constructs, such as assignments and loops. These rules, while adequate for the
refinement of specifications to imperative programs, are inadequate in an OO setting. In OO programs there are
two fundamental instructions – command and query calls – which are introduced to effect changes in or test the
state of objects. Techniques are therefore needed to introduce calls. In this section we provide refinement rules
for feature calls. To accomplish this, we first define a theory of Eiffel reference types, and build the rules on this
theory.

It is possible to define refinement rules for introducing command and query calls by reverting to an imperative
setting, and using functions. A call e.r would be transformed to a call r(e), and refinement could proceed using
rules and techniques that appear in imperative refinement calculi. We desire to carry out refinement in a purely
OO style, so that no further translation is needed to produce OO program, and so as to maintain the level of
abstraction provided by OO technology.
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a,a5: TYPE

c(x1:TYPE) is
modifies a,t
require  c.rqr (a,x1,Current)

do
local e3: TYPE
...

end
ensure  c.ens (old a, old Current ,a,x1,Current)

q(x2:TYPE): TYPE is
modifies  t
require  q.rqr (a,x2,Current)
ensure  q.ens (a,x2,Current,Result)

invariant SUPPLIER.inv

SUPPLIER

a1: SUPPLIER
a2,a3,a4: TYPE

r is
do

...
a1.c(a2);
a2 := a1.q(a3);
a2 := a1.q(a2.q2(a4));
...

end

CLIENT

a1

Fig. 4. BON diagram with feature notation

We commence the presentation of the rules with some notation and syntax. The rules and our theory of
reference types are given in terms of the BON class diagrams shown in Fig. 4. TYPE in Fig. 4 represents an
arbitrary type: the type of argument x1 may differ from x2 (and these in turn may be different from attributes a
and a5).

Let C.inv denote the invariant of class C, and given routine r, let r.modifies denote the bunch of variables in
the modifies clause of the routine, and let r.rqr and r.ens denote the require and ensure clauses, respectively. Then
the full pre- and postconditions for each routine12 are defined as follows:

r.pre �̂ r.rqr ∧ C.inv (14)
r.post �̂ r.ens ∧ C.inv ∧ r.modifies (15)

where r.modifies is the modifies clause of routine r. The routine specification r.spec defined in (2) uses the above
definitions.

The state space σ in the context of routine r of the class CLIENT will include time t, attributes a1, a2, a3, a4
of the class CLIENT once they are created, local entities of the routine (including Result if the routine is a query),
and any further dotted or multi-dot entities (such as a1.a and a1.a5) already in existence or brought into existence
by feature calls within the body of r. If the class TYPE has attributes a6 and a7, then we can have multi-dot acces-
ses, such as a1.a.a6 and a1.a.a7, appearing in contracts; this set of multi-dot feature accesses is of arbitrary size.
We let a1. µ denote the bunch of legal multi-dot suffixes m so that a1.m is legal, e.g., a1. µ � a, a5, a.a6, a.a7, . . .,
etc. In general, given an entity e1, we let e1. µ denote the bunch of syntactically legal multi-dot suffixes [Mey92]
associated with entity e1.

The declaration e : C merely declares the static type of entity e, but does not cause an object to be created at
runtime [Mey97, p. 235]. The create e instruction in a routine creates a new instance of C, initializes each field to
a default value (e.g., BOOLEAN to false, a reference to Void), attaches e to the instance, and calls the creation
feature if there is one for that class. The creation feature must ensure that the instance satisfies the class invariant
if the default values do not suffice.

4.1. Entity groups for reference types

Reference types are critical for any theory of OO programming. Our theory of reference types, based on so-called
entity groups, is used by assignment statements, by create statements, and also by feature calls.

To model reference types, we could declare a memory store relation memory : entity↔ object, to keep track
of entities and their attachments. Commands like store and select could be used to update and access memory.
Approximately this approach is taken in the LOOP project [BJ01] for reasoning about Java programs in PVS
and Isabelle. However, we prefer not to model memory explicitly, as it can lead to lengthy expressions (involving
storage arrays and sequences of element overridings) in refinement, although an automated tool could help hide

12 Except for creation routines, which are called when an object is created and attached to an entity. For such routines r, the invariant C.inv
need not be true to start with, and as such r.pre �̂ r.rqr ∧ default(e).
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class C1 feature {ANY}
a, b : INTEGER
c(x : INTEGER) is

modifies a
ensure a � x

end

class C feature {ANY}
e1, e2, e3 : C1
r is

modifies e1, e2, e3
do

create e1;
create e3;
e2 :� e1;
e1.c(1);
e1 :� e3;
e3.c(3);

ensure e1.a � 3 � e3.a ∧ e2.a � 1
end

end

Fig. 5. Aliasing and feature calls for references

some of the complexity. Consequently, we introduce below an approach based on entity groups, which does not
explicitly model main memory, and which, in our experience, leads to simpler expressions when used in refinement.

Consider a reference declaration e : C. On declaration, e refers to no object, i.e., e � Void . Objects may be
attached to e in one of three ways:

1. Via the instruction create e, which generates a new object of type C and attaches it to entity e.
2. Via a type-valid assignment statement e :� exp, where exp is an expression (e.g., an entity or a query) that

evaluates to an object reference, so that the type of the object conforms to C, or exp � Void . Both e and
exp refer to values that are references (what follows deals with the case in which e is reference and exp is
expanded).

3. Via the binding of formal arguments to actual parameters in feature calls (similar to the case of assignment).

create can be applied to an entity at any time during the execution of a program; this adds complexity to the
theory of reference types that we provide.

At the heart of our theory of references is the notion of entity groups. Given routine r of class C, we let r.ρ
denote the set of reference entities that could appear in the routine body (including attributes of C, arguments
and local variables of r, and syntactically legal dots and multi-dots expressions). If routine r is a query, then
Result ∈ r.ρ because Result is a predefined local variable of the query. Each entity in r.ρ is potentially the subject
of a creation instruction either directly in the body of r itself, or in a routine called by r. The bunch of reference
entities r.ρ for routine r in Fig. 5 is given by r.ρ � e1, e2, e3.

Associated with each entity e ∈ r.ρ there is a corresponding entity group which we denote by e. Before the
first creation statement in the body of r is executed (or, more generally, before the execution of the first create
statement on an entity in a program), the group is an empty set. After a create e instruction, e � {e}, and this
entity group is used to keep track of all reference entities in r.ρ that point to the same object as e. We let r.π
denote the bunch of all entity groups of routine r, and we require that these groups be disjoint (this equivalence
relation will be formalized in what follows). As an example, in Fig. 5, r.π � e1, e2, e3. After the assignment
e2 :� e1 in the body of r, we have that e1 � {e1, e2}, e2 � e1, and e3 � {e3}.

For the sake of convenience, we introduce a shorthand for referring to groups. Suppose e � {e, e2, e3}, i.e.,
the three entities e, e2, and e3 all refer to the same object. Then

e[e2, e3] �̂ e � {e, e2, e3} (16)

and to avoid repetition e[] means e � {e}.
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The notation in (16) is just syntactic sugar for an ERC assertion. For example, suppose σ � t, e, e2, e3, e4.
Then e[e2, e3] can be expressed in ERC as (e � e2 � e3) ∧ (e4 	� e), where the equality symbol is interpreted
in the Eiffel assertion language as reference equality ( r�), as the elements of e are all reference entities. When we
reason using reference types, we carry around set expressions of the form (16), which describe the attachments
of objects to entities. We can now define reference equality using our notion of groups:

(e1 r� e2) �̂ (e1 � e2) (17)

where e1 and e2 are both references.
As mentioned earlier, the boolean expression equal(e1, e2) is used for object equality. It can be defined recur-

sively, provided that its occurrence in a program is syntactically legal, as follows:

equal(e1, e2) �̂
(

(void case→ e1 � e2 � Void)
∧ (¬ void case→ same type(e1, e2) ∧ α

)

void case �̂ e1 � Void ∨ e2 � Void

α �̂
(

(basic(e1)→ e1 � e2)
∧ (complex(e1)→ reference case ∧ expanded case)

)

(18)

reference case �̂ ∀ a | attribute(a, e1) ∧ reference(e1.a) • e.a r� e2.a
expanded case �̂ ∀ a | attribute(a, e1) ∧ expanded(e1.a) • equal(e1.a, e2.a)

where attribute(a, e1) means that a is an attribute of the object associated with e1. In the above definition, where
same type(e1, e2) holds, e1.a is complex (respectively basic) if and only if e2.a is complex (respectively basic).
The above definition thus captures the meaning of the standard equality operator of Eiffel (as will appear in a
revision to [Mey92]) as follows:

1. If both e1 and e2 are Void , then the result of equal(e1, e2) is true. If one is Void and the other is not, then the
result is false. If the types are not identical, then the result is also false (this means that e1 and e2 will also
have identical attributes).

2. If e1 and e2 are basic types (e.g., INTEGER, BOOLEAN , etc.), then the result is true if and only if both have
the same value.13

3. If e1 and e2 are complex objects, then the fields must be identical, i.e., every corresponding reference field of e1
and e2 must point to the same object, and every subobject field of e1 is recursively equal to the corresponding
field of e2, i.e.,

equal(e1, e2)→ (∀m ∈ e1. µ • e1.m � e2.m) (19)

where e1. µ is, as before, the bunch of syntactically legal multi-dots associated with entity e1.

Finally, we need an axiom that asserts that reference equality is at least as strong as object equality:

e1 r� e2→ equal(e1, e2) (20)

The remaining axioms defining entity groups are as follows. Consider a routine r with a bunch of entity groups
r.π :

∀ e1, e2 ∈ r.π • e1 � e2 ∨ e1 ∩ e2 � ∅ (21)

Axiom (21) states that two entity groups are either disjoint or identical. Entity groups are just the equivalence
classes induced by the reference equality operator. We should really call a group an ‘equivalence class’ but refrain
from doing thus, so as not to confuse a group with the notion of an Eiffel class. Only reference entities are subject
to aliasing, and hence only reference entities have associated groups. Thus if e1 and e2 point to the same object,
then they are in the same group. In the example of Fig. 5, after the assignment e2 :� e1 in the body of r, e1[e2]
and e3 are clearly disjoint.

∀ e ∈ r.π • (∀ e1, e2 ∈ e • e1 r� e2) (22)

13 After possible coercion of the heavier type, an issue which we have neglected for simplicity. In Eiffel there are actually two kinds of objects:
standard and special. Special objects are bit sequences, strings, and arrays. Bit sequence equality is determined by bit-by-bit equality. Strings
and array equality holds if they have the same length and each field is (recursively) equal.
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Axiom (22) states that if two entities are in the same entity group, they refer to the same object. In the example
of Fig. 5, if at a certain execution point e1[e2] holds, then e1 � e2, e1.a � e2.a, and e1.b � e2.b.

∀ e ∈ r.π • ∀ e1, e2 ∈ e • e1 � e2 (23)

Theorem (23) (it follows directly from (22) and (17)) asserts that if two entities are in the same group, then the
group can be referred to in expressions by either name.

∀ e ∈ r.π • ∀ e ∈ e • e 	� Void (24)
∀ e ∈ r.ρ • (∀ e′ ∈ r.π • e 	∈ e′) ≡ e � Void (25)

∀ e ∈ r.ρ • (e � Void) ≡ (e � ∅) (26)

Axiom (24) states that any entity in a group is attached to an object, and thus cannot be Void . Axiom (25) states
that if an entity e is in no group, then it is Void . This is the state an entity is in after declaration, or after an
assignment, e :� Void . Axiom (26) equates a Void reference with an empty entity group.

The notion of entity groups can be used to define the semantics of instructions that use reference types in
ERC such as the create statement, assignment, and feature call. The create e instruction creates a new object and
attaches it to entity e; any previous reference or attachment via entity e is lost; however, any other entities that
referred to the object originally attached to e remain. The semantics of create e is given in Definition 4.1.

Definition 4.1 (Entity Creation Semantics). Given a reference entity e, the instruction

create e

is defined as

modifies e
ensure e � {e} ∧ default(e)

The default(e) clause asserts that each attribute e.a is set to its default value on creation as described in [Mey97]
(e.g., if a is a BOOLEAN it is set to false, if it is a reference it is set to Void , etc.). If the class e.type has a creation
routine r (whose purpose is to establish the class invariant), then we must execute this routine after the creation
statement, i.e., create e; e.r.

The following theorems follow from the group axioms, and are useful when refining create statements and
other pieces of code. We assume that e and e1 are distinct names; the theorems apply if e or e1 is replaced by a
dot expression, e.g., e.a.

�(e) ∧ e 	∈ e1 ∧ �e ∈ �e1 → e1 � �e1− {�e} (27)

�(e) ∧ e 	∈ e1 ∧ �e 	∈ �e1 → e1 � �e1 (28)

�(e) ∧ e[] → e1 � �e1− {�e} ∧ e1 � �e1 (29)

We can treat e1 and �e1 as auxiliary group-variables provided we are ready to reduce such use to the more basic
definitions. For example, let r.σ � {e1, e2, e3, t} and e1 � {e1, e2}. Then the definition of e1 � �e1 is as follows:

e1 � �e1 �̂ e1 � e2 � �e1 � �e2 ∧ e1 	� e3 (30)

As an example of the creation definition, consider

{precondition : e2[e1] ∧ e3[]}
create e1

{postcondition : e1[] ∧ e2[] ∧ e3[]}
The correctness of the above can be checked directly as follows. Assume �e2 � {�e1, �e2} ∧ �e3 � {�e3} as required
by the precondition. Then

create e1
� 〈 entity creation Definition 4.1 〉

e1 � {e1} ∧ �(e1)
� 〈 e1 � {e1} → e1 	∈ e2, assumption �e2 � {�e1, �e2} and (27) 〉

e1 � {e1} ∧ �(e1) ∧ e2 � {�e2}
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� 〈 �(e1)→ e2 � �e2 〉
e1 � {e1} ∧ �(e1) ∧ e2 � {e2}

⇒ 〈 assumption �e3 � {�e3} and (28) ; �(e1)→ e3 � �e3 〉
e1 � {e1} ∧ e2 � {e2} ∧ e3 � {e3}

� 〈 definition 〉
{e1[] ∧ e2[] ∧ e3[]}

Each of the above proof steps is trivial, so that in the following we feel free to collapse the above proof into one
step with justification of Definition 4.1.

The type-compatible reference assignment statement e1 :� e2 changes entity e1 to refer to the same object
as entity e2. Definition 4.2 provides the semantics for the reference assignment (i.e., assigning references to
references), leaving assignments involving both references and expanded types for the sequel.

Definition 4.2 (Reference Assignment Semantics). Suppose e1 and e2 are references and their declared types are
compatible according to Meyer [Mey97], so that e2 can be assigned to e1. Then

e1 :� e2

is defined as

modifies e1
ensure e1 � old e2

The following theorems can be inferred from the group axioms and can be used to simplify calculations
involving reference assignments; note that the occurrences of e1 � e2 in the theorems are reference equalities,
and not assignment statements. Once again, we assume that e1 and e2 are distinct names, and one or both may
be replaced by dot expressions.

e1 � e2 ∧ �(e1) ∧ (�e1, �e2 ∈ �e3) → e3 � �e3 (31)

e1 � e2 ∧ �(e1) ∧ �e3 � {�e1, �e3} → e3 � {e3} (32)

e1 � e2 ∧ �(e1) ∧ �e2 � Void → e1 � e2 � Void (33)

e1 � e2 ∧ �(e1) ∧ �e2 � {�e2, �e3} → e2 � {e1, e2, e3} (34)

We now present the meaning of query and command calls, focusing on how these calls effect changes in the
state of objects and in entity groups. Definition 4.3 provides the semantics of query calls where the result of a
query is assigned to an entity.

Definition 4.3 (Assigned Query Call). The query call

e1 :� e2.q(e3)

for query q of SUPPLIER (in Fig. 4) means

modifies e1
require e2 	� Void
ensure e1 � �(e2.q(e3))

Since it is possible for e1 to be e2 itself, we must use � in the postcondition when referring to e2. Note that
the precondition of query q is inferred through use of (36) discussed below. We can recursively treat queries of
arbitrary complexity using (35)

e1 :� e2.q(exp) �̂ (∃ e • e :� exp; e1 :� e2.q(e)) (35)

where e is a fresh entity of the appropriate type and exp is itself a query.

Referring to Fig. 4, a query call e2.q(e3) appearing in a contract can be evaluated using the following:

q.pre[α] ∧ e2 	� Void → q.post[α] (36)
α �̂ a :� e2.a, Current :� e2, x2 :� e3, Result :� e2.q(e3) (37)
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class C feature
a : INTEGER
q : INTEGER

modifies Result
ensure Result � a + 2

c is
modifies a
require q > a
ensure a � old a + 10

end

Fig. 6. Class C

where α is a substitution. In other words, we may use the targeted contract of q to evaluate e2.q(e3), and thereafter
we can use (36) as an assumption in reasoning; such an assumption can be introduced in a proof step, or as an
antecedent in an implication. Since queries are required to be side-effect free, we also have

�q.pre[α] ∧ �e2 	� Void → �q.post[α] (38)

Because we are treating (36) as an assumption, and we are not replacing occurrences of e2.q(e3) with (36), we
can treat arbitrary query specifications, i.e., we do not have to require that queries are functional.

Definition 4.4 provides the meaning of a targeted command call e1.c(e2), where e1 and e2 are reference entities
and c is a command of the class SUPPLIER (see Fig. 4). The meaning of this call is supplied by the precondition
and postcondition of c, targeted to the entities e1 and e2.

Definition 4.4 (Targeted Command Call). The call

e1.c(e2)

for command c(x1 : TYPE) in SUPPLIER having attribute a (in Fig. 4) means

modifies c.modifies[a :� e1.a, x1.a :� e2.a]
require e1 	� Void ;

c.pre[x1 :� e2, a :� e1.a, Current :� e1]
ensure c.post[�a :� �e1.a, �Current :� �e1,

x1 :� e2, a :� e1.a, Current :� e1]

(35) can be used to treat complex commands of the form e1.c(exp).

The modifies clause states that the command can change the attribute e1.a. The require clause establishes that
any call must be to a non-Void entity. The clause also includes the precondition of c, targeted to entity e1. The
ensure clause is the postcondition of c, targeted to e1 and with e2 as the argument.

As a simple example illustrating the use of feature calls, consider the class C in Fig. 6, and assume that we
would like to show that

{e 	� Void} y :� e.q; e.c; z :� e.q {z � y + 10}
Assume �e 	� Void . Then

y :� e.q; e.c; z :� e.q
� 〈 Definition 4.3 〉

�e 	� Void → y � �e.q ∧ �(y) ; e.c; z :� e.q
⇒ 〈 (38) applied to e.q: �e 	� Void → �e.q � �e.a + 2 〉

�e 	� Void → y � �e.a + 2 ∧ �(y); e.c; z :� e.q
⇒ 〈 assumption; �(y)→ e.a � �e.a ∧ e � �e 〉

y � e.a + 2 ∧ e 	� Void ; e.c; z :� e.q
⇒ 〈 Definition. 4.4 〉

y � e.a + 2 ∧ e 	� Void ; �e 	� Void ∧ �e.q > �e.a→ e.a � �e.a + 10 ∧ �(e.a) ; z :� e.q
⇒ 〈 (38) applied to e.q: �e 	� Void → �e.q � �e.a + 2 〉

y � e.a + 2 ∧ e 	� Void ; �e 	� Void ∧ �e.a + 2 > �e.a→ e.a � �e.a + 10 ∧ �(e.a); z :� e.q
� 〈 �e.a + 2 > �e.a ≡ true 〉

y � e.a + 2 ∧ e 	� Void ; �e 	� Void → e.a � �e.a + 10 ∧ �(e.a); z :� e.q
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e1 expanded and e2 reference e1 reference and e2 expanded
e1 :� e2 equivalent to e1.copy(e2) e1 :� e2 equivalent to e1 :� clone(e2)

modifies e1 modifies e1
require e2 	� Void require true
ensure equal(e1, e2) ensure e1 � {e1} ∧ equal(e1, e2)

Fig. 7. Hybrid assignments

⇒ 〈 definition of sequential composition (4) and one point rule; �(e.a)→ y � �y 〉
e 	� Void ∧ e.a � y + 8; z :� e.q

⇒ 〈 same reasoning pattern as before using (38) 〉
z � y + 10

The appendix contains a simple verification example using groups and reference types, as well as an example
involving a loop.

4.2. Expanded types

If entities e1 and e2 are both expanded (i.e., they are either a basic value such as integer or boolean, or refer to a
subobject), then the standard rule for assignment in (4) suffices. If both are references, then the theory developed
in Section 4.1 can be used. However, we have not yet discussed the effect of assigning an expanded object to a
reference, and vice versa. The table in Fig. 7 suggests how to extend our approach to handle them, leaving a full
treatment (e.g., expanded parameters) for later work.

5. Class compositionality

Refinement can be applied in a modular way to large software systems composed from classes by inheritance and
client–supplier relationships. A specification (i.e., contract) of a class A, that depends upon various other classes,
can be refined to code just by appealing to the specifications of the other classes, and without the need to know
the class implementations. To illustrate this process, we examine, without loss of generality, OO system shown in
Fig. 8.

We have used a small BON diagram to depict this system. While we could, without difficulty, use Eiffel text
for the same purpose, we use BON here to illustrate how one might desire to apply the calculus in practice to
large systems. Frequently in large-scale OO development, a class diagram of some kind will be drawn, from which
code will be produced. It is necessary for our refinement techniques to be linked to such diagrams, so that they
can be used together in the large.

Suppose that we want to refine class A to code, where A depends directly on class B and class C, and indirectly
on class D (via association with class C). In order to refine features of A to code, we need to know which features
of classes that A is related to can be used in the refinement process. A includes features inherited from B and
all of B’s ancestors. A may make direct use of features of C that are exported to it. It may also make indirect use
of features of D through C, as follows. Suppose that A has a feature f . Due to the relationship between A and
C, A also has a feature c : C; the relationship between C and D means that C has a feature d : D. If feature d
of class C is exported to A, and feature foo of class D is also exported to A, then the following is an acceptable
precondition for f :

c.d .foo � 0 (39)

Thus, A can make use of features of D through C’s subobject, even though there is no direct relationship drawn
in Fig. 8 between A and D. It is also possible that c.d .foo will enter the refinement even less directly. For example,
the contract of c may contain a reference to d , and the contract of d might in turn contain a reference to d .foo. So
we need to define a transitive closure of the inheritance, association, and aggregation relationships, which takes
into account information hiding, in order to determine the features needed to carry out refinement correctly.

The precise definition of the short-flat form of a class is given in [Mey92]. Briefly, the short form is the interface
of the class consisting of all exported features and their contracts (but not their implementations). The flat form of
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B

A

f
c : C

C D

d : D foo:INTEGER
AA

Fig. 8. System structure for demonstrating the modular refinement process

the class includes all the features obtained from proper ancestors, putting them at the same level as the immediate
features of the class (taking into account both renaming and redefinition). If C is a class, then we let C̄ denote
the short-flat form of C. We define depend A recursively as follows:14

• Ā ∈ depend A.

• If X̄ ∈ depend A and the arguments, contracts, or return values of a feature of X̄ has an association or
aggregation with class Y , then Ȳ ∈ depend A.
• Nothing else is in depend A.

In the case of Fig. 8, depend A � {Ā, C̄, D̄}.
To refine A to an implementation, we must carry out the following steps, in order:

1. Determine depend A.

2. Determine spec A, the set of contracts for all routines in Ā that need refining. Only contracts that are newly
declared in A, as well as contracts that redefine ones inherited from ancestors, are included in spec A.

3. Show that each element of spec A is implementable. Alternatively, refining each contract in spec A to an Eiffel
program itself demonstrates implementability.

4. To refine class A to a program, refine each specification s of spec A by refinement steps to code s, an Eiffel
implementation. In other words, it must be shown that

∀ s ∈ spec A • s � code s

In the refinement, we need only use the contracts (not the implementations) of classes in depend A.

The important thing to note in this process is that to refine A to code, we only need spec A and the contracts
of features belonging to depend A. No implementations of the features of depend A are needed; in this sense,
refinement is compositional. In most cases the entire system need not be considered when refining a class, since
depend A will only involve the contracts of a subset of all classes in the system. Thus, refinement can be done
class by class, and thereafter feature by feature.

To refine the complete system, consisting of a number of classes, to a program, we must start from the root
class. The root is refined to code, using the contracts of the classes in depend ROOT . Then each class that the
root depends upon (i.e., all elements of depend ROOT ) must in turn be refined to code, using only the contracts
of the classes it depends upon. This process recursively continues until all classes in the system have been refined
to programs. In this process there is no system-level validity check that has to be discharged to show that the
entire system is correct. Once all classes have been refined, then the system is implemented and a proof has been
discharged to show its correctness.

The efficiency and validity of this process hinges on using directed OO relationships, and information hiding.
In particular, information hiding as defined in Eiffel requires that only the procedures of a class can effect changes
in the state of objects of that class; clients of a class cannot change state directly via assignment to attributes
of an object. In other words, the attributes of a class are read-only to clients. If this level of information hiding
[Par72b] was not used in Eiffel, then clients could change attributes of a class, and hence depend A would possibly
need to contain all classes in the system. Similarly, if undirected relationships, as present in modelling languages

14 This is similar to the notion of ‘cone of influence’ in compiler technologies.



ERC – An object-oriented refinement calculus for Eiffel 71

like UML [RJ99] were used, then it would not, in general, be possible to refine a class to code because no class
would have been given responsibility for the relationship – that is, neither class would be responsible for providing
an attribute or a routine to represent the relationship. Thus, refinement would have to be carried out after all
undirected relationships in OO specification had been replaced by directed ones.

This style of modular reasoning is also inherent in Object-Z [Smi00]; in fact, the semantics of Object-Z has
been defined precisely for this kind of so-called modular reasoning. We discuss this more in Section 7.

6. Automation

Discharge of the proof obligations that arise during a refinement can benefit from automated support. We are
currently experimenting with using PVS to reason about Eiffel specifications. Our eventual goal is to use PVS to
discharge the (automatically generated) proof obligations that arise in a refinement of a specification to an Eiffel
program.

Currently, we have developed a mapping of Eiffel specifications into PVS theories, based on a representation
of a class as a datatype, a representation of routines as PVS functions, and a representation of class invariants as
either subtype constraints or axioms (the latter being used whenever invariant clauses on self-referential classes
occur). This representation can be extended to support client–supplier and inheritance relationships, and has
allowed non-trivial theorems to be discharged. A particular benefit of translating Eiffel to PVS is that it lets us
use the tool to deal with reference types without difficulty. The theory of reference types has been coded in PVS;
the theory was presented in [PO03]. A new tool is being designed and implemented to automate the translation
process. Thereafter, a tool will be developed to assist in the refinement process. The tool will pass proof obligations
generated in refinement to PVS. This is discussed more elsewhere [PO99].

For additional examples of using PVS to reason about OO models, we refer the reader to [PO01], wherein the
metamodel of BON is expressed in the PVS language, and it is shown how to use the PVS system to prove that
BON models conform to (or fail to conform to) the BON metamodel.

7. Related work and conclusions

In this paper we have provided rules for refinement of OO specifications in Eiffel into immediately executable
Eiffel programs. The rules include ones for introducing feature calls and object creation statements during refine-
ment. The refinement rules that we have presented are modular, and can be applied partwise over OO models
consisting of a number of classes, where each class contains a number of features with contracts. Thus, the refine-
ment process, combined with OO structuring mechanisms – i.e., client–supplier relationships and inheritance
relationships – is applicable to large-scale systems.

Refinement to OO industrial-strength languages has not been treated much in the literature, although several
approaches, such as JML, Larch, and Object-Z provide suitable foundations for such refinement calculi. There
is, however, a rich collection of work on specification, verification, and static checking of OO software. We now
discuss this work.

Object-Z is a specification language containing no immediately executable industrial-strength programming
language. The semantics of Object-Z has evolved over a number of years, and has seen many distinct revisions. A
value semantics was initially supported, and this was later extended to a reference semantics [Smi95]; the current
semantics in [Smi00] supports references and modular reasoning. The semantics of Object-Z in [Gri97], based on
labelled transition systems, also supported strict modular reasoning: the meaning of an operation in an Object-Z
specification is a transition on the local state of an object, together with an external message. Modular reasoning
is thus supported by the semantics, which provides object identities and mechanisms for achieving independence
of behaviour of operations. This kind of semantics is useful for reasoning about the properties of an OO system as
a whole [Smi95], but may not be as convenient for algorithm refinement, and in particular producing executable
code from specifications.

Object-Z reference types differ from Eiffel — aliasing is supported, but you cannot equate an entity to Void .
So while aliasing, referencing, and dereferencing of objects is permitted in Object-Z, it is still not entirely clear
how to transform these specifications into programs in typical OO languages such as Eiffel. Refinement of value
semantics to reference semantics is treated in [Smi02]. Abstract specifications are written in a value semantics in
order to facilitate reasoning, and then are refined to a concrete specification in reference semantics in order to
facilitate transformation to code.



72 R. F. Paige and J. S. Ostroff

Müller’s recent thesis [Mul01] presents a modular verification approach for OO systems, based on a Hoare
logic. The approach has many notational similarities to our own work. The specification language used has
similarities to JML, and makes use of constrained invariants and read-only references for helping to solve the
frame problem and aliasing problems. A key difference between his work and ours – and work on the Extended
Static Checker, discussed in the next paragraph – is that we do not deal with information hiding in ERC, whereas
Müller’s work does. In ERC, contracts can make use of any attributes and routines, including private ones, thus
exposing potential implementation details to clients. There are restrictions in Eiffel on the appearance of private
features in require clauses (though there are no restrictions on what appears in an ensure clause). These restrictions
are not as of yet captured in ERC, though it should not be difficult to extend the calculus to do so.

The work on the Extended Static Checker for Java [LNS00] has resulted in the development of a tool for the
automatic verification of Java programs. This tool works by taking annotated Java programs, with specifications
very similar to the contracts used in this paper, and checking that the programs satisfy the annotations. This
approach focuses on automatic verification of programs, rather than refinement of specifications to programs.
A great advantage of this work is that it is already implemented as a tool and (with annotation) can work on
regular Java programs. Although it works above the ‘decidability ceiling’ (and can thus catch errors that regular
typecheckers cannot), it focuses on catching the kinds of errors in programs that can be automatically detected,
e.g., void reference accesses. Hence it does not catch all possible errors. It handles reference types as well as
primitive types. The Perfect Developer tool [Esc00] is also used for static checking and automatic verification.
With this tool, a new language, Perfect, must be used for writing specifications, but target code in a number of
different programming languages (e.g., C++) can be automatically generated.

We view such static checking techniques as complementary to the refinement calculus in this paper: in some
cases we may want to refine contracts or classes to programs; in other cases we may prefer to use static checking
to help find errors in programs. The latter approach is more appropriate to use when verifying library classes or
pre-existing applications.

Work has been carried out on validating UML OO models against constraints, via simulation. The work of
Richters and Gogolla on the USE tool [RG00] is a particular example of this. In the USE tool, a UML model is
imported, a snapshot (an instance) of the model is taken, and the snapshot is checked against OCL constraints
that are evaluated. A subset of UML and OCL is supported by the USE tool. Validation of OO models against
metamodel constraints via automated theorem proving is demonstrated by Paige and Ostroff using PVS [PO01].

Cavalcanti and Naumann present a weakest-precondition-based refinement calculus for OO language, ROOL,
which has similarities to Java [CN00]. The calculus supports mutually recursive classes and dynamic binding; its
semantics is based on a typing system. Work is continuing on extending the calculus to reference types.

VDM++ is OO dialect of VDM. It is based on a three-valued logic. Lano [Lan95] presents data and algorithm
refinement rules for VDM++, but these rules focus on refinement of the imperative and concurrent constructs,
and do not present mechanisms for introducing command or query calls. Furthermore, the results of the refine-
ment require further translation to produce executable code in C++, Java, Eiffel, etc. Lano [Lan95] also presents
informal procedures for carrying out these translations.

An approach to OO development similar to Eiffel is Larch/C++ [Lea97], which aims at supporting formal
specification, as well as reducing the gap between specification and working code. A key distinction between
Larch/C++ and Eiffel is that with Larch, a two-tiered approach is used. Specifications of mathematical toolkit
features (e.g., library modules such as arrays, lists, and function types) are provided algebraically using abstract
data types. These specifications can then be used in Larch/C++ behavioural interface specifications, wherein
the abstract data type functions can appear in preconditions, postconditions, and invariant clauses. By keeping
the abstract data type specifications separate from behavioural interface specifications, formal reasoning on the
shared language specifications can be carried out, and the formal specifications can be reused specifying for
different behavioural interface languages. Eiffel uses only OO techniques: in place of the Larch Shared Language
specifications, only classes with contracts are used instead, including for the specification of mathematical toolkit
features. By using only classes, software development can proceed seamlessly (and if necessary reversibly) within
the same semantic framework. Larch/C++ does not support reversibility. Further, Larch/C++ does not have rules
for refinement, though they could in principle be developed. We would expect these rules to be more complex
than those for Eiffel because C++ is a hybrid language having both OO and conventional constructs. Also, imple-
menting a Larch/C++ specification will require the Larch Shared Language specifications to be implemented,
perhaps using built-in libraries; an impedence mismatch between abstract data types and C++ classes arises here.
Larch/C++ does possess mature tool support for formal manipulation and reasoning. Reasoning will typically
be done within the algebraic framework, using functions of the algebraic specifications. With Eiffel, reasoning is
done using first-order logic.
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JML [LB00] is a modelling language for Java, with many similarities to Larch/C++. It supports the specifica-
tion of contracts in a pre- and postcondition style; class invariants can also be specified. JML has been designed
to work seamlessly with Java. Unlike BON, it is a text-based modelling language and is syntactically similar to
Java. JML is a richer language than BON, in that it supports history constraints and modelling exceptions. It has
no refinement rules defined, although such rules are feasible to produce. Work is underway on integrating JML
with the Extended Static Checker for Java [LNS00]. Work is also ongoing on providing theorem proving support
for JML and Java, in order to verify Java programs. The LOOP project [BJ01] is developing theories for PVS and
Isabelle that will allow automated reasoning about JML specifications and Java programs. Tools are also being
produced as a part of this project to generate PVS specifications automatically from Java and JML.

Meyer [Mey03] introduces a technique for proving the correctness of classes based on abstract data types.
In his approach, model fields can be introduced and an underlying state representation based on functions is
provided. A semantics of program constructs is then provided. The formalization appears to be compatible with
supporting tools such as the B-Toolkit. By contrast, ERC aims at supporting refinement (instead of verification)
and does not require the introduction of model fields. Moreover, the state representation is based on entity groups.

This paper did not deal completely with expanded types nor did it show how to automate the refinement
procedures. The calculus also does not consider information hiding issues. Automation and the extension to
expanded types are currently under investigation; Section 7 reported on the current status of some of this work.
We also intend to expand the framework to concurrent and real-time software. The use of the predicative calculus
of Hehner [Heh93], which supports concurrency and communication, as the underlying specification formalism
should make the extension to concurrency feasible; the calculus already supports real-time specification and
refinement, but additional examples are needed in order to demonstrate the effectiveness of the calculus in this
domain.
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Appendix

A. An example using references and entity groups

Figure 9 contains a short example demonstrating how to reason with the simple theory of reference types, pre-
sented in Section 4. We assume that we have a class CELL and a class C with interfaces and implementations as
shown. We want to prove that the body of feature r of class C establishes its postcondition e3 � 6. We do this by
replacing each statement in the implementation of r with its meaning in terms of specification statements, and
then simplify. Each proof step involves many smaller steps. For example, in the first step, we have

create e1; create e2
⇒ 〈 entity creation Definition 4.1 and (29) 〉

e1 � {e1} ; e2 � {e2} ∧ e1 � �e1− {�e2} ∧ e1 � �e1
� 〈 sequential composition (4) and treating e1 and e2 as group variables 〉
∃ ê1, ê1, ê2 • ê1 � {ê1} ∧ e2 � {e2} ∧ e1 � ê1− {ê2} ∧ e1 � ê1

⇒ 〈 Leibniz axiom using ê1 � {ê1} 〉
∃ ê1, ê1, ê2 • e2 � {e2} ∧ e1 � {ê1} ∧ e1 � ê1

� 〈 one-point rule using e1 � ê1 〉
e1[] ∧ e2[]

where we ignored time, using (7) as our justification. The manipulation using group-variables can be verified by
reducing the expressions involving the group-variables to their basic definitions as in (30). Using Definition 4.4,
the targeted call e1.m(5) reduces to e1 	� Void → e1.a � 5 ∧ same(e1, e2) ∧ time, so that

e1[] ∧ e2[]; e1.m(5)
⇒ 〈 Definition 4.4; e1[]→ e1 	� Void using (19); sequential composition (3) 〉

e1[] ∧ e2[] ∧ e1.a � 5

The rest of the proof in Fig. 9 continues along the same lines.
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class C feature class CELL feature
e1, e2 : CELL; e3 : INTEGER a : INTEGER; b : CELL
r is do

create e1; n(x : CELL) is
create e2; modifies b
e1.m(5); require x 	� Void
e2.m(6); ensure b � x
e1.n(e2);
e3 :� e1.a.max(e1.b.a); m(x : INTEGER)

ensure e3 � 6 modifies a
end ensure a � x

end end

Body of routine r in class C
→ 〈create Definition 4.1; composition (4); Definition 4.4; (24); (6) and logic〉

e1.a � 5 ∧ e2.a � 6 ∧ e1[] ∧ e2[];
e1.n(e2);
e3 :� e1.a.max(e1.b.a)

� 〈 semantics of e1.n(e2) using Definition 4.4〉
e1.a � 5 ∧ e2.a � 6 ∧ e1[] ∧ e2[];
e1.b, t : 〈| e1 	� Void, e1.b � e2 |〉;
e3 :� e1.a.max(e1.b.a)

→ 〈 e1[]→ e1 	� Void and (6) 〉
e1[] ∧ e2[] ∧ e1.a � 5 ∧ e1.b � e2 ∧ e2.a � 6;
e3 :� e1.a.max(e1.b.a)

→ 〈assignment (4) , entities are expanded〉
e1[] ∧ e2[] ∧ e1.a � 5 ∧ e1.b � e2 ∧ e2.a � 6;
e3 � old (e1.a.max(e1.b.a)) ∧ same(e1.a, e2.a, e1.b.a)
〈 composition (4) ; one-point; (19): e1.b � e2→ e1.b.a � e2.a〉
e1[] ∧ e2[] ∧ e1.a � 5 ∧ e1.b � e2 ∧ e2.a � 6 ∧
e3 � 5.max(6)

→ 〈(24) and postcondition of max in Fig. 9〉
ensure clause of r

Fig. 9. Example of reasoning using reference types

B. A refinement example involving a loop

This section illustrates a simple example of refinement in Eiffel. The problem we solve is a simple one, taken from
[Wor94], to find the maximum of a non-empty array s of integers. Though simple, this problem in fact illustrates
the main feature call interactions that arise in OO refinement, including the subtle case in which the target of an
assignment invokes a query call on the target itself. We suppose that we have a class, FOO, that includes a feature
that will be used to determine the maximum of the array. We provide the Eiffel specification for the class FOO in
Fig. 10.

We use ↑ in the specification to represent the mathematical operator that gives the maximum of two or more
integers. We use the generalized quantifier notation of Gries and Schneider [GS93] to take the maximum of a set
of integers; the postcondition of the max array routine demonstrates this syntax. We use several logical laws for
reasoning taken from [GS93] as well.
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class FOO
feature

s : ARRAY [INTEGER]

max array : INTEGER
-- calculate maximum of array s
-- s.good �̂ s 	� Void ∧ ¬ s.empty

modifies Result
require s.good
ensure Result � (↑ j : INTEGER | s.valid index(j) • s.item(j))

end

Fig. 10. The class FOO for refinement example

class ARRAY [G] feature class INTEGER feature
lower, upper : INTEGER max(x : INTEGER) : INTEGER
count, capacity : INTEGER ensure Result � Current ↑ x

end
valid index(x : INTEGER) : BOOLEAN
ensure Result � (lower � x � upper)

item(x : INTEGER) : G
require valid index(x)

empty : BOOLEAN
ensure Result � (count � 0)

invariant lower � upper ∧ count � 0
end

Fig. 11. Excerpt from interfaces of the ARRAY and INTEGER classes

The class FOO has one association with the class ARRAY and an aggregation with the class INTEGER, via
the return value of query max array, which calculates the maximum of the array s. A local variable Result, auto-
matically declared for the query, will hold the result of the computation. We make use of the following features
of the classes ARRAY and INTEGER, shown in Fig. 11; for the sake of completeness, we present fragments of
the specification of each class.

The notation s.item(j) is the Eiffel syntax for the array index operation. s.lower and s.upper are the lower and
upper bounds of the array s, respectively. Note that item, a query of ARRAY , has no postcondition; in this sense,
we can view item as an atomic specification unit, one whose meaning is not denoted by any other, perhaps more
concrete, representation.

We can now refine the specification of FOO to code. In the process we use the contracts, but not the imple-
mentations, of the classes on which FOO depends. The process of Section 5 starts by calculating the classes on
which FOO depends. Thus

depend FOO � {FOO, INTEGER, ARRAY [INTEGER], BOOLEAN}
Then we calculate spec FOO which consists of the contract for max array. Now, we must refine each element

of spec FOO, i.e., spec max array, using the contracts of features in depend FOO that are accessible to FOO
(in this example we have shown only public features of INTEGER and ARRAY [G] that will be needed in the
refinement; in general, all public features can be used in the refinement of a client or descendant class).

Figure 12 provides a refinement from the specification of max array to executable Eiffel code. As argued at
the end of Section 3.3 and in (6), we ignore time. In Fig. 12 we define several terms: P (defined in step (b)) is the
specification for the initialization of the loop; I and V are a loop invariant and variant, respectively; and W is
the specification for the body of the loop.

Step (a) in Fig. 12 uses the local variable introduction rule to introduce a loop index. For step (b) we must
discharge all the provisos in the loop rule. Some of the provisos are simple, e.g., the loop proviso S → Sinit reduces
to s 	� Void → s 	� Void which is trivially true. The other provisos are relatively straightforward. As an example,
the sixth proviso can be discharged as follows:
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spec max array

� 〈definition of max array〉
Result : 〈| s.good,

Result � (↑ j : INTEGER | s.valid index(j) • s.item(j)) |〉

� 〈(a) : Local variable introduction, Rule 3.2(b)〉
local i : INTEGER;

i, Result : 〈| s.good,

Result � (↑ j : INTEGER | s.valid index(j) • s.item(j)) |〉

� 〈(b) : introduce loop, Rule 3.3 – all eight provisos hold〉
local i : INTEGER;

modifies i, Result

from P : i, Result : 〈| s.good,

i � �s.lower ∧ Result � s.item(i) |〉
invariant I : s.valid index(i) ∧ �(s) ∧

Result � (↑ j : INTEGER | s.lower � j � i • s.item(j))

variant V : s.upper − i

until i � s.upper

loop W :

v i, Result : 〈| s.good ∧ s.valid index(i) ∧ i < s.upper,

i � �i + 1 ∧ Result � �Result ↑ s.item(i) |〉
end

� 〈(c) : refine initialization P (see Fig. 13); refine loop body W (see Fig. 14)〉
local i : INTEGER;

modifies i, Result

from i :� s.lower; Result :� s.item(i)

invariant I : s.valid index(i) ∧ �(s) ∧
Result � (↑ j : INTEGER | s.lower � j � i • s.item(j))

variant V : s.upper − i

until i � s.upper

loop

i :� i + 1; Result :� Result.max(s.item(i))

end

Fig. 12. Refinement tree for max array (the last step produces executable Eiffel code)

Assume I ∧ ¬ b ∧ �S. Then:
(Dbody ∧ same(σ̄ ))′

� 〈 definition 〉
i′ � i + 1 ∧ s′ � s ∧ (Result′ � Result ↑ s′.item(i′))

� 〈 Leibniz and i′ � i + 1 ∧ s′ � s 〉
i′ � i + 1 ∧ s′ � s ∧ (Result′ � Result ↑ s.item(i + 1))

� 〈 from the invariant, Result � (↑ j : INTEGER | s.lower � j � i • s.item(j)); split off term (8.23) of [GS93] 〉
i′ � i + 1 ∧ s′ � s ∧ Result′ � (↑ j : INTEGER | s.lower � j � i + 1 • s.item(j))

� 〈 Leibniz and i′ � i + 1 ∧ s′ � s 〉
i′ � i + 1 ∧ s′ � s ∧ Result′ � (↑ j : INTEGER | s′.lower � j � i′ • s′.item(j))

� 〈 from invariant �(s) 〉
i′ � i + 1 ∧ s′ � s ∧ s′ � �s ∧ Result′ � (↑ j : INTEGER | s′.lower � j � i′ • s′.item(j))
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P

� 〈 definition 〉
i, Result : 〈|s.good, i � �s.lower ∧ Result � s.item(i) |〉

� 〈 textual substitution [GS93] 〉
i, Result : 〈|s.good [i :� s.lower], (i � �i ∧ Result � s.item(i))[�i :� �s.lower] |〉

� 〈 simple substitution, Rule 3.1 〉
i :� s.lower; Result : 〈|s.good, Result � s.item(i) |〉

� 〈 (36): s.good → s 	� Void ∧ s.valid index(s.lower); pre. weakening 〉
i :� s.lower; Result : 〈|s 	� Void ∧ s.valid index(s.lower), Result � s.item(i) |〉

� 〈 assigned query call Definition 4.3 〉
i :� s.lower; Result � s.item(i)

Fig. 13. Proof of refinement for loop initialization

W

� 〈textual substitution [GS93]〉
i, Result : 〈| (s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper)[i :� i + 1],

(i � �i ∧ Result � �Result ↑ s.item(i))[�i :� �i + 1] |〉
� 〈simple substitution, Rule 3.1〉

i :� i + 1;

Result : 〈| s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper,

i � �i ∧ Result � �Result ↑ s.item(i) |〉
� 〈s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper→ s 	� Void ∧ s.valid index(i);

〈precondition weakening (Morgan Rule 1.2 [Mor94])〉
Result : 〈| s 	� Void ∧ s.valid index(i),

Result � �Result ↑ s.item(i) |〉
� 〈proof described in Fig. 15〉

Result :� Result.max(s.item(i))

Fig. 14. Refinement tree for the loop body

⇒ 〈 From invariant, s.valid index(i); ¬ b �̂ i 	� s.upper; i′ � i + 1 ∧ s′ � s 〉
s′.valid index(i′) ∧ s′ � �s ∧ Result′ � (↑ j : INTEGER | s′.lower � j � i′ • s′.item(j))

� 〈 definition 〉
I [ :� ′]

We next present the refinement steps and corresponding proofs that are required in implementing the loop
initialization and loop body. The first step is the refinement of the loop initialization, P, by the sequential com-
position

i :� s.lower; Result :� s.item(s.lower)

and is shown in Fig. 13.
The final step in the refinement example of Section 6 is to implement the loop body specification, W , by

an assignment statement (which is a simple increment) and a command call. Figure 14 shows the tree for the
refinement of W .

Most of the proof obligations that arise from this refinement tree are straightforward to discharge. In the
penultimate step of Fig. 14, the justification is proved as follows:

s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper
⇒ 〈 (36) 〉

s.good ∧ s.lower � i − 1 � s.upper ∧ i − 1 < s.upper
⇒ 〈 i − 1 < s.upper→ i � upper; s.lower � i − 1→ s.lower � i 〉

s.good ∧ s.lower � i � s.upper
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Result :� Result.max(s.item(i))

� 〈meaning of a nested query call (35) in Definition 4.3〉
local v : INTEGER; v :� s.item(i); Result :� Result.max(v)

� 〈semantics of query assignments Definition 4.3〉
local v : INTEGER;

v : 〈| s 	� Void ∧ s.valid index(i), v � �s.item(i) |〉;
Result : 〈| true, Result � �Result ↑ v |〉

→ 〈sequential composition (4)〉
Result : 〈| s 	� Void ∧ s.valid index(i), Result � �Result ↑ s.item(i) |〉

Fig. 15. Proof of final refinement step

⇒ 〈 propositional logic 〉
s.valid index(i) � s.lower � i � s.upper→ s.good ∧ s.valid index(i)

⇒ 〈 (36) 〉
s.good ∧ s.valid index(i)

⇒ 〈 by definition of s.good 〉
s 	� Void ∧ s.valid index(i)

A step unique to OO refinement occurs in refining the loop body to a sequence of assignments. The second
assignment is

Result :� Result.max(s.item(i))

which is a nested query call. The proof is shown in Fig. 15.
Many of the proof obligations and refinement steps shown in Fig. 12 are very similar to refinement steps in

imperative program design calculi. For example, the steps for introducing an initialized loop, or a simple assign-
ment statement, pattern those seen in [Heh93] and [Mor94]. The exact proof obligations required to discharge
steps (a)–(c) can easily be mechanically produced by applying the quoted refinement rules.

However, we point out that in all of these proof steps, including those for the query calls, no complicated
mathematics is required: the proofs primarily use substitutions, and there is only one quantifier – that to introduce
the local variable. A theorem prover like PVS would discharge most of the provisos for this proof automatically.

One might expect that the conjunct containing the maximum quantifier in the loop invariant would have to
be a comment in Eiffel. However, the latest implementations of Eiffel support the notion of an agent [Mey00]
which can be used to equip assertions with executable predicates with quantifiers.

To complete the process, the classes INTEGER and ARRAY (and all their dependent classes) should now be
refined. However, these classes belong to a standard library, and so we can assume that they have been imple-
mented and their correctness ensured.
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[PO99] Paige RF, Ostroff JS (1999) Developing BON as an industrial-strength formal method. In: Proceedings the of world congress

on formal methods (FM’99). Vol I. LNCS 1708. Springer, Berlin Heidelberg New York
[PO01] Paige RF, Ostroff JS (2001) Metamodelling and conformance checking with PVS. In: Proceedings of the fundamental aspects

of software engineering (FASE’01). LNCS 2029. Springer, Berlin Heidelberg New York
[PO03] Paige RF, Ostroff JS, Brooke PJ (2003) Formalizing Eiffel reference and expanded types in PVS. In: Proceedings of the interna-

tional workshop on aliasing, confinement, ownership (IWACO’03), co-located with ECOOP’03, Utrecht University Technical
Report UU-CS-2003-030

[Par72a] Parnas DL (1972) A technique for software module specification with examples. Commun ACM 15(5)
[Par72b] Parnas D (1972) On the criteria to be used in decomposing systems into modules. Commun ACM 15(12)
[Par92] Parnas D (1992) Tabular representation of relations. CRL Report 260, Communications Research Laboratory, McMaster

University
[RG00] Richters M, Gogolla M (2000) Validating UML models and OCL constraints. In: Proceedings of unified modeling language

2000. LNCS 1939. Springer, Berlin Heidelberg New York
[RE98] de Roever W-P, Englehardt K (1998) Data refinement: model-oriented proof methods and their comparison. Cambridge Uni-

versity Press, Cambridge
[RJ99] Rumbaugh J, Jacobson I, Booch G (1999) The unified modeling language reference manual. Addison-Wesley, Reading
[Smi95] Smith G (1995) Reasoning about object-Z specifications. In: Proceedings of the asia-pacific software engineering conference

1995. IEEE Press, Piscatawasy
[Smi00] Smith G (2000) The object-Z specification language. Kluwer, Dordrecht
[Smi02] Smith G (2002) Introducing reference semantics via refinement. In: Proceedings of the international conference on formal

engineering methods 2002. LNCS 2495. Springer, Berlin Heidelberg New York
[Spi92] Spivey JM (1992) The Z reference manual, 2nd edn. Prentice-Hall, Englewood Cliffs
[WN95] Walden K, Nerson J-M (1995) Seamless object-oriented software architecture. Prentice-Hall, Englewood Cliffs
[Wor94] Wordsworth J (1994) Software development with Z. Addison-Wesley, Reading

Received January 2000
Accepted in revised form August 2003 by B.C. Pierce


