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Abstract 

 
Modeling languages enable developers to view 
large systems via diagrammatic notations, which 
can increase understanding. We present the plan 
for an Eclipse plug-in that is a CASE Tool for 
BON. Our tool supports class and collaboration 
diagrams, fully automated forward and reverse 
engineering and additionally ensures the 
consistency between separately constructed class 
and collaboration diagrams. 
 
1 Introduction 
 
Modeling and design methodologies such as 
UML [1] have been receiving a lot of attention 
since they offer important modeling facilities by 
using diagrammatic notations. Using models can 
give developers a quick and easy-to-grasp 
overview of a complex system, but it has also 
become apparent that the inability to express 
finer details about a system is a limitation. 
Textual languages have therefore been used to 
enrich modelling languages. The Object 
Constraint Language [2] can, for example, be 
used in conjunction with UML to describe 
constraints within OO models.  

Further, different views of a system 
give the developer different perspectives of the 
same system [3]. Having different views of one 
system, however, introduces a new problem. 
Consistency checking between views of a system 
is necessary to ensure that information described 
in one model is not contradicted by information 
described in another model [4]. 

In this paper, we introduce an Eclipse 
[13] plug-in called BON-Development-Tool 
(BDT), which is a BON [5] CASE Tool. BDT 
allows the construction of class diagrams and 
collaboration diagrams. It further integrates 
tightly with the Eiffel-Development-Tool [6] and 
will allow for seamless forward and reverse 
engineering. Finally, BDT will enable its users to 
check the consistency of information presented 
in dynamic and static diagrams. 

BDT is designed to help programmers 
at every step of the software development 

process. Forward engineering capabilities allow 
the developer to start with the construction of 
class models and the tool will generate program 
code automatically. Automatic reverse 
engineering on the other hand, constructs BON 
class diagrams from program code. As a result, 
code and model are kept in-sync at all times. 
Once the user has a better understanding of the 
system in construction, collaboration diagrams 
can be constructed. Finally, when (partial) static 
and dynamic diagrams have been produced, the 
programmer can use the tool to confirm that the 
two separately constructed views are consistent 
and that the specified message sequence can be 
executed. 

We are currently in the process of 
developing and completing BDT. We have 
completed the graphical part of BDT and are 
concentrating on forward and reverse 
engineering and consistency checking of our 
tool. 

This paper is organized as follows. In 
Section 2, the BON model is outlined and small 
examples of static and dynamic views are given. 
Section 3 outlines the main features and 
strengths of BDT. Section 4 introduces the 
notion of consistency between static and 
dynamic BON diagrams and explains how we 
plan to accomplish this task. Finally, conclusion 
and future work follow. 
 
2 BON 
 
BON is a modeling language, which enables the 
user to specify classes, objects and their 
relationships within an object-oriented 
environment. In addition to relationships, 
assertions (written in first-order predicate logic) 
can be used to specify the behavior of routines 
and invariants of classes [4].  

There were several reasons for 
developing a CASE tool for BON. First, it was 
important to develop a tool that integrates tightly 
with the Eiffel-Development-Tool [6]. This, 
however, does not mean that BON (and BDT) 
cannot be used with other OO programming 
languages. Second, it provides support for static 
and dynamic views of a system – the two views 
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we are interested in. Third, BON supports the 
notion of pre- and postconditions for routines (a 
routine is the equivalent of a Java method) and 
class invariants without the need to add any 
secondary textual language. Finally, if used in an 
educational environment, we believe that BON is 
simpler and easier to understand than other 
modeling languages. 
 
2.1  BON Static Model 
 
The fundamental construct in a BON static 
diagram is a class. A class has a name, an 
optional class invariant and zero or more features 
(features can be attributes, queries or commands) 
[5]. Classes can be viewed in two forms: In the 
compact view a class is represented by an ellipse 
with the class name in the center of the ellipse. 
The second view consists of a rounded rectangle 
with all features and invariants of the class 
visible. Figure1 shows both views. Classes can 
be further organized in clusters, which make 
construction of larger systems easier. 
 

 
Figure 1: Screenshot of a Class View in BDT. 

 
Classes and clusters interact via two kinds of 
relationships: 
 
1) Inheritance: Inheritance is simply defined 

as the inclusion in a class, called the child, 
of operations and contract elements defined 
in other classes, its parents [5]. Inheritance 
may translate differently depending on the 
object-oriented language used, so the 
definition is kept very general in BON. 
Inheritance in BON is represented as a 
single line with an arrow towards the super 
class.  

2) Client-supplier: The user has two options 
for a client-supplier relationship, association 
and aggregation. Association refers to 
reference relationships and aggregation to 
sub object (subpart) relationships [4]. 
Association relationships are represented by 
a double line with an arrow towards the 
supplier (e.g. CAR in fig1). The 
representation of aggregation is similar to 
that of association, but with an additional 
perpendicular line close to the arrow (e.g. 
ACCOUNT in fig1). Figure1 shows all three 
possible relationships. 

 
2.2  BON Dynamic Model 
 
BON also provides notation for collaboration 
diagrams, which show the communication 
between objects. Collaboration diagrams consist 
of rectangles representing runtime objects and 
arrow lines between them representing messages 
sent from one object to other object(s). An 
example of a BON collaboration diagram is 
given in Figure2. Messages are numbered for 
two purposes: First, they represent time in the 
scenario - that is the order in which calls are 
made. Second, they correspond to entries in a 
scenario box where the role of each call may be 
described using free text [5]. Each message 
corresponds to a feature call. 
 
 
 
 
 
 
 
 
 
 

Figure2: Screenshot of a Collaboration 
Diagram in BDT 

 
3  Overview of BDT 
 
In this section we will provide an overview of 
our tool and its most important features. Many of 
these features have already been implemented 
and others we are currently working on.  
 
3.1  BDT Structure 
 
BDT provides the environment to construct class 
diagrams and collaboration diagrams. As a stand-
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alone, diagramming plug-in, a BDT-project can 
include several dynamic and static diagrams. As 
part of EDT (or JDT [7]), only one class diagram 
can be modified at a time. This ensures that code 
and class diagrams are always consistent. The 
user can choose which classes and clusters are 
shown in the class diagram at any time.  
 
3.2 Static Diagrams 
 
BDT allows the user to construct class diagrams 
with any level of detail. When a new class is 
added to the diagram, the user has to specify the 
class name only. Next, the user can, using an 
easy-to-use interface, enter additional 
information about a class. This information can 
include class invariants, comments and features 
(attributes, commands and queries). For 
commands and queries, the user can further 
specify pre- and postconditions and modifies 
clauses.  

An important advantage of BDT is its 
information hiding capabilities. Classes can be 
shown in the compact or expanded view. 
Further, expanded views can be configured to 
hide any features, invariants or comments that 
are not needed (these will not be deleted, but just 
hidden from the view). In figure1 for example, 
the user might choose not to show the invariant 
and can hide it easily. 
 
3.3  Dynamic Diagrams 
 
BDT also provides support for constructing 
collaboration diagrams showing object-
interactions. For each object, the name of the 
object must be specified. Arrows represent 
messages and each message has a unique 
number. Numbers are placed on each arrow 
closer to the receiver of the message. Messages 
can be added, deleted and edited using the 
scenario box.  
Consistency between dynamic and static 
diagrams is discussed in the sequel. 
 
3.4 Forward and Reverse Engineering 
 
One of the main goals of this project was to 
enable the developer to have consistent code and 
static diagrams. It was important to us to have 
code automatically generated from diagrams and 
vice versa. Generation of Eiffel code from BON 
is straightforward. Following the model-control-
view paradigm in designing our system made 
this task easier. Each model of a class is 
inspected and the corresponding code is 

generated. We have designed our tool to detect 
as many errors as possible during the 
construction of the diagram and therefore 
decrease the dependency on the parser and 
compiler. Constructing diagrams from code is 
slightly more challenging since there are many 
constructs in a programming language such as 
Eiffel that will not be used in diagrams 
(diagrams abstract from the details) and need to 
be projected out.  

Forward and reverse engineering to and 
from Java using BON places more restrictions 
since certain elements in BON do not have a 
semantic equivalent in Java [8]. Aggregation and 
multiple- inheritance are two of the major 
differences. Aggregation can be modeled by a 
simple reference, but multiple-inheritance cannot 
be directly translated into Java, except in cases 
where all super classes are deferred (interfaces). 
Currently, we are investigating the Eclipse 
Modelling Framework (EMF) [9] for use in this 
step. EMF allows the generation of code from 
Rational Rose model files, annotated Java 
interfaces, or an XML schema definition [9]. 

 
4 Checking for Consistency 
 
Collaboration diagrams are predominantly 
constructed independently of class diagrams and 
are often simply assumed to be consistent [3]. 
We are interested in providing the developer 
with a tool that detects inconsistencies in the two 
views. Our method mainly relies on BON’s 
notation, which allows the specification of pre- 
and postconditions.  

An inconsistency can arise in a number 
of ways (discussed below), but this paper mainly 
discusses one source. The final tool will check 
for all sources for inconsistency, but it is 
important to realize that our tool is not complete. 
It is possible to miss inconsistencies that exist in 
the diagram and code. On the other hand, BDT is 
sound and inconsistencies reported are “real” 
inconsistencies. 

In the next sections we provide a short 
overview of what we think are the main issues 
when checking for consistency and how we plan 
to tackle these problems.  

 
4.1 Checking Collaboration Diagrams 

Against Class Diagrams 
 
Our goal is to be able to check the consistency of 
one or more BON collaboration diagrams against 
one BON class diagram. In addition, we want to 
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report where an inconsistency arises if the tool 
detects one.  
There are several steps when checking the 
consistency between BON collaboration and 
class diagrams [4]: 
 
1. The diagrams is syntactically correct 
2. Each object appearing in the collaboration 

diagram has a corresponding class in the 
class diagram 

3. Each message in the collaboration diagram 
has a corresponding routine  

4. The sender of a message must be the client 
of the receiver (supplier) in the class 
diagram 

5. The routines that are called (from 3) must be 
enabled, i.e. their preconditions must be 
true. The precondition can only be true if the 
sequence of previous calls has established a 
system state that satisfies the precondition. 

 
As mentioned above, we will concentrate on 
Point5, as it seems to be the most challenging 
piece in checking for consistency. The next 
section provides an overview of our intended 
approach. 
 
4.2 Checking Feature Preconditions 
 
In order to ensure that a specified message 
sequence in a dynamic diagram is consistent 
with the static diagram two conditions must be 
checked [4]: 
 

1) A developer specified initial state, init, 
must satisfy the precondition of the first 
message  

2) For all Messages Msg(i) for i > 1, the 
state created by init and messages 
Msg(1) to Msg(i-1) must satisfy the 
preconditions of Msg(i). 

 
The tool will first verify that init satisfies the 

precondition of the first message and then 
traverse through the remaining messages. For 
each message it will ensure that the current 
system state satisfies the precondition of the 
message. Every time a message is executed, its 
postcondition will alter the current system state. 
As a result, the current system state is a 
sequential composition of all postconditions of 
messages that have been executed.   
 
Sequential composition is defined as follows [4]: 
 

]':[]':['; soldsQssPsQP =∧=•∃=  
 
where s’ is an intermediate state. 
 
Let #messages represent the number of messages 
in the dynamic diagram, msg(i).pre and 
msg(i).post represent the pre- and postconditions 
of message i and init the initial state. Then our 
tool must check the following condition: 
 

preimsgpostimsgpostmsginit
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The sequential composition and resulting textual 
substitution ensure that the transition of variables 
to different values as messages are sent is 
reflected in the Boolean expression that will be 
passed to the theorem-prover.  

Currently we are experimenting with 
simple systems and adding complexity as we go 
along. Central to the consistency checking of our 
system is the automatic theorem-prover Simplify 
[10]. An important property of this theorem-
prover is that it is refutation-based: to prove a 
formula P, it tries to satisfy the negation of P 
[10]. This important feature can be used to 
provide valuable feedback to the user. Another 
important advantage of Simplify is that it is 
available for various platforms as is Eclipse. We 
have had good results with Simplify, but it is 
possible that we switch to other theorem-provers 
such as PVS [11] or Eves [12] if we find serious 
limitations in Simplify. 
 
4.3 Limitations of Consistency Checking 
 
As mentioned above, we are currently working 
on simple class structures and are exploring all 
aspects associated with determining 
inconsistencies. This section provides some 
inside into the difficulties we anticipate and 
partial solutions we might have. 
 
 One important issue is the way feature calls 

– “dot notations”- are treated in pre and 
postconditions (e.g. account.balance > 400). 
The difficulty arises since the feature being 
referred to belongs to a different object (i.e. 
is not an internal attribute or query). As a 
result, whenever a feature is encountered – 
whether internally or called within another 
class – it is replaced by the name of the class 
and the feature name. For example, imagine 
class A has feature f1 and class B has an 
attribute a of type A and somewhere in class 



 5

B a.f1 is used in a pre- or postcondition. In 
this case, we will replace a.f1 by A.f1. A 
similar substitution is performed in A. As a 
result, whenever f1 is used it appears as A.f1. 
This solution only works with one runtime 
object per class. We are investigating other 
solutions.  

 Contracts involving feature arguments pose 
a major hurdle for our tool. For example, 
consider the routine set_age(i: INTEGER) 
with the precondition (i >= 0), which 
enforces that the supplied argument is 
greater equal 0. When this routine is called 
the value of i will not be specified and our 
tool will not be able to check the specified 
precondition. One solution is to assume 
preconditions that involve arguments 
(assume they are true) and ultimately display 
to the user which values can be used for the 
arguments in order to satisfy the 
preconditions.  

 
5 Conclusion and Future Work 
 
We presented a BON CASE Tool plug-in for 
Eclipse that allows the user to construct class 
diagrams and collaboration diagrams. The tool 
further supports seamless forward and reverse 
engineering and maintains consistent code and 
class diagrams. Finally, formal method support 
allows developers to ensure that separately 
constructed static and dynamic diagrams are 
consistent. We have outlined the path we are 
planning to take for this consistency checking 
and the difficulties we anticipate. 

Our future work will consist of 
completing BDT and improving its features. We 
plan to make consistency checking as automatic 
as possible and easy whenever user interaction is 
required. Further we would like to investigate the 
integration of BDT with JDT. EMF [9] seems to 
be a very promising and powerful feature of 
Eclipse that could make this task easier. 
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