
 1

B O N D e v e l o p m e n t T o o l

A l i T a l e g h a n i
J o n a t h a n O s t r o f f

Y o r k U n i v e r s i t y , T o r o n t o , C a n a d a
{ a l i t a l e g , j o n a t h a n } @ c s . y o r k u . c a

Abstract

Modeling languages enable developers to view
large systems via diagrammatic notations, which
can increase understanding. We present the plan
for an Eclipse plug-in that is a CASE Tool for
BON. Our tool supports class and collaboration
diagrams, fully automated forward and reverse
engineering and additionally ensures the
consistency between separately constructed class
and collaboration diagrams.

1 Introduction

Modeling and design methodologies such as
UML [1] have been receiving a lot of attention
since they offer important modeling facilities by
using diagrammatic notations. Using models can
give developers a quick and easy-to-grasp
overview of a complex system, but it has also
become apparent that the inability to express
finer details about a system is a limitation.
Textual languages have therefore been used to
enrich modelling languages. The Object
Constraint Language [2] can, for example, be
used in conjunction with UML to describe
constraints within OO models.

Further, different views of a system
give the developer different perspectives of the
same system [3]. Having different views of one
system, however, introduces a new problem.
Consistency checking between views of a system
is necessary to ensure that information described
in one model is not contradicted by information
described in another model [4].

In this paper, we introduce an Eclipse
[13] plug-in called BON-Development-Tool
(BDT), which is a BON [5] CASE Tool. BDT
allows the construction of class diagrams and
collaboration diagrams. It further integrates
tightly with the Eiffel-Development-Tool [6] and
will allow for seamless forward and reverse
engineering. Finally, BDT will enable its users to
check the consistency of information presented
in dynamic and static diagrams.

BDT is designed to help programmers
at every step of the software development

process. Forward engineering capabilities allow
the developer to start with the construction of
class models and the tool will generate program
code automatically. Automatic reverse
engineering on the other hand, constructs BON
class diagrams from program code. As a result,
code and model are kept in-sync at all times.
Once the user has a better understanding of the
system in construction, collaboration diagrams
can be constructed. Finally, when (partial) static
and dynamic diagrams have been produced, the
programmer can use the tool to confirm that the
two separately constructed views are consistent
and that the specified message sequence can be
executed.

We are currently in the process of
developing and completing BDT. We have
completed the graphical part of BDT and are
concentrating on forward and reverse
engineering and consistency checking of our
tool.

This paper is organized as follows. In
Section 2, the BON model is outlined and small
examples of static and dynamic views are given.
Section 3 outlines the main features and
strengths of BDT. Section 4 introduces the
notion of consistency between static and
dynamic BON diagrams and explains how we
plan to accomplish this task. Finally, conclusion
and future work follow.

2 BON

BON is a modeling language, which enables the
user to specify classes, objects and their
relationships within an object-oriented
environment. In addition to relationships,
assertions (written in first-order predicate logic)
can be used to specify the behavior of routines
and invariants of classes [4].

There were several reasons for
developing a CASE tool for BON. First, it was
important to develop a tool that integrates tightly
with the Eiffel-Development-Tool [6]. This,
however, does not mean that BON (and BDT)
cannot be used with other OO programming
languages. Second, it provides support for static
and dynamic views of a system – the two views

 2

we are interested in. Third, BON supports the
notion of pre- and postconditions for routines (a
routine is the equivalent of a Java method) and
class invariants without the need to add any
secondary textual language. Finally, if used in an
educational environment, we believe that BON is
simpler and easier to understand than other
modeling languages.

2.1 BON Static Model

The fundamental construct in a BON static
diagram is a class. A class has a name, an
optional class invariant and zero or more features
(features can be attributes, queries or commands)
[5]. Classes can be viewed in two forms: In the
compact view a class is represented by an ellipse
with the class name in the center of the ellipse.
The second view consists of a rounded rectangle
with all features and invariants of the class
visible. Figure1 shows both views. Classes can
be further organized in clusters, which make
construction of larger systems easier.

Figure 1: Screenshot of a Class View in BDT.

Classes and clusters interact via two kinds of
relationships:

1) Inheritance: Inheritance is simply defined

as the inclusion in a class, called the child,
of operations and contract elements defined
in other classes, its parents [5]. Inheritance
may translate differently depending on the
object-oriented language used, so the
definition is kept very general in BON.
Inheritance in BON is represented as a
single line with an arrow towards the super
class.

2) Client-supplier: The user has two options
for a client-supplier relationship, association
and aggregation. Association refers to
reference relationships and aggregation to
sub object (subpart) relationships [4].
Association relationships are represented by
a double line with an arrow towards the
supplier (e.g. CAR in fig1). The
representation of aggregation is similar to
that of association, but with an additional
perpendicular line close to the arrow (e.g.
ACCOUNT in fig1). Figure1 shows all three
possible relationships.

2.2 BON Dynamic Model

BON also provides notation for collaboration
diagrams, which show the communication
between objects. Collaboration diagrams consist
of rectangles representing runtime objects and
arrow lines between them representing messages
sent from one object to other object(s). An
example of a BON collaboration diagram is
given in Figure2. Messages are numbered for
two purposes: First, they represent time in the
scenario - that is the order in which calls are
made. Second, they correspond to entries in a
scenario box where the role of each call may be
described using free text [5]. Each message
corresponds to a feature call.

Figure2: Screenshot of a Collaboration
Diagram in BDT

3 Overview of BDT

In this section we will provide an overview of
our tool and its most important features. Many of
these features have already been implemented
and others we are currently working on.

3.1 BDT Structure

BDT provides the environment to construct class
diagrams and collaboration diagrams. As a stand-

Phone

Display
Dialer

21

Scenario Box

1. Display number
2. Dial Number

 3

alone, diagramming plug-in, a BDT-project can
include several dynamic and static diagrams. As
part of EDT (or JDT [7]), only one class diagram
can be modified at a time. This ensures that code
and class diagrams are always consistent. The
user can choose which classes and clusters are
shown in the class diagram at any time.

3.2 Static Diagrams

BDT allows the user to construct class diagrams
with any level of detail. When a new class is
added to the diagram, the user has to specify the
class name only. Next, the user can, using an
easy-to-use interface, enter additional
information about a class. This information can
include class invariants, comments and features
(attributes, commands and queries). For
commands and queries, the user can further
specify pre- and postconditions and modifies
clauses.

An important advantage of BDT is its
information hiding capabilities. Classes can be
shown in the compact or expanded view.
Further, expanded views can be configured to
hide any features, invariants or comments that
are not needed (these will not be deleted, but just
hidden from the view). In figure1 for example,
the user might choose not to show the invariant
and can hide it easily.

3.3 Dynamic Diagrams

BDT also provides support for constructing
collaboration diagrams showing object-
interactions. For each object, the name of the
object must be specified. Arrows represent
messages and each message has a unique
number. Numbers are placed on each arrow
closer to the receiver of the message. Messages
can be added, deleted and edited using the
scenario box.
Consistency between dynamic and static
diagrams is discussed in the sequel.

3.4 Forward and Reverse Engineering

One of the main goals of this project was to
enable the developer to have consistent code and
static diagrams. It was important to us to have
code automatically generated from diagrams and
vice versa. Generation of Eiffel code from BON
is straightforward. Following the model-control-
view paradigm in designing our system made
this task easier. Each model of a class is
inspected and the corresponding code is

generated. We have designed our tool to detect
as many errors as possible during the
construction of the diagram and therefore
decrease the dependency on the parser and
compiler. Constructing diagrams from code is
slightly more challenging since there are many
constructs in a programming language such as
Eiffel that will not be used in diagrams
(diagrams abstract from the details) and need to
be projected out.

Forward and reverse engineering to and
from Java using BON places more restrictions
since certain elements in BON do not have a
semantic equivalent in Java [8]. Aggregation and
multiple- inheritance are two of the major
differences. Aggregation can be modeled by a
simple reference, but multiple-inheritance cannot
be directly translated into Java, except in cases
where all super classes are deferred (interfaces).
Currently, we are investigating the Eclipse
Modelling Framework (EMF) [9] for use in this
step. EMF allows the generation of code from
Rational Rose model files, annotated Java
interfaces, or an XML schema definition [9].

4 Checking for Consistency

Collaboration diagrams are predominantly
constructed independently of class diagrams and
are often simply assumed to be consistent [3].
We are interested in providing the developer
with a tool that detects inconsistencies in the two
views. Our method mainly relies on BON’s
notation, which allows the specification of pre-
and postconditions.

An inconsistency can arise in a number
of ways (discussed below), but this paper mainly
discusses one source. The final tool will check
for all sources for inconsistency, but it is
important to realize that our tool is not complete.
It is possible to miss inconsistencies that exist in
the diagram and code. On the other hand, BDT is
sound and inconsistencies reported are “real”
inconsistencies.

In the next sections we provide a short
overview of what we think are the main issues
when checking for consistency and how we plan
to tackle these problems.

4.1 Checking Collaboration Diagrams

Against Class Diagrams

Our goal is to be able to check the consistency of
one or more BON collaboration diagrams against
one BON class diagram. In addition, we want to

 4

report where an inconsistency arises if the tool
detects one.
There are several steps when checking the
consistency between BON collaboration and
class diagrams [4]:

1. The diagrams is syntactically correct
2. Each object appearing in the collaboration

diagram has a corresponding class in the
class diagram

3. Each message in the collaboration diagram
has a corresponding routine

4. The sender of a message must be the client
of the receiver (supplier) in the class
diagram

5. The routines that are called (from 3) must be
enabled, i.e. their preconditions must be
true. The precondition can only be true if the
sequence of previous calls has established a
system state that satisfies the precondition.

As mentioned above, we will concentrate on
Point5, as it seems to be the most challenging
piece in checking for consistency. The next
section provides an overview of our intended
approach.

4.2 Checking Feature Preconditions

In order to ensure that a specified message
sequence in a dynamic diagram is consistent
with the static diagram two conditions must be
checked [4]:

1) A developer specified initial state, init,
must satisfy the precondition of the first
message

2) For all Messages Msg(i) for i > 1, the
state created by init and messages
Msg(1) to Msg(i-1) must satisfy the
preconditions of Msg(i).

The tool will first verify that init satisfies the

precondition of the first message and then
traverse through the remaining messages. For
each message it will ensure that the current
system state satisfies the precondition of the
message. Every time a message is executed, its
postcondition will alter the current system state.
As a result, the current system state is a
sequential composition of all postconditions of
messages that have been executed.

Sequential composition is defined as follows [4]:

]':[]':['; soldsQssPsQP =∧=•∃=

where s’ is an intermediate state.

Let #messages represent the number of messages
in the dynamic diagram, msg(i).pre and
msg(i).post represent the pre- and postconditions
of message i and init the initial state. Then our
tool must check the following condition:

preimsgpostimsgpostmsginit
messagesii

).()).1(;...;).1(;(
#1

→−
•≤∧>∀

The sequential composition and resulting textual
substitution ensure that the transition of variables
to different values as messages are sent is
reflected in the Boolean expression that will be
passed to the theorem-prover.

Currently we are experimenting with
simple systems and adding complexity as we go
along. Central to the consistency checking of our
system is the automatic theorem-prover Simplify
[10]. An important property of this theorem-
prover is that it is refutation-based: to prove a
formula P, it tries to satisfy the negation of P
[10]. This important feature can be used to
provide valuable feedback to the user. Another
important advantage of Simplify is that it is
available for various platforms as is Eclipse. We
have had good results with Simplify, but it is
possible that we switch to other theorem-provers
such as PVS [11] or Eves [12] if we find serious
limitations in Simplify.

4.3 Limitations of Consistency Checking

As mentioned above, we are currently working
on simple class structures and are exploring all
aspects associated with determining
inconsistencies. This section provides some
inside into the difficulties we anticipate and
partial solutions we might have.

 One important issue is the way feature calls

– “dot notations”- are treated in pre and
postconditions (e.g. account.balance > 400).
The difficulty arises since the feature being
referred to belongs to a different object (i.e.
is not an internal attribute or query). As a
result, whenever a feature is encountered –
whether internally or called within another
class – it is replaced by the name of the class
and the feature name. For example, imagine
class A has feature f1 and class B has an
attribute a of type A and somewhere in class

 5

B a.f1 is used in a pre- or postcondition. In
this case, we will replace a.f1 by A.f1. A
similar substitution is performed in A. As a
result, whenever f1 is used it appears as A.f1.
This solution only works with one runtime
object per class. We are investigating other
solutions.

 Contracts involving feature arguments pose
a major hurdle for our tool. For example,
consider the routine set_age(i: INTEGER)
with the precondition (i >= 0), which
enforces that the supplied argument is
greater equal 0. When this routine is called
the value of i will not be specified and our
tool will not be able to check the specified
precondition. One solution is to assume
preconditions that involve arguments
(assume they are true) and ultimately display
to the user which values can be used for the
arguments in order to satisfy the
preconditions.

5 Conclusion and Future Work

We presented a BON CASE Tool plug-in for
Eclipse that allows the user to construct class
diagrams and collaboration diagrams. The tool
further supports seamless forward and reverse
engineering and maintains consistent code and
class diagrams. Finally, formal method support
allows developers to ensure that separately
constructed static and dynamic diagrams are
consistent. We have outlined the path we are
planning to take for this consistency checking
and the difficulties we anticipate.

Our future work will consist of
completing BDT and improving its features. We
plan to make consistency checking as automatic
as possible and easy whenever user interaction is
required. Further we would like to investigate the
integration of BDT with JDT. EMF [9] seems to
be a very promising and powerful feature of
Eclipse that could make this task easier.

About the Authors

Ali Taleghani is a graduate student at York
University. His main interests are the use of
formal methods in OO and MDD development.

Jonathan Ostroff is an associate professor of
computer science at York University. He is
interested in software engineering and the use of
formal methods for designing real-time and
object-oriented systems.

Acknowledgements
The authors would like to thank IBM and the
Eclipse Innovation Grant committee for
providing the funding that mostly enabled this
project.

References
[1] Rational Software et. al., Unified Modelling

Language (UML) version 1.3;
http://www.rational.com/uml, June 1999.

[2] J. Warmer, A. Kleppe, OCL: the constraint
language of the UML, Journal of Object-
Oriented Programming 12 (2) (1999) 10-13.

[3] A. Formica, H. Frank, Consistency of the
static and dynamic components of object-
oriented specifications, Data and Knowledge
Engineering 40 (2002) 195-215.

[4] R. Page, J. S. Ostroff, P. Brooke, Checking
the Consistency of Class and Collaboration
Diagrams using PVS, Proc. Rigorous
Object-Oriented Methods 4, British
Computer Society (2002).

[5] K. Walden, J.-M. Nerson, Seamless Object-
Oriented Software Architecture, Prentice
Hall (1995).

[6] D. Makalsky, Eiffel Development Tool,
http://www.sourceforge.com/edt (2003).

[7] IBM, Java Development Tool,
http://www.eclipse.org/jdt (2001).

[8] R. Page, L. KaminskayaXS, J.S. Ostroff, J.
Lancaric, BON-CASE: An Extensible
CASE Tool for Formal Specification and
Reasoning, Journal of Object Technology,
vol. 1 no. 3, Special issue: TOOLS USA
2002 proceedings, 77-96,
http://www.jot.fm/issues/issue_2002_08/arti
cle5.

[9] Catherine Griffin, Eclipse Modeling
Framework, IBM,
http://www.eclipse.org/articles/index.html
(2002).

[10] Compaq, SIMPLIFY,
http://research.compaq.com/SRC/esc/Simpli
fy.html (1999).

[11] S. Owre, N. Shankar, J. Rushby, D. Stringer-
Calvert, PVS System Guide 2.4, CSL, SRI
International (2001).

[12] Ora Canada, Eves,
http://www.ora.on.ca/eves.html.

[13] Object Technology International, Inc.,
Eclipse Platform Technical Overview,
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf, 2001.

