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Abstract. We report on our experiences in teaching lightweight formal methods
with Eiffel. In particular, we discuss how we introduce formal methods via Eiffel’s
design-by-contract and agent technologies, and how we integrate these techniques
with test-driven development, in an approach called specification-driven design.
This approach demonstrates how formal methods techniques fit with industrial
software engineering practice.

1 Introduction

For a number of years we have been teaching formal methods (FMs) in a variety of
different ways, including traditional program verification (via weakest preconditions as
well as refinement calculi), to Computer Science and Engineering undergraduates with
a range of backgrounds. Our focus in the past few years, though, has been on teaching
formal methods as an integrated part of software engineering. Specifically, we want to
teach FMs in such a way so that students – especially those who are maths-phobic –
do not get the impression that they are an eccentric, specialised technology. Instead, we
want students to obtain the view that they are part of the software engineer’s toolkit, and
are supported by mainstream, industrially applicable tools.

The approach that we have taken, developed over a number of years of experiment
and careful consideration, is based upon the use of Eiffel [11]. Eiffel is an important and
substantial language for teaching formal methods, for a number of reasons:

– It is both a specification and programming language and as such is compatible with
the ideas of refinement [15].

– It is one of the best object-oriented languages available, in terms of its generality
and expressiveness, its support for building reliable systems, static type checking,
reusable libraries, and ease of use.

– It has industrially proven tools that support checking of specifications against code,
while also providing important features such as incremental compilation, debugging,
and GUI construction.

The first point is a critical one for teaching FM. It is not well-known that Eiffel can be
easily used as a formal specification language, and that tools can be used to check the
correctness of Eiffel specifications.The specification elements of the language go as far as
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supporting quantifiers in boolean expressions, via Eiffel’s agent technology (discussed in
the sequel). The ability to use Eiffel both as a specification and programming language
allows broader us of the language over one or more courses that emphasise different
elements, such as GUI design, real-time and embedded systems programming, etc.

There are of course substantial challenges to teaching Eiffel as a lightweight formal
method. In particular, students are sometimes hesitant to learn Eiffel, because it is not
perceived as a mainstream OO language – i.e., they want to learn Java or C++. As well,
students sometimes think that Eiffel tools are inferior to tools for, e.g., Java, and that
Eiffel libraries are less comprehensive and expressive than similar ones for C++ and Java.
The second point is one that can best be addressed by experience with Eiffel tools and
libraries; after some experience the students tend to change their assessment in favour
of Eiffel. The first point can be addressed by teaching Eiffel in a software engineering
context, and by emphasising that a programming language is not specifically being
taught. To this end, we introduce Eiffel and its FM techniques in a very specific way,
which we discuss shortly.

In this paper, we describe our experiences and approach to teaching lightweight
FM with Eiffel. We start with an overview of Eiffel, dwelling on its support for formal
specification, and describe its agent technology briefly. We then describe three important
definitions: specifications, requirements, and programs – and explain why it is critical to
ensure that students know these before starting to program. The definitions are critical
to understanding when teaching and using a wide-spectrum language such as Eiffel. We
then describe our approach to teaching with Eiffel, including how we introduce agents to
students, and how we integrate Eiffel techniques with software engineering practices such
as testing. This approach, termed specification-driven design, encompasses elements
from Extreme Programming and formal methods, and is highly suited (though not strictly
dependent) on teaching with Eiffel. We then briefly outline how a typical course using
this approach could be structured, and conclude with some observations.

2 Eiffel, Design-by-Contract, and Agents

Eiffel is an object-oriented programming language and method [12]; it provides con-
structs typical of the object-oriented paradigm, including classes, objects, inheritance,
associations, composite (“expanded”) types, generic (parameterised) types, polymor-
phism and dynamic binding, and automatic memory management. It has a comprehen-
sive set of libraries – including data structures, GUI widgets, and database management
system bindings – and the language is integrated with .NET.

A short example of an Eiffel class is shown in Fig. 1. The class CITIZEN inherits
from PERSON (thus defining a subtyping relationship). It provides several attributes,
e.g., spouse, children which are of reference type (in other words, spouse refers to an
object of type CITIZEN ); these features are publicly accessible (i.e., are exported to
ANY client). Attributes are by default of reference type; a reference attribute either
points at an object on the heap, or is Void . The class provides one expanded attribute,
blood type . Expanded attributes are also known as composite attributes; they are not
references, and memory is allocated for expanded attributes when memory is allocated
for the enclosing object.
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The remaining features of the class are routines, i.e., functions (like single, which
returns true iff the citizen has no spouse) and procedures (like divorce, which changes
the state of the object). These routines may have preconditions (require clauses) and
postconditions (ensure clauses), but no implementations. Finally, the class has an in-
variant, specifying properties that must be true of all objects of the class at stable points
in time, i.e., before any valid client call on the object. While we have used predicate
logic in specifying the invariant of CITIZEN , it should be observed that Eiffel does not
support this exact syntax. It does possess a notion of agent that can be used to simulate
quantifiers like the ones used in the example; we discuss this in Section 2.2, and show
how to rewrite the quantifiers given in Fig. 1 using agents there.

class CITIZEN inherit PERSON
feature {ANY}

spouse: CITIZEN
children, parents: SET[CITIZEN]
blood_type: expanded BLOOD_TYPE

single: BOOLEAN is
do Result := (spouse=Void)
ensure Result = (spouse=Void)
end

feature {BIG_GOVERNMENT}

marry is ...
have_child is ...
divorce is
require not single
do ...
ensure single and (old spouse).single
end

invariant
single or spouse.spouse = Current;
parents.count <= 2;
for_all c member_of children it_holds
c.parents.has(Current)

end -- CITIZEN

Fig. 1. Eiffel class interface

Other facilities offered by Eiffel, but not demonstrated here, include generic (param-
eterised) types, dynamic dispatch, multiple inheritance, and static typing. We refer the
reader to [11] for full details on these and other features.
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In teaching Eiffel, we give thorough coverage to the language, and consider all as-
pects of it, including agents, multiple inheritance (and its challenges), and covariant
redefinition. We introduce language design principles that are supported or enforced by
Eiffel, such as the query/command separation principle (which states that functional rou-
tines should be side-effect free). The discipline that these principles provide is generally
appreciated and applied by the students in their projects and assignments.

2.1 Design-by-Contract

Design-by-Contract (DbC) is a mathematical description technique for engineering soft-
ware systems with significant requirements for reliability and robustness. DbC is typi-
cally integrated with a programming language, providing formal annotations for inter-
faces of components and services. It differs from well-known formal methods such as
B and Z in its cost: it can be selectively applied to those parts of the system associated
with the highest risk; it integrates mathematical descriptions with code, ensuring con-
sistency; and it is designed to be supported by tools that are comfortable and familiar to
developers, e.g., compilers, debuggers, static checkers, and testing frameworks.

DbC recommends annotating classes with preconditions, postconditions, and class
invariants. This was illustrated in the Eiffel example in Fig. 1. These assertions imply
contracts that bind callers of class services with implementers of said services: callers
guarantee to satisfy preconditions, while implementers guarantee to satisfy postcondi-
tions. This convention guarantees that conditions which may affect the correct operation
of a class are checked only once. In Eiffel, these assertions are built in to the program-
ming language, and the assorted Eiffel compilers and IDEs (e.g., ISE EStudio and GNU
SmartEiffel) provide tools for managing and debugging assertions.

The benefits of using contracts and DbC are as follows.

– Contracts provide precise mathematical specifications of software and its services.
– Many views of the software can be automatically extracted. One view (automatically

extracted) is the contract view that provides the client with the precise interface
specifications. For example, a routine can only be invoked if the client satisfies the
routine precondition.

– With assertion checking turned on, the contracts are checked every time the code
is executed, and contract violations are immediately flagged. This test for consis-
tency between code and specifications comes for free as opposed to the 3-fold cost
mentioned earlier.

– Classes and components are self-documenting: the contracts are the documentation.
There is no way that the documentation and code can become inconsistent, because
the contracts are included within the code – the code would not execute if there are
inconsistencies.

– Contracts provide design rules for maintaining and modifying the behaviour of
components, cf., behavioural subtyping.

– Contracts provide a basis for formal verification. We discuss this further in the sequel
when we suggest how Eiffel can form the basis for a formal verification course.

Contracts may of course be incorrect or incomplete, and thus need to be supple-
mented with a rigorous testing process. A key point to note then is that an Eiffel program
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annotated with assertions can result in errors due to incorrectly implemented functional-
ity, or violation of contracts. As well, some conditions are extremely difficult to express
using executable contracts – the paper [13] considers examples.

2.2 Agents

Agents in Eiffel are objects that represent operations. Agents can be passed to different
software elements, which can use the object to execute the operation whenever they
want. Agents thus provide a way of separating the definition of an operation from its
execution. They also are a way of combining high-level functions (operations acting
on other operations) with static typing in Eiffel. This should be contrasted with similar
techniques, e.g., reflection in Java, which allows similar functionality at the cost of loss
of static type checking.

Here is a simple example of an agent, using Eiffel’s GUI library EiffelVision. Suppose
you want to add the routine eval state to the list of event handlers that will be executed
when a mouse click occurs on the widget my button . To carry this out, the following
Eiffel statement would be executed.

my button.click actions.extend(agent eval state)

The operation being added to the button is indicated by the agent keyword. The keyword
distinguishes an operation call to eval state from a binding of the operation to the button.
In general, the argument to extend can be any agent expression. An agent expression
will include an operation plus any context that the operation may need (e.g., arguments).
The ability to supply context with an agent expression is essential. Suppose that you
want to integrate the three-argument function

h(a : T1; x : REAL; b : T2) : REAL

over its second argument in the domain [0, 1]. Given a suitable integration scheme
integrator the following agent call will suffice.

integrator .integral(agent h(u, ?, v), 0.0, 1.0)

The question mark ? indicates an open argument (similar to a wild card, representing
an element taken from the collection) that is provided by iterating through the range
arguments provided.

To support agents in Eiffel, it is necessary to introduce a number of classes, includ-
ing ones to represent FUNCTION and PROCEDURE operations, PREDICATE
operations, and arguments. These meta-level classes provide introspection facilities.

Predicate agents are of significant use; they feature heavily in how we introduce for-
mal methods to students, and how we carry out testing. Predicate agents apply boolean-
valued operations to collections. For example:

intlist .for all(agent is positive(?)) (1)

intlist .exists(agent perfect cube(?)) (2)
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The first example applies the boolean-valued function is positive to elements of the
integer list intlist , and conjoins together the result. Equation (2) applies the boolean-
valued function perfect cube to elements of the integer list intlist and disjoins the result.
The question mark indicates an open argument that is provided by the list interator. Using
this approach, we could rewrite the third clause in the invariant of class CITIZEN in
Fig. 1 as follows.

children.for_all((c:CITIZEN):BOOLEAN
do
Result := c.parents.has(Current)

end)

The above example illustrates anonymous operations (i.e., the argument passed to
the iterator for_all). c, the bound variable, is an element taken from the collection
children , to which the body of the anonymous operation (contained within the inner
do..end block) is applied. Operations bound in agent expressions may make reference
to attributes and routines of objects, since when the operation is finally invoked, the
operation will have been bound to a target object.

3 Specifications and Requirements

The terms “requirements” and “specifications” are ambiguous, and often used inter-
changeably in the literature. The traditional understanding of requirements is that they
say what the system will do and not how. Students learning formal methods – and
other software engineering techniques – often struggle with the distinction between re-
quirements and specifications. This is particularly the case when they are using a wide-
spectrum language like Eiffel or B. It is important that they understand the distinction in
order to make it easier to validate systems against requirements, to clarify whether they
are modelling the physical world or the system itself, and to simplify system designs. We
thus spend a small amount of time – aproximately half a lecture – making the definitions
more precise, following [9,16], though with a slight change in nomenclature.

The computer under description (consisting of software and/or hardware) is called the
System, and it operates in an Environment. There are some phenomena (states, signals,
events and entities) that the System and the Environment do not share, but there are
also some phenomena that they do share – these are called the shared phenomena as
illustrated by the intersection of the two ellipses in Fig. 2, which uses a banking system
as an example.

In a banking system, the bank and its customers are not interested in hashtables or
sort routines. The bank is interested in customer satisfaction, and that customers can
request withdrawals or make deposits. An example of a requirement, written in temporal
logic, is

[R1] �(x < balance ∧ withdrawal request(c, x ) →
�(withdraw(c, x ) ∧ teller gives(c, dollar − bill)) )
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Fig. 2. The World: System and Environment

i.e., a withdrawal request of an amount x for customer c must lead to a withdrawal
payout by the teller to the customer in dollar-bills, provided that the requested amount
does not exceed the current balance . The phenomenon dollar-bill is actual money in
the bank teller’s till (and is therefore not a System phenomenon), while balance is a
shared phenomenon. All the requirement phenomena are a subset of the of the Environ-
ment (REQ ⊂ Environment). Additional physical constraints or business rules (the
application domain knowledge) will also need to be described.

The balance is a shared phenomenon in Environment ∩ System . It represents the
debt owed by the bank to the customer. It may also occur as code in the System (e.g. see
[S1] in Fig. 3).

Programs, in contrast to requirements, are concerned solely with the System phenom-
ena. Programs may need to implement the requirements by using internal data structures
and algorithms such as hash-tables and sort routines to do the job. All such program
phenomena are a subset of the System.

The gap between requirements and programs is bridged by specifications. Speci-
fications are concerned solely with the shared phenomena. Specifications are neither
requirements nor programs. Specifications are unsatisfactory programs as they may not
be executable. They are unsatisfactory requirements because requirements are not lim-
ited only to the coastline where the Environment and the System meet. But, specifications
are useful as we transition from requirements to programs that will satisfy the require-
ments as specifications allow us to describe the black-box behaviour of the code at the
observable input-output interface. For example, in order to satisfy requirement [R1],
we might have a specification [S2] that specifies the behaviour of class ACCOUNT
as shown in Fig. 3. The specification in the figure is the contract view; hence, all the
phenomena described in the figure are shared.

In the absence of implementation detail, the specification is not executable, but it
can be compiled and automatically checked for type errors and the like by the compiler.
Once implementation detail is provided, then the implemented code is automatically
checked against the specification (i.e., the specifications now become “executable”).
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Fig. 3. Specification [S2]

The perspective shown in Fig. 2 avoids the problem of implementation bias (when
stating requirements) because no statements are made about the internals of the pro-
posed System. Requirements and specifications are not descriptions of the state of the
System, but rather a description of the state of the Environment. A specification might be
compromised by a poor choice of designated phenomena or invalid domain knowledge,
but it cannot overconstrain the implementation [16].

Eiffel, of course, can be used for capturing requirements, writing specifications, and
implementation. The distinctions often escape students, especially early in their first
software engineering course. We thus go over numerous case studies where we make
the distinctions clear, and challenge them on this issue when they present reports, or
participate in in-class discussions. We find that emphasising the distinctions as discussed
above shows marked improvement in the clarity of assignment and project reports as the
course proceeds.

4 Teaching Formal Methods with Eiffel

We have been teaching lightweight formal methods with Eiffel to third year Computer
Science and Computer Engineering students for around six years now. Our approach
has evolved over time, from simply using the Eiffel programming language to teach
object-oriented techniques, to a whole-view approach for teaching software engineering,
wherein formal techniques play a substantial role.

The course that we teach is one semester, and is project-focused, i.e., students
(typically working in teams of 2-4) engineer working systems, based on requirements
provided by the instructor. A substantial amount of instructor effort goes into the
preparation of a comprehensive software engineering project that involves design (using
UML or BON diagrams), implementation, testing, and documentation; we discuss this
further later.

Students taking the course will already have some experience with object-oriented
programming in Java. The typical student will have previously taken three one-semester
courses that make use of Java as a programming language for introductory computer
science, algorithms, and data structures. The students will also have taken two
one-semester courses in logic and discrete mathematics and will have some experience



Specification-Driven Design with Eiffel and Agents 115

with propositional and predicate logic, though their experience with using mathematics
in programming (e.g., in introductory Computer Science courses that teach basic
pre/postconditions and loop invariants) typically shows hesitancy in using these
techniques in building systems.

After the usual preliminaries on software quality and engineering processes, the
course leaps into a case study, designed to illustrate fundamentals of Eiffel and two typical
approaches to building systems: plan-driven (in terms of modelling languages such as
UML and BON) and test-driven. The case study proceeds by giving some informal
requirements for a simple banking system. Use cases and scenarios are sketched very
briefly, and from these a set of candidate classes is determined. The students are then
posed the question: where should design commence?

This question is aimed at getting students to thinking about acceptance tests and
testing in general. For the next stage is to introduce test-driven development [3] as (a) a
general development technique, and (b) a way to introduce contracts (pre- and postcon-
ditions) and agents (for predicates) in a lightweight and indirect way. Our experience is
that students who are less inclined towards mathematical techniques are more amenable
to their study, use, and description if they are couched in terms of accepted engineering
tasks, particularly testing, with which they have some experience. (We provide the stu-
dents with an Eiffel testing framework, ETester, which supports unit tests and test suites,
and also provides infrastructure for distinguishing between failures of the system versus
failures in contracts. This is discussed elsewhere [10]. ETester has a similar design to
JUnit for Java, but is targeted at languages that support contracts, where it is important
during testing to distinguish failures in contracts from failures in code.)

Writing tests introduces the students to Eiffel’s agent technology (used in ETester
for automating testing) while at the same time serving to introduce them to the concept
of writing formal specifications. Tests are a “backdoor” mechanism for introducing
formal specifications and the usefulness of contracts. This is a critical point, which we
now discuss.

4.1 Tests and Contracts Are Both Formal Specifications

The test-driven development (TDD) process described by Beck [3] is as follows.

1. Write a little test which may not work initially (especially if code hasn’t been written
for a class).

2. Make the test work quickly, focusing on doing the simplest thing that works.
3. Refactor the design to eliminate duplication and improve the style and architecture

in terms of reusability and maintainability.

Unit tests (fromTDD) and contracts (DbC) are both forms of specifications associated
with shared phenomena of the System and the Environment. Unit tests can also be used
to do regression testing at the end of coding, but in TDD, unit tests are seen as formal
specifications that drive the design [1, p38 and p51].

Unit tests are normally used to check small chunks of a design. JUnit and E-Tester
are useful tools for writing unit tests. However, these tools can also be used to write
tests that verify higher level behaviours such as system-level tests involving the shared
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Fig. 4. Test and Design of a simple banking system

phenomena (Fig. 2). Such tests could verify parts of the collaborative behaviour of the
kind mentioned in the small banking example involving requirement [R1]. We shall call
these higher level tests collaborative specifications.

Collaborative specifications are related to UML interaction descriptions such as
sequence or collaboration diagrams, and BON dynamic diagrams, especially where these
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diagrams describe a use case. The diagrams show a number of example objects and the
messages that are passed between these objects within the use case. Such interaction
diagrams provide an intuitive and visual way of describing (partial-order) executions
of the system at the input-output interface, and therefore capture apsects of customer
requirements useful in integration and acceptance tests.

Unfortunately, UML’s interaction diagrams do not yet have a fully agreed-upon
semantics, although various fomalizations have been proposed (but with conflicting
semantic assumptions about the underlying communication system).

An equivalent to the interaction diagrams is the BON dynamic diagram. The BON
dynamic and class diagrams for a simple banking system are shown in Fig. 4. These two
diagrams describe the design of the system. At the top of Fig. 4 is a test that checks the
dynamic diagram [14]. This test is an example of a collaborative specification (called
[S1] in the figure). We note that [S1] is close to the temporal logic requirement [R1]
described earlier in this section. It omits dollar-bills but otherwise mirrors all other
phenomena described by [R1].

When we run the test [S1], we also exercise the detailed contractual specification
[S2] for ACCOUNT shown in Fig. 3. [S2] is repeated in the class diagram of Fig. 4.

The advantage of a test-based collaborative specification such as [S1] over the dy-
namic diagram (and the UML interaction diagrams) is that it is a formal artifact written
in the same progamming language as the design. It can be compiled, type-checked and
executed. If it fails, then there is a problem in the design, and if it succeeds then the ex-
pected behaviour is in place, at least for this execution. Finally, if the test succeeds then
contracts such as those outlined in the design class diagram of Fig. 4 are also verified.

The key point to note with this approach is that it emphasises the use of different
kinds of formal specifications, and that these specifications are introduced via testing.
There is substantial value to introducing (particularly maths-phobic) students to formal
specifications that can be executed, as they can get immediate feedback as to their quality
and can immediately see their value in catching mistakes and clarifying assumptions.

The other point to note is that different syntaxes can be used for writing formal
specifications. On one hand, they can be written using precise boolean logic, in terms of
pre- and postconditions and class invariants. Or they can be written as executable unit
tests or test suites. Or they can be written as dynamic diagrams. These are all useful
syntaxes to know and apply.

4.1.1 Collaborative vs. Contractual Specifications. Test-based collaborative spec-
ifications are incomplete, especially in contrast to the details that can be supplied by
formal specifications in the form of contracts. Consider the following unit test.

test_integers_sorted:BOOLEAN is
local

sa1,sa2: SORTABLE_ARRAY[INTEGER]
do

sa1 := <<4, 1, 3>>
sa2 := <<1, 3, 4>>
sa1.sort
Result := equal(sa1, sa2)

end
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in which we create an unsorted array sa1, execute routine sort, and then assert that the
array is equal to the expected sorted array sa2. The unit test specifies that array <<4,
1, 3>> must be sorted. But what about tests for all the other (possibly infinite) arrays
of integers. Furthermore, the test does not check arrays of REAL, or arrays of PERSON
(say by age). After all, the class SORTABLE ARRAY[G] has a generic parameter G. Also,
it is hard to describe preconditions with unit tests. For example, we might want the sort
routine to work only in case there is at least one non-void element in the array.

By contrast, the contract-annotated specification in Fig. 5 is a precise and detailed
specification of the sorted array (the count attribute used in the figure is inherited from
ARRAY ). The quantifiers have been specified in Eiffel using the agent construct, as
students would be required to do.

Fig. 5. Contractual Specification

The generic parameter G of class SORTABLE ARRAY is constrained to inherit from
COMPARABLE. This allows us to compare any two elements in the array, e.g the expresion
item(i) <= item(i+1) is legal whether the array holds instances of integers or poeple,
provided the instances are from classes that inherit from COMPARABLE.

Routine sort is specified via preconditions and postconditions. The preconditions
state that there must be at least one non-void element to sort. The unit test did not specify
this, nor is it generally simple for unit tests to specify preconditions.

The postcondition states that the array must be sorted and is unchanged. This post-
condition specifies this property for all possible arrays, holding elements of any type
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(integers, people, etc.). Again, only an infinite number of unit tests could capture this
property.

However, while contract-based specifications are detailed and complete, they have
disadvantages and limitations. Consider class STACK [G ] with routines given by
push(x : G) and pop. While contracts can fully specify the effects of of push and
pop taken individually, the contracts cannot directly describe the last-in-first-out (LIFO)
property of stacks which asserts that

∀ s : STACK , x : G • pop(push(x , s)) = s (3)

Of course, given the complete contracts and an appropriate refinement calculus [15], the
LIFO property can be expressed in the calculus as

push(x ); pop → skip (4)

so that the LIFO behaviour indirectly emerges from the contractual specifications. The
calculus can also be used to calculate if the implementation indeed satisfies the LIFO
property. However, neither the description nor the calculation can be directly expressed
as contracts.

By contrast, the emergent LIFO behaviour is easy to describe using collaborative
specifications.

4.2 SDD

The approach that we teach students, which integrates elements of TDD and design-
by-contract, is called specification-driven design; a full description of this approach
is in [13]. It is an agile method tailored for Eiffel. It is perhaps surprising that agile
techniques can be integrated successfully with formal methods. It is less surprising
when one considers the commonalities between TDD and DbC.

– Both tests and contracts are formal specifications, each with their own limitations
and advantages.

– Both TDD and DbC seek to transform requirements to compilable (high level)
programming constructs as soon as possible. In TDD, tests describe designs. In
DbC, contracts (and BON or UML diagrams) describe designs.

– Both TDD and DbC are automated (and hence easy-to-use) lightweight verification
methods. Neither are complete, but both have simple-to-use tool support.

– Both are incremental development methods that intertwine analysis, design, coding
and testing.

– Both TDD and DbC strive to obtain quality first for each unit of functionality, before
proceeding to the next unit; this in effect aims to implement the Osmond Curve [2].

These commonalities indicate that we can combine TDD and DbC in a beneficial
fashion. Boehm and Turner have argued in detail [6, p148] that (a) neither agile nor
plan-driven methods provide a silver bullet; (b) each method has home ground where
one clearly dominates the other; (c) future trends indicate that both will be needed; (d)
it is better to build your method up than to tailor it down. Two case studies of actual
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Fig. 6. SDD – Specification Driven Design

projects indicate how a balance can be achieved between agile and plan-driven method.
The authors also detail the empirical evidence of how the costs and benefits of each
method can be, and have been measured.

Conclusion (d) states that it is better to start small and elaborate one’s development
method over time. Boehm and Turner point out that plan-driven methodologies have a
tradition of developing all-inclusive processes. Experts can can tailor the methodology
down to fit a particular situation. However, non-experts tend to play it safe and use
the whole thing often at considerable and unnecessary expense. Agilists offer a better
approach of starting with minimal sets of practices, adding extras which can be justified
by cost-benefits. This is extremely important for teaching: students may be turned off
by presenting a large, complex methodology (or a large set of practices or principles),
especially when they are first introduced to large-scale software engineering ideas.

In this spirit, the statechart of Fig. 6 describes specification-driven design. SDD is
not complete but it does represent a core practices of a balanced method.

As described in Fig. 6, SDD does not dictate where to start – it is the developer’s
choice based on the context. However, whatever the starting point, the emphasis is on
translating customer requirements to compilable and executable specifications, designs
and tests. It might initially be possible to write a high level collaborative specifica-
tion, or perhaps the developer wants to sketch out some class diagrams and contractual
specifications.

Designs may need to be tested, or small chunks of design could be developed by TDD.
In TDD mode, a developer might get stuck in an “infinite refactoring loop”, indicating
that more than an incremental design change is called for. The current chunk of design
may need to be documented. This might be the right time to switch to DbC mode. In DbC
mode, a developer might be stuck in the infamous “analysis paralysis”, or the design
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may need to be tested and verified against the requirement. The trigger conditions on
the statechart edges are thus not exhaustive.

Our experience in teaching with this approach is that captures the interest of students
immediately, particularly because of the emphasis on executable specifications. Students
see the value of formal specifications when they are couched in terms of testing. But at
the same time, when testing is an emphasised part of development, they quickly see that
tests as a form of specification are incomplete, and one needs to go further – and use
contracts. We discuss our observations more in the next section.

4.3 Verification: Going Further

In current teaching with Eiffel we emphasise formal specification and lightweight verifi-
cation and validation via testing. There is of course a desire to teach software engineering
specialists more advanced techniques, in particular tool-supported formal verification,
e.g., as with the B-Tool or with theorem provers like PVS. It is desirable to be able to
teach verification using the same framework that students used for specification, design,
and testing, so as to make use of students’ existing expertise with notation and tools.

It is possible to teaching formal program verification using Eiffel. To this end, we have
formulated the Eiffel Refinement Calculus, ERC. The full details are presented in [15].
ERC uses Eiffel as both a specification and programming language; Eiffel specifications
consist of classes with contracts. A subset of the programming language – including
reference types – is formalised using Hehner’s predicative theory of programming [8],
and verification rules are presented that show how to prove that a program satisfies a
specification.The rules can be used for both after-the-fact verification, and for refinement.
The rules are novel in that they apply directly to a subset of Eiffel, and allow introduction
of object-oriented concepts such as method calls in refinement steps; translation to a non-
OO language is not required.

More advanced projects can be defined to build on ERC, e.g., better tool support,
case studies, addition of further constructs from Eiffel to the calculus (such as the novel
like construct which introduces substantial challenges), and improving data refinement
theories. This would be most suitable for an advanced post-graduate course on formal
methods.

5 Some Observations and Conclusions

We now summarise some of our observations in teaching specification-driven design in
Eiffel.

1. The learning curve with SDD is initially very steep. The students have a great deal of
material to assimilate and apply in a short period of time: they must get to grips with
Eiffel and TDD; they must learn elements of UML/BON for modelling; and they
must learn how to write tests and to test effectively. Requirements for evaluation
and teaching mean that students are given an assignment shortly after the start of
term and need to submit their solutions within 3-4 weeks.
The curve is somewhat lessened by the previous experience students have had with
object-oriented programming and, to a smaller extent, writing up programming
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assignments. To lessen the curve further, the course starts with a detailed case study
showing the development process and how to use the Eiffel IDE, E-Tester framework,
how to write test cases, etc. Students also work in pairs (one of the practices of
Extreme Programming) on their assignments, and can work in slightly large teams
on their projects.

2. Student feedback is that the course is challenging, but not because of the level of
mathematics required or applied. It is challenging because of the scale of design
projects that the students must work on (previously they have worked only on small
projects), the amount of information that must be learned and understood over the
course of approximately 12 weeks, and the level of rigour required in assignment
and project write-ups. The fact that the knowledge accrued in the course is to be
applied in future software engineering courses is considered very helpful.

3. Students learn the formal method gradually. Their initial use of the formal method is
by writing collaborative specifications, i.e., BON dynamic diagrams and test cases.
This also introduces them to Eiffel’s agent syntax. They quickly realise the value of
pre- and postconditions for capturing collaborative specifications that are awkward,
complicated, or inexpressible. Their use of preconditions invariably starts at a very
simple level, e.g., that arguments to methods are non-Void ; postconditions are not
used much initially. Postconditions are applied more broadly once appreciation for
the complexity of collaborative specifications is gained. There is a feedback loop
here – once complex unit tests start to occur during assignments and projects, there is
more of an appreciation for the expressiveness of postconditions. And once complex
postconditions appear, there is more of a reliance on the use of unit tests.

4. Collaborative specifications are a better way to introduce agents than some of the
alternatives, particularly as a way of introducing predicate quantifiers into contracts.
There is resistance from many of the students to using quantifiers in contracts when
they are not shown motivation via testing.

5. Eiffel is underappreciated at first. There is backlash against it from some students at
first, in the sense that they desire to learn a more ‘commercially relevant’ language,
e.g., C++ or Java. We deal with this in several ways: by introducing them to sim-
ple GUI techniques in Eiffel in the course of the initial case study; by presenting
information on the industrial use of Eiffel; and by carrying out comparisons with
competing technologies throughout the course. As well, the students have previous
experience with Java and are generally aware of its limitations and abilities. When
starting with Eiffel, the students find its support for generic classes and contracts
very helpful.

We should not underplay the substantial time and effort that the instructor must put
into making the course a success. Setting up suitable assignments and projects for this
course is challenging, and requires much effort, especially in producing quality solutions.
It is also difficult to obtain high-quality teaching assistants and laboratory demonstrators
familiar with Eiffel and agile techniques. It is of course possible to teach such a course
using Java (or C++) based technologies (e.g., by using a contract framework and testing
framework for such a language), and we have done so, but in our experience the tools that
support contracts in these languages are typically weaker than Eiffel’s tools. While the
iContract preprocessor for Java provides much the same functionality as Eiffel’s contract
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mechanism, it does not have Eiffel’s integrated tool support, e.g., a built-in debugger for
tracing contract failures. As well, the fact that iContract is a preprocessor makes it more
cumbersome to use for editing contracts, testing them, and keeping the code consistent
with the contracts.

We have taught this course using both ISE EiffelStudio (a commercial tool) and
GNU SmartEiffel, on a variety of development platforms. We have generally found it
easier to make use of EiffelStudio, in part because of its complete integrated develop-
ment environment (including debugger) and more comprehensive set of libraries. The
SmartEiffel compiler and toolset is powerful and generally straightforward to use, but
the lack of integrated debugging facilities is a weakness at this stage.

The general feedback that we have received on the course is predominantly positive:
the course is perceived as challenging, hard work, practical, and insightful.A few students
remain unconvinced by Eiffel as an industrially applicable language; some have been
completely convinced and are now using Eiffel in industrial development [7]. Most have
commented that they now think they have a better understanding of the principles of
software engineering, object-oriented design, formal methods, and formal specification,
which is in the end a good measure of success.
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