
A Test-Based Agile Approach to Checking the
Consistency of Class and Collaboration Diagrams

Richard F. Paige
Department of Computer Science, University of York,

Heslington, York, YO10 5DD, U.K.
paige@cs.york.ac.uk

Jonathan S. Ostroff
Department of Computer Science, York University,

Toronto, Ontario, Canada, M3J 1P3.
jonathan@cs.yorku.ca

Phillip J. Brooke
School of Computing, University of Plymouth,

Drake Circus, Plymouth, Devon, PL4 8AA, UK.
philb@soc.plym.ac.uk

June 30, 2003

Abstract

The problem of checking the consistency of different views of a system is
presented, and a test-based approach – which is being implemented in the context
of an object-oriented CASE tool – is described using the Eiffel language. The
approach is novel in that it supports design-by-contract mechanisms, including
preconditions, postconditions, and class invariants, that may be embedded within
views. The agile development process in which the approach is intended to be used
is outlined.

1 Introduction

Modelling is increasingly being used in the development of systems. The Unified
Modelling Language (UML) [3], a de facto standard language for describing systems,
presents a suite of modelling notations and techniques that can be used for describing
systems from a number of different perspectives. Once models are constructed, they
can be used for code generation, for static analysis and simulation, and for documenting
both the design process and the management process. Modelling in particular provides
a unifying suite of techniques for system development. There is increased interest in
automating model-based testing, particularly in the high-integrity systems community,

1



from the perspective of reducing the costs associated with incremental certification of
systems. Model-based testing can be applied in a number of ways: via simulation,
where an execution semantics is provided to models, and a simulation engine is used
to step through traces of behaviour; and, by automatically or semi-automatically gen-
erating test cases, expected results, and test drivers from models. These can thereafter
be used to verify and validate the code generated from the models.

A particular challenge in model-based testing using UML is view consistency (dis-
cussed in further detail in Section 2). In short, when modelling a system using UML,
several different models are constructed, representing different aspects or views of the
system, e.g., the system’s static (compile-time) structure, its run-time behaviour, the be-
haviour of individual objects in the system, its deployment over one or more hardware
units, etc. The information contained in these models may overlap; as well, the mod-
els may be independently conceived and constructed by separate teams of developers.
This situation can easily lead to model inconsistency, which may only be detected when
code has been automatically generated and the testing process commences. Model in-
consistency may also arise due to misunderstandings of requirements, mistakes in con-
structing designs, and syntactical or semantic errors in writing the models themselves.
It is desirable to be able to detect model inconsistency at an early stage, for a number
of reasons.

• In general, the earlier we are able to detect problems in models, the better, since
it is less likely that the problems will propagate to code or customer deliverables
such as documentation.

• Modifying models is often easier than modifying code, given that models usually
omit much detail.

• When product families and product line models are being constructed, we may
be implementing a number of different product instances from a single set of
models, and thus errors or flaws in models will affect many concrete products.
Dually, the cost of tracking down a flaw or error in a product line model can be
amortised over the set of product instances that are expected to be generated.

It is therefore advantageous, from a cost perspective, to try to detect inconsistencies
during modelling, and to provide a process for doing so.

In this paper, we present a scheme for test-based view consistency checking, in-
tended to be used during lightweight or agile development processes where modelling
is applied. Mechanisms for executing tests are to be generated from the models that are
constructed during agile development.

Agile processes – such as Extreme Programming, SCRUM, and feature-driven de-
velopment – are defined in terms of a number of principles and practices, focusing on
simplicity, customer involvement, early and constant delivery of working code, and the
ability to handle changing requirements. When modelling is involved in agile develop-
ment, it is applied minimally, with the knowledge that the models themselves are not
deliverables, while the code that is derived from the models is the critical deliverable.
Agile processes can be contrasted with heavyweight approaches, e.g., the Rational Uni-
fied Process [7], wherein a set of models and documentation is specified for delivery,

2



and a rigorous sequence of steps is to be followed, ideally to enable traceability and
audits.

In this paper, we focus on check the consistency of two widely used views in UML:
class diagrams (for modelling the static structure of systems) and collaboration dia-
grams (for modelling message passing behaviour). There is nothing specific in our
discussions that constrains our approach to UML; in fact, we are currently implement-
ing the technique described in the sequel in a CASE tool that supports a different suite
of modelling languages, those of BON [17]. A novelty with our approach is that we
consider design-by-contract additions to modelling. Specifically, we treat models that
include pre- and postconditions of operations, and invariants of classes, and include
tests that check the relationship between contracts of clients and suppliers in models.
Much of the view consistency work related to UML does not treat contracts; some
exceptions are discussed in the next section.

We start by describing some of the key problems with view consistency in UML,
and also define some basic UML notation. We then discuss related work, including
a heavyweight yet theoretically complete approach to view consistency checking that
requires theorem proving support, in order to deal with contracts. Next, we explain
how a collaboration diagram in UML can be extended, in a trivial way, to support a test-
based approach to consistency checking. In doing so, we outline a development process
– that is both test-driven and agile – in which the test-based approach to consistency
checking is intended to be used. We describe an algorithm for consistency checking,
and thereafter touch on how the algorithm is currently being implemented in a CASE
tool.

2 View Consistency in UML, and Related Work

Consistency checking of the documents that are produced during software development
is a difficult task. Consistency checking has been discussed in the context of work on
multi-viewpoint specification [11] and combining specifications [18] written in differ-
ent formal and semiformal languages. It is especially challenging and relevant when
using the modelling language UML [3], where five different and potentially conflicting
views of a software system of interest can be independently constructed. The intent of
using multiple, disparate views is to describe different aspects of a system in the most
appropriate way. The different descriptions must at some point be combined to form a
consistent single model of the system that can be used to produce executable program
code. The process of combining the descriptions should identify inconsistencies – typ-
ically using counter-examples that are useful as test cases – that need to be resolved by
the developers before executable code can be produced.

In general, consistency checking of development deliverables involves the use of
constraints, algorithms, and tools to check that information described in one deliver-
able (e.g., source code, a UML model) is not contradicted by information described in
another deliverable. In a setting where formal specifications are available, this can be
reduced to the problem of checking that a conjunction of predicates – each a formal
specification of a deliverable – is satisfiable. In general, complete formal specifications
of models are usually unavailable, and thus the problem of consistency checking is

3



made more complex and challenging.
Specific to UML is the problem of checking that the following views are consistent:

the class diagram view (specifying static, structural aspects of a system), the dynamic
diagram view (specifying the message passing behaviour of systems in response to
actor-generated events), the statechart view, the deployment view, and the use case
view.

Some checking can be done at the level of the metamodel, the set of constraints that
establish what is a semantically valid set of UML models. The metamodel establishes,
for example, that messages are sent between objects that have their classes associated
in a class diagram. But the metamodel does not cover all constraints, particularly those
related to operation behaviour and contracts. Checking the consistency of the contracts
with respect to other views is significantly more challenging.

To illustrate some of the problems, consider the example diagram shown in Fig. 1
and Fig. 2. The class diagram depicts the static structure of part of a simple adventure
game; the collaboration diagram depicts the message passing behaviour of a scenario
in the game (a maze is populated with rooms and objects). Operations in the class
diagram can be annotated with OCL constraints, depicting pre- and postconditions. The
preconditions state constraints on when operations can be invoked by clients, whereas
the postconditions state constraints on what results can be assumed by clients after the
operation has terminated its execution.

Messages in a collaboration diagram correspond to operations in the class diagram.
Messages are triggered only under conditions stated in their precondition. So, for ex-
ample, message 4, connect, can only be sent if its precondition is true. This is only the
case if the preceding messages 1, 2, and 3 enable it, i.e., if the state changes specified
in the postconditions of messages 1, 2, and 3 are sufficient to enable message 4.

In general, view consistency checking can range from checking simple syntactic
constraints, to lightweight semantic constraints (e.g., related to naming conventions),
to heavyweight constraints that require semantic and run-time properties to be checked.
In general, it will be desirable to be able to project subsequences of scenarios out from
collaboration diagrams in order to carry out consistency checking. This will be done
based on risk assessment.

The workshop on consistency checking in the context of UML [6] demonstrates
state-of-the-art techniques that consider different views (particularly static and dy-
namic) and different lightweight and heavyweight techniques for implementing the
checking. Some of these approaches require use of new, speciialised tools – such as
xlinkit [5] – or languages, e.g., B [9] or PVS [14] – for expressing the well-formedness
constraints that establish view consistency. By contrast, our approach does not make
use of any additional tools – beyond those used to construct the object-oriented mod-
els, as well as a compiler – for carrying out consistency checking. Some work has been
carried out on mapping UML diagrams into formal specifications – e.g., the B language
[9] – and thereafter using tools for the formal notation to carry out consistency checks.
This has the advantage of being able to use the (typically richer) formal notation for
a variety of types of reasoning, but it also requires that the mapping from the UML
diagrams into formal specifications be checked for soundness.

A theoretically complete, though heavyweight approach to view consistency check-
ing makes use of theorem proving technology [12, 14]. The basic approach used is to

4



Location

Serializable

set_map()
undo_last()
add_location(Location l)

+set_parent(Game_Object o)

Game_Object

redo
undo
apply

Effect

items *

locations

*

parent

−String name

history *
World

Game Loader

generate_map_from_file()
load_world()main()

<<invariant>>
{ locations.forAll(loc :Location | loc.connected) }

goto(Person p)
<<postcondition>>

{ p.parent = this and this.contains(p) } <<invariant>>
{ not this.parent.empty }connect(Location l)

add_item(Game_Object o)
has_item(Game_Object o)

Figure 1: Class diagram in UML

cave1: Location

w: World

sword: Game_Object

start_room: Location cave2: Location

jail_cell: Location

6: connect(cave2)

8: new()

11: new()

2: new()

7: connect(cave2)

4: connect(cave1)

3: new()

12: add_item(sword)

13: has_item(sword)

10*[i:=1..4]: add_location(i)
1: new()

5: new()
9: connect(jail_cell)

: Game

Figure 2: Collaboration diagram in UML representing a scenario for the partial popu-
lation of a maze

5



specify collaboration diagrams and class diagrams in the PVS specification language,
and then to specify axioms defining view consistency: specifically, the conditions de-
scribed informally in the preceding section that require previous subsequences of mes-
sages to enable the next element in a message sequence. This has been done in [14],
and an example of using the PVS prover to check consistency has been documented.
This is, of course, a difficult process – though the mapping from UML models to PVS
specifications can be automated – and it requires a great deal of knowledge and expe-
rience with the PVS prover to get the proofs of consistency to complete. On the other
hand, the approach is complete in the sense that it will detect any inconsistencies, and
will return counter-examples in the form of unprovable steps in a proof. Interpreting
these unprovable steps, though, is oftentimes difficult, requiring detailed understanding
of PVS’s syntax, and the formalisation of metamodel rules in PVS. A similar approach
is taken by the PRUDE toolset [16], which presents an integrated toolset that, amongst
other things, generates PVS automatically from UML models, particularly statecharts.
The tool aims to provide an integrated verification environment for UML, but also pro-
vides some lightweight consistency checking facilities by implementing parts of the
UML metamodel.

Lighter-weight approaches to consistency checking are desirable and have been ex-
plored, but a limitation with many of these approaches is that they do not consider con-
tracts. The work of Bhaduri and Venkatesh [2] suggests the use of message sequence
charts and model checking for view consistency checking. They express the semantics
of the object life cycle and scenario views as a labelled transition system, thus enabling
the use of a model checker to identify inconsistencies. The advantage of this approach
is that the model checking will be automatic; however, there are limitations on what
can be expressed in terms of properties and models. UML model consistency is also
checked via the Sherlock tool [15], wherein actions, models, and a knowledge base are
combined. The latter approach is particularly promising as it also considers extensions
to profiles.

The authors are currently investigating two complementary approaches to the prob-
lem: one involving model checking, the other involving testing technology in the con-
text of an agile development process. We discuss the latter in the next section. The
advantage of this approach is that it requires no new tools or technologies – beyond a
CASE tool and compiler – in order to carry out substantial consistency checking.

3 Lightweight Checking using Testing

One of the key practices of the Extreme Programming (XP) [1] class of software de-
velopment approaches is test-driven development. Test cases are written before code is
produced, and each modification or extension to the system is checked against the test
cases before the project repository is updated. Certain so-called agile methodologies
attempt to generalise XP to include brief, focused modelling phases, while retaining
the emphasis on testing. A key question in such methodologies is how to balance mod-
elling with test-driven development? One approach to this is to automatically generate
test drivers and test cases from models. Thus, development would start with lightweight
modelling of requirements, or system architecture (or whatever other elements of the

6



system are of interest to developers), as well as models of typical scenarios of use.
These latter models could then be used for automatically generating test drivers and
test cases. In particular, the generated test drivers and test cases could then be used for
establishing the consistency of the different models generated during the lightweight
modelling phase.

The basic approach that we are proposing is to generate test drivers from UML col-
laboration diagrams. When appropriate during agile development – e.g., when making
revisions to models (refactoring), or when implementing selected methods in class di-
agrams – code can be generated automatically from UML class diagrams in a suitable
language, such as C++, Java, or Eiffel. The test drivers can then be executed against the
generated code – perhaps augmented with additional statements by programmers – to
check for consistency. If the test drivers run successfully, we infer that the code and the
test drivers, and hence the collaboration diagrams and class diagrams, are consistent1.

This is an indirect consistency check: effectively, the test drivers are viewed as a
refinement of collaboration diagrams, and the code as a refinement of class diagrams.
This can be depicted as in Fig. 3. The stereotype ¡¡derive¿¿ on the dependencies
indicates that the source of the dependency can be automatically derived (and is there-
fore consistent) with the target. The stereotype ¡¡consistent-refine¿¿ indicates that a
consistency checking process must take place. Note that the dependency between the
executable work products (the source code and the test driver) is a refinement of depen-
dency between the models; the implementation of the consistency checking algorithm
must guarantee this.

Collaboration DiagramsClass Diagrams

Test DriverCode

<<derive>> <<derive>>

<<consistent−refine>>

<<consistent−refine>>

Figure 3: Refinement structure of consistency checking scheme

We are currently working on implementing the consistency checking scheme in the
framework of the Eiffel programming language [10]. We have chosen Eiffel because
it is object-oriented, because it provides built-in support for assertions, and because it
has a suite of extensible tools, e.g., BON-CASE [13]. Thus, we will automatically gen-
erate Eiffel code from UML class diagrams. Generating test drivers from collaboration
diagrams is slightly more complex. To do this, we need to extend the collaboration dia-
gram with two additional pieces of information: initial and final states. The initial state

1Assuming the correctness of the code and test generation algorithms.

7



specifies the state of the objects in the collaboration before the first message is sent.
The final state specifies conditions that must be true of the objects in the collaboration
after the last message has been sent; this might be a termination condition, or a sanity
check, of some kind.

Given that a collaboration diagram typically refines a scenario of use in an object-
oriented model, it is useful to be able to specify conditions or properties that should be
true when a scenario ends; this is the purpose of the final state: when the sequence of
message calls in the collaboration diagram ends, the final state should be reached. We
currently require that the initial and final state specifications be in the Eiffel assertion
language, and thus that they are machine checkable and executable. They will therefore
be expressed as check statements (similar to C’s assert) in Eiffel. Given the expres-
sive power of Eiffel – especially with its agent notion, which enables quantifiers over
finite domains to be implemented efficiently [10] – this is a not unreasonable restriction
to work with.

The test driver that is to be generated from the collaboration diagram takes the form
of a single Eiffel class TEST DRIV ER. The class possesses a creation routine
make that is executed when TEST DRIV ER is instantiated. The creation routine
executes a sequence of feature calls, generated according to the sequence of messages
appearing in the class diagram. If guards appear on messages, the feature calls will be
prefixed with suitable if-then-else structures, or loop-end structures in the case where
an iterative multiplicity constraint is provided.

Two challenges arise with the refinement process of collaboration diagrams into an
Eiffel test driver.

1. new messages: these indicate the creation of a new object of the type of the
recipient of the message. Each object in the collaboration diagram is being
mapped into an entity in Eiffel. However Eiffel classes may have many con-
structors/creation routines, and unlike languages such as C++ and Java, con-
structors can have any name. Even when dealing with a language like C++ and
Java – which force constructors to have the same name as the class – will re-
quire dealing with a choice from multiple constructors. Thus, user assistance
will be necessary, in general, to select the appropriate constructor to execute
as a result of a new message. In the test driver generation algorithm, pre-
sented shortly, user assistance is obtained through the use of select features,
e.g., select_create_feature. This user assistance simply takes the form
of selecting a feature from a specified, automatically generated list.

2. Underspecified messages:a message in the collaboration diagram may be an-
notated with the name of the feature that should be called in response; in this
case, the feature call is added directly to the test driver. In general, though, a
message can be underspecified: names or types of arguments may not be pro-
vided, or messages may be overloaded (especially in C++), or the specific target
of the message may not be precisely constrained. The last case arises when a
multiobject appears in the collaboration diagram. In all of these cases, it is best
to ask for assistance from the user, to indicate which feature to call in response
to a message, or to specify the name of an object that should be the recipient of
the message. This is the purpose of select_feature in Fig. 6.

8



class MESSAGE feature
source, target: OBJECT
number: INTEGER
guard, multiplicity: STRING
has_guard, has_multiplicity: BOOLEAN

end -- MESSAGE

Figure 4: Messages in a collaboration diagram

It is important to point out that the generated test driver is not sufficient for full
test coverage of the system – it is to be used for checking view consistency. For test
coverage, the collaboration diagram would have to be refined to include exceptional
conditions and cases – for example, what messages would be sent in Fig. 2 in the case
where a room cannot be added to the maze? Providing that modellers are able to ex-
tend their collaboration diagrams to include exceptional cases, the approach can be
used to generate test drivers for functional and integration testing as well. However,
we suggest that in practice this approach might not be sensible, since the collaboration
diagrams will quickly become large, cumbersome, and difficult to understand. A prag-
matic approach might be to extend the generated test drivers to carry out more detailed
functional and integration testing, i.e., to modify the test drivers directly.

To describe the test driver generation algorithm, we need to refer to the metamodel
for UML; the metamodel, implemented in a CASE tool, will be used to (i) provide the
infrastructure for representing class and collaboration diagrams and their annotations;
and (ii) to provide basic consistency checks (e.g., freedom from name clashes). We
assume that these basic consistency checks have been carried out, particularly:

• each object in the collaboration diagram has a corresponding instantiable class
in a class diagram;

• each message has a corresponding operation/feature for invocation.

• the class and collaboration diagrams are syntactically valid.

All of these checks are trivial to implement and verify.
To specify the algorithm, we assume the following definitions of collaboration di-

agram and message, extracted (and simplified) from the UML metamodel. We express
this part of the metamodel in Eiffel, and we will use Eiffel to specify the algorithm as
well. First, the definition of message.

Each message has a source, target, and number, and may optionally have a guard
and a multiplicity constraint (which are represented as strings). Next, the definition of
collaboration diagram.

We can now use the specifications in Figs. 4 and 5 to specify the test driver gener-
ation algorithm. This appears as part of the definition of class GENERATOR.

The algorithm works, informally, as follows. First, declaration header information
is generated for the test driver (i.e., name of driver class and standard Eiffel syntax),
then declarations for objects in the collaboration diagram. A check statement (i.e.,
an assert) is generated to test the validity of the initial state of the system. Then,

9



class COLLABORATION_DIAGRAM feature
messages: ARRAY[MESSAGE]
objects: SET[OBJECT]
initial, final: STRING

end -- COLLABORATION_DIAGRAM

Figure 5: Excerpt of collaboration diagram metamodel

class GENERATOR feature
...
generate_test_driver(c:COLLABORATION_DIAGRAM) is
local

i: INTEGER;
m: MESSAGE;
f: FEATURE;

do
generate_driver_header;
generate_declarations(c.objects);
generate_check_statement(c.initial);
from i:=1
until i>c.messages.length
loop

m:=messages.item(i);
if m.has_guard then
generate_ifthen(m.guard)

end
if m.has_multiplicity then
generate_loop(m.multiplicity)

end
if m.feature.is_create then
-- return specific creation routine
f:=select_create_feature(m.target);

else
-- return specific feature with arguments
f:=select_feature(m.target);

end
generate_feature_call(m.target,f);
generate_close_branches;
i:=i+1;

end
generate_check_statement(s.final);
generate_driver_footer;

end
...

end -- GENERATOR

Figure 6: Algorithm for generating test driver from sequence diagram

10



the messages in the diagram are looped over. Each message is tested to see if it has
a guard or multiplicity constraints, and suitable Eiffel if-then-else statements or loop
statements are generated. Then a feature call is generated; this may require consulting
the user to select either a default create statement or one of several possible create rou-
tines. Finally, all branches in the generated code (i.e., loops or selections) are closed,
and a final check is generated on the final state of the system. The algorithm is interac-
tive in the general case, but if users have specified features for each message (i.e., they
have refined away nondeterminism) then the test driver generation is automatic. Any
interactions would be limited to selecting a method from a drop-down list of options.

Running the test drivers, and hence carrying out the consistency checking, is the
simple matter of compiling and executing the generated code, including the test driver,
using the test driver as the root class [10] of the system; the root class contains a method
from which execution must start. If using an Eiffel compiler such as EiffelStudio, this
simply requires modifying an Ace file (akin to a Makefile) in order to tell the compiler
which is the root class.

3.1 Example

We illustrate the use of the test driver generation algorithm by showing the result of
applying it to the collaboration diagram in Fig. 2. To carry out the test driver generation,
an initial state must be specified. In the scenario specified in Fig. 2, a number of
locations and objects in a maze are created (via the new) message and connected by
the root object, Maze. Thus, a suitable initial state is just true, since the root object
will be created by the system itself.

The generated code will appear as shown in Fig. 7.
Consistency between class and collaboration diagram can then be evaluated by

compiling and executing code generated automatically from the diagram in Fig. 1. If
a precondition, postcondition, or invariant is false during execution of the test driver,
then the Eiffel run-time system will indicate to us which operation call has failed, and
thus where an inconsistency arises. If using an integrated development environment
like EiffelStudio, which provides an integrated debugger, then the debugger can be
used to isolate statements and objects that lead to inconsistency.

In the case of the collaboration diagram in Fig. 2, generation of the test driver can be
done automatically, and in a single pass over the message sequence in the diagram. This
is because all messages in the diagram are linked to specific, effective features in the
class diagram, and no user intervention is needed to select an operation to implement a
message, given a list of choices.

This technique can be used to support an agile style of system development. Ini-
tially, it is likely that the class diagrams that are written will not be linked to any code,
i.e., the operations may be annotated with pre- and postconditions, but will not be im-
plemented except perhaps with empty operation bodies. Thus, the process of compiling
and executing the test drivers will not provide substantially meaningful results. The ag-
ile developer will then proceed, as is typical, by implementing methods bit by bit, and
re-running the test driver. Gradually, pre- and postconditions will be satisfied, as meth-
ods are implemented, and when the test driver runs to completion, the developer will

11



class TEST_DRIVER creation make
feature {ANY}

cave1: LOCATION
cave2: LOCATION
start_room: LOCATION
jail_cell: LOCATION
w: WORLD
sword: GAME_OBJECT

feature {ANY}
make is
local i:INTEGER
do

check true; -- initial state
create w;
create start_room;
create cave1;
start_room.connect(cave1);
create cave2;
cave1.connect(cave2);
start_room.connect(cave2);
create jail_cell;
cave2.connect(jail_cell);
from i:=1 until i>4
loop
w.add_location(i);
i:=i+1;

end
create sword;
cave1.add_item(sword);
check cave1.has_item(sword); -- final state

end
end

Figure 7: Generated test driver refinement of collaboration diagram

12



have at least some initial evidence that quality improvement has been made in terms of
making the different views consistent.

4 Discussion and Conclusions

We have outlined the problem of view consistency checking in UML, and outlined sev-
eral approaches to the problem. The contribution of this paper is a general algorithm
for generating test drivers semi-automatically from collaboration diagrams in the con-
text of an agile development process that makes use of minimal, targetted modelling.
Compiling and executing the test drivers results in the consistency of the collaboration
diagram and class diagram being checked, and counter-examples (in the form of error
messages and exceptions) being produced in the case where inconsistencies are iden-
tified. The approach deals with pre- and postconditions, and is compatible with agile
approaches to development.

Work is underway at implementing the algorithm in the framework of the BON-
CASE tool [13]. This tool supports a subset of UML (specifically, the diagrams used in
this paper, as well as use case diagrams), and integrates an Eiffel-aware editor. In par-
ticular, the tool has an extensible code generation component that is designed explicitly
to enable new code generators to be added.

An additional point remains to be mentioned: that of message refinement. A mes-
sage f sent to object o in a collaboration diagram may in fact need to be implemented
by a sequence of feature calls when it comes time to implement the resulting program.
In this sense, a message is an abstraction of a part of a program. To check for the con-
sistency of views in this situation, it will be necessary to compute a transitive closure
of the links in the collaboration diagram – based upon feature calls appearing in the
contracts. We have not discussed this issue in this paper due to space restrictions, but
our ongoing work on implementing the algorithm and approach does take this issue
into account.

One direction for future work is to link use case diagrams into the diagram from
Fig. 6. During development, particularly following the Rational Unified Process, in-
dividual use case scenarios are refined using collaboration diagrams. Given a suitably
precise specification of a use case scenario, the algorithm and scheme described above
could be extended, and consistency between the three diagram types could be tested
and checked.

Another direction is to integrate the consistency checking algorithm with the E-
Tester framework [8] for Eiffel. This framework provides automated support, via Eif-
fel’s agent mechanism, for carrying out class-level, cluster-level, and system-level test-
ing.

References

[1] K. Beck. Extreme Programming Explained, AWL, 1999.

[2] P. Bhaduri and R. Venkatesh. Formal consistency of models in multi-view mod-
elling. In [6].

13



[3] G. Booch, J. Rumbaugh, and I. Jacobson. The UML Reference Guide, Addison-
Wesley, 1999.

[4] J. Clark, S. Stepney, and H. Chivers. Breaking the model, submitted July 2003.

[5] C. Gryce, A. Finkelstein, and C. Nentwich. xlinkit: lightweight consistency
checking for the UML. In [6].

[6] Z. Huzar, L. Kuzniarz, G. Reggio, and J. Sourrouille. Proc. Workshop on Con-
sistency Problems in UML-Based Software Development, Blekinge Institute of
Technology Research Report 2002:06, September 2002.

[7] P. Kruchten. The Rational Unified Process: an Introduction (Second Edition),
Addison-Wesley, 2000.

[8] D. Makalsky. E-Tester: a comprehensive testing framework for Eiffel. Available
at www.ariel.cs.yorku.ca/∼eiffel. 2002.

[9] R. Marcano and N. Levy. Using B formal specification for analysis and verifica-
tion of UML/OCL models. In [6].

[10] B. Meyer. Object-Oriented Software Construction (Second Edition), 1997.

[11] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency
Handling in Multi-Perspective Specification. IEEE Trans. Software Engineering
20(8), August 1994.

[12] R.F. Paige and J.S. Ostroff. Metamodelling and conformance checking with
PVS. In Proc. Fundamental Aspects of Software Engineering 2001, LNCS 2029,
Springer-Verlag, April 2001.

[13] R.F. Paige, L. Kaminskaya, J.S. Ostroff, and J. Lancaric. BON-CASE: an exten-
sible CASE tool for formal specification and reasoning. Journal of Object Tech-
nology 1(3):65-87, Special Proceedings of TOOLS USA 2002, August 2002.

[14] R.F. Paige, J.S. Ostroff, and P.J. Brooke. Theorem Proving Support for View Con-
sistency Checking. To appear in L’Objet, 2003.

[15] J.-L. Sourrouille and G. Caplat. Checking UML Model Consistency, in [6].

[16] I. Traore. PRUDE 1.2 User Manual. Available at
http://www.isot.ece.uvic.ca/manual.html. Last visited June 2003.

[17] K. Walden and J.-M. Nerson. Seamless Object-Oriented Software Architecture,
Prentice-Hall, 1995.

[18] P. Zave and M. Jackson. Conjunction as Composition, ACM Transactions on Soft-
ware Engineering and Methodology 2(4), October 1993.

14


