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Abstract. The Eiffel language [4] can be used throughout the object-oriented software development process, for
both specification and implementation. We outline work-in-progress on developing a refinement calculus for pro-
ducing provably correct Eiffel programs from Eiffel specifications. We propose extensions to the calculus by inte-
grating abstract data types as a front-end language that can be used for avoiding implementation bias.

1 Introduction and Motivation

A critical element object-oriented (OO) technology is that it can be applied throughout much of a typical software
development process. Classes and objects, the key concepts in OO development, can be applied in modelling late
requirements (where customer goals, beliefs, and desires have been clearly determined), software architectures, in
detailed specification and design, in implementation, and for software testing. The generality of OO techniques and
their application throughout development can reduce the chance of introducing impedance mismatches, can simplify
tracing of errors, and can improve maintainability.

When constructing OO software with correctness and robustness requirements, it is often desirable to develop in
a seamless [4, 8] fashion. With seamless development, a core set of modelling constructs are applied throughout all
stages of development, and thus a model used for requirements specification can be directly mapped to a model used
for design or implementation. In the process, the model will likely have to be refined to provide details that are missing.

In this extended abstract, we outline work-in-progress on developing a refinement calculus for OO systems, based
on the Eiffel language [4]. The calculus aims at producing more reliable — that is, correct and robust — software systems
that are immediately executable using existing tools. Eiffel can be used seamlessly for both specification (based on
its support for design-by-contract [4]) and programming. We thus sketch a set of refinement rules and background
theories so that provably correct Eiffel programs can be constructed from Eiffel specifications. We also propose how
abstract data types - which are a more abstract approach than classes for specifying types - might be integrated into
such a refinement process via translation.

2 Overview of Eiffel

Eiffel is an object-oriented programming language and method [4]; it supports classes, objects, inheritance and client-
supplier relationships, generic types, dynamic binding, and automatic memory management. The language also in-
cludes the notion of a contract. Since contracts can be used to specify software, Eiffel can also be used as a notation
for specification and design. The fundamental specification construct in Eiffel is the class. A class is both a module
and a type. Fig. 1 contains a short example of an interface of class CITIZEN . Each feature section, introduced with
the keyword feature, is followed by a selective export clause that specifies a list of accessor classes. Each feature is
an attribute (state) a routine (computations). Routine implementations are omitted in Fig. 1.

Routines are either functions (ideally without side-effects) or procedures (which result in state changes). Routines
may optionally have contracts, written in the Eiffel assertion language, as preconditions (require clauses), postcondi-
tions (ensure clauses) and class invariants. In postconditions, the keyword old can be used to refer to the value of an
expression when the feature was called. The modifies clause of a routine is a frame indicating those entities® that may

1 An entity is an identifier denoting a run-time value. It is an attribute, a local, or a formal argument to a routine.



class CITIZEN
feature {ANY'}
name, sex : STRING
spouse : CITIZEN
children, parents : SET[CITIZEN)
single : BOOLEAN

ensure Result = (spouse = Void)
divorce

modifies single, spouse

require - single

ensure single A (old spouse).single

invariant
si ngl e_or _marri ed: single V spouse.spouse = Current;
nunber _of _par ent s: parents.count < 2;
symmet ry:Vc € children @ Ap € c.parents e p = Current

end

Fig. 1. Class CITIZEN

be changed by the routine; it is adopted from [5]. The assertion language is enhanced by the fact that assertions may
refer to any query (e.g., the postcondition of divorce refers to the queries single and spouse).

A class invariant is an assertion (conjoined terms are separated by semicolons) that must be ¢rue whenever an
instance of the class is used by another object, i.e., whenever a client can call an accessible feature.

Routines may optionally have bodies, i.e., implementations. These are written using a standard set of imperative
language constructs — e.g., assignments, sequential compositions, if-then-elses, loops, et cetera — and OO constructs
such as object creation statements (create statements) and feature calls of the form o.f. The complete syntax is
summarized in [3]. It is these language constructs that will be produced by the refinement calculus.

3 Fundamentals of the Refinement Calculus

In order to be able to refine Eiffel specifications (consisting of classes with preconditions, postconditions, and in-
variants) into programs, we need a theory of Eiffel programming. We call our theory the Eiffel Refinement Calculus
(ERC). ERC is based on the predicative calculus of Hehner [2]. To Hehner’s calculus, we add new machinery for
introducing Eiffel’s OO constructs, such as object creation and feature calls.

Program constructs in Eiffel always appear in the bodies of routines. A specification of a program construct (e.g.,
an assignment statement or feature call) should identify the set of computations that the construct can execute. Thus,
suppose the routine r has a precondition r.pre (with free variables in the set o) identifying the prestates, and a
postcondition r.post (with free variables in sets old o and &) indicating the computed poststates, then the specification
of the routine r.spec is defined as [2]

r.spec = oldr.pre = r.post ANt >oldt At # oo Q

where ¢ is a conceptual global clock representing time, and ¢ € o. The specification r.spec is true iff (a) the pre-
condition is not satisfied (in which case any behaviour is permitted); and (b) if the precondition is satisfied then the
routine’s execution must terminate in finite time with the postcondition true. A program is a specification that has been
implemented. We describe imperative programs in ERC as follows (OO constructs will be specified separately).

skip = el=oldelAe2=o0lde2A... A en =olden A time (2)
el:=ezp = old defined(ezp) - el =oldexp A e2 =olde2 A ... A time
if bthen Pelse @ = (oldb — P)A(—oldb — Q) A time
P; Q Jo' e Plo :=0'] A Qold o := ']

1

(locale: T; P) (Je,olde: T o P)



P and @ can themselves be specifications or programs; we can mix programs and specifications because they are
both described by predicates.

Itis tedious to write out the entities that do not change in a specification, so we will use the specification statement
[5] for writing specifications, and will take advantage of its notation for frames. However, we will define the meaning
of specification statements using timed predicates (rather than weakest preconditions). The notation

e:{S,D) = oldS — DA timeA same(c — e)

will be used (where same is a predicate indicating a set of variables that do not change value). As well, we sometimes
find it useful to apply the Larch/JML [1] paragraph style of specification (illustrated in the sequel).

3.1 Refinement

A specification spec is refined by an implementation impl if all the observations represented by ¢mpl are also obser-
vations of spec. We write this as spec T impl. Our treatment of specifications as predicates leads to a very simple
definition of refinement:

spec C impl = (Voldo,o e impl — spec) 3)

3.2 Reference types

A critical element of any OO programming language is its support for reference types (pointers). Eiffel is no exception
in supporting these types. ERC provides a simple background theory of reference types called entity partitions. For
each entity e declared in a class or routine, a set e is defined which contains all entities that refer to the object that
e initially points at. This set is changed by assignments and routine calls. A full axiomatization of entity partitions is
provided in [7]. The axiomatization supports aliasing, reference and value equality, and allows create statements to be
applied to an entity at any time.

3.3 Rules and feature calls

A full set of refinement rules for ERC is specified in [7]. This set includes rules for introducing loops and other program
constructs, and for simplifying sequences of specifications. Rules can also be inferred from the predicate semantics of
program constructs in (3) and the definition of refinement. In order to fully support OO programming, rules must also
be provided for introducing feature calls, which are the basis of OO computing. As well, a rule must be provided for
allocating new objects and assigning them to entities (i.e., a semantics must be provided for the create statement of
Eiffel). We desire a set of rules that allow a specification to be refined by a targeted procedure call of the form o.7(¢),
an assigned targeted function call el := e2.¢(c), or to create a new object and attach it to an entity, via create e. We
provide two examples: a rule for introducing a create statement, and a rule for assigned targeted function calls. The
rules are formulated by defining the meaning of such statements and calls as specification statements.

Definition 1 (Entity creation semantics). The instruction create e is defined as

modifies ¢, ¢

ensure ¢ = {e} A remove(e) A default(e)

where remove(e) = Vei€olde|ei# eeei=o0ld ei — {e}

and where nochange(e) = Vei| ei # eNei & olde e ei = old ei. The default(e)
clause asserts that each e.a is set to its default value on creation as described in [4] (e.g., if a is
a BOOLEAN itissetto false, if it’s a reference it is set to Void etc.).




Definition 2 (Assigned Function Call). The function call
el := e2.q(e3)
for function ¢ means
modifies el, ¢
require e2 # Void;
g.prefa := e2.a, Current := 2,22 := eJ]
ensure ¢.post[a := old e2.a, Current := old €2, z := e3, Result := el];
el = old e2.¢(e3)

With the rule for introducing an assigned function call, we are attempting to avoid replacing the targeted call e2.¢(e3)
with a call to a function ¢(e2, e3), since this requires us to work with constructs that are not OO (i.e., mathematical
functions as opposed to feature calls on objects). Further rules (including ones for treating arbitrary arguments, and
for using targeted function calls in assertions) appear in [7].

3.4 The development process

The refinement calculus outlined above can be used to refine a specification to a program as follows. Initially, a set of
Eiffel classes is written, where at least one class has at least one routine possessing a contract, but no implementation;
all such routines must be refined using the rules suggested above. Refinement starts at the designated root class of the
system; this is a class from which execution of the eventual implementation must begin. All routines of the root are
refined to implementations. In doing so, the refiner may make use of all other features in the system that are accessible
to the root class, e.g., public features that are accessible via attributes or inheritance. After refining the root, all classes
that are related to the root, i.e., via inheritance or attributes, are themselves refined. This process continues recursively
until all classes are implemented in Eiffel.

The refinement process commences with an Eiffel specification, consisting of routines with contracts but no imple-
mentations. Sometimes, this style of specification forces design decisions — especially regarding data representation —
to be made prematurely. Consider a STACK class. To specify the stack in Eiffel, while avoiding underspecification
of critical stack properties, a data implementation, such as a SEQUENCE, must be selected. It may be undesirable to
make such a decision early in the specification and refinement process. Thus, it is useful to be able to use an abstract
notation, like abstract data types (ADTSs) for specification, and to integrate them with the refinement process.

We are currently experimenting with different ways to use ADTSs as a front-end specification language for ERC.
One proposal for extending use of the calculus that appears promising is as follows.

1. Write ADTSs or Eiffel specifications as needed for the desired classes in the system.
2. Transform the ADTs into extended Eiffel specifications that use describe clauses (discussed further in the sequel).
3. Refine the Eiffel specifications using ERC.

To illustrate, here is a partial ADT for a stack. The function signatures applicable to the stack are listed (we give
two examples only), then axioms and preconditions, which are omitted,
TYPES STACK|G]
FUNCTIONS
push : STACK[G] x G — STACK|[G]
new : STACK[G]

AXIOMS
Vz:G,s: STACK[G] e
top(push(s,z)) = z; pop(push(s,z)) = s;
empty(new); mnot empty(push(s,z))
PRECONDITIONS ...

To partially transform this to an Eiffel specification, we use the following rules:



each constructor (i.e., new) is mapped to an Eiffel creation procedure.

each function (e.g., empty, top) that returns an argument different from STA CK is mapped to an Eiffel function.
each function that takes a STACK as an argument and returns a new STACK is mapped to an Eiffel procedure.
preconditions are mapped to routine preconditions in Eiffel.

What remains is translating ADT axioms to Eiffel. In general, automatic translation of the axioms to Eiffel postcondi-
tions and class invariants is not possible. Even with user intervention, Eiffel is not expressive enough to fully capture
the axioms. For example, the two axioms defining push, pop, and top (i.e., the LIFO property of stacks) cannot be
translated directly. The postcondition of pop, for example, cannot include sequential compositions of procedure calls,
which will be necessary to directly express the ADT axioms. To specify the postcondition of top will require the
addition of a data representation to the class.

We are investigating the addition of a new clause, describe, to Eiffel specifications. With this, we can potentially
avoid adding a data representation and can make it easier to translate ADTS to classes. describe is like an invariant
in that it applies to all instances of a class. However, old may be used in describe clauses, unlike invariants. The
describe clause defines properties that must always be true, except possibly during the execution of a routine body.
Thus, each constraint in the clause is to be checked before and after each routine call (except before the call of any
creation procedures). Invariants must be true only before and after client calls.

Here is an example of part of a describe clause for STACK . Each axiom of the ADT is mapped to a constraint
in the describe clause. The first example is for the axiom stating that pushing then popping an element from a stack s
produces s again. The second states that push followed by top gives the pushed element. Note that reference equality
is used in the constraints.

Vz: G- (Current # Void A (push(z); pop) — (Current = old Current)
Vz: G- (Current # Void — (Current.push(z).top = z)

Work is ongoing to integrate describe clauses into the refinement process, and to implement tool support for checking
describe clauses at run-time.

4 Ongoing Work and Conclusions

We have outlined a refinement calculus for producing immediately executable Eiffel programs from Eiffel specifica-
tions. In this manner, refinement is used as a theoretical basis for the seamless development of OO programs.
We are currently pursuing three avenues of research on refinement.

1. Extending the calculus to support further elements of Eiffel, particularly expanded (value) types, exception han-
dlers, and agents (function objects). The extended calculus will be applied in practical refinement examples, par-
ticularly, a verification of the EiffelBase standard library [4], which poses particular challenges since it provides
incomplete specifications of many classes.

2. Tool support for the calculus. We are building theories for the PVS theorem prover that will be used to help
discharge the proof obligations that arise during refinement. The theories constructed in [6] for metamodelling
with PVS are proving invaluable in this work.

3. Addition of describe clauses to the calculus.

Work on (1) and (2) is well underway; much remains to be done on the effect of using describe clauses in refinement.
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