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Modelling languages such as UML are increasingly used to describe software
systems at different levels of abstraction. There are two very different ways of
using such languages. One approach is based on the manifestation of a single
model, with construction of different views from this model, and with automatic
or semi-automatic consistency checking among these views. This follows what
we term the single model principle. The second approach (of which unrestricted
UML is an example) is based on the independent construction of multiple mod-
els of the same system, but with no guarantee of the consistency of the various
models. We propose that to best support seamless, reversible software devel-
opment of reliable software, it is preferable to follow the single model principle
for a specific subset of development tasks.
We describe the single model principle and its supporting infrastructure. We
show how the BON/Eiffel description language, which supports both high-level
abstract specifications as well as code implementations can be enhanced to
satisfy the essential tenets of the single model principle, both for static and
dynamic descriptions. We describe how a UML profile (including the use of
Java) might provide weak support for the principle. We also consider situations
and tasks when following the principle is insufficient, particularly when capturing
early (goal-oriented) requirements.

1 MULTIPLE AND SINGLE MODELS

UML is a major step forward in standardizing notations for the visual specification and
design of object-oriented (OO) systems. It supports the modelling of all kinds of systems
using OO concepts, and addresses the issues of scale inherent in complex, mission-critical
systems. The modelling language is usable by both humans and machines. Such a stan-
dard is useful and is used extensively in this article.

UML is open to some important criticisms. For one, it is complex: the language spec-
ification is about 500 pages long with the notation guide alone 175 pages (UML version
1.4). It also allows the construction of many views of the system under description. The
UML 1.3 Standard [14] states:
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THE SINGLE MODEL PRINCIPLE

“Every complex system is best approached through a small set of nearly
independent1 views of a model; no single view is sufficient. In terms of the
views of a model, the UML defines the following graphical diagrams:

• use-case diagram

• class diagram

• behaviour diagrams [...]

• implementation diagrams [...]

These diagrams provide multiple perspectives of the system under analysis
or development. The underlying model integrates these perspectives so that
a self-consistent system can be analyzed and built. These diagrams, along
with supporting documentation, are the primary artifacts that a modeler sees,
although the UML and support tools will provide for a number of derivative
views.”

The phrase “self-consistent” in the above quote is problematic. UML allows for mul-
tiple viewsof the system. This alone is not problematic; indeed, experienced practioners
know that no single view of the system will suffice. What is problematic is the claim that
these views will be consistent with each other. No such guarantee exists, and very little
guidance has been provided with UML for how one would achieve such consistency.

Since there is no guarantee of consistency among the multiple views of a system that
may be constructed using UML, what we really allow aremultiple modelsof one system.
Modelling of systems using such an approach follows what we call themultiple model
principle. This is to be distinguished from the single model principle advocated in the
sequel.

As a simple-minded example, consider a UML statechart with a guardp on a transi-
tion describing when a change in the state of an object might occur. Elsewhere, a separate
model might describe the same state change condition using an Object Constraint Lan-
guage (OCL) precondition¬ p. There is no way of detecting inconsistencies of this kind,
because there is no formal link between statecharts and OCL.

By using multiple UML models, developers can work independently on separate parts
of a system, and can apply the most appropriate diagrams or notations for describing each
part. But, of course, inconsistency can easily arise. When it comes time to construct
executable code from the models, the models must be integrated into a single description
that satisfies all the constraints contained in the separate models. Some inconsistencies
or errors, e.g., that classes generalize themselves, or that packages have unique names,
might be caught at this stage by the UML metamodel. But since there is nothing in the
UML, in its metamodel, or in its supporting processes to prevent or detect many of these
inconsistencies, the executable code that implements these models cannot be generated.
This of course raises the substantial concern that the actual software artefact delivered
does not satisfy its UML specification.

1Italics are not in the original
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By contrast, approaches that follow the single model principle also support multiple
views of the system. However, these approaches aim to ensure consistency of views either
by construction or by analysis. No current method, with the expressive power of UML,
can claim to guarantee consistency. In this article, we hope to show how, and to what
extent, the goal might be achieved.

2 SOFTWARE DESCRIPTION LANGUAGES

UML is a language for specifying, constructing, visualizing, and documenting the arti-
facts of a software-intensive system. It does not, in general, contain programming con-
structs such as loops and reference types as in Java. However, in the context of the Model-
Driven Architecture initiative [16], UML models can be used to drive and produce such
programs. Thus, without extension (or, in UML terminology,profiling), UML only ad-
dress part of the typical software development process.

Methods and languages that support the single model principle address the whole
scope of software development, including implementation code. In order to explore the
single model principle, we will need to choose a programming language (e.g., Java) to
complement the UML. It will be useful to compare UML/Java and BON/Eiffel with re-
spect to the single model principle.

BON/Eiffel

Eiffel is an object-oriented programming language and method [10]; it provides constructs
typical of the object-oriented paradigm, including classes, objects, inheritance and client-
supplier relationships, generic types, polymorphism and dynamic binding, and automatic
memory management.

However, Eiffel is not just a programming language — the notation also includes the
notion of acontractto specify the duties of clients and suppliers. A valid Eiffel program
may consist only of specifications – that is, it may possess no program code whatsoever
– or it may be a combination of specification and code or code only. Eiffel is thus a true
wide-spectrum language in the style of [6, 12]. An Eiffel program may therefore also be
called a “model” or a “description” of a system, as it is more than just code.

The assertion language for Eiffel used in this paper includes first-order predicate logic.
Eiffel as a compilable language has a more restricted assertion language, though the agent
mechanism [11] in recent versions of Eiffel makes it possible to achieve nearly the same
level of expression. The Eiffel Refinement Calculus [18] shows how class implementa-
tions can be refined from contractual specifications. The Eiffel language is thus applica-
ble to modelling concepts and constructs from late requirements engineering (when cus-
tomer goals are well-defined, and alternatives in goals have been considered and selected)
through to implementation.

The BON modelling language [23] complements Eiffel with a set of concepts and cor-
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classCITIZEN inherit PERSON
feature{ANY }

spouse : CITIZEN
children,parents : SET [CITIZEN ]
single : BOOLEAN

ensureResult = (spouse = Void)
feature{BIG GOVERNMENT}

marry · · ·
have child · · ·
divorce is

require ¬ single
ensuresingle ∧ (old spouse).single

invariant
single ∨ spouse.spouse = Current ;
parents.count ≤ 2;
∀c ∈ children • ∃p ∈ c.parents • p = Current

end

Figure 1: BON/Eiffel Class Interface

responding graphical notations to support object-oriented modeling centered around the
three principles of seamlessness, reversibility and contracting. Although BON is a lan-
guage independent method2, its basic concepts are close enough to Eiffel that its graphical
notation may be viewed as a graphical dialect of Eiffel for the purpose of this article. In
this article, we will use the terms “Eiffel” and “BON” interchangeably.

The analysis and design of object-oriented systems in BON will result in static and
dynamic descriptions of the system under development, as shown in Figs.1 and2. A static
class diagram (Fig.2(a)) tells us how the program modules (i.e., the classes) are organized.
A dynamic diagrams, by contrast, documents how the system will behave over time. In
an object-oriented system, this means describing how objects interact at execution time
(i.e., how they pass messages to each other). Each object will behave as prescribed by its
blueprint, i.e., its corresponding class. BON’s dynamic diagrams (Fig.2(b)) are similar
to UML collaboration diagrams.

A static description includes the various classes (CITIZEN andHOUSE in Fig. 1),
as well as the formal description of the class interface, as shown forCITIZEN in the
figure. A dynamic description specifies system execution scenarios which specifies the
events or messages that are passed in the order that they occur.

The CITIZEN class has three attributes (spouse, parents andchildren), a boolean-
valued functionsingle, and a state-changing procedures such asmarry anddivorce. A
require clauses describes a precondition, and anensureclause the postcondition. Post-
conditions can refer to the value of an expression when the feature was called by prefixing
the expression with the keywordold. Classes may also haveinvariants, which are pred-

2It has been used successfully over the years at Enea in Sweden in industrial projects with such diverse
languages as C++, SmallTalk and Object Pascal.
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(a) Static Class Diagram (b) Dynamic Diagram

Figure 2: BON Diagrams

icates that must be maintained by all visible routines. Visibility of features is expressed
by annotatingfeature clauses with lists of client classes permitted to access the features.

Eiffel supports inheritance relationships (betweenPERSON andCITIZEN above),
association relationships (betweenCITIZEN and itself, via attributespouse, and be-
tween PERSON and HOUSE ) and aggregation relationships (betweenHOUSE and
KITCHEN ). A cluster shows a set of classes, and possibly other clusters. The clus-
ter GOVERNMENT in the figure is compressed, i.e. the details are hidden from view.

Eiffel compilers and tools can automatically reverse engineer class diagrams and the
class interfaces from the implementation code. This “reversibility” property is important
for keeping implementations consistent with their specifications. Also, given a class in-
terface as shown in the class diagram, it is a simple matter to forward engineer the class
interface, to which the programmer can easily add implementation code. Little research
has been done on integrating dynamic diagrams into the seamless and reversible engineer-
ing process. This integration will therefore be developed further in Section4.

3 DEFINITION OF THE SINGLE MODEL PRINCIPLE

Until now we have defined the single model principle in terms of consistency of views. In
this section we list further factors and criteria that will allow us to provide a more precise
definition of the single model principle.

We must first decide on a minimum set of essential views. Without knowing what
these different views are, we cannot describe any relationships, such as consistency, be-
tween them.

A software system (or subsystem) is usually conceived of as consisting of an assembly
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of modules (or classes) in some relationship with each other. There is therefore the module
level and the system level (for simplicity, in the sequel, the system level will also include
subsystems).

The notion of apackageis used in UML for the system level descriptions. This raises a
frequently debated issue — the need to have super-modules above the level of a class [10,
p209]. The package is one such notion of a super-module, and has its own rules for hiding
and exporting as the rules for packages are different than the rules for classes. To re-use a
class in a package, the whole package must be imported. By contrast, Eiffel has the notion
of selective export (e.g. in Fig.1, the only class that can invoke marriage and divorce is
BIG GOVERNMENT ), and thus does not need the additional layer of a super-module.
The notion of acluster is used in BON to group classes and/or sub-clusters selected by
the designer according to some criteria to form a conceptual unit or subsystem. The same
set of classes can, in other views, be clustered differently. The cluster therefore does not
have any semantic effect, and is not part of the class syntax.

Views at the module level

At the module level we need at least two views:

1. The implementationview, i.e. the actual executable code that describes how the the
module performs its intended function, and

2. The abstractspecificationthat describes the services provided by the module.

To describe the specification and implementation views in accordance with the single
model principle, we need aseamless and reversible wide-spectrummodelling language.
The language must be wide-spectum if it is to encompass both specifications and imple-
mentations. It must be seamless if the implementation is to be developed smoothly from
the specification. It must be reversible if the specification is to be obtained automatically
from the implemented source code.

Most programming languages are notwide-spectrum consistent views, as they do not
support the full power of contracts (e.g. C++, Ada and Java), unless they are enhanced
with add-ons. For example, Ada supports a two-tiered notion of a module (called a “pack-
age”) involving a “specification” and a “body”. But the name “specification” is too strong
for a construct that supplies only typing information (the signature in ADT terms) but not
the behaviour (the ADT axioms). The more modest word “interface” is applicable [10,
p1081].

As mentioned earlier, Java must be enhanced with external add-ons such asiContract
or JML [8] (and OCL at the UML level) to achieve the intended effect. The combined
UML/Java notation is wide-spectrum, but not seamless. This is because there is a certain
amount of impedance mismatch between OCL and the Java assertion languages (such
as iContract or even Java 1.4) as they are different logical languages, and hence some
conversion would be required. Furthermore, a UML class can be constrained not only
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via OCL, but also via constraints in class diagrams and statecharts. Checking such a
collection of varying constraints and converting them to a Java assertion language is not
seamless. For the same reason, it would be difficult to reverse engineer the OCL contracts
from the Java code and assertions.

In BON/Eiffel, specifications are predicate logic contracts (pre/post conditions and
class invariants). Seamlessness and reversibility are there by construction. The high-level
specification language is a superset of Eiffel’s own expression syntax, and is checked
at compile time for type correctness. Once a query is defined, it becomes part of the
assertion language, thus enriching the constructive expressivity of assertions. There are
no special mathematical operators as one would find in languages such as Z [22]. Since
the specification is part of the code, reversibility is automatically present, and the contract
view can be extracted automatically.

A rudimentary check of consistency between the specification and implementation
views can be made because: (a) the specifications are typechecked against the implemen-
tation by the compiler, and (b) the specifications (contracts) can be checked against the
implementation for violations at run-time by turning assertion checking on. More refined
consistency methods are available such as the Eiffel Refinement Calculus [18] which is
in the spirit of the wide-spectrum programming calculi of Hehner [6] and Morgan [12].

Thus the secret to making multiple views of a single consistent product, is to make
the concepts and notations needed to program actual code, abstract enough that they can
serve just as well as tools formodelling. As Meyer’sself-documentation principlestates
[10, p55]:

”. . . software becomes a single product that supports multiple views. One
view, suitable for compilation and execution, is the full source code. Another
is the abstract interface documentation of each module, enabling software
developers to write client modules without having to learn the module’s own
internals. . . Other views are possible.”

The fully implemented code containing well-designed preconditions, postconditions, in-
variants and the careful choice of names for both classes and features, so that various
views can be extracted from this single product at various levels of abstraction, is there-
fore, by construction, the simplest kind of consistent single model at the module level.

The fact that all the details of a classCITIZEN is contained in a single file (e.g.
citizen.e) gives the modulephysical integrity. In C++, the interface and the implementa-
tion of a class are often defined separately, which puts the burden either on the reader or
the compiler to keep track of all the parts.

Views at the system level

At the system level, there are also at least two views that must be supported. These views
allow the designer to document the system architecture, i.e., the major components of the
system and the structural and dynamic relationships between them.
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The two views in the UML idiom are (a) class diagrams (i.e. the static structure of the
system), and (b) behavioural diagrams (e.g. statecharts, activity diagrams, and sequence
or collaboration diagrams) that describe the system dynamics. David Harel writes:

As to the UML itself, one must remember that right now UML is a little too
massive. We understand well only parts of it; the definition of other parts has
yet to be carried out in sufficient depth to make crystal clear their relation-
ships with the constructive core of UML (the class diagrams and statecharts)
. . . my personal feeling is that in the wake of the initial excitement about a
standard for modeling software the UML will have to be made smaller and
tighter. Otherwise, it will become too cumbersome and multifaceted to be
really useful. I think it will gradually shrink, leaving only three or four types
of diagrams that are really needed and are useful. The rest will probably
become obsolete and will eventually disappear [3].

What we have here is essentially a statement of the need forconceptual integrity. Use
a small number of powerful descriptions that work together to help describe the software
product; provide one good way to describe every construct of interest. This will prevent
the documentation from becoming unmaneagable, keep it relatively easy to read, and will
allow one to easily teach and communicate the ideas to designers and programmers.3

The Java language possesses a variety of syntactic constructs (classes, interfaces4,
and primitives) all of which describe the same semantic concept. As shown by Eiffel and
C++, there is no need for separate syntactic constructs. UML uses classes, interfaces,
datatypes, nodes, and components as classifiers, and further constraints (e.g. in OCL,
via multiplicity) can be associated with classifiers. Similarly sequence and collaboration
diagrams do essentially the same thing. Why have so many constructs do the same thing?
Conceptual integrity would dictate the choice of one of the equivalent views, and find
techniques to automatically check consistency of equivalent views (as in the SOMATIK
tool [4]) where these additional views are thought to be necessary.

By contrast, Eiffel/BON has the kind of conceptual integrity described above, that is
to say a small number of powerful orthogonal descriptions that work together to describe
the software product. At the module level, contracts can be used to express the vari-
ous constraints that in UML are performed by a variety of constructs (OCL, statecharts,
multiplicities and other classifiers). At the system level, there are only two kinds of di-
agrams: static class diagrams and dynamic diagrams that are closely linked with each
other. The class diagrams show the the static structure of arbitrarily large systems (using
recursive clustering and compression), and can be forward or reverse engineered from
code (Section2). Dynamic diagrams show system behaviour over time. Dynamic dia-
grams describe interactions of only those objects that are instances of classes that appear

3For example, in language design, Meyer [9, p498] explains why multiple variants of the loop construct
(e.g., test at the beginning, test at the end, provide a “for” loop for automatic transition to the next element
etc.) are not needed when a single construct will be easier to remember, program and get right. Loops are
hard enough as it is.

4Interfaces are primarily included in Java to eliminate the apparent complications that arise with multiple
inheritance.

70 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



3 DEFINITION OF THE SINGLE MODEL PRINCIPLE

in the static class diagram. Messages sent betweeen two objects can then be related to
calls to features described in the class interface. Some current research is aimed at using
this close link between static and dynamic diagrams to check consistency [20].

Definition

Based on the preceding discussion, we can define thesingle model principleas follows.

Definition. A software development follows the single model principle if it requires
the use of a seamless and reversible wide-spectrum language for sofware description,
possessing conceptual integrity at both the module and system levels, while maintaining
view consistency at different levels of abstraction.

Criterion UML/Java BON/Eiffel
Seamless and reversible No Yes
wide-spectum descriptions (e.g., impedance mismatch be-

tween OCL andiContract, or be-
tween statecharts and classes)

(by construction)

Conceptual integrity No Yes
(e.g., constraints can be expressed
on dependency arrows, in notes,
via OCL and in statecharts; collab-
oration and sequence diagrams are
identical semantically)

(by construction)

View consistency No Qualified Yes
(in general, no algorithms or meth-
ods available to check the con-
structive part – classes and state-
charts – against the other views,
e.g., OCL)

(static views have good consis-
tency checking mehods; basic
checks can be made for the con-
sistency of dynamic and static dia-
grams, but better methods needed)

Table 1: Single model principle — comparison

Table1 summarizes the discussion so far by comparing UML/Java with respect to the
single model principle.

The typical use of UML/Java does not obey the single model principle. Developers
use UML to produce multiple independent models, while Java is used to constructively
describe a single executable model of the system under description, but there are no algo-
rithms or methods to guaranteee the required consistency. However, as will be shown in
the sequel, there is nothing to prevent us from taking a core subset of UML and using that
as a platform to satisfy the single model principle.
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4 DELIVERABLE DEPENDENCIES

A simple way to further illustrate the single model principle is by considering devel-
opment deliverables and their dependencies. We present the deliverables using UML’s
package and dependency notation, in part because it is a standard. The diagrams aim to
depicttypical useof UML/Java and BON/Eiffel. In these diagrams, dashed arrows rep-
resentdependencies. A dependency relationship exists between two elements where a
change to the supplier element (the target) may potentially affect the client element (the
source). The dependencies are annotated with stereotypes. Three stereotypes are used.

• 〈〈 refine 〉〉: where the client element is a refinement of the supplier element. There
is no guarantee that the refinement is consistent with the supplier. There is also no
guarantee that the refinement can be done automatically, and developer intervention
will usually be needed to establish the relationship.

• 〈〈 consistent refine 〉〉: This is refinement in which the client is guaranteed to be
consistent the supplier in the sense of [6, 18], wherein any scenario satsifying the
client also satisfies the supplier, with the client adding additional constructive in-
formation. Thus, for example, source code is considered a refinement of a class di-
agram. This relationship, in general, is only partially automatible, and will require
developer intervention to establish. Seamlessness will of course aid the designer to
do the refinement more easily.

• 〈〈 derive 〉〉: where the client element can be derived automatically and consistently
from the supplier element.

Thederive relationship is obviously the most desirable, as a tool can do this automatically
for the developer. An example of this is the automatic generation of BON class diagrams
and specifications from Eiffel code (using the self-documentation principle) as depicted
in Fig. 3.

Figure 3: Eiffel deliverable dependencies

The minimum required for the single model principle is theconsistent refine relation-
ship, which ensures that the two views are consistent with each other. Thus, for example,
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Eiffel source code can be refined from the contracts inherent in BON class diagrams, with
a guarantee that the code implements the contracts [18].

So, too, the consistency of dynamic diagrams can be checked both against source code
and the class diagrams by treating messages as feature calls [21]. For example, to check
a dynamic diagram against a class diagram, we must first ensure that both diagrams are
syntactically and semantically (obey typing and scope rules) correct. Then we check that
each object in the dynamic diagram is an instance of a class in the corresponding class
diagram. Finally, we must check that that the message being fired is allowed given the
pre/postconditions of the corresponding feature calls in the class. These checks are stated
and proved using the PVS theorem prover in [21], but other methods are possible and
desirable, at least for efficiency reasons.

Thus all BON/Eiffel deliverables – i.e., class diagrams, source code, dynamic dia-
grams – are related and are dependent. They are either related through automatic con-
struction (e.g., automatic generation of class diagrams from source code, or dynamic
diagrams from source), or by algorithmic consistency checking and developer modifica-
tion. Hence they meet, at the very least the consistency requirement, and in some cases
the strongerderive criterion.

By contrast, the situation with UML/Java (depicted in Fig.4) is very different.

Figure 4: Deliverable dependencies using UML/Java

With UML/Java, deliverables (e.g., class diagrams, state machines, OCL constraints,
collaboration diagrams, etc.) can and usually are constructed independently and thus can
introduce overlap and inconsistencies. For example, consider a UML model consisting of
a class diagram (where methods have pre- and postconditions written using OCL) and a
state transition diagram. For consistency, preconditions must correspond to guarded tran-
sitions in the state machine, but nothing in the modelling language enforces this, nor does
the language provide necessary theory, methods, or tools to check or enforce consistency.
It is thus left to the modeller to ensure or enforce consistency in their descriptions.

The single model approach, which is taken by Eiffel, is more fundamental than the
multiple model approach, exemplified by UML/Java. Consider the problem of checking
the consistency of independently constructed multiple models. To do this, the models
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must be combined in a common framework and reasoning must be carried out. But this
is the process of constructing a single model — containing all descriptions regarding a
software system of interest. Now, the construction problem and the consistency checking
problem is more difficult than had development started with a single model in the first
place. To construct a single model, we must combine information and constraints from
several possibly very large, complex separate models. In contrast, with the single model
approach, a large model is constructed piece by piece, by adding new descriptions (e.g.,
method signatures, code for methods, contracts) over the course of the entire development,
and different views are produced from the model automatically or semi-automatically.

5 THE SINGLE MODEL PRINCIPLE AND UML

Suppose that it is desired to follow the single model principle while using UML and Java.
Is it possible to do so? In [20], we provide a profile (i.e. a subset of UML and Java) that
can be used to this purpose. This profile is targetted at supporting Extreme Programming
principles and guidelines [1] while using UML; it is not intended directly to support the
single model principle. However, with some further, minor, restrictions, the profile can be
used to support the single model principle as well. An overview of the deliverables of the
proposed method and their relationships is shown in Fig.5.

Figure 5: Proposed deliverables following the single model principle

The key deliverables with this profile are class diagrams (restricted to support only
a subset of the typical constructs allowed in UML), collaboration diagrams, test drivers,
and Java source code. Use-case diagrams may also be used, but they are considered as
rough sketches or informal documentation, and their consistency with other development
products is not guaranteed. Two types of dependencies exist between deliverables: au-
tomatic construction dependencies (where a tool generates one deliverable from another
and guarantees semantic consistency); and algorithmic consistency checking dependen-
cies (where an algorithm is used to detect all inconsistencies between two deliverables,
and a report is thereafter generated for the developers).
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Contracts are used in both class diagrams and in Java source code (via something
like iContract). The profile emphasises testing, due to the inclusion of test drivers as a
deliverable. Test drivers are small Java programs that execute the system on a suite of test
data, and inform the testers as to the results of testing.

Collaboration diagrams are viewed as an abstraction of test drivers; thus, they can
either be reverse engineered automatically from the test drivers (for a description of a
suitable algorithm for this, see [20]) or their consistency can be checked against the test
driver. A tool is required to implement the reverse engineering and the algorithmic con-
sistency checking, as discussed further in [20].

Collaboration diagrams are used only in the development of test drivers, not in cap-
turing behaviour of methods — thus, there is no direct relationship between collaboration
diagrams and source code or class diagrams. However transitivity between colloabora-
tion diagrams and test drivers, and test drivers and code can be used to obtain the required
consistency check.

Such a profile, with some minor restrictions, can be used in the spirit of the single
model principle. If the test driver runs succesfully, then a basic kind of consistency test is
passed. Conceptual integrity arises due to restrictions placed on the use of UML and Java
constructs (e.g., to satisfy the construct uniqueness by using only classes for modelling,
and avoiding multiple inheritance), and through supporting tools, which provide a repos-
itory for all information related to abstractions that appear in the model. Consistency of
views is established via algorithms and reverse engineering facilities, as well as the suc-
cessful execution of the test drivers. Wide-spectrum applicability is obtained through use
of contracts (specifications) in both UML diagrams and Java source code.

6 THE SINGLE MODEL PRINCIPLE AND METAMODELLING

Both BON and UML are modelling languages, possessing metamodels that specify the
well-formedness constraints that all models must obey. By examining the metamodels for
each language, we gain further insight as to why BON supports the single model principle
and why UML does not without the restrictions of the previous section.

Fig. 6 depicts a fragment of the BON metamodel using the UML notation as a meta-
modelling notation. The diagram shows that in BON, a model consists of a set of ab-
stractions. An abstraction may be a class, a cluster, an object, or an object cluster. These
abstractions may have relationships with other abstractions. Each metaclass in Fig.6 has
constraints written as clauses in class invariants (the invariants are fully described in [19]).

The diagram clarifies why Eiffel supports the single model principle. All views are
related static or dynamic abstractions which can be constrained by well-formedness con-
straints (defined inRelationships). For example, these could be constraints on messages
to ensure that each message corresponds to a feature provided by a class or to ensure that
each dynamic object is an instance of a corresponding class in the static class diagram.

Consider now Fig.7, presenting a fragment of the UML metamodel, extracted from
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Figure 6: A fragment of the Eiffel metamodel

the complete metamodel in [15]. The fundamental concept in a UML model is aModel
Element, which is generalized by concepts such asClassifiers andInterfaces.

Figure 7: A fragment of the UML metamodel

Notice that aModel is also a generalization ofModel Element; that is, according to
the metamodel, a valid model may be constructed from several different models, where
each is an instance of the metaclassModel, each potentially containing different abstrac-
tions and relationships. These models may therefore be independently constructed – in-
deed, each view is of itself a model – and nothing in the metamodel or in the semantics
of UML guarantees consistency of these views. This is why UML is a multiple model ap-
proach. Dependencies between separate views must be dealt with by the developer. There
is no theory provided with the UML that can help to test or verify that a set of models is
consistent or inconsistent.

76 JOURNAL OF OBJECT TECHNOLOGY VOL 1, NO. 5



7 WHERE THE PRINCIPLE IS INSUFFICIENT

7 WHERE THE PRINCIPLE IS INSUFFICIENT

We have advocated the single model principle for building reliable software seamlessly
and reversibly. We now examine situations where the single model principle appears to
be, or actually is, insufficient for rigorous development of reliable software. In particular,
we want to focus on dynamic modelling, early requirements engineering, and legitimate
inconsistencies.

Legitimate inconsistency

Traditionally, inconsistency in software desciptions is a matter to be avoided. After all, in-
consistencies may lead to misunderstandings and errors that will result in faulty software.
By contrast, Nuseibeh et al [13] write that inconsistency in software descriptions must be
tolerated, and support the idea of “making inconsistency respectable”. This position is
not necessarily a contradiction to the major thesis of this article.

In the early part of the requirements phase, and even at later stages, the designer may
want to use informal descriptions and rough sketches, whose consistency cannot be for-
mally verified. Checking the inconsistency of a large description may be computationally
expensive, even in those cases where procedures exist for such detection. Inconsistency
may also indicate areas of legitimate uncertainty, or where the designers shared under-
standing has broken down. In these cases, inconsistency may be a necessary part of the
design process. As stated in [13], the problem is not in the inconsistency per se, but with
inconsistency that remains undetected.

Requirements engineering typically occurs in two distinct phases.Early requirements
engineering is focussed on understanding, capturing, and analysing specific customer
goals (which have a clear-cut criterion for satisfaction) or soft-goals (which need not have
a precise specification of satisfaction).Laterequirements engineering occurs when goals
are well-defined and real-world entities can be modelled. Goals are critical in dealing
with non-functional requirements.

A modelling language like BON/Eiffel, based on the single model principle, is in-
sufficient for modelling goals, in part because of the need for seamlessness. BON/Eiffel
provides no built-in techniques for modelling goals: they would have to be treated in-
formally (e.g., as comments, rough sketches, or informal documentation), and would not
be directly expressible in executable code, thus defeating seamlessness. In order to treat
goals formally, a richer modelling language, e.g., KAOS [2] could be used. However, this
would defeat seamlessness and would introduce impedance mismatches, particularly in
mapping designs to programs, unless the resultant object oriented programming language
supports goal-based constructs as well. The impedance mismatch can be minimized by
providing rigorous (automatic or semi-automatic) translations from a language for goal-
based modelling to a language such as Eiffel, which obeys the single model principle.
A translation from KAOS to Z has been defined, and mappings from Z to BON (and
thereafter to Eiffel) appear in [17]. This approach is also followed by Graham [4], in his
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task-based modelling techniques that support traceability. Thus, the single model princi-
ple seems incompatible with goal-based requirements description, but translation methods
could be used to ameliorate the incompatibility in practice.

Our conclusion is that we must allow modelling views, perhaps even inconsistent ones,
outside of the profile supporting the seamless and reversible single model principle. A
more comprehensive framework, involving the single model principle, would thus include
both rough sketches [7] and consistent descriptions:

• Rough sketches, i.e., modelling views that are not necessarily consistent, such as
goals, use cases etc. that are needed primarily in the early stages of the project.
They provide informal, though useful, documentation that is ascribed no precise
semantics.

• Consistent descriptions, i.e., a variety of views satisfying the single model prin-
ciple that allows for seamless reversible development of code from specifications
starting at late requirements and onwards.

Obviously, the single model principle dictates that we maximize the power of consistent
descriptions and only use rough sketches where consistent descriptions run out of expres-
sive power.

Dynamic modelling

In the BON/Eiffel version of the single model principle only one behavioral construct —
the dynamic diagram – was supported. So too, the UML/Java profile described earlier
used only colloboration diagrams. The unrestricted UML supports many behavioural
descriptions such as sequence diagrams, statecharts and activity diagrams that all have
their uses.

What is the status of these additional descriptions? As mentioned earlier, we can treat
them as rough sketches. There are also possibilities, in future work, for automatically
generating them from a single dynamic diagram.

For example, sequence diagrams can be treated as a generated view, constructed au-
tomatically from Eiffel implementations of methods of a class (that is, the messages de-
picted in a dynamic model simply show the sequence of function or procedure calls within
an executing system). From this perspective, dynamic models cannot be constructed in-
dependently from static models (e.g., as is permitted with UML). This perspective on the
use of sequence diagrams differs from that of Harel [5], wherein they are posited as a
modelling technique for capturing requirements. It also differs from the use of sequence
diagrams in the Rational Unified Process, wherein they are produced from use-case dia-
grams.

Statecharts are used in UML for describing the behaviour of objects; Harel posits them
as a mechanism for modelling design [5]. Eiffel does not support state transition diagrams,
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but they can be generated automatically from class interfaces using an approach similar
to that of the SOMA toolset [4].

8 DISCUSSION AND CONCLUSIONS

Independently generated multiple models of a system cause more problems than they
solve in developing software. It is claimed that multiple models are useful because they
allow developers to work independently on different parts of a software system, and there-
after their individual work can be integrated. We have already remarked on problems with
this approach, particularly with consistency: checking that one independently created
model does not contradict a second independently created model is a very complicated
problem, even for small systems. The problem is avoided by obeying the single model
principle.

The multiple model approach offered by languages such as UML is not a good way
to build mission-critical software. It is not a good mechanism for ensuring consistency,
nor to help trace errors in programs back to errors in models. A single model approach,
wherein different views of a system can be automatically or partly automatically gener-
ated from a single model of the system, should be preferred for developing high-quality
software systems.

We have used BON/Eiffel to illustrate the single model principle, but our arguments
are not limited to this modelling language: they apply to any language which provides
a unique way of describing abstractions of a system of interest, and which relies on au-
tomatic generation of views. We have illustrated how UML and Java might be used to
satisfy the single model principle.
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