An Introduction to PVS
Metamodelling with PVS

Richard Paige
Department of Computer Science
University of York, York, U.K.
palge@cs.york.ac.uk

and

Department of Computer Science
Y ork University, Toronto, Canada.

1

PVS. What Is It?

A verification system with

>

a general-purpose formal specification language,
associated with atheorem prover, model checker, and
related tools (browser, doc. generator).

Fredly distributed by SRI, currently onv2.4

>

>
>

Runs on Solaris and Linux, Ul based on Emacs and
Tcl/Tk

Used in both academia and industry

Rich specification language, powerful prover, expressive
libraries, wealth of support.

Applications: safety critical systems, hardware,
mathematics, distributed algorithms

2

Overview

» Introduction to the PV S specification language

» Look-and-fedl of the prover.
» Some key prover commands.

» Severd little examples.

» Using PVSfor
» meta-modelling
» expressing object-oriented models (particularly BON)
» conformance and consistency checking

PV S Specification Language
... Isan enriched typed A-cdculus.

» If you' re comfortable with functional
orogramming, you' |l be comfortable with PVS.
» Key aspects:

» Type constructors for restricting the domain and range
of operations.

Rich expression language.
Parameterized and hierarchical specification.

>
>

4

Types

Basetypes. eg., bool , int, nat
Functiontypes, eg.,[int -> [bool -> int]]
Enumeration types{ a, b, c}

Tupletypes|[A, B]

Recordtypes[#a: A, b: B #]

Mutually recursive datatypes (ADTS).

Predicate subtypes:

»> A TYPE = {x:B | p(x)}

» A TYPE = (p)

More on Types

L ots of predefined subtypes, eg.,
nat: TYPE = { n:int | n >=0 }
subrange(n,mint): TYPE =
{ 1:1nt | n<=1l & 1<=m}
Dependent types allow later types to depend on earlier ones.
dat e: TYPE =
[# nont h: subrange(1, 12),
day: subrange(1, num of days(nonth))
#]
Predicate subtypes are used to constrain domain/range of
operations and to define partial functions.

6

Expressions

» Higher-orderlogic(& OR, =>, .., FORALL,
EXI STS)

» Conditionals
> |F ¢ THEN el ELSE e2 ENDI F
> COND cl1->el, c2->e2, c3->e3 ENDCOND

» Record overriding
> id WTH [(0):=42,(1):=12]

» Recursive functions

fac(n:nat): RECURSI VE nat =
| F n=0 THEN 1 ELSE n*fac(n-1) ENDI F
VEASURE n

» Inductive definitions, tables -

Type Correctness Conditions (TCCs)

» PVSmust check that the expressions that you write are
well-typed.

fac(n: nat): RECURSI VE nat =
| F n=0 THEN 1 ELSE n*fac(n-1) END F

VEASURE n

Function f ac iswell-typed if

» n/=0 => n-1>=0 (theargument isanat)

» n/=0 => n-1<n (termination).

The type checker (M-X tc) generates type correctness
conditions (TCCs)

Example TCCsfor factorial

fac TCCLl: OBLI GATI ON
FORALL (n:nat): n/=0 => n-1 >= 0

fac TCC2: OBLI GATI ON
FORALL (n:nat): n/=0 => n-1 < n

TCCs (Continued)

Expressions are only considered to be well-typed after all
TCCs have been proven.

- Type checking in PV S is undecidable (because of predicate
subtypes).

+ The PVS prover will automatically discharge most TCCs
that crop up in practice.

Why aren't there more TCCsin preceding, eg., for
n*fac(n-1) of typenat ?

10

Suppressng TCC Generation

Thetype dhedker “knows” that
JUDGEMENT *(i,]) HAS TYPE nat
JUDGEMENT 1 HAS TYPE posi nt

Judgements ae ameans for controlli ng the generation d
TCCs.

Inference is caried aut behind-the-scenes
Judgements can be abitrarily complex and wsdul.
JUDGEMENT 1 nverse(f:(bijective? D, R]))
HAS TYPE (bijective?[R D)
JUDGEMENT uni on(a: (nonenpty?), b:set)
HAS TYPE (nonenpty?)
11

Theories

» Specifications are built from theories.
» Declarations introduce types, variables, constants, formulae, etc.

di v: THECRY % natural division
BEG N
posnat: TYPE = { n:nat | n>0 }
a. VAR nat; b: VAR posnat
below(b): TYPE = { n:nat | n<b }
div(a,b): [nat, below(b)] %tuple

di vchar: AXI OM

LET (g,r) = div(a,b) I N a=qg*b+r
END di v

12

Theories (1)

» Theories may be parametric in types, constants,

and functions.
wf _induction[T: TYPE, <: (well founded?[T])]: THEORY

» Theories are hierarchical and can import others.
| MPORTI NG Wf _i nducti on[nat, <]

» The built-in prelude and loadable libraries
provide standard specs and proven facts for a
large number of theories.

13

Example: Division Algorithm

eucl i d: THEORY
BEG N
div(a:nat, b:nat): RECURSI VE [nat, belowmb)] =

| F a<b THEN (0, a)
ELSE LET (qg,r)=div(a-b,b) IN (qg+1,r)
ENDI F
VEASURE a

END euclid

» Type checking (M-x tcp) yieldstwo TCCs

% proved - conplete

di v_TCCl: OBLI GATI ON FORALL (a, b: nat)
a>=b | MPLI ES a- b>=0;

% unfi ni shed

di v_TCC2: OBLI GATI ON FORALL (a, b: nat)

a>=bh | MPLI ES a- b<a;
14

Division Algorithm (Corrected)

eucl 1 d: THEORY
BEG N

di v(a: nat, osnat) RECURSI VE
[nat bel ow(bf

| F a<b THEN (0, a)
ELSE LET (q,r)=div(a-b,b) IN (g+l,r)
ENDI F
VEASURE a
END euclid

» Type checking yields
2 TCCs, 2 proved, O unproved

which does not necessarily mean div is correct!

15

Division
Alternative Specification

div: THEORY
BEGIN
a: VAR nat ; b: VAR posnat ;g: VAR nat
rem(a,b,q): TYPE =
{ r:below(b) | a=g*b+r }
div(a,b): RECURSIVE
[#q: nat,r: rem(a,b,q) #] =
IF a<b THEN
(# q:=0, rr=a #)
ELSE
LET rec =div(a - b,b)IN
(#qg:= recq +1,r.= recr #)
ENDIF
MEASURE a
END div

16

Division TCCs

div_TCCl: OBLI GATI ON
FORALL (a, b): a<b I MPLIES a<b AND a=a

div_TCC2: OBLI GATI ON
FORALL (a,b): a>=b IMPLIES a-b >= 0

di v_TCC3: OBLI GATI ON
FORALL (a,b): a>=b I MPLI ES a- b<a

» All TCCsare proved automatically by the typechecker.

17

Animation

» Instead of doing full verification, functions can
be validated in PV S via execution:

» M-x pvs-ground-eval uator

<GndEval > “div(234565123,23123543)”"

cpu time (total) O msec user,0 msec system
==>

(# q:=101, r:= 10167280 #)
» Question: isthis useful in metamodel validation?

18

Y VYV

Y VY

Design Elements in the PVS Prover

Heuristic automationfor “obvious’ cases

L eave the human freeto concentrate on and dred steps
that require real insight.

Sequent calculus presentation

{-1} A
{-2} B
[-3] C
e
{2} T

Intuitive interpretation. A & B & C=> S OR T
PV S maintains proaf tree of sequents.

19

>

| nteraction

Basic tactics exist to manipul ate these sequents.
Propositional rules

» (flatten),

(split),

Quantifier rules

» (skolem,

(1 nst)

Tacticlanguage (try),
defining higher-level proof strategies.
(defstep prop ()
(try (flatten) (prop) (try (split) (prop)

(skip))) ..

)

(lift-if)

(t hen),

20

(repeat) for

Automation

» Automate (almost) everything that is decidable!
» Propositional calculus (prop), (bddsi np)

» Equality reasoning with uninterpreted function symbols

x=y & f(f(f(x))) =f(x) == F(F(F(F(f(y))))) = F(x)
» Modd checking (nrodel - check)
» Automated instantiation and skolemization (skosi np)
» Workhorse: (gri nd)

» combination of simplifications, rewriting, propositional reasoning,
decision procedures, quantifier reasoning.

» Induction strategies.

21

Y

YV V.V V V

Prover Infrastructure

Browsing facilities locate and display definitions
and find formulae that reference a name.

Proof replay, stepping, editing.
Graphical display of proof trees.
_emmas can be proved in any order.
ntroduce/modify lemmas on the fly.
Proof chain analysis keegps you honest!

22

Metamodelli ng

» A moadelling language (eg., BON, UML, OCL) consists
of
» anotation (syntax and presentation style)
» ametamode: well-formednessconstraints

» A metamodel cgpturesthe rulesthat “good’ (well-
formed) models in the language must obey.

» Examples:

» Associations are direded between from a dass or cluster to a
classor cluster.

» Classes cannot inherit from themsealves.

23

Metamodelling

» Distinction between well-formedness rules
(semantic/contextual analysis) and syntactic rules
(grammar/tokens) isfuzzy.

» 2uworks.org RFP for UML 2.0 includes both abstract
syntax and contextual analysis rules in metamodel.
» |f ametamodd Is viewed as a specification to be
given to tool builders, then thisis not
unreasonabl e.

» ...but it can make your metamodel much larger and
thus in need of better structuring mechanisms.

24

Metamodelling with PVS

» Using atool like PV S to express a metamodel
has a number of benefits:

Machine-checkabl e syntax.

Type checker.

Prover can be used to validate metamodel.

Ground evaluator can be used for testing.

Built-in theories can ssmplify the process of
expressing the metamode! .

» But metamodels are usually expressed in OO
languages ... and PV Sis not OO!

YV V VY

25

Typica Metamodel for BON

Vs

MODEL

~

NONE

rels. SET[RELATIONSHIP]
closure: SET[INHERITANCE]
covariant(f1,f2: FEATURE): BOOLEAN

invariant

digoint_clusters;
inh_wo_cycles;
unique_abstraction_names,
no_bidir_agg;
objects typed;
parameters_named;
labels unique;
unique_root_class,
single inst_of root;
model _covariance;
primitives

—— e — e ==

26

abs: SETJ.

~ (ABSTRACTIONS)

]

Abstractions Cluster

ABSTRACTION*

rels: SET[RELATIONSHIP]
contains*: SET[ABSTRACTION]

invariant
source is current

1

contents: SETI..] ‘

STATIC_ABSTRACTION*

DYNAMIC_ABSTRACTION*

rels++:SET[STATIC_RELATIONSHIP] \

| relst+: SET[MESAGE]

contents: SET[..]

!

T

renamings: SET[RENAMING]
rename_class

parents: SET[CLASY

super (f: FEATURE): FEATURE

deferred, effective, persistent

external, root : BOOLEAN
redefined: SET[FEATURE] (
I

I

all_names: SET[STRING]
invarian
valid_static_rels;
feature_unique_names; |
valid_class_inv;
deferred /= effective;
deferred /= root;
is_deferred_class;
no_name_clashes,
calls_are _queries;
add_client_features;
valid_pre calls;
valid_post_calls;
valid_frames;
inv_consistency;
contract_consistency;

client_features,
features: SETJ[..]

27

CLUSTER+ CLASS+
@‘TE’EZSE:S:TRACH on] contains+: SET[ABSTRACTION] \ OBJECT+ | OBJECT_CLUSTER*
invariant: DOUBLE STATE . P
invariant ASERITON — class.CLASS contains+: SET[ABSTRACTION]
no_salf_containment || calls in_inv: SET[CALL] contains+: SET[ABSTRACTION] invariant

no_self_containment

Relationships Cluster

(RELATIONSHIP*

L source, target: ABSTRACTION

— 1

|

(STATIC_RELATIONSHIP*)

|

(MESSAGE+

L sourcet+, target++: STATIC_ABSTRACTION
y

L sourcet +, target++: DYNAMIC_ABSTRACTION

:
)

INHERITANCE+

CLIENT_SUPPLIER*)

invariant—— L |abel: STRING

J

source /= target

- J

~

invariant———

source /= target
_ J

-
AGGREGATION+ ASSOCIATIONT

28

Expressing the BON Metamodel in PVS

» Easiest approach: map the BON specification of the
metamodel directly into PV S.

» Key questions to answer:.
» How to represent classes and objectsin PV S?
» How to represent client-supplier and inheritance?
» How to represent the class invariants?
» How to represent clusters?
» How to represent features of classes?

» Answering such questions will let us represent not only
the BON metamodel in PVS, but BON models as well!

» Question: how does an instantiated metamodel compare
with amodel in PV S for reasoning?
29

Basic Approach

» Specify class hierarchies as PV S types and subtypes.

ABSTRACTI ON: TYPE+
STATI CABS, DYNABS: TYPE+ FROM ABSTRACTI ON
CLUSTER, CLASS: TYPE+ FROM STATI CABS

OBJECT, OBJECTCLUSTER: TYPE+ FROM DYNABS

FEATURE: TYPE+
QUERY, COMVAND: TYPE+ FROM FEATURE

» Features of BON classes become functions:

deferred class: [CLASS -> bool]
class features: [CLASS -> set| FEATURE]]
feature franme: [FEATURE -> set[QUERY]]

30

What isaBON Model?

» A BON modd, in PVS, isjust arecord.

MODEL: TYPE+ =
[# abst:set[ABS], rels: set|[REL] #]

» Notethat all abstractions (static and dynamic) are
combined into one s&t.

» Projections from this to produce different views.

31

Clusters and Invariants

» Note that the BON metamodel has a number of clusters
(Abstractions and Relationships).

» These are mapped to PV S theories.
» Isthere any need to parameterize these theories?

» What about the invariant clauses of classesin the
metamodel ?

» These can be mapped to PVS axioms.

» Ingenera, wed like to avoid axioms when possible since they
can introduce inconsistency.

» Usedefinitionsif possible.

32

Example Axioms

% | nheritance rel ati ons cannot be froman abstraction to itself.
% A class cannot be its own parent.

I nh_ax: AXI OV
(FORALL (i:INH): not (inh_source(i) = inh_target(i)))

% Cl usters cannot contain thensel ves.

no_nesting of clusters: AXIOM
(FORALL (cl:CLUSTER) : not nenber(cl,cluster _contents(cl)))

% A deferred feature cannot al so be effective.
deferred not _effective: AXIOM

(FORALL (c:CLASS): (FORALL (f:FEATURE):
(NOT (deferred feature(c,f) IFF effective_feature(c,f)))))

33

Example Axioms (I 1)

% Al feature calls that appear in a precondition obey the
% i nformati on hiding nodel .

valid _precondition_calls: AXlI OV
(FORALL (c: CLASS):
(FORALL (f: FEATURE):
menber (f, class features(c)) | MPLIES
(FORALL (call:CALL): nenber(call, calls_in pre(f))
| MPLI ES
QUERY pred(f(call)) AND
call isvalid(f(call)))))

34

Type and Conformance Checking

» Running the type checker over the existing
metamodel theories generates approximately 7
TCCsthat are automatically proved.

» Earlier versions did not type check and revealed
errors and omissions.

» \What can we now do with the metamodel ?

» Conformance checking
» Extension to view consistency checking.

35

Conformance Checking

» Does a BON model satisfy the metamodel constraints?

» Inpractice thisis implemented via a constrained GUI and by
suitable algorithms (eg., no cycles in inheritance graph -> cycle
detection algorithm).

» Inpractice and in general it cannot be implemented fully
automatically.

» Approach 1. expressa BON modedl in PVS and check
that it satisfies the axioms.

» If it does not, counterexamples will be generated, though
sometimes they will be difficult to interpret.

» Approach 2. expressthat a BON model cannot exist,
and show that fails to satisfy an axiom. (Often easier.)

36

Example

4 N 4 N
A b B
- .
h: BOOLEAN w: BOOLEAN
b Y N - — invariant
c.m
N J
4 N
a C
C
NONE —
m: BOOLEAN ‘

?|! ah and a.b.w
!

. J

PV'S Theory

I nfo2: THEORY
BEG N
| MPORTI NG et anpdel
a, b, c: VAR CLASS
h, w, m VAR QUERY
ea, eb, ec: VAR ENTITY
xm VAR MODEL
calll, call2, call_anon: VAR D RECT_CALL
cal | 3: VAR CHAI NED CALL

test _info_hiding: CONJECTURE

(NOT (EXI STS (xm MODEL): EXI STS (a, b, c: CLASS):

EXI STS (h,w,m QUERY): (EXI STS (ea, eb, ec: ENTI TY):

EXI STS (calll1, call2, call _anon: DI RECT _CALL):

EXI STS (call 3: CHAI NED CALL):

menber (c, accessors(h)) AND nenber(a, accessors(w) AND
enpty?(accessors(m) AND call _entity(call2)=ec AND

call _entity(call2) = ec AND call _entity(call_anon)=eb AND
call _entity(call3) = ea AND nenber(call1l,calls_in_pre(nm) AND

menber(call 3, calls_in_pre(m) AND
menber (cal | _anon,calls_in_pre(m) AND

menber(call 2, calls_in_inv(b)))))
END i nf 02 38

View Consistency

» BON provides two views of systems:

» static (architectural) view, represented using class diagrams and
contracts.

» dynamic (message-passing) view, represented using collaboration
diagrams
» Theviews may be constructed separately and thus may
be inconsistent.

» Examples:
» object in dynamic view has no classin static view

» message in dynamic view is not enabled (precondition of routine
In static view is not true)

39

BON Dynamic Diagrams

Scenario: Unlmown

1. Customer calls call centre

2. Call centre asks for order

3. Custorner replies with request
4. Call centre does DB lookup

5. Call centre replies with results

40

P ~
FroLun Ch

Extension of Metamodel

» In general, checking view consistency will require
theorem proving support.

» Key check: prove that messagei in the dynamic view hasits
precondition enabled by preceding messages 1,..,i-1

» Effectively we want to show that for a collaboration
diagram cd with sequence of calls cd.calls,

[i:2,..,cd.calls.length ¢/ /cd.occurse
(init; cd.calls(1).spec; .. ; cd.calls(i-1).spec
[] cd.calls(i).pre)

41

Expressonin PVS

> ...1snon-trivial.

» Need the following:

» formalization of specifications (pre- and poststate) as
new PV Stype SPECTYPE

» formalization of sequencing ;
» formalization of specification state

» Add extra functions to the metamodel.
» projection of static and dynamic views
» sequence of routine callsin dynamic view

42

Specifications and Routines

» Eachroutineisformalized as a SPECTY PE.

SPECTYPE: TYPE+ =
[# ol d state: set[ENTITY], new state: set[ENTITY],
value: [set[ENTITY], set[ENTITY] -> bool] #]

» Glven aroutine and its pre/poststate we can produce a
SPECTYPE using function

spec: [ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE]

» Axiom needed to combine pre/postcondition of the

routine into a single predicate.
43

Additional Infrastructure

» Two functions are needed:
» seqspecs: the sequential composition of two SPECTYPES
» seqspecsn: lifted version of segspecs to finite sequences

seqspecs(sl, s2: SPECTYPE) . SPECTYPE =

(# old state := old state(sl),

new state : = new state(s2),
value := (LAVMBDA (o0:{pl:set[ENTITY] | pl=old state(sl)}),
(n:{p2:set[ENTITY] | p2=new state(s2)}):

(EXI STS (i: set[ENTITY]):
val ue(sl)(o,i) AND val ue(s2)(i,n)))
#)

44

View Consistency Axiom

vi ews_consi stent _ax2: AXI OM
(FORALL (nodl: MODEL): FORALL (c: CLASS):
(FORALL (i:{j:nat]|0<j & j<length(calls nodel (npdl))}):
LET
| oc_spec: SPECTYPE =
seq(spec(init(nmdl)(c),oldstate(init(nodl)(c)),
newstate(init(nodl)(c)),
(segspecsn(convert (sequence_nodel (nod1)*(0,i-1))))
| N

(val ue(l oc_spec) (ol d state(l oc_spec), new state(l oc_spec))
| MPLI ES

feature_pre(cal |l s_nodel (nodl) (i),

ol dstate(cal | s _nodel (nodl) (i),
obj ect _class(nsg_target(sequence _nodel (nodl)(i))))))))

45

Just Off the Press..

» ...thereisasmall example of aconsistency
cheding attempt in PVSin

R. Paige, J. Ostroff, P. Brooke, “ Theorem Proving
Suppat for View Consistency Cheding’,
submitted to L’ Objet, July 2002. (Draft avail able
from the authors.)

46

