The logic of software design

J.S.Ostroff and R.F.Paige

Abstract: The authors provide an overview of how logic can be used throughout the software
development cycle, and discuss what methods can be introducced in the compuler science
curriculum to support sofiware development. To sec how logic is useful throughout the cycle,
they present the WRSM reference model, and illustrate it with simple motivating examples.
Reasoning is performed in Logic E, and PVS is used to illustrate automated proofs.

1 Introduction

Logic is the glue that binds together reasoning in many
domains. In software development, the argument for the
use of formal methods based on logic is that it provides
precise documentation, allows us to predict softwarce beha-
viour, facilitates design and early detection of faults, and
produces correct implementations. Although there have
been some notable successes, formal methods have not
been adopted in practice. The arguments over the useful-
ness of formal methods will not be recounted here [1-6]
but it is clear that softwarc protessionals will not adopt
mathematical methods until they arc easy to use, improve
our ability to deliver quality code on lime, provide tool
support, and are founded on an appropriate educational
programme. [t is the cducational programme that we
address in this paper.

We provide an overview of how logic can be used
throughout the softwarc development cycle, and discuss
what methods can be introduced in the computer science
curriculum to support software development.

2 Software engineering

The ISO network reference model divides communication
protocols into seven layers. Although the 1SO reference
model is informal and does not correspond perfectly to
protocols in widespread use, it is widely used to describe
actual network architecturcs. Similarly, a refercnce model
for sofltwarce development is useful for describing the
softwarc development life-cycle of requirements, design
and implementation. Such a relerence model should
provide guidance to the main artifacts and deliverables;
provide precise definitions of, and distinctions between,
important artifacts such as requirements and specifications;
and provide a rational soflware development process.
Two such reference models have been developed where
the description of the model is itself in predicate logic. The
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two models are the Functional Documentation Model {7]
of Parnas and Madey, and the WRSPM model [8] of
Gunter, Jackson and Zave. The advantage of using logic
m the description of such reference models is that logic
provides the appropriate proof obligations that must be met
to ensurc that the final program correctly implements the
requirements. Knowledge of these prool obligations makes
sensc just as much (or natural-language documentation and
informal tosting, as it does for formal specifications that
use theorem provers and model checkers. Most applica-
tions will benefit significantly just from the clarity of
knowing what the objective of a component of the model
should be, cven without formalization, let alone machine-
assisted proof. [8]

We prescent one such reference model which we call the
WRSM reference model. The notation of WRSM s
derived from [8], but for refinement of specifications to
programs we use the timed predicative calculus of Hehner
[9]. The WRSM reference model is primarily bascd on
making a clear distinction between the environment (the
‘plant’) and the programs that interact with the cenviron-
ment. This distinction is classic in systems engineering,
and it has a profound cffcct on the analysis of software as
well. An early attempt that applics this distinction to
softwarc may be found in chapter onc of a monograph by
the first author [10].

2.1 The WRSM reference model

The purposc of software development is to build special
kinds of machines — those that can be physically embodied
in a general purpose computer - merely by describing them
as programs. We let M denote the software machine
consisting of the hardware, opcrating system and
programs.

The machine M must ultimately be installed in and
interact with the external world W It is the cffect of
machine 4 on world W which is of most intcrest to the
customers of the machine. The phcnomena (e.g. states or
cvents) of the external world determine the customet’s
requirerients. Requirements R are about the phenomena
of the external world W, and not about the phenomena of
the machine M. The machine must try to ensure that the
requirements are satisfied by manipulating the shared
phchomena at the interface of Wand M. We can consider
the various phenomena with the help of Fig. 1 (see [11]), in
which WN M is the set of all shared phenomena.

The traditional development process, from requircments
to an implemented program, is a way of bridging the gap
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external world W machine M

Fig. 1  The phenomena of the external world W and the machine M

between the phenomena of W and those of M. A rational
development process, whete each step follows on from the
previous ones and everything is done in the most elegant
and economic order, does not really cxist for complex
systems; nevcrtheless, we can fake it [12] . We can try fo
follow an cstablished procedure as closely as possible, and
when we finally have our solution (achicved as usual
through numerous departures from the ideal process), we
can produce the documentation that would have resulted if
we had followed the idcal process. Apart from providing
clarity of goals, a rational process will guide us when we
become overwhelmed by the complexity of the task. Our
WRSM reference model will provide a rational softwarce
development process. Tt works as follows.

1. Elicit and document the requirements R in terms of the
phenomena of W,

2. From R, cxpressed in terms of W, derive a specification
S of the machinc, expressed in terms of the shared
phenomena WM. Customers should readily understand
the requirements expressed as they are in terms of familiar
world phenomena. By contrast, the specification may not
make as much obvious sensc to the customer. This is
because a specification is derived from the requirements
by a sequence of steps in answer to the question: what
behaviour at the shared interface would produce the
requircment effects in the world at large, Spccifications
must be free of implementation bias and must therefore not
refer to irrclevant machine detail (this is called ‘informa-
tion hiding’).

3. From the specification S derive the machine M. The
phenomena of the machine include those phenomena
shared with the world at the interface, as well as thc
hidden internal phenomena of the machine.

We now consider W R, S and M to be double-state
predicates describing the various phenomena. A double-
state predicate is a predicate in the prestate ¢ and the
poststate ¢” (see Section 3). To justify that a program M
satisfies its requirement R, we reason as follows.

4. Argue that if the specification S is satisfied, then so is
the requirement, i.e.

specification correctness : Vo, 0’ e W AS — R (1)

To make the argument work, we may necd to appeal to
domain knowledge W that provides presumed environment
facts. We also require that there be at least one prestate of
WA M with a satisfying post-state, i.c. I, o’'eWWAS,
which guarantees that (eqn. 1) is not vacuous. We refer
the reader to [8] for a discussion of additional types of
consistency constraints.
5. Then, argue that the machinc M refines the specification
S, Le.

implementation correctness : Yo, o’ o M—-5 (2)
6. Having shown specification and implementation
correctness, we are then entitled to conclude that the
machine correctly implements the customer requircments,
i'e. . -

system correctness : Yo, o o« W AM — R 3)
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Fig. 2  Rough sketch of the cooling tank, identifving the phenomena of
inferest

7. Implementation cotrectness {eqn. 2) describes program
refinement, a process in which we gradually transform
specification S into implementation M, To make refinement
rigorous, we must check that the specification is imple-
mentable, S is implementable it [9]

VYoe (36" eS) 4)

We have argued in [13, 14] that the Hehner notion of
refinement is simpler than others such as Z, as well as
being applicable to object-oriented and real-time systems.
8. It may be necessary to go through a sequence of
successive refinements before achicving the final program
M. Yor example, in refinement by parts, we may decide to
break specification § into two parts S, and 5,, and refine
each onc independently to M, and 4, , respectively. If we
can prove that

SiAS, —> S
M, — S, (5)
M, — S,

arc theorems, then M, A M, — S is also a theorcm and the
parts implement the whole. Other laws such as refinement
by steps, and refinement by cascs can also be provided. The
simplicity of these laws derives from the simplicity of the
basic formula for refinement (2). Specifications can be
implemented as classes in an OO framework [14].

The above eight points together with the constraints of
eqns. 1-5, define the artifacts W, R, S, and M of the WRSM
reference model.

As an cxample, consider the cooling tank in Fig. 2 with
variables in, out, level of type LEVEL (1 to 10 units of
volume) and alarm of type BOOLEAN, The variables in,
level and alarm arc shared phcnomena and hence a
specification of the controller may refer to them. The
cooling tank (W) controls the level while the controller
(M) controls in and alarm. The variable out is a hidden
world variable and hence is not shared with S. Domain
knowledge W relates the behaviour of our with other parts
of the system (scc Section 4). The hidden internal variables
of the controller are not shown.

3 Using logic for descriptions and calculations

Like other cngineering students, software ongineering
students should have a working knowledge of classical
mathematics such as calculus, lincar algebra and probabil-
ity theory. But the description of software products
requires the use of functions with many points of disconti-
nuity. The study of continuous functions must thus be
supplemented with that of predicate logic and discrete
mathematics. What key skills must software engincers
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master to use logic cffectively? We believe that the critical
skills arc:

¢ the ability to make informal descriptions precise

o the ability to calculate properties of products (by proving
theorems)

¢ the ability to show that a putative statement is not valid
by providing a counterexample

« the ability to use theorem provers and model-checkers as
well as produce manual proofs

We illustrate these skills by way of a simple example, and
then argue for the use of Logic E as the right framework
within which to lcarn these skills. Consider the following
informal specification:

‘A personal digital assistant (PDA) needs a PASS-
WORD MANAGEMENT module that allows the user of
the PDA to enter a password. The user should not be
allowed to access the verification routine more than six
times. The user gets only five tries at entering the pass-
word; if the user entry matches the stored password, the
PDA can be operated on by the user. 1f' the password does
not match, the PDA remains inoperative. On the sixth try,
no password checking is done — instead an alarm flag is
immediately raised.

In Fig. 3, we use an Eiffel class [15] to formally specify
the password management module. Eiffel is an example of
an available object-oriented language and method, bascd
on the principles of seamlessness, reversibility and soft-
ware contracting. In this approach, a class is an abstract
data typc whose functions (features) are specified with
predicates (assertions). The prerequisite and resulting
behaviour of a featurc is specified by pre- and post-
conditions, and class consistency is specified by a class
invariant, These specifications form a contract between the
supplier and clients of the class. A softwarc system is
viewed as a network of co-operating clients and suppliers
whose exchange of requests and services are precisely
defined through decentralised contracts.

Class PASSWORD_MANAGEMENT starts by defining
the various altributes (state) of the madule. The behaviour
of routine verify_user is specified by a precondition (the
require clause) and a postcondition (the ensure clause).
The precondition describes the set of all initial states

class PASSWORD_MANAGEMENT feature

-- attributes, i.c. the state space
alarm : BOOLEAN

operare : BOOLLAN

pl o PASSWORD

i INTEGER

-- signal tllegal entry

-- user may opcrate PDA

-- the password

-- number of password trics

make(p2:PASSWORD) -- initialization routine

ensure—alarm A —operaie NTi=0Apl = p2
verify_user(p2: PASSWORD)
require—alurn ~ —operale

- routine to verily password p2

ensure (g, — &) A (5 = e)) A (g, = &)
g Xoldi < 6A0kdpl=p2
L old i< 6 old pl #p2
sy 2old i=6no0ld pt # p2
— where| 77
e 2 i =0 A operate A —alarm A pl = old pl
e, 2i=old i+ 1 A —operate n —alurnt Apl = old pl
ey =i =0 A —operate A alarm A pl = old pl
invariant i > 0 A (operate — —alarm)
—all routines preserve the invariant
end

Fig. 3  Ejffel spectfication of the password management module
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(prestates) for which the routine is guarantced to produce
a final state (a poststatc) that satisfies the postcondition; if
the precondition is not satisfied, then nothing is guaran-
teed.

In postconditions, the notation ( eld expression) denotes
the value of expression in the prestate. Thus i=old i+ |
specifies that thc value of i in the poststatc must be
precisely one greater than the value of 7 in the prestatc.
The routine parameter p2 docs not change value; hence,
there is no old value for p2. The class invariant specified as
i >0 Aoperate— —alarm must be preserved by each
routine,

The class as shown has no implementation; it is an
abstract class. Even so, it can be compiled as is (with its
contracts) by the Biffel compiler. The compiler will also
ensurc type cotrectness. The class contract is a precise
specification of the informal description of the password
module, This precision provides significant benefits. First,
the contract provides precise sclf-documentation. Second,
the contract provides a consistent error handling mechan-
ism, violations of which can be monitored at run-time.
Third, the formal specification of the class can now be used
to calculate properties of the class. To illustratc the last
point, we start by asking if an appropriate responsc is
dcfined for every legal input to the featurc verify_user.

3.1 Input coverage conjecture 1 —is every input
handled

The postcondition of verify_user routine is in a special
guarded cxpression format, where each guard g; describes
a specific input and its corrcsponding consequent e;
describes the required output (Fig. 3). Each consequent ¢;
fully specifies the poststate. Therefore, to show input
coverage, it is sufficient to show the validity of

=(old alarm) n —(old operate) — (g, V g, V g3).  (6)

Is (eqn. 6) a thcorem? Unfortunately, not, beecause the state
described by the observation —(old alarm)yA— (old
operate) A (old i = 6) A (old pl =p2) is a counter-example
that makces the disjunction of the guards false for at least
one legal input; for this input the poststate of verify_user
may then be anything including unintended violations such
as setting both operate and alarm to truc.

The above example clearly indicates that the specificr
needs to know how to challenge putative specifications
with countcrcxamples. In this case, the counterexample
also provides guidance to fix the problem. The counter-
example shows that the current contract allows six attempts
at the password rather than the required five, and no more.
This suggests that the guard g, of the verify_user routine be
redefined to gy ~old i > 0.

With this new definition of g; we can prove that (cqn. 6)
is a theorem by using the calculational Logic E [6]. We
assume the antecedent and prove under this assumption
that the consequent is a theorem. The proof, shown in Fig.
4, transforms the consequent g, Vg, Vg; into a known
thcorem. [Note 1]

The proof in Fig. 4 illustrates the proof step Leibniz. In a
Leibniz proof step, we substitutc cquals for equals by
arguing as follows:

Elz:=P]
= <a Leibniz step: replace every occurrence of P in

expression £ by ¢ >

Elz:=0]

Note I: In this particular case, the assumplion (anteccdent) was not
required for the proof.
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Assume : —(old alarm) A —(old operate).
BIVEVE
= < definitions of g1, g2 >
(old | < 6 ~nold pl =p2)yv (old i <6~ —(old pl =p2Y) v g,
= < distributivity of conjunction over disjunction 3.46 >
(old i < 6 A(old pl =p2V —(old pl =p2))V g3

= < excluded middle 3.28 makces
(old pl = p2 v —(old pl = p2)) = true >

(old | < O A true} v g3
= < identity of conjunction 3.39; definition of gy >
oldi<6Aroldi>6
= < arithmetic : (old i < 6 Aold | > 6) = frue >
true
Fig. 4 Pioof of input coverage (Conjecture 1)

In the second step of the proof in Fig. 4,

L is the expression z v gy,

P is (old i<6Aold pl =p2)yv (old i <b6A— (old
pl=p2)), and

Qisoldi<6A(old pl =p2v —=(old pl =p2).

In the justification, we must state which theorem makes
P =) valid (in this case, the distributivity of conjunction
which is theorem 3.46 in [16]). An alternative way of
writing the Leibniz proof step is shown below to the left; to
the right we also provide the other main type of proof step
called Menotonicity.

s P=g
Leibniz : E[z := P] = Elz := 0]
P—Q

Monotonicity : Elz:= P] = E[z:= 0]

Leibniz applies under all circumstances. The Monotonicity
proof step has a proviso as explained in [16, 17]. At each
monotonicity step we must check the proviso and state
which thcorem makes P — Q valid. The mutual transitivity
of implication and boolean equality means that we can mix
Leibniz and Monotonicity steps in the proof of an implica-
tion.
In addition to brevity, Logic E is practical because it
comes with a toolbox of useful theorems [16] for predicate
calculus and a general theory of quantification. The text
uses the logic to develop a variely of discrete mathematical
theories such as sets, functions, relations, induction, lists,
recurrence relations, algebra and combinatorics. Alterna-
tive approaches such as natural deduction systems are
unwieldy outside the arca of strict logic. The granularity
of a proof step in Logic E is adjustable; the hints at each
step can be sufficiently precise to allow the step to be
rigorously checked if necessary, while allowing the proof
writer the option of adjusting the size of the step so as to
keep the proof short. Thus, a concise version of the proof
in Fig. 4 is
81 VE8VE3

= < propositional logic and definitions of g; >
old i <6Vvoldi= 0

= < arithmetic >
trie

The software engineer will also want to make use of
theorem provers to do routine calculations. The use of
theorem provers presupposes the type of knowledge devel-
oped by familiarity with Logic E. The following general-
isation of the input coverage conjecture illustrates the use
of theorem provers such as PVS [18].
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password: THEORY
begin
passwordtype: TYPE

% attributes and routine argument p2

alarm, old alarm, operate, old_operate: VAR Bool
i, old_i; VAR nat

p1, p2, old_p1: YAR passwordtype

% double-state specification of verify_user
spec(i, old.i,operate,alarm,p1,0ld.p1,p2): Bool =
(NOT old.alarm AND NOT old_operate)
IMPLIES
{{old.i < 6 AND old_p1 = p2 IMPLIES
(i = 0) AND operate AND NOT alarm and p1 = old_p1)
AND
{old_i < 6 AND old_p1/ = p2 IMPLIES
(i =old.i+ 1) AND NOT operate
AND NOT alarm AND p1 = old.p1)
AND
(old_i >= 6 IMPLIES
alarm AND NOT operate AND i =0 AND p1 = old_p1))

% Specification Implementability Conjecture
implementability : CONJECTURE
{EXISTS i, operate, alarm, p1:
NOT old_alarm AND NOT old_operate
IMPLIES
specli.oid_i,operate,alarm, pi, old_p1,p2))
% By convention, above is universally quantified over all free variables
% PVS returns Q.E.D.
end password

Fig. 5  Using the PVS theorem prover to state and prove conjectures

3.2 Conjecture 2 - implementability conjecture

In Conjecture 1, we were able to do a simple check for
implementability of routine verify_user because its post-
condition was in the special guarded format. For general
Fiffel specifications, the pre- and poststates are denoted by
old o and o, respectively. Thus,

Eiffel specification spec is implementable iff
Yoldo e (3o e spec). 7N

To determine if an Eiffel specification of a routinc is
implementable, we must provide a formal semantics for
Eiffel contracts in our logic. A formal semantics was
provided in [14] as follows: an Eiffel routine with precon-
dition P and postcondition O corresponds to the double-
state Logic E predicate spec defined by spec== (old P)
— (). The predicate spec asserts that if P holds in the
prestatc, then the routine terminates with Q true; other-
wise any behaviour including non-termination is accepta-
ble. The state ¢ for a routine in a class consists of the
attributes of the class as well as the arguments of the
specified routine. The double-state specification for routine
verify_user is

spec = (—aold alarm A —old operaie) —

gr—=erAm—engy —e) (8

where the g; and e, are defined as before. Conjecture 2
states that spec as defined in eqn. § is implementable.

The proof of the conjecture can be done in Logic E, but
we will do it using the PVS theorem prover as shown in
Fig. 5. PVS proved Conjecture 2 with some interaction
from the uscr, which involved suggesting existential
instantiation three times.

4 A simple case study - cooling tank

In this section, we present a small case study that will
illustrate the use of logical methods and tools in require-
ments and specifications. For the case study we need a
theory for conditional expressions such as (if b then ¢ else
e,) where b is of type Boolcan and e, ,e, are (wo expres-
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sions of the same type. For conciscness we use the
abbreviation

bl ©)
As an illustration of the utility of Logic E, we refer the
reader to the technical report [19], wherein a number of
powerful theorems for conditional cxpressions are listed
and proved from their basic axioms, e.g.

p— E[z = h]f,;] = p — Elz := ¢;] is a thecorem provided
p — b is a theorem. (10)

Now consider the cooling tank, presented earlier in Fig. 2.
The following arc the informal requirements [20].

‘A tank of cooling water shall generate a low level
warning when the tank contains 1 wnit of water or less.
The tank shall be refilled only when the low level sensor
comes on. Refilling consists of adding water until there arc
9 units of water in the tank. The maximum capacity ot the
tank is 10 units, but the water level should always be
between | and 9 units. The sensor readings are updated
once every cycle (every 20 s). Every cycle, one unit of
water flows out. It is possible to add up to 10 units of water
in a cycle’.

A programmer, looking at the above problem, might
immediately write plausible code for the controller module
as shown in Fig. 6. The body of the module executes
“set_alarm; fill_tank” once every cycle.

Routine set_alarm raises alarm tlag if the tank level goes
below I unit. Routine fifl_tank sets the tank input setpoint
in to 9 units if the tank level is already at 0 units, and to 8
units if the tank level is at | unit. In this way, the tank is
refilled to exactly 9 units at the end of the cycle.

Apart from the fact that the program in Fig. 6 is wrong
(as we shall sce later), we have also not followed the
recommended design method presented earlier (Scction
2). The rough skctch of Fig. 2 illustrates the world
phenomena including hidden variables such as out which
is inaccessible to the machine, as well as the shared
phenomena in, level, and alarm.

Having identified the phenomena of interest, the next
step is to write the requirements. We assumec that the
machine will read sensor level at the beginning of a
cycle, immediately calculate the new values for in and
alurm, and then repeat this action at the beginning of the

Maodule controller

Inputs

level: LEVEL -- input from tank, where type LEVEL

={0..10}

Outputs

alarm: BOOLEAN -- raises tank alarm. Initially false.

in: LEVEL -- setpoint for tank input valve. Initially 0.
Body

every 20 seconds

do

set.alarm; fill tank
end

Private routines used in Body

set alarm is - set the alarm if tank level is low
do
alarm := (level <= 1)
end
fill_tank is - fill tank if level is low, otherwise do nothing
do

if fevel =0 then in =9
elseif level = 1 thenin :=8
else in =0
end
end

Fig. 6 Furty code for the cooling fank example
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next cycle 20s later. We may therefore describe the
requirements in terms of the variables of interest at the
beginning and at the end of an arbitrary cycle.

cooling tank requircment R =2 Ry ARy ARy

Ry 1 = level <9

where: § R, : level’ = (level < Do (11

Ry : alarm’ = level < |

The requirements may refer to any world phenomena
including the hidden variable owr. The initial values at
the beginning of a cycle are designated by level, alarm and
out tespectively, and their final values at the end of the
cycle are given by level, alarm’ and out’. The requirement
states that the final value of the water level must be
between the stated bounds of one and nine, the tank must
be appropriately filled (at the end of the cycele) if it gocs
low (at the beginning of the cyele), and the alarm bell must
be sounded if the level is low.

The next step in the recommended design method is to
describe the properties W presumed to characterize the
external world. In this case we have W= W, AW AW,
where

W, 0 <level <10
W\ :level' = level +in — out (12)
W, . out = (level > l)|(1J

W, is a property of the cooling tank - - it cannot hold more
than 10 units of water. W, is derived from a physical law
that says the flow at the end of a cycle is what the original
level was, adjusted for in-flows and outflows. W, asserts
that the outflow at the beginning of a cycle is one unit
unless there is no water left to flow out. [Note 2]

We must now derive the specification which is rot
allowed to refer to the hidden variable ous. A first attempt
for § is:

if level =0 then 9
then 8 (13)
then O

in = | elseif level =1

elseif level > 1
A alarm’ = level < 1

(Our assumption is that the machine works, ‘much faster’
than the cycle time of the water tank. Therefore, the
machine can instantancously set in as described above at
the beginning of each cycle.)

The controller module described earlier (Fig. 6) imple-
ments the specification of (eqn. 13). The specification
might at first sight appear correct, for it adds 9 units of
water if the level is 0 units, and 8 units of water if the level
is | unit (14 8 =9); nothing is added otherwise. However,
the machine specification is wrong, as can be seen by a
counterexample. Consider a state at the beginning of a
cycle in which Jevel/ = 1. By the above specification in = 8.
By W, it follows that out= 1, and hence by W, level =8,
so the requirement R, will not be satisfied. The failed
specification did not take into account the fact that there is

Note 2: The informal requirements state that ‘cvery cycle, one unit of
water is used’. This cannot be precise. If Jevel =0 at the beginning of a
cycle, then there may be no outflow in that eycle. 7, corresponds to a
scenario in which the outflow valve is (a) automatically opened only when
the level reaches 1 unit, and (b) releases exactly | unit every cycle as long as
it is open. It is up to the software engincer to ascertain from the domain
specialists the precise behaviour of the external world phenomena.

77



an outflow of 1 unit when the level is at 1 unit. The correct
specification for the controller is

machine specification § = §; A S, where:

Sy in=(level < 1|}
! 0 (14)

S, alarm’ = level < 1

which states that 9 units (or nothing) must always be
added. The specification correctness (cqu. 1) holds if we
can show the validity of

WAS—R (13)

Gathering together all the information, we must prove

Wy 0 <level <10

W, :level = level + in — out

W, @ out = (fevel > )]}

S, :in = (level < 1)Ig

S, 1 alarm’ = level < |

Ry 1 <level <9

R2 : level’ = (leve[ = 1)|I9uuclgaul

Ry : alarm’ = level < 1

The proof follows from three lemmas. Ry can be obtained
directly from S, (using reflexivity of implication 3.71):

Lemma 1 : S, = Ry. (16)

Next, we prove the more specific requirement R, first, in
anticipation that it may also be useful in deriving R, . In the

"
= < definition of W) >
fevel = level + in — out
= < assumption W,y >
level' = level + in — (level > 1)},
= < assumption S, >
level' = level + (level < 1)|) — (level > 1|}
= < case replacement and fevel = 0 v level = | v level > 1, (10) >
(fevel = 0 — level = level +9 — 0)
Allevel =1 — level = fevel +9 — 1)
Alevel > 1= level’ = fevel + 0 — (level = 1)|})
= < Leibniz substitution 3.84(b) to first two conjuncts >
(level =0 — level =0+9—0)
Aflevel =1 — level' = 1+9—1)
Allevel > 1 — level' = level + 0 — (level > 1)|(1))
= < arithmetic simplification >
(level =0 — level’ = 9)
Allevel = 1 — level =9)
Allevel > 1 — level = level — (level = 1))

= < theorem of prop. logic: (7 — MY A (g — 1))
=(p Vg — r) to first two conjuncts >

(level < 1 — devel’ =9)
A (level = 1 — level’ = level — (level > 11
= < assumption W, {o reinsert out >
(level < 1 — level’ = 9)
A(level > 1 — level' = level — out)
= < arithmetic level < LV level > 1; (10) >
level' = (level < 1) uicom
= < definition of R; >
R,.
Fig. 7 Calculational proof of Lemma 2
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tank : THEQRY

BEGIN
LEVEL: TYPE = {x:nat | x <= 10}

% Designations, We use “level ' for the final value of “level”
level, level f, inn, out: VAR LEVEL
alarm: VAR Bool

% Description of the external world domain
external_wotld(inn, out, level, level f): Bool =
out = (IF level >= 1 THEN 1 ELSE 0 ENDIF)
AND
(level f = level +inn —out)

% The requirements document
requirement(level, level_f, out, aiarm): Bool =
{1 <= level_f AND level f <=9)
AND
(level f = (IF level <=1 THEN 9 ELSE level-out ENDIF))
AND
(alarm = (level <= 1))

% The specification
specification(level, inn, alarm) : Bool =
inn = (IF level <=1 THEN 9 ELSE 0 ENDIF)
AND
alarm = (levet <= 1)
specification_correctness : CONJECTURE
external_world (inn, out, level, level_f}
AND
specification {level, inn, alarm)
IMPLIES
requirement (level, level _f, out, alarm)
sanity_check : CONJECTURE
external_world {inn, out, level, level_f)

IMPLIES
{fout=00R out=1)
END tank

Fig. 8 Automated PVS proof of the cooling tank system

proof of R,, it seems worth starting with ¥ since it has the
most precise information (it is an equality, not an inequal-
ity). The resulting calculation (Fig. 7) which uses assump-
tions W, and S|, yields:

Lemma 2: W AW, A5 — R, 17

The proof length is due to the need to do case analysis. It
was procisely this case analysis that provided a counter-
example to the naive specification of (eqn. 13). As we
originally anticipated, R, can be derived from R,. The
technical report [19] presents the calculational proof, from
which we obtain

Lemma 3 : Wy A Wy ARy — Ry (18)

Using the three lemmas, a quick calculational proof shows
the validity of specification correctness W A S — R.

The cooling tank example can be checked automatically
with the help of PVS (Fig. 8) The PVS descriptions of the
external world, requircments, and specification for the
cooling tank are shown in the {igure. Conjecture specifi-
cation_correctness (end of Fig. 8) proves automatically
when submitted to the prover. The PVS filc also shows
an example of a sanity check to ensurc that the outflow is
correctly described. The final step involves refining the
specification into an implementation M, which is easily
achieved by changing routine fifl_tank in Fig. 6 to ‘if level
<=1 then in:=9 else in: =0".

5 Discussion and Conclusions

Mathematical logic can be used throughout the software
development life-cycle both as a design calculug and for
documenting requirements, specifications, designs, and
programs. Learning the methods and tools of logic
should be an important component in the cducation of
softwate professionals.
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Logic and logical calculation methods can and should be
used right at the beginning of a software engincering
education. Ilere we summarize bricfly a curriculum that
makes use of calculational methods, from introductory
undergraduate courses, through upper-year software engi-
necring Courscs.

o The logic text by Gries and Schncider [16] can be used
in two courscs (each lasting a scmester) in logic and
discretc mathematics in the first and sccond years. This
is based on the idea of first teaching calculational logic,
and then actually using the logic to reason about various
discrete domains, This makes the logic immediately uscful
and reinforces its use. Simple programming examples
serve 10 further motivate the material. The first-year mathe-
matics programme for CS students at York University
teaches such courses, based on the Gries-Schneider text.
These courses are taught by mathematicians in the Mathe-
matics department. At first, there was discomfort and
opposition to the non-classical approach - both by [aculty
and students. Cxpcrience has gradually worn away the
opposition, and former opponents of the change arc now
supportive. In onc experiment, we discovered a high
correlation between students who do poorly in the first
year logic course, and students who do poorly in the first
ycar programming course. [Note 3]

o The usual CST and CS2 courses can be taught in Eiffel,
stressing design-by-contract [ 15, 21]. Currently the trend is
to use Java in the first year. This provides an opportunity
for a text book for Java that will develop suitable design-
by-contract constructs for Java [22]. Until such books for
Java appcar, usc of mathematical logic in CS1 and CS2
courses that use Java may occur by treating pic- and
postconditions as comments or annotations.

o A third-ycar course in the usc of tools such as PVS and
B-Tool can build on the material of the first few years.
Such a course uses languages that support design-by-
contract, such as Fiffel, in a software engincering project.
The tools are used to formally derive programs from
specifications [9, 23-25].

o Comprehensive texts on object-oriented specilication,
design, and programming, with emphasis on the produc-
tion of quality software using design-by-contract and
BON/Eiffel arc also available [LS, 26]. Thesce texts can
form the basis of object-oricnted design courses in upper
years using ‘lightweight” formal-mcthods.

e A fourth year course can introduce the formal methods
of reactive systems (c.g using STeP [27], SPIN [28] or
SMV [29]). Suitable textbooks arc available for cach of
these courses [30], but more need to be written, emphasis-
ing the use of mathematical methods and calculation in
design.

We should not underestimatc the effect that cducation can
have in practice. “Spice’ is a gencral purpose elcctronic
circuit simulation program that was designed by Donald
Pederson in the carly 1970s at the University of Berkeley.
During the carly 1970s, Berkeley was graduating over a
100 students a year who werc accustomed to using Spice.
They started working in industry and loaded Spice on
whatever computers they had available. Spice quickly
caught on with their co-workers, and by 975 it was in

Notc 3: A comparison was made between students in the mid-term test off
the logic and programming courses in the fall term of 1998; 57 out of 64
students (89%) whe failed the logic course also failed the programming
course. The correlation between good students in logic and programming
was Icss; 25 out of 46 students (54%) who got a B or higher in logic also
got a B in programming.
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widespread usc. Spice has been used to analyse critical
analogue circuits in virtually overy IC designed in the
United States in recent years [31].

The use of mathematical descriptions throughout sofl-
ware development is an idcalisation. Not all requirements
can be captured by predicates, at least not easily, Some-
times we need rough sketches or other types of descrip-
tions. The over-riding imperative to deliver a product on
time, afid within cost, will often mcan that logical analysis
and caleulation cannot always be performed. The reality of
software development does not mean that precise mathe-
matical descriptions cannot find a place. The software
engineer will seck a balance between rough sketches and
precise description and calculation.
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