

A Visual Toolset for the Design of
Real-Time Discrete Event Systems.

Jonathan S. Ostroff
Department Of Computer Science, York University1,

4700 Keele Street, North York Ontario, Canada, M3J 1P3.

Email: jonathan@cs.yorku.ca Tel: 416-736-2100 X77882 Fax: 416-736-5872

Abstract: StateTime is a prototype toolset that supports the
design of verified real-time discrete event systems using executable
visual state descriptions (the Build tool). Visual state descriptions
allow the designer to browse and understand the structure of the
system. A timing hierarchy of spontaneous, just and forced timed
events, and a variety of computational notions such as concurrency,
hierarchy, nondeterminism, process interaction and communication
can be represented. The combination of model-checking (the Verify
tool) and theorem proving allows for the treatment of finite and infi-
nite state systems. The toolset is illustrated with a shutdown con-
troller of a reactor, as taken from an actual industrial requirements
document in which the system is described informally using a mix-
ture of English descriptions, timing diagrams and pseudocode.
Using StateTime, a unified precise description of the shutdown reac-
tor is obtained, which can then be checked automatically for con-
formance with its requirements.

Keywords: real-time discrete event systems, verification tools, real-time tem-
poral logic, timed transition models, visual descriptions.

1. This work is supported in part by the National Science and Engineering Council of Canada. This work is
scheduled to appear in IEEE Trans. on Control Systems Technology., May 1997.
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 1

Jonathan Ostroff
J. S. Ostroff, "A visual toolset for the design of real-time discrete-event systems,"
in IEEE Transactions on Control Systems Technology, vol. 5, no. 3, pp. 320-337, May 1997, doi: 10.1109/87.572129.

Table of Contents
1.0 Introduction ..3

2.0 Example — nuclear reactor shutdown system ..4

3.0 The TTM/RTTL framework ...7
3.1 Timed Transition Models (TTMs) ...7

3.2 Real-Time Temporal Logic (RTTL)...10

3.3 TTM semantics (computations and trajectories)..12

4.0 Overview of the StateTime toolset ..13

5.0 Analysis and design of the delayed reactor trip...16
5.1 Using the Build tool to describe the DRT plant...17

5.2 The DRT requirements...21

5.3 The DRT controller ..22

5.4 Checking conformance ..24

6.0 Comparison of StateTime to other tools...27

7.0 Conclusions ...31

8.0 References ...32

Figures

FIGURE 1. Analog implementation of the delay relay trip timing...5

FIGURE 2. Faulty pseudocode for the computer to control the DRT...6

FIGURE 3. A sample computation of the air bag system...10

FIGURE 4. StateTime checks that a TTM conforms to its RTTL specification13

FIGURE 5. The TTMchart of the system under design (edit view)..17

FIGURE 6. Connection diagram for the system under design..17

FIGURE 7. TTMchart description of the DRT plant ..18

FIGURE 8. Main window of the Build tool ..19

FIGURE 9. Hierarchy of plant objects ..20

FIGURE 10. Simulating the plant produces a computation..21

FIGURE 11. Corrected pseudocode for the computer to control the DRT ...23

FIGURE 12. Result of transforming the controller pseudocode into a TTM..24

FIGURE 13. Abbreviated output from the Verify tool for requirement [R2]..25

FIGURE 14. Observer to check requirement R1 ..26

FIGURE 15. Abbreviated view of a counterexample..28

FIGURE 16. Shared transitions allow objects to synchronize ..28
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 2

1.0 Introduction
Computers are increasingly used to monitor and control reactive safety critical

systems. Real-time software in such computers controls aircraft, shuts down
nuclear power reactors in emergencies, keeps telephone networks running, and
monitors hospital patients. The use of computers in reactive systems offers con-
siderable benefits, but also poses serious risks to life and the environment [35].

Reactive software is more realistically modelled by asynchronous discrete
event theories than by continuous differential or synchronous difference equa-
tions. The complexity of reactive systems necessitates viewing them at different
levels of abstraction. A high-level view of these systems will often involve discrete
control actions, tasks, switching between modes and logical decision making.
Many problems in reactive systems may be inherently discrete in nature (e.g.
scheduling of control tasks).

The need for rigorous means of ensuring logical correctness of complex reac-
tive systems, has given rise to diverse approaches by control theorists2 on the one
hand (e.g. the Ramadge-Wonham theory of discrete event systems [43,45]), and
computer scientists on the other (e.g. process algebras [19], extended transition
systems [9], and temporal logic [31]).

Control theorists developed various synthesis techniques for discrete event
systems [5,12,13,20,28]. Most of the early work in synthesis was set in the simple
framework of finite automata, with more recent extensions to real-time and infi-
nite-string formal languages leading to the solution of some problems of realistic
complexity [45]. However, actual industrial reactive systems need the representa-
tional advantages of real-time programming languages such as Ada and Occam
(e.g. assignments to typed data variables and scheduling features).

In the more complex domain of typed variables and programming constructs,
synthesis results are harder to come by. For example, the overall problem of pro-
gram verification, including that of the synthesis of invariant assertions is unde-
cidable [29].

In this paper we consider the TTM/RTTL framework for the design and anal-
ysis of discrete real-time reactive systems. The TTM/RTTL framework [32,33,40]
consists of the following components:

• A constructive description language called timed transition models (TTMs) for
describing reactive systems. A TTM is a guarded transition system with lower
and upper bounds on the transitions that relate to the occurrence of a special
transition tick. Concurrent real-time programs, nondeterministic timed Petri
nets and diverse mechanisms for timing, synchronization and communication
constructs can be converted into TTMs in a straightforward manner.

2. We focus on those theories that adapt the ideas of classical control theory to the synthesis of supervisory
controllers for discrete event systems. There is another important stream associated with the performance
analysis, simulation and optimization of discrete event systems (e.g. see [7,8]); this stream is not discussed in
the sequel.
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 3

• A declarative specification language called real-time temporal logic (RTTL) for
describing the requirements that a TTM should satisfy without discussing how
the TTM is constructed. RTTL is a timed extension of linear temporal logic,
augmented with clock and event variables.

• Analysis techniques for demonstrating that a TTM conforms to its specification.
A proof system for theorem proving and model-checking are the main analysis
techniques. Model-checking is a method of automatically verifying concurrent
systems in which a finite-state model of the system (TTM) is compared with a
correctness requirement (RTTL). Since time is a monotonically increasing vari-
able, the state-space of naive timed systems is automatically infinite state.
Hence, model-checking algorithms need special care to ensure that the system
remains finite state.

Purpose of this paper

The purpose of this paper is to describe the StateTime toolset for design and
analysis of real-time reactive systems within the TTM/RTTL framework. To con-
vey how the various parts of StateTime are used as a unified tool for analysis and
design, we provide a complete development example taken from the shutdown
system for a nuclear plant, as taken from an actual industrial requirements docu-
ment in which the system is described using a mixture of informal English lan-
guage descriptions, timing diagrams and pseudocode (Section 2.0). Using
StateTime, a precise visual description of the shutdown reactor is obtained, which
can then be checked automatically for conformance with its requirements
(Section 5.0).

StateTime has a visual description language with richer automated verifica-
tion techniques for real-time systems than a commercially available visual tool.
We compare StateTime to other tools in Section 6.0. The visual state descriptions
allow the designer to browse and understand system structures.

Organization of the rest of this paper
Section 2 presents the informal descriptions and requirements of the reactor

shutdown system in order to illustrate the type of problem StateTime is intended
to be used on. Section 3 describes the TTM/RTTL framework. Section 4 presents
the various features and tools of StateTime. Section 5 applies the toolset to the
design and analysis of the shutdown system. In Section 6, StateTime is compared
to other tools (especially Statemate). Conclusions and future work are discussed
in Section 7.

Readers unfamiliar with formal logic and verification may want to skip Sec-
tions 3 and 4 on a first reading to obtain a working understanding of StateTime
before looking at the underlying details.

2.0 Example — nuclear reactor shutdown system
In early nuclear reactors, the shutdown systems were constructed of analog

devices. The analog control had the virtue of being simple to understand but
inflexible, unable to perform system checks and not always reliable. It was felt
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 4

that the situation could be improved by installing computerized control with at
least two independent shutdown systems, designed by different teams, each shut-
down system itself having 3-version control and majority voting logic [41].

The delayed reactor trip (DRT) problem was first described by Lawford et. al.
[25]. Lawford developed behaviour preserving transformations for timed transi-
tion models (TTMs) with which he was able to discover a flaw in the proposed
design [24]. However, his theory cannot be automated as no set of transforma-
tions is complete for proving observation equivalence between the actual imple-
mentation and its abstract specification. In the sequel we will use the StateTime
tool to describe the DRT and automatically check that it conforms to its require-
ments.

The DRT for nuclear reactors used to be implemented in hardware using tim-
ers, comparators and logic gates similar to the diagram shown in Figure 1. The

new DRT system is implemented on microprocessors. Digital control systems pro-
vide cost savings and flexibility over the hardware implementation. However, the
question now is whether the new microprocessor based software controller satis-
fies the same specifications as the old hardware implementation.

The hardware version of the controller implements the following informal
requirements:

[R1] When the power and pressure of the reactor exceed
acceptable safety limits, the comparators which feed in to the
first AND gate cause Timer1 to start, which times out after 3
seconds and sends a message to one of the inputs of the sec-
ond AND gate indicating that the time-out has occurred. If
after this first time-out the power is still greater than its
safety limit, then the relay is tripped (opened), and Timer2
starts. The relay must remain open until Timer2 times out
which happens after 2 seconds.

Requirement [R1] ensures that the relay is opened and remains open for two
seconds thus shutting down the nuclear reactor in a timely fashion. If the control-
ler fails to shut down the reactor properly, then catastrophic results might follow
including danger to life. Conversely, each time the reactor is improperly shut
down, the utility operating the reactor loses money because it must bring addi-

FIGURE 1. Analog implementation of the delay relay trip timing.

Pressure

Power

Timer1 AND Timer2 RelayAND
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 5

tional fossil fuel generating stations on line to meet demand. The next informal
requirement states:

[R2] If the power reduces to an acceptable level then the relay
should be closed as soon as possible (thus allowing the reac-
tor to operate once more).

A final requirement that is implicit in the hardware specification, but must be
explicitly stated for the software version is:

[R3] The controller should never deadlock.
For example, if after the power and pressure have exceeded their critical values,
and the computer has waited 3 seconds to check the power level again, if the
power is below its critical limit, then the computer should reset and go back to
monitoring its inputs (failure to do so would result in a deadlock).

In the actual DRT, there are three identical systems running in parallel with the
final decision on when to shut down the reactor implemented on a majority rule
basis. In this section we analyze a closed system consisting of the plant (relay,
power and pressure) and a single microprocessor controller. The 3-version system
can also be verified using the techniques discussed in this paper and composi-
tional reasoning [38].

The original requirements document, taken from an actual industrial example,
provided the pseudocode in Figure 2 as the specification for the controller. This

code was to be implemented on a microprocessor with a cycle time of 100ms. The
microprocessor samples the inputs (pressure and power) and passes through a
block of code every 0.1 seconds. It is assumed that the input signals have been

FIGURE 2. Faulty pseudocode for the computer to control the DRT

Every one tick of the clock Do:
If P=1 {pressure is high}

then If W=1 {power is high} then

If counter Ta is reset then
If Tb is reset then

increment Ta
EndIf

Else
If counter Tb has timed out then

reset Tb
Else

increment Tb
open Relay

Endif
Endif

Else
If counter Ta has timed out then

open Relay
reset Ta
increment Tb

Else
increment Ta

Endif

else If counter Ta is reset then
If counter Tb is reset then

close Relay
Else

If counter Tb has timed out then
close Relay ; reset Tb

Else
increment Tb
open Relay

Endif
Endif

Else
If counter Ta has timed out then

reset Ta
Else

increment Ta
Endif
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 6

properly filtered and that the sampling rate is sufficient to ensure adequate con-
trol. In the formal model, one tick of the clock will represent 100ms. The
pseudocode makes use of two integer counters Ta and Tb for the two time-outs of
30 and 20 clock ticks respectively.

3.0 The TTM/RTTL framework

3.1 Timed Transition Models (TTMs)
TTMs are timed extensions of fair transition systems of Manna and Pnueli

[31]. Transitions have lower and upper time bounds that refer to the number of
occurrences of a special transition tick in a computation of a system. A TTM M is
defined as a 4-tuple as follows:

• V: a finite set of typed system variables. There are two distinguished variables
that are always elements of V: the discrete clock time t and the event variable

. The clock time has . The event variable indicates
what transition has just been taken; its type is the transition set (see below).
There may also be data variables which range over data domains such as inte-
gers, rationals, lists or sets. Object variables (also called control variables) are
used to indicate progress in the execution of the various concurrent threads
or processes of the TTM. A state s of the TTM is a mapping that assigns to
each variable a value in type(v). For example, if the system variables are

 where b is a boolean and r is rational variable, then the state
 denotes a system state after taking a clock tick at

time . The set of all states is denoted by Σ.

• I: the initial condition. This is a satisfiable boolean valued expression in the sys-
tem variables that characterizes the states at which the execution of the TTM
can begin. A state s satisfying I (written) is called an initial state.

• T: a finite set of transitions which includes the distinguished transitions initial
and tick. Each transition is a function that maps a
prestate s in Σ to a (possibly empty) set of τ-successor states . The suc-
cessor states are also called the poststates of τ and s.

• J: a justice set where . Informally, the justice constraint for each transition
 disallows computations in which τ is continually enabled but not taken

beyond a certain point3. The tick transition is always in the justice set.

It is convenient to represent the effect of taking a transition by a transition rela-
tion which is a first order formula that relates a prestate s to any of its post-
states . The transition relation refers to both unprimed and primed system
variables. An unprimed variable v is evaluated in the prestate s while the corre-

3. Justice (weak fairness) is defined more formally later. We may also allow a set of compassionate transitions
(strong fairness). Compassionate transitions are not used in the examples of the sequel. The StateTime tool
supports both just and compassionate transitions. See [31] for a precise definition of compassion.

M V I T J, , ,()=

ε t V∈ type t() 0 1 2 …∞, , ,{ }=

v V∈
V t ε b r, , ,{ }=
s t:10 ε:tick b:true r:6.8, , ,〈 〉=

t 9=

ssI

τ T∈ τ : Σ powerset Σ()→
τ s() Σ⊆

J T⊂
τ J∈

ρτ V V ′,()
s ′ τ s()∈
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 7

sponding primed variable v’ is evaluated in the poststate s’. Assuming
, the tick transition relation is:

:

where , i.e. the variables b, r and y
remain unchanged when the tick transition is taken. The only variables that
change are the global time t (which is incremented by one), and the event variable
ε which is updated to indicate which transition has just been taken. All other vari-
ables remain the same. Any non-tick transition leaves the clock unchanged. An
example of a non-tick transition relation (e.g. for transition α) is:

: (Eq 1)

The clock variable t remains the same when α is taken. The conjunct in the
unprimed variables in (Eq. 1) is the enabling condition of transition α, i.e. α
can only be taken if r is at least as large as y in the prestate. The simultaneous
update function is used to denote those variables that
change when the transition is taken4.

The enabling condition of transition τ can be formally defined from its
transition relation by . We say that transition τ is enabled in a
state s (written:) if — otherwise τ is said to be disabled.

In the sequel, we often describe a transition τ by its enabling condition
and update function , where and are expressions in
the system variables. The corresponding transition relation is given by :

.
In general, formulas such as the enabling condition and initial condition are

called state-formulas, i.e. predicates in the unprimed system variables. State-for-
mulas can be evaluated to true or false given a single state; hence the notation

 for a state-formula f. Transition relations require two states (the prestate and
poststate) for their evaluation. Temporal logic formulas (see next section) require
sequences of states (called computations) for their evaluation.

In addition to the enabling condition and update function associated with
each transition, each non-tick transition τ also has an associated lower time bound

 and upper time bound , where .
A timed transition with lower time bound ticks and upper time

bound ticks, must delay l ticks before being taken, but must be taken by u ticks
of the clock, unless it is pre-empted by some other transition. In increasing order
of timing stringency we have:

• A spontaneous transition may occur at any point in time after becoming
enabled, or it may never occur. For example, a device failure is spontaneous.
In the sequel, a spontaneous transition is indicated by the fact that its upper
time bound is infinity (∞).

4. The variables that are unchanged are by convention not included in the update function.

V t ε b r y, , , ,{ }=

ρtick V V ′,() t ′ t 1+=() ε′ tick=() same b r y, ,()∧ ∧

same b r y, ,() b b ′=() r r ′=() y y ′=()∧ ∧[]≡

ρα V V ′,() r ′ r y+=() r y≥() ε′ α=() same t y,()∧ ∧ ∧

r y≥()
enb α()

upd α() e: α r: r y+,{ }=

enb τ()
enb τ() V ′ ρτ V V ′,()∃()≡

ssenb τ() τ s() ∅≠
enb τ()

upd τ() v1: e1 v2: e2,{ }= e1 e2
ρτ V V ′,()

enb τ() v1 ′ e1=() v2 ′ e2=()∧ ∧

ssf

low τ() u p τ() 0 low τ() u p τ() ∞≤ ≤ ≤
τ l u,[] l

u

τ 0 ∞,[]
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 8

• A just transition must eventually occur if it is continually enabled. For exam-
ple, a process that is continuously enabled to enter its critical region should
eventually be allowed in. Justice is qualitative in the sense that although a
just transition must occur, no finite bound on the time of occurrence is given.

• A timed transition such as must occur within an interval specified by a
lower and an upper time bound. For example, sending a message may take
between 3 and 7 ticks of the clock.

It is possible to have examples of all three types of transitions in a single TTM.
When modelling a system, we can initially make all transitions spontaneous. As
more timing information becomes available we can add justice constraints or
tighten the bounds to provide a more precise description of the system behaviour.

In the next subsection, we provide the formal operational semantics of a TTM
by describing its computations. Informally, a computation starts in an initial state.
From any state of the computation, any enabled transitions is taken in one atomic
step. The resulting interleaving of enabled transitions allows us to model concur-
rent processes5. When the transitions are taken, they update the variables accord-
ing to the transition relation. The clock must tick infinitely often in any
computation, and an arbitrary but finite number of (non-tick) transitions can be
taken between any two ticks of the clock. The lower and upper time bounds of
transitions must be respected, e.g. a lower bound of 3 requires that the transition
not be taken for 3 clock ticks (even though the transition is enabled).

There are three sources of non-determinism in TTMs. (a) The transition rela-
tion itself may be non-deterministic. (b) Even if all transition relations are deter-
ministic, many transitions may be enabled in the same state, and hence at any
moment only one is nondeterministically taken. (c) Timing intervals introduce
nondeterminism. Even a transition with an exact discrete delay (e.g.)
allows τ to be taken in any state after the 3rd but before the 4th tick of the clock
from the moment the transition became enabled. Case (c) corresponds to asyn-
chronous systems in which many actual events can occur sequentially between
two ticks of the computer clock. In synchronous systems, all enabled transitions
are taken simultaneously, and are thus based on the assumption that the environ-
ment does not interfere with the program during reactions [4].

As an asynchronous discrete example, consider a computer that checks all sen-
sors in an automobile every 30 milliseconds (one tick = 30ms.). The air bag is one
of the safety devices monitored by the computer. Impact is registered by a sensing
device in the front of the car. The electronic circuit monitoring the sensor signals a
solid propellant inflator to begin the chemical reaction that generates nitrogen gas
to start filling the air bags. The air bag is fully inflated at 55 ms. The observed
computation is provided in Figure 3.

As far as the discrete computer is concerned, the impact and start of the air bag
expansion are in the same time interval [T,T+30) between the 7th and 8th clock

5. Actual systems may have overlapped rather than interleaved execution. However, provided an appropriate
just set of transitions with the right level of atomicity is chosen, the interleaving model can accurately
describe overlapped execution (see [31, p103] for further discussion).

τ 3 7,[]

τ 3 3,[]
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 9

tick, but causally ordered within that interval (startBag is after impact). The com-
puter cannot record that full inflation of the bag occurs at precisely 55ms., only
that it is in the second interval [T+30,T+60]. The decision to keep time discrete is
often a reasonable assumption as any computer runs to some digital clock cycle,
and hence cannot discriminate to a finer timestamp than its basic cycle. The com-
putation in Figure 3 is written more compactly as:

If the transition information is unimportant we write the computation as
.

The event variable may be used to describe the occurrence of transitions. For
example, the state-formula is true in state but false in .
We refer to state as position i in the computation. The initial state is always posi-
tion zero.

3.2 Real-Time Temporal Logic (RTTL).
Linear time temporal logic [31] uses temporal connectives such as h (hence-

forth), e (eventually) and U (until) to represent quantitative temporal properties.
The standard connectives are applied to state-formulas to obtain temporal logic
formulas. Temporal logic formulas may be interpreted with respect to a computa-
tion, e.g.

• : there is some position, 8 ticks after the initial position
of the computation, in which the air bag has been inflated. The computation
in Figure 3 satisfies this temporal property, since the state is a reachable
state satisfying .

• : if in the initial position of the com-
putation there is an impact at time , then prior to any further ticks, there
is a subsequent position in which the air bag is fully inflated. This property is
paradoxically true in the computation of Figure 3, because the antecedent

 is false in the initial position.

FIGURE 3. A sample computation of the air bag system

s0
initial

s10 s11
tick impact… s13

startBag
s14

ticks12 s15
inflated …

time T=() time T 30+=()

s16
tick

time T 60+=()time 0=()
t 0= t 7= t 9=t 8=

t = discrete clock variable counting the number of ticks.
Assume there are 7 ticks between and . The clock time t is a flexible variable.

time = passage of continuous time as measured on the real line.
Since there are 7 ticks of the clock between and , with each tick = 30ms, the value of
the rigid variable T = 210ms. The value of time in state is T+55 milliseconds.

s0 s11

s0 s10
s15

initial s0,〈 〉… tick s11,〈 〉 impact s12,〈 〉 startBag s13,〈 〉 tick s14,〈 〉 inflated s15,〈 〉…

s0s1s2s3…

ε impact= t 7≥∧() s12 s13
si

e ε inflated=() t 8=∧()

s15
ε inflated=() t 8=∧()

ε impact= t 7=∧() e ε inflated= t 7=∧()→
t 7=

ε impact= t 7=∧()
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 10

• : if in any position of the com-
putation there is an impact at clock time , then there must be a subse-
quent state, one tick later, in which the air bag is fully inflated.

We use the entails operator () for expressing response properties. The
entails operator is defined as: . The property is
pronounced p entails eventually q. Implication () states only that p
implies eventually q at the initial position of the computation. Entailment
() states that the implication holds at all positions of the computation.

• : every position in the computation is eventually followed by a
position at which the clock has just ticked, i.e. the clock ticks infinitely often.
This property holds on computations that are infinite sequences of states.

• : p until q, i.e. p is true in all positions up to but not including q. The prop-
erty (p waiting-for q) can be defined as: .

We refer the reader to [31] for a complete exposition of linear temporal logic.
The logic allows for the use of flexible and rigid variables.The system variables in
V are called flexible variables as they change from state to state. Rigid variables
remain the same throughout a computation (e.g. T in Figure 3).

We will call the standard formulas of temporal logic (that have no occurrences
of the clock variable t) unclocked properties. Real-time temporal logic (RTTL)
includes standard temporal logic, but also allows references to the clock time t
and additional rigid timing variables. We will call these additional timing proper-
ties clocked formulas.

Most proposals for real-time temporal logics extend the standard operators
with new connectives such as (before the 6th ticks of the clock p holds) or
use special clock variables [1]. Thus the bounded response property
asserts that every occurrence of a p-state is followed within 5 clock ticks by a q-
state (a state satisfying q).

In our framework there is no need to introduce new temporal operators. By
using standard unextended temporal logic, we can re-use many of the tools and
methods developed for untimed systems. For example, the definition of the
bounded response property is [32]:

: (Eq 2)

The response property is universally quantified over the rigid variable which
has the same type as the clock variable . The above response property states that
if the clock variable has the value in the initial position of the computation,
then there must be a subsequent position in which q is true, which occurs after the
4th but before the 7th tick of the clock from the initial position.

By (Eq. 2), is an abbreviation for , and is an
abbreviation for (i.e. every p-state is followed precisely 8 ticks later by
a q-state). Additional timed operators can be defined. For example, means
that p is true from the initial position until the position just before the 5th tick of
the clock.

h ε impact= t 7=∧() e ε inflated= t 8=∧()→[]
t 7=

⇒
p eq⇒[] h p eq→[]≡ p eq⇒

p eq→

p eq⇒

he ε tick=()

pUq
pWq pUq() hp∨

el5 p
p el5q⇒

e 4 6,[] q t0∀ t t0=() e q t0 4+ t t0 6+<≤()∧()→()[]

t0
t

t0

p el5q⇒ p e 0 5,[] q⇒ p e8q⇒
p e 8 8,[] q⇒

h95 p
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 11

Given a computation and a temporal logic formula p we write
 if σ satisfies p. We write when p is satisfied in all computations of the

TTM M. If p is a state-formula, then .

3.3 TTM semantics (computations and trajectories)

A computation of a TTM , where
 for , is an infinite sequence of states satisfying the following three con-

straints:

1. Initialization: The first state of the computation satisfies the initial condition6,
i.e. .

2. Succession: , i.e. every prestate at position i must have
as its successor a poststate according to the transition relation of (the tran-
sition taken at position i).

 It follows from succession that .

3. Justice: For each transition τ in the justice set, it is not the case that τ is continu-
ally enabled beyond some position in the trajectory, but taken at only finitely
many positions in the trajectory.

The above three constraints are the standard description of fair transition systems
[31], to which we have added the event variable ε, for descriptions that involve
both state and transition information.

A trajectory is a computation that is further constrained by the lower and
upper time bounds of transitions, defined as follows:

4. Ticking: The clock ticks infinitely often in the computation, i.e. .

5. Lower bound: for every transition τ with lower bound , if τ is taken at posi-
tion j of the computation, then there must exist a prior position so that

 and , i.e. τ is enabled but not taken
in the states .

6. Upper bound: for every transition τ with upper bound , if τ is enabled at
position j of the computation, then there must exists a subsequent position

 with , such that either τ is taken or disabled at position k.

Once a transition τ becomes enabled at position i, it begins to “mature” but
cannot be taken until its lower time bound number of ticks has been taken, at
which point the transition becomes “ripe” for execution. If the transition is contin-
uously enabled during maturation, then it can be taken any time after it becomes
ripe, but it must be taken or become disabled before the upper time bound num-
ber of ticks has expired. Thus, transitions “mature” together as time advances but
execute separately in an interleaving manner.

6. The transition initial occurs once at the beginning of the computation and never again.

σ s0s1s2s3= …
σmp Mmp

σmp[] s0sp[]≡

initial s0,〈 〉 τ 1 s1,〈 〉 τ 2 s2,〈 〉 …, , , M V I T J, , ,()=
τ i T∈ i 1≥

s0s I ε initial=()∧()

i∀ i 1: si 1+ τ i 1+ si()∈≥()
τ i 1+

sis enb τ i 1+() ε τ i=()∧()

he ε tick=()

l 0>
i j≤

si t() l+ s j t()≤ k i k j: sksenb τ() ε τ≠∧≤ ≤∀()
si…s j

u ∞≠

k j≥ s j t() u sk t()≥+
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 12

Unfortunately, not every TTM is guaranteed to satisfy both the ticking and the
time bound requirements. If there is any immediate transition τ[0,0] that is a self-
loop, then τ is taken an infinite number of times before a tick transition. This is
called a Zeno computation. Any cycle whose elements are all immediate may also
create Zeno computations.

The problem of Zeno computations can be avoided by disallowing self-loop-
ing immediate transitions. However, immediate transitions are useful for model-
ling “instantaneous” (i.e. before the clock ticks) reactions. If immediate transitions
are used in a TTM M, then the we must check for the validity of .
Fortunately, for those systems where model-checking can be used (e.g. finite state
systems), the ticking property can be verified automatically. Alternatively, sup-
pose it is suspected that the TTM M may have Zeno behaviour. Then, to check
that M satisfies the temporal logic requirement r, verify that ,
i.e. r is satisfied in every non-Zeno path.

The model of TTMs presented above is expressive enough to capture most of
the features specific to real time programs including delays, time-outs, preemp-
tions and interrupts. See [32] for the use of TTMs to model the constructs of the
real-time Ada-like language Conic.

4.0 Overview of the StateTime toolset
Engineers seek ways to describe and analyze their designs, whether these

designs involve circuits, fluid flow in pipes, or the deformation of a beam. The
purpose of the Statetime toolset is to support visual descriptions of discrete real-
time reactive systems, including program components.

The toolset assists the user to (a) describe devices and systems diagrammati-
cally, (b) execute the description so as to validate that the description is a reason-
able model of the actual system, and (c) check that the description conforms to its
requirements (e.g. the absence of deadlock or bounded response) using model-
checking and theorem proving. The TTM/RTTL framework provides the under-
lying mathematical basis for describing and analyzing systems. Figure 4 shows
the various parts of StateTime. The Build tool is a window-based front end for

FIGURE 4. StateTime checks that a TTM conforms to its RTTL specification

Mmhe ε τ=()

Mm he ε τ=() r→()

Simulations

STeP

VERIFY

Analysis Tools

Future (e.g. Spin)

TTMchart RTTL specification

counterexample
Conformance, or

m

BUILD
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 13

constructing visual models called TTMcharts. TTMcharts resemble statecharts,
but with a simpler semantics and with the additional feature that transitions may
have time bounds. We often use the terms TTMcharts, charts and TTMs inter-
changeably.

A chart is a hierarchy of objects7, which in turn are composed of sub-objects,
down to basic objects (which are control states called activities). The objects can be
related by one of two relations:

1. “AND” which means that they act (and interact) in parallel, or

2. “XOR” which means that only one of them is active at a time (i.e. they form a
transition system, so that one may have multi-level transitions from one XOR
object to another).

Objects have variables which are tested and set by transitions.
An engineer can describe systems incrementally by composing objects

together to form more complex objects (bottom up), or by decomposing an object
which is an abstraction of a component into further sub-objects (top down). A
chart can be executed (or simulated) at any point in the development cycle even
before it is finally fixed. The simulation tool displays various computations or tra-
jectories of the chart.

The Build tool automatically translates charts into a TTM. The main advantage
of this translation is that the chart can be automatically analyzed for conformance
with its requirements. If the chart is translated into a timed transition model M
that is required to satisfy RTTL properties , then conformance means that

 holds. The main analysis techniques are model-checking and the-
orem proving. Build is written in Smalltalk, which allows it to run on most plat-
forms (Unix, Windows and Apple Macintosh).

Model-checking supports routine automated analysis of systems but is subject
to the problem of combinatorial explosion of states, i.e. the system must be reduc-
ible to a few million states (or nodes if symbolic techniques are used). Theorem
proving can deal with large or infinite state systems and systems with unspecified
timing parameters; but interactive guidance from the user is then required.

For simplicity, we limit the discussion in the sequel to model-checking. How-
ever, the StateTime tool supports theorem proving using constraint logic [32,34].

The Verify tool [33,36] was the first model-checker for a subset of real-time
temporal logic. It explicitly enumerates the global state reachability graph of any
finite state TTM using the algorithm reported in [33], and then checks that the
chart satisfies requirements specified as formulas of real-time temporal logic.
Since states are enumerated explicitly, the tool is much slower than current sym-
bolic techniques (Verify is written in Prolog whereas modern model-checkers are
written in C). In the worst case, it generates a number of states proportional to the
product of the upper time bounds of all the transitions (see discussion below).

7. The term “object” describes an entity with persistent state; it is not used in the sense of objected-oriented
programming.

r1 r2 r3, ,
Mm r1 r2 r3∧ ∧()
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 14

Although there are now more efficient tools that can be used (Section 6.0), Ver-
ify has one feature not found in other tools. When it checks response properties
such as , the time bounds [l, u] are left unspecified so that the tool finds
the values for which the property is verified. If the property is unsatisfied for any
finite upper bound, then a counterexample of the failing computation is provided.

The ability to leave bounds unspecified is useful. Experience dealing with
actual systems continually shows that the putative specification one imagines to
be true usually does not hold, particularly when it comes to timing. It is thus vital
to have a tool that tells you for which bounds the property does hold. As parame-
ters of the chart are adjusted, the engineer can continually calculate improve-
ments in the bounds using this feature.

A recent addition to the StateTime tool is a translator from TTMcharts to the
fair transition systems of STeP [30] using the algorithm presented in [39]. This
algorithm can also be used in the future to produce translators from TTMs to
other third party symbolic tools such as Spin [21]. STeP is the only available tool
for checking linear temporal logic with past operators, and it also has good theo-
rem proving facilities.

The translation to STeP allows for the following:

• Any unclocked property can be checked automatically.

• Clocked properties can also be checked automatically using the distinguished
tick transition as a counter. For example, to check the clocked property

 we may check the equivalent unclocked property:

(Eq 3)

Since the model-checker is exponential in the size of the formula, this
approach is impractical for large time bounds.

• For clocked properties involving large time bounds we use Verify where pos-
sible. Alternatively, these properties can be rewritten in terms of additional
clock variables (as in [1]).

• Another possibility for checking clocked properties is by constructing an
observer that detects violations of the timing properties. The latter approach
increases the size of the reachability graph but decreases the size of the tem-
poral logic formula that must be checked. This is a good trade-off as the
model-checking algorithm for linear temporal logic is of order

 (Eq 4)

where is the size of the reachability graph and is the size of the tempo-
ral logic formula to be checked. The observer approach will be illustrated in
the sequel.

• Finally, STeP can model-check certain infinite state systems as it does system
reduction before applying the model-checker.

When computing conformance, we use Verify for obtaining the bounds of
response properties, and STeP for unclocked properties (Section 5.4). Both tools
provide counterexamples which are computations in which the property fails to

p e l u,[] q⇒

p e 1 1,[] q⇒

p ε tick≠()U ε tick= ε tick≠ Uq()∧()⇒

M e
r⋅

M r
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 15

hold. Counterexamples together with the simulation tool are helpful for debug-
ging the design.

For Verify and STeP, the size of the reachability graph in (Eq. 4) can in the
worst case be of order , where m is the number of states in the untimed reach-
ability graph (all lower bounds zero and all upper time bounds infinity), and u is
the product of all the upper time bounds. This theoretical limit is usually not
reached for Verify because it has a heuristic for grouping together multiple ticks
of the clock [33]. The heuristic works best when all the transitions have non-zero
lower time bounds, and sometimes provides insensitivity to the magnitude of the
upper time bounds.

5.0 Analysis and design of the delayed reactor trip
The informal description of the DRT (Section 2.0), which is taken from an

actual requirements document, uses a mixture of timing diagrams, pseudocode
and English language descriptions. In order to use the StateTime tool we must
proceed in a disciplined fashion, distinguishing between descriptions of what
already exists (by using TTMs), and requirements that specify what should be (by
using RTTL).

For the DRT, the complete system under description (sud) is the parallel com-
position of the plant (relay, pressure and power sensors) and the controller (com-
puter with its supervisory program as represented by the pseudocode). The
design method proceeds in the following order: (a) use the Build tool to describe
and simulate the plant as a TTM object, (b) write the requirements in RTTL of how
the plant should behave, (c) reverse engineer the proposed pseudocode controller
into a TTM object, and (d) use the analysis tools to prove that the chart of the sys-
tem under design (plant and controller) conforms to the requirements.

The order in which the design method proceeds can be justified by the follow-
ing considerations. The plant is an already existing entity. Its behaviour is best
described constructively using TTMs. Our main concern is that the plant behave
safely and reliably no matter what controller is used. Hence, it is important to
write the requirements with respect to the entities of the plant in an implementa-
tion free manner (using RTTL), before designing the controller. We can then try
out the proposed pseudocode as a candidate controller, but we are free to select
any controller that will meet the requirements. Since the proposed controller is to
be implemented on a computer, it is also constructively described as a TTM.

Before following the above design method step by step, we first give an over-
view of the complete system so that the reader will have an appreciation for the
end product of the method. The chart for the system under design (Figure 5) is the
AND-composition of the plant, controller and an “observer”, i.e.

(Eq 5)

The observer (obs) watches the system for deficient behaviour without interfering
with its operation (its use will be explained in Section 5.4 which deals with con-
formance testing). The relationship between the variables of the plant and control-
ler are shown in Figure 6.

M
m u⋅

sud plant control obs|| ||=
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 16

5.1 Using the Build tool to describe the DRT plant
The plant object (Figure 7) is itself AND-composed of various sub-objects, i.e.

. The dashed lines in the edit view of the plant indicate that
the relay object runs concurrently with the output object (AND-composition). The
relay object can be in one of two control states closed or open called activities. Activ-
ities are the lowest level object (they have no internal structure). The output object

FIGURE 5. The TTMchart of the system under design (edit view)

sud = plant || control || obs
The object variable of is where . See
Figure 7 for further details of the plant. The internal structure of normal_full in
the control chart is described in more detail in Figure 12.

FIGURE 6. Connection diagram for the system under design

control F1 type F1() normal_ full fail,{ }=

CONTROLLER PLANT

OBSERVER

W (Power)

P (Pressure)

C1 (Relay)

(pseudocode) (reactor & relay)

F1,Ta,Tb D,R

plant relay output||=
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 17

is XOR-decomposed into sub-objects delay and update@. The update object has fur-
ther internal structure as indicated by the “@” suffix.

A structured object , which is XOR-decomposed into sub-objects given by
, must have an associated object variable, and one of the sub-objects

must be designated as the default. The default of indicates where it begins exe-
cuting when first entered, unless otherwise specified. For example, the relay object
variable is R where type(R) = {closed, open}. The activity closed is the default
(defaults are shown in bold in edit views). Hence initially is true.

The transitions in chart objects are called events, e.g. the events of the relay
object are trip and reset. The events may test and set variables such as the input
data variable C1 where type(C1) = {0,1}. The guard of the trip event is (C1=1); if the
environment sets C1 the relay will trip thus initiating the shutdown process.

FIGURE 7. TTMchart description of the DRT plant

plant(C1;R,W,P,D)=relay(C1;R) || output(;D,P,W)
where R=relay position, C1=command to move relay, D=object variable of output,

P=pressure and W=power.
The relay is opened (closed) immediately upon receiving the C1 command to do so. When D=delay,

the last sensor updates have just been made and there are two ticks to the next change.
type(R)={open, closed}, type(D)={delay,update}, and type(C1)=type(P)=type(W) ={0,1}

Zooming in to update@ produces the view below (P and W are updated every two ticks).

m
m0 m1 …mn, ,

m

R closed=()
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 18

The Build tool translates each event of the various objects into transitions. For
example, the transition relation associated with the trip event in relay is:

The main window of the Build tool (Figure 8) has a Query TTM button which

displays a list of the transitions in update format. The query window (behind the
main window) shows that the enabling condition of trip is (R=closed, C1=1) and the
lower and upper time bounds are zero (i.e. once the trip transition is enabled it is
taken before the next tick of the clock).

The activities (lowest level objects) can themselves be given structure, in
which case they also become sub-objects. For example, the output object is the
XOR-composition of activity delay and sub-object update@ (Figure 7). The “@”
symbol at the end of an object name indicates that it has internal structure as
shown in the second picture of Figure 7. The update object describes how the
power (W) and pressure (P) sensor values may be updated every two ticks of the
clock (thus capturing the assumption that signals are filtered). For example, the

FIGURE 8. Main window of the Build tool

ρtrip: R closed=() C1 1=() R ′ open=() ε′ trip=()∧ ∧ ∧

Main Build
window

In expressions,
conjunction is a
comma, disjunc-
tion a semi-colon
and disequality of
two expressions
is a pound sign
(e.g. R#open).

Transition
Query Window
(in the back-
ground).
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 19

spontaneous transition pHi[2,∞] may set the power high after 2 clock ticks, after
which the timed transition reset[2,2] forces the object out of the update mode.

The hierarchy for the plant objects is shown in Figure 9. The user can navigate

up and down the hierarchy from any level. At any point in the development, pre-
viously created charts can be imported as sub-objects, or existing objects can be
refined by zooming in. There is no restriction on the number of levels or the type
(AND or XOR) of sub-object that can be inserted at each level. The main window
(Figure 8) can be used to enter initial conditions and to simulate the chart.

Figure 10 shows a computation of the plant in a simulation window. The com-
putation starts with the cycle event which puts the plant into update mode. The
last transition taken is trip which opens the relay (top of the screen). In between
these two transitions, the clock ticks twice, the power and pressure go high and
the trip transition is enabled and finally taken. For the computation shown in the
figure, the environment sets the control value C1 to open the relay at the appropri-
ate time. However, there are also plant trajectories where the relay is not opened
when it should be. For this reason, a controller is needed.

At certain points in the simulation, user input is required. For example, after
two ticks of the clock, the user can nondeterministically choose whether to let the
power or pressure go high, or whether to advance the clock.

Each time a new element is added to or deleted from the chart, the Build tool
checks the syntactic correctness of the element. For example, data variables can-
not be deleted if they are in use, the elements of types must be distinct, and
expressions such as guards or updates must be correct. Events in a chart cannot
have both their source and destination in parallel (AND-composed) objects.

FIGURE 9. Hierarchy of plant objects

plant
AND

relay

XOR
output
XOR

power

delayopen update
AND

closed

pressure
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 20

5.2 The DRT requirements
The informal requirements for the DRT (Section 2.0) must now be made pre-

cise. The first requirement may be written in real-time temporal logic (RTTL) as:

R1: (Eq. 6)

where the precise definitions of are given below (Eq. 7). The
above formula asserts that whenever a critical high is sensed, and 30 clock ticks
later the power is still high, then the relay is opened within 32 ticks from the criti-
cal state and remains open until the 20th tick.

The actual system has a 3-microprocessor majority voting controller. For such
systems we need to be able to express properties such as: “if at most one control-
ler fails, the system will still satisfy its requirements”, i.e. the above requirement
becomes . In the sequel we discuss a single microprocessor control-
ler8, and refer the reader to the conference paper [38] on how the majority voting
system can also be verified using compositional techniques and StateTime.

How should the predicates and be defined? The intuitively
obvious definition is not realizable by practical control-

8. The failure transition (see Figure 5) can be ignored for the single controller case as it is only needed for
defining fail in the majority voting system.

FIGURE 10. Simulating the plant produces a computation

Initial state is at the bottom of the window. Last state is at the top.

b(othHi e30 powerHi) e 30 32,[]h920 R open=()⇒∧
bothHi powerHi,

h fail¬() R1→

bothHi powerHi
bothHiy P 1= W 1=∧()
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 21

lers because they cannot respond to instantaneous changes in the sensor values
(the microprocessor described in Section 2.0 responds after one clock tick).

After an update, the output object (with object variable D) resides in activity
delay. The clause can therefore be inserted as a conjunct of bothHi, thus
indicating that the antecedent of (Eq. 6) is measured from a state from which the
power and pressure remain constant for two clock ticks9 (see Figure 7).

The controller cannot respond to a critical high if it is in the middle of counting
its timeouts — thus the controller initial condition must also be a
conjunct of bothHi. The correct definitions for the components of (Eq. 6) are thus
given by:

(Eq. 7)

The state-formula cannot be fully specified until a proposed control-
ler is suggested. For the controller of the next subsection, it is:

(Eq 8)

Although the initialization of the controller cannot be fully specified until the
controller is developed, we can nevertheless describe a “sanity check” that the
state-formula must satisfy:

[R3]: (Eq. 9)

[R3] requires that any controller must not deadlock under normal operation, i.e.
must always return to its initial state after both timers have finished their count.

The second informal requirement for the DRT can be specified as:

[R2]: (Eq. 10)

where .

5.3 The DRT controller
In the previous subsections we showed how the plant can be described using

TTMs and how the requirements can be specified in RTTL. The next phase
involves designing the controller so that the system will conform to its require-
ments. In the case of the DRT, a candidate for the controller is already provided by
the pseudocode (Figure 2), which is a loop that is executed every one tick of the
clock. The pseudocode makes use of two integer counters Ta and Tb for the two
time-outs of 30 and 20 clock ticks respectively.

When the original pseudocode (Figure 2) was translated into a TTM object,
and composed together with the plant object, the Verify tool found that require-
ment [R1] failed to hold. On looking at the failing computation, it became obvious
that the problem was due to the fact that the transition that opens the relay after
counter Ta has timed out has an unnecessary dependence on the pressure. The sit-

9. Alternatively, we can write to indicate that the pressure and power must remain high
for at least two clock ticks.

D delay=()

h92 P 1= W 1=∧()

init control()

bothHiyinit control() R closed= D∧ delay= P(∧ ∧ 1= W 1)=∧
PowerHiy D delay= W 1=∧()

init control()

init control()y F1 normal_ full= Ta 0 Tb 0=∧=∧()

init control()

init control()¬ el52init control()⇒

powerLo el2 R closed=()⇒

powerLoy D 0= W 0=∧() init control()∧
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 22

uation can be remedied by moving the “P=1 {pressure is high}” statement in the sec-
ond line (Figure 2) to the fifth line (Figure 11).

The TTM object corresponding to the corrected code is shown in Figure 12.
Each time the microprocessor passes through the code it performs a group of
operations (such as incrementing or resetting counters or opening and closing the
relay). These operations define the update function of transitions. The lower and
upper time bounds of each transition is 1, as the transition (if enabled) is per-
formed exactly every 0.1 seconds.

The comments in the pseudocode (Figure 11) indicate how statements of the
pseudocode are translated into the transitions of the TTM (Figure 12). The
enabling condition for the transitions can be computed by taking the conjunction
of the conditions specified by the relevant “If” statements. For example, the tran-
sition , which is responsible for incrementing the counter and opening the
relay, has the update function . Its enabling condition is computed
as the disjunction of its occurrence in the if-then part of the main loop as well as its
occurrence in the else part, i.e.

The enabling condition can be trivially simplified to
because . The enabling condition of is very different for the
faulty code (Figure 2) and shows an unnecessary dependence on the pressure.

FIGURE 11. Corrected pseudocode for the computer to control the DRT

Every one tick of the clock Do:
If W=1 {power is high}

then If counter Ta is reset then

If counter Tb is reset then
If P=1 {pressure is high} then

increment Ta {Transition : µ1}
EndIf

Else
If counter Tb has timed out then

reset Tb {Transition : γ}
Else

increment Tb
open Relay {Transition: µ2}

Endif
Endif

Else
If counter Ta has timed out then

open Relay {Transition: α}
reset Ta
increment Tb

Else
increment Ta {Transition : µ1}

Endif

else If counter Ta is reset then
If counter Tb is reset then

close Relay {Transition : ß}
Else

If counter Tb has timed out then
reset Tb {Transition : p2}

Else
increment Tb
open Relay {Transition:µ2}

Endif
Endif

Else
If counter Ta has timed out then

reset Ta {Transition : p1}
Else

increment Ta {Transition : µ1}
Endif

µ2 Tb
Tb:Tb 1+ C1:1,[]

enb µ2() W 1= Ta 0= 1 Tb 19≤ ≤∧ ∧() W 0= Ta 0= 1 Tb 19≤ ≤∧ ∧()∨≡

Ta 0= 1 Tb 19≤ ≤∧()≡

enb µ2() Ta 0= 1 Tb 19≤ ≤∧()≡
type W() 0 1,{ }= µ2
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 23

5.4 Checking conformance
The main window of the Build tool (Figure 8) has a Generate Code button that

can be used to translate the chart of the system under design into transition sys-
tems (as ASCII text files) that can be checked by the Verify and STeP tools. Both
Verify and SteP take the text files directly as input.

The Verify tool found that the original pseudocode (Figure 2) did not meet the
first requirement [R1]. The resulting counterexample was used to correct the code
(Figure 11). The Verify tool was then used to show conformance of the corrected
code, i.e. all three requirements [R1, R2 and R3] were shown to be valid. Using
only the Verify tool the conformance check takes 35 minutes (Table 1).

Using a combination of Verify [R2 and R3] and STeP [R1], conformance of all
three properties can be checked in under 4.4 minutes (Table 1). STeP cannot
directly check the response properties [R2 and R3], but it was significantly faster
than Verify for unclocked requirement [R1] where an observer was used (2.2 min-
utes versus 32.9 minutes for Verify). We discuss below in more detail how the ver-
ification was done.

The requirements [R2 and R3] were checked directly by Verify, without the
need of an observer. The requirement [R2], given by ,
can be submitted to Verify without having to specify the bounds. Verify returns
the bounds [0,1]; hence [R2] is valid because its bounds of [0,2] are more permis-

FIGURE 12. Result of transforming the controller pseudocode into a TTM

Provided the controller is in its normal operating mode () one of the self-looping
events executes precisely every one tick of the clock.

F1 normal_ full=

powerLo e 0 2,[] R closed=()⇒
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 24

sive. In fact, the more stringent property given by is
also valid. The output of the Verify tool for [R2] is shown in Figure 13.

The ability of Verify to return the bounds was especially useful in the case of
response property [R3] which has an upper time bound of 52. Initially, this
requirement was written with an upper time bound of 50 (i.e.). How-
ever, Verify returned the bounds [0,52] indicating that the more stringent upper
time bound could not be satisfied on certain computations. There are two possi-
bilities when a requirement fails to hold:

(a) Either, the controller is incorrect,

(b) or, the requirement must be reformulated (in the case of R3 by adding an
additional two ticks to the upper time bound).

In this case, we reformulated [R3] as per case (b). At the 30 tick time-out point, the
relay is commanded to open by transition α if the power is high. Because power
and pressure are filtered, the power update may be delayed up to two ticks, i.e.
the update may occur at any time in the interval [30, 32] of the controller cycle.
Thus there may be a delay of up to 2 clock ticks before the second time-out
begins. Hence, the controller may delay up to an additional 2 ticks beyond 50
before returning to its initial state.

TABLE 1. Times for the model-checking tools Verify and STeP to check conformance (using a Sun
Ultra1/160MB workstation)

Requirements Verify tool STeP tool

[R2] and [R3]

Generate graph (6943 reachable states) 1.58 min. Not Applicable.
(Does not do most
permissive bound
calculations.)

[R2] check .16 min.

[R3] check .45 min.

Total Time for [R2,R3] 2.19 min.
[R1]
(with an observer and a fail
transition)

Generate graph (48,489 states) 26.36 min.

[R1] check 6.49 min. 62,550 states in:

Total for [R1] check 32.85 min. 2.2 min
Total time for Verify tool to
check conformance (of all
requirements R1, R2 and R3) 35.05 min

Total time for Verify + STeP
to check conformance

4.39 min

FIGURE 13. Abbreviated output from the Verify tool for requirement [R2]

% Checking requirement [R2]: powerLo ==> <>relayClosed

% powerLo: Ta=0,Tb=0,D=0,W=0

% relayClosed: R=closed

| ?- rtrfRG2(sud, powerLo,relayClosed, L, H).

reading in reachability graph ...

sending results to sud.output file...

L = 0,

H = 1

%... checked in .16 minutes

powerLo el1 R closed=()⇒

max Ta Tb+()

Tb
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 25

The requirement [R1] (see (Eq. 6)) is a clocked property that Verify is unable to
check directly. One possibility is to use the STeP tool as explained in (Eq. 3). How-
ever, the corresponding unclocked property is impractical because of the need to
count up to 52 ticks of the clock. We therefore use an observer instead.

The TTMchart obs (Figure 14) moves to a “bad” state when it observes viola-

tions of [R1]. The validity of [R1] can then be demonstrated by proving the valid-
ity of the unclocked invariance property . The observer merely
watches the system without interfering with its operation (hence its events have
no assignments to system variables in its transformation functions). The invari-
ance can be checked either by Verify or STeP. As shown in Table 1,
STeP checks this kind of unclocked property much more efficiently. STeP is also
able to prove the property using the theorem prover.

The use of an observer increases the number of reachable states that must be
generated. However, the resulting invariance property involves fewer
logical connectives, and hence can be checked more efficiently than more complex
formulas with more connectives (Eq. 4).

The approach of building a model (the TTMchart), stating the global require-
ments (in RTTL), and then checking for conformance, rarely proceeds in a smooth

FIGURE 14. Observer to check requirement R1

The object variable of the observer is V, where type(V)={0,1,2,4,5,bad}. When V=bad, requirement 1
is false, i.e. (Eq. 6) is false. The events v1 and v10 detect when the antecedents bothHi and PowerHi
of (Eq. 6) are true. At V=5, the observer waits 1 tick before resetting (via event v9) as powerHi must
occur between the 30th and 31st tick of the clock. The events v3 and v4 trigger if the relay fails to
open within two ticks or fails to stay open for 20 ticks of the clock.

h V bad≠()

h V bad≠()

h V bad≠()

h V bad≠()
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 26

straight line. Usually, the initial modelling attempts are either wrong or fail to
capture pertinent behaviour. Once an appropriate model is obtained, the initially
stated requirements can either be wrong or incomplete. In fact, there is no formal
method that can close the gap between the model and the actual system. At best,
we can validate the model to some extent by simulation and putative challenges.

RTTL specifications are incremental. If after developing a set of requirements,
we suddenly realize that the resulting specification is incomplete, the situation
can be rectified by adding the missing property to the requirements as an addi-
tional conjunct, without having to recheck the other requirements. For example,
the three sud requirements [R1, R2 and R3] are incomplete. An additional prop-
erty that must be satisfied is: “the relay should not open unnecessarily” — which
is given by the “waiting-for” property

[R4]: (Eq. 11)

The above property was submitted to the verifier and found to be valid. This
property can be directly checked either by Verify or STeP without the need for an
observer.

A useful validation method involves posing a “challenge” to the system with
putative theorems. The fact that the relay should not open unnecessarily (Eq. 11)
is one such putative theorem. In the beginning phases, most putative theorems
will fail to be proven. The verifier then returns information, such as the failing
computation, which is useful for debugging and correcting the problem.

Consider the complete system of Figure 5 which includes the observer and the
failure transition10. If an unclocked version of the third requirement given by

 is submitted to the verifier, then the counterexam-
ple of Figure 15 is produced, which shows that the failure transition leads to a
recursive loop in which the goal is never reached. If the putative the-
orem is submitted, then the veri-
fier responds that the property is valid. It is often useful to use the Build
simulation facility in conjunction with the counterexample facility to debug the
system.

Simulation was in fact performed regularly as the model of the DRT was devel-
oped, and played an important part in developing the model. For example, the
plant update function was incorrectly designed in the first approximation so that
only one of (but not both) power and pressure could change every two clock ticks.
This modelling error was quickly revealed in early simulations.

6.0 Comparison of StateTime to other tools
One motivation for constructing the StateTime tool was that statechart-like

visual languages are useful for hierarchical, concurrent and nondeterministic
descriptions of timed reactive systems. An industrial strength tool called Statem-
ate [15] is available for statecharts [14]. The tool described in this paper extends

10. Until now, we ignored the failure transition, as we dealt with the case of a single microprocessor control-
ler.

R closed= W 0=∧() R closed=()W W 1= P 1=∧()⇒

init control()¬ einit control()⇒

init control()
h ε failure≠() init control()¬ einit control()⇒[]→
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 27

statecharts with a variety of timing properties not supported by Statemate while
at the same time providing better analytical tools (model-checking and theorem
proving) and a simpler semantics (via the TTMs of Section 3.3).

TTMcharts support shared interactions in the style of CSP or the Ada rendez-
vous (see the shared transition in Figure 16). The broadcast semantics of state-

FIGURE 15. Abbreviated view of a counterexample

PATH COUNTEREXAMPLE for !init(control) ==> <>(init(control)):

trans: INITIAL

 state: [F,0,1,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

trans: CYCLE

 state: [T,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

trans: RESET

 state: [F,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

trans: TICK

 state: [F,0,0,0,0,0,0,0,1,0,0,5,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,1,0]

trans: BETA

 state: [T,0,0,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0] ...

trans: RESET1

 state: [T,0,1,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0]

trans: RESET

 state: [F,0,1,0,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

trans: FAILURE

 state: [T,0,1,1,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

LOOP:

trans: RESET

 state: [F,0,1,1,0,0,0,0,1,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

trans: CYCLE

FIGURE 16. Shared transitions allow objects to synchronize

The event b (occurring in objects p1 and
p2) is declared to be shared (indicated by the
“#” symbol at the end of the event name). As
shown in the simulation above, when the cor-
responding transition b_3 is taken, both p1 and
p2 change to activities 0 and 2 simultaneously.

Events a and c are local. Event b is shared
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 28

charts, and the division of steps into microsteps, makes it a useful tool for
describing certain systems (e.g. ethernet protocols) that would require more con-
structs for their description using TTMs. However, the resulting statechart seman-
tics is quite complex; there are various ways of providing a semantics for
statecharts each with its own difficulties [22,42].

Statemate is a mature tool whereas StateTime is an incomplete prototype by
comparison. The most important deficiency in StateTime is that, presently, only
integer and finite enumeration types are available for data variables, whereas
Statemate has the full range of types available in normal programming languages.
Also, Statemate automatically generates code (to C and Ada) for the statechart
descriptions. Statemate has the ability to display interconnections and data flow
between modules using activity charts.

Statemate does not provide the same flexibility as StateTime for modelling
timing constraints. For example, Statemate provides exact delay and schedule
constructs, but no facility to directly distinguish between spontaneous, just and
timed events. All untimed events are immediately executed as a sequence of
microsteps before the clock is incremented. Statemate cannot express timed tran-
sitions in a direct manner. For example, to represent a transition , two time-
outs (one for the lower and one for the upper time bound) and some intermediate
actions and states are needed.

There is also a fundamental difference between StateTime and Statemate with
respect to verification. The Statemate reachability test can check whether there is a
computation from the initial state to a specified condition. But it does not have the
rich model-checking and theorem proving facilities of StateTime. The ability of
StateTime to check for the most permissive bounds of response properties is an
example of a a useful analytical technique. But many ordinary deadlock, safety
and liveness properties cannot easily be captured by reachability analysis alone.

Other commercial tools have been developed incorporating structured meth-
ods for specifying real-time systems requirements [16,44,48]. These tools are in
actual use, and have been successful on the whole in removing ambiguities in the
requirements. However, these methods are at best semi-formal. They lack a pre-
cise semantics and rigorous verification methods (e.g. through model-checking,
proof calculi or algebraic bisimulations).

An important part of tools such as Statemate, Objectime [44], and Observ [46]
is the use of visual structuring techniques of state machines that are intuitively
appealing to engineers. Research prototype tools such as Modechart [17,23] and
ExSpect [47] also use graphical methods based on statecharts or Petri nets, and in
addition support various forms of formal analysis.

There are many ways to model reactive systems and mechanically calculate
their properties. At one end of the spectrum, we can test a system’s behaviour on
selected inputs (simulation or execution). In the middle of the spectrum (for rela-
tively small finite state systems) we can model-check systems by systematically
enumerating all possible behaviours. At the other end of the spectrum, we can
conduct a mechanically checked proof that all (possibly infinitely many) system
behaviours satisfy the requirements. In the StateTime toolset, analysis can take

τ 2 5,[]
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 29

place anywhere in the spectrum (simulation, model-checking and theorem prov-
ing) as needed.

The Verify tool is slow relative to more recent model-checking tools. A first
step towards improving the model-checking facility was to use the algorithm
developed in [39] to translate TTMs into untimed fair transition systems. Hence
untimed tools such as STeP, Spin [21] and SMV [6] can then augment Verify (as
illustrated in Section 5.4).

We are currently investigating ways of extending StateTime by adding transla-
tors to recent analysis tools for timed automata. The SMC procedure [18] reduces
the problem of model checking timed automata (with real-valued clocks) to the
verification of finite state region automata. Since the clocks range over the real
numbers, the state space is potentially infinite, and the state sets — called regions
— must be represented symbolically rather than enumeratively. The convex data
regions can be represented by integer matrices and manipulated using standard
matrix operations. The SMC procedure has been implemented in such tools as
Kronos [11], Cospan [3], HyTech [2] and HSIS.

Although, in theory, the computational complexity of the verification problem
is proportional to the magnitudes of the clock upper bounds, in practice the per-
formance can often be insensitive to the size of the delays more often than for the
discrete clocks used by Verify. However, dense clocks also introduce unavoidable
inefficiencies in comparison to discrete time. Dense clocks have an exponential
dependency on the number of clocks used. Also, singular punctuality properties
such as are undecidable [35].

Most of the tools allow for both explicit enumeration of states and symbolic
methods. Typically these tools can enumerate up to 10 million states with work-
stations that have 1GB of RAM in about 15 minutes.

If symbolic methods are used, much larger state spaces can sometimes be ana-
lyzed. For example, SMV and Cospan use binary decision diagrams (BDDs).
However, BDDs are sensitive to variable ordering and to data variables and arith-
metic operations (e.g. the two integer variables Ta and Tb of the DRT described in
Section 5.3).

Both Cospan and SMV directly describe synchronous systems (all enabled tran-
sitions are taken simultaneously and that counts as one tick of the clock), which
make them more suitable for hardware verification. In order to use them on inter-
leaved systems or programming code, program counters must be introduced and
used to disable all transitions except for the current step. This often leads to ineffi-
cient use of the BDD techniques, which are more suited to synchronous systems.

SMV supports branching time temporal logic as the specification language.
Cospan uses automata theoretic methods for verification. The system is described
by an automaton P, and the “task” which P is intended to perform by another
automaton T. Conformance can be checked by testing the formal language con-
tainment .

Spin supports both explicit state enumeration as well as partial order reduc-
tions (PO). POs are a family of techniques for diminishing the state-space explo-
sion problem for model-checking concurrent programs. It is based on the

p e 1 1,[] q⇒

L P() L T()⊂
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 30

observation that execution sequences of a concurrent program can be grouped
together into equivalence classes that are indistinguishable by the property to be
checked. The reduction procedure constructs a smaller state-space by generating
at least one representative node for each equivalence class. POs seem better than
BDDs for dealing with interleaved concurrent code, whereas BDDs appear to be
better than POs for synchronous hardware. Comparing the various tools will
require careful analysis and testing [10].

Spin supports linear temporal logic (LTL) model checking which is exponen-
tial in the size of the temporal logic specification (number of connectives). The
branching time CTL logic supported by SMV can be checked in time proportional
to the size of the specification. CTL and LTL are incomparable; each can express
properties that the other cannot. LTL is better at expressing certain fairness prop-
erties, whereas CTL can specify the existence of a computation satisfying a prop-
erty more easily.

STeP’s model-checker is based on LTL. Since STeP also has a theorem prover,
the system is first submitted to a preprocessor before going to the model-checker.
Where possible, the preprocessor simplifies the data types, eliminates unneces-
sary variables, instantiates parameters or bounded quantifiers, and simplifies the
temporal logic specification using the theorem prover. This means that we need
not know the limits of data variables in advance, and allows certain infinite sys-
tems to be model-checked.

Some tools (e.g. Cospan) have translators for hardware description languages
(e.g. Verilog), and other tools (e.g. Spin) have front-end programming languages.
However, the model-checking or automata theoretic tools discussed in this sec-
tion do not support visual descriptions; rather, they describe systems in ASCII
text by low level transition descriptions. Graphical state diagrams often provide
important information to reviewers that is difficult to derive from low level tran-
sition information alone. For an industrial case study, see the air collision avoid-
ance system reported in [27]. Visual tools such as StateTime will continue to be
important in the commercial setting. One possibility for improving the StateTime
tool would be to allow programming code to be inserted in the lowest level
objects (i.e. in chart activities); but more research is needed to determine the most
appropriate programming constructs for reactive systems.

7.0 Conclusions
StateTime is a prototype toolset that allows for the design of real-time discrete

event systems using an executable visual formalism (the Build tool). A timing
hierarchy of spontaneous, just and forced timed events, and a variety of computa-
tional notions such as concurrency, nondeterminism, process interaction and com-
munication can be represented.

The combination of model-checking (the Verify tool) and theorem proving
allows for the treatment of finite and infinite systems as well as systems with
unspecified time bounds. The Verify tool can compute the most permissive
bounds of response properties, which is useful for debugging timing properties.
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 31

The reactor shutdown system illustrates how a variety of informal descriptions
(timing diagrams, pseudocode, and English language specifications) can be repre-
sented in a unified way using the StateTime tool.

The StateTime toolset is in the process of being enhanced with other tools, in
addition to Verify and STeP, that will improve its analysis capabilities. As dis-
cussed in the previous section, the various analysis tools complement each others’
weaknesses.

Systems of realistic size present a challenge to tools such as StateTime, involv-
ing as they do the combinatorial explosion of states. Recently, methods have been
developed within the TTM/RTTL framework, for dealing with larger systems by
decomposing them into TTM modules. TTM modules consist of an interface spec-
ification, a body, and an RTTL behavioural specification. The recent advances
mentioned below still need to be integrated into StateTime:

• The current tool can be used compositionally, where the correctness of the
system can be obtained from the correctness of its modules [37,38], but this
process is not fully automated yet (the module environment must still be
generated by hand).

• Also, using algebraic abstraction (quotient systems), compositionally consis-
tent model reduction techniques can be applied to modules, that preserve a
class of RTTL properties to be verified. The abstract version of the module is
more amenable to model-checking, as its state-space is often much smaller
than that of the original [26].

The nuclear reactor shutdown system had to be reverse engineered because
the implementation of the controller (pseudocode) was supplied in the require-
ments document. The composition of TTM modules, and the model reduction
techniques mentioned above will not only help with the state explosion problem
of already designed systems, but will allow for better a priori design methods.

An iterative design method initially describes the system at a high level of
abstraction. Simulations can be performed to validate the model, and conform-
ance to requirements can be checked. The model is iteratively refined until it
reaches the level where it can be implemented. At every level of abstraction more
simulations are performed, and properties specific to that level are verified. Also,
the model at each level can be decomposed into modules, and each module can
then be refined independently.

8.0 References

[1] Alur, R. and T.A. Henzinger. “A Really Temporal Logic.” Journal of the ACM, 41(1): 181-204, 1994.
[2] Alur, R., T.A. Henzinger, and P.-H. Ho. “Automatic Symbolic Verification of Embedded Systems.”

IEEE Transactions on Software Engineering, 22(3): 181-201, 1996.
[3] Alur, R. and R.P. Kurshan. “Timing Analysis with Cospan.” In Hybrid Systems III, ed. R. Alur, T.A.

Henzinger, and E. Sontag. LNCS 1066 Springer Verlag, 1996.
[4] Boussinot, F. and R.d. Simone. “The SL Synchronous Language.” IEEE Trans. on Software Engineer-

ing, 22(10): 256-266, 1996.
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 32

[5] Brave, Y. and M. Heymann. “Control of Discrete Event Systems Modelled as Hierarchical State
Machines.” IEEE Transactions on Automatic Control, 38(12): 1803-1819, 1993.

[6] Burch, J.R., E.M. Clarke, K.L. MacMillan, D.L. Dill, and L.J. Hwang. “Symbolic Model Checking:
10^20 States and Beyond.” Information and Computation, 98(2): 142-170, 1992.

[7] Cassandras, C., S. Lafortune, and G. Olsder. “Introduction to the Modelling, Control and Optimization
of Discrete Event Systems.” In Trends in Control: A European Perspective, ed. A. Isidori. 217-291.
Springer-Verlag, 1995.

[8] Cassandras, C.G. Discrete Event Systems: Modeling and Performance Analysis. Irwin Inc. and Aksen,
Homewood, IL, 1993.

[9] Chandy, K.M. and J. Misra. Parallel Program Design. Addison-Wesley, 1988.
[10] Corbett, J.C. “Evaluating Deadlock Detection Methods for Concurrent Software.” IEEE Trans. on Soft-

ware Engineering, 22(3): 161-180, 1996.
[11] Daws, C. and S. Yovine. “Two Examples of Timed Automata Using Kronos.” In Proc. 16th Annual Real

Time Systems Symposium, IEEE CS Press, 66-75, 1995.
[12] Dyck, D.D. and P.E. Caines. “The Logical Control of an Elevator.” IEEE Trans. on Automatic Control,

40(3): 480-486, 1995.
[13] Hadj-Alouane, N.B., S. Lafortune, and F. Lin. “Variable Lookahead Supervisory Control with State

Information.” IEEE Trans. on Automatic Control, 39(12): 2398-2410, 1994.
[14] Harel, D. “Statecharts: A Visual Formalism for Complex Systems.” Science of Computer Programming,

8:231-274, 1987.
[15] Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and M. Trachtenbrot. “Statemate:

a working Environment for the Development of Complex Reactive Systems.” IEEE Transactions on
Software Engineering, 16:403–414, 1990.

[16] Hatley, D.J. and I.A. Pirbhai. Strategies for Real-Time System Specification. Dorset House Publishing
Co., New York, 1988.

[17] Heitmeyer, C. and B. Labaw. “Requirements Specification of Hard Real-Time Systems: Experience
with a Language and a Verifier.” In Foundations of Real-Time Computing: Formal Specifications and
Methods, Kluwer Academic Publishers, 1991.

[18] Henzinger, T.A., X. Nicollin, J. Sifakis, and S. Yovine. “Symbolic Model Checking for Real-Time Sys-
tems.” Information and Computation, 111(2): 193-244, 1994.

[19] Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, N.J., 1985.
[20] Holloway, L.E. and B.H. Krogh. “Synthesis of Feedback Control Logic for a Class of Controlled Petri

Nets.” IEEE Trans. on Automatic Control, 35(4): 514-523, 1990.
[21] Holzmann, G.J. Design and Validation of Protocols. Prentice Hall, 1990.
[22] Hooman, J.J.M., S. Ramesh, and W.P.d. Roever. “A Compositional Axiomatization of Statecharts.” The-

oretical Computer Science, 101(2): 289-335, 1992.
[23] Jahanian, F. and A.K. Mok. “Modechart: A Specification Language for Real-Time Systems.” IEEE

Transactions on Software Engineering, 20(12): 933-947, 1994.
[24] Lawford, M. “Transformational Equivalence of Timed Transition Models.” Systems Control Group,

Department of Electrical Engineering, University of Toronto. TR-9202 (M.A.Sc. thesis), 1992.
[25] Lawford, M. and W.M. Wonham. “Equivalence Preserving Transformations for Timed Transition Mod-

els.” IEEE Trans. on Automatic Control, 40(7): 1167-1179, 1995.
[26] Lawford, M., W.M. Wonham, and J.S. Ostroff. “State-Event Labels for Labelled Transition Systems.”

In Proc. 33rd IEEE Conference on Decision and Control, Orlando, FL, IEEE Control System Society,
3642-3648, 1994.

[27] Leveson, N.G., M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. “Requirements Specification for Pro-
cess-Control Systems.” IEEE Transactions on Software Engineering, 20(9): 684-707, 1994.

[28] Lin, J.-Y. and D. Ionescu. “A Reachability Synthesis Procedure for Discrete Event Systems in a Tempo-
ral Logic Framework.” IEEE Trans. on Systems, Man and Cybernetics, 24(9): 1397-1406, 1994.

[29] Manna, Z. Mathematical Theory of Computation. McGraw-Hill, New-York, 1974.
[30] Manna, Z. “STeP: The Stanford Temporal Prover.” Dep. of Computer Science, Stanford University.

STAN-CS-TR-94-1518, 1994.
[31] Manna, Z. and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,

New York, 1992.
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 33

[32] Ostroff, J.S. Temporal Logic for Real-Time Systems. Advanced Software Development Series, ed. J.
Kramer. Research Studies Press Limited (distributed by John Wiley and Sons), England, 1989.

[33] Ostroff, J.S. “Deciding properties of Timed Transition Models.” IEEE Transactions on Parallel and
Distributed Systems, 1(2): 170-183, 1990.

[34] Ostroff, J.S. “Systematic Development of Real-Time Discrete Event Systems.” In Proceedings of the
ECC91 European Control Conference, Grenoble, Hermes Press, 522–533, 1991.

[35] Ostroff, J.S. “Design of Real-Time Safety Critical Systems.” The Journal of Systems and Software,
18(1): 33–60, 1992.

[36] Ostroff, J.S. “A Verifier for Real-Time Properties.” Real-Time Journal, 4:5–35, 1992.
[37] Ostroff, J.S. “Automated Modular Specification and Verification of Real-Time Reactive Systems.” In

Proc. Workshop on Industrial Strength Formal Specification Techniques WIFT'95, IEEE Computer
Society Press, 108-121, 1995.

[38] Ostroff, J.S. “A CASE Tool for the Design of Safety-Critical Systems.” In Proc. Seventh International
Workshop on Computer Aided Software Engineering CASE'95, IEEE Computer Society Press, 370-380
(see also http://www.cs.yorku.ca/pub/ostroff/papers.95/case95.extended.pdf for an extended version of
the paper), 1995.

[39] Ostroff, J.S. and H.K. Ng. “The Design of Real-Time Systems Using Standard Untimed Theories.” In
Preprints Third AMAST Workshop on Real-Time Systems, Salt Lake City, Utah, ONR and Iowa Univer-
sity, 1996.

[40] Ostroff, J.S. and W.M. Wonham. “A Framework for Real-Time Discrete Event Control.” IEEE Transac-
tions on Automatic Control, 35(4): 386–397, 1990.

[41] Parnas, D.L., G.J.K. Asmis, and J. Madey. “Assessment of Safety-Critical Software in Nuclear Power
Plants.” Nuclear Safety, 32(2): 189-198, 1991.

[42] Pnueli, A. and M. Shalev. “What is in a Step?” In Theoretical Aspects of Computer Software, 244-264.
Springer-Verlag, 1991.

[43] Ramadge, P.J.G. and W.M. Wonham. “The Control of Discrete Event Systems.” Proc. of the IEEE,
77(1): 1989.

[44] Selic, B., G. Gullekson, J. McGee, and I. Engelberg. “ROOM: An Object-Oriented Methodology for
Developing Real-Time Systems.” In CASE’92 Fifth International Workshop on Computer-Aided Soft-
ware Engineering, Montreal, IEEE Computer Society Press, 230-240, 1992.

[45] Thistle, J.G. “Logical Aspects of Control of Discrete Event Systems: A Survey of Tools and Tech-
niques.” In 11th Int'l Conf. on Analysis and Optimization of Systems: Discrete Event Systems, ed. H.
Cohen and J.-P. Quadrat. LNCIS No. 199. Springer-Verlag, 1994.

[46] Tyszberowicz, S. and A. Yehudai. “OBSERV — A Prototyping Language and Environment.” ACM
Transactions on Software Engineering Methodology, 1(3): 269-309, 1992.

[47] van der Aalst, W.M.P. “Timed Coloured Petri Nets and their Application to Logistics.” Ph.D, Eindhoven
University of Technology, 1992.

[48] Ward, P. and S. Mellor. Structured Development for Real-Time Systems. Yourdon Press, New York,
1985.
A Visual Toolset for the Design of Real-Time Discrete Event Systems. December 2, 1996. 34

	1.0 Introduction
	2.0 Example — nuclear reactor shutdown system
	FIGURE 1. Analog implementation of the delay relay...
	FIGURE 2. Faulty pseudocode for the computer to co...
	3.0 The TTM/RTTL framework
	3.1 Timed Transition Models (TTMs)

	FIGURE 3. A sample computation of the air bag syst...
	3.2 Real-Time Temporal Logic (RTTL).
	3.3 TTM semantics (computations and trajectories)

	4.0 Overview of the StateTime toolset
	FIGURE 4. StateTime checks that a TTM conforms to ...
	5.0 Analysis and design of the delayed reactor tri...
	FIGURE 5. The TTMchart of the system under design ...
	FIGURE 6. Connection diagram for the system under ...
	5.1 Using the Build tool to describe the DRT plant...

	FIGURE 7. TTMchart description of the DRT plant
	FIGURE 8. Main window of the Build tool
	FIGURE 9. Hierarchy of plant objects
	FIGURE 10. Simulating the plant produces a computa...
	5.2 The DRT requirements
	5.3 The DRT controller

	FIGURE 11. Corrected pseudocode for the computer t...
	FIGURE 12. Result of transforming the controller p...
	5.4 Checking conformance

	TABLE 1. Times for the model-checking tools Verify...
	FIGURE 13. Abbreviated output from the Verify tool...
	FIGURE 14. Observer to check requirement R1
	FIGURE 15. Abbreviated view of a counterexample
	6.0 Comparison of StateTime to other tools
	FIGURE 16. Shared transitions allow objects to syn...
	7.0 Conclusions
	8.0 References

