
Lower Bounds for Nondeterministic Semantic
Read-Once Branching Programs∗

Stephen Cook1, Jeff Edmonds2, Venkatesh Medabalimi1, and
Toniann Pitassi1

1 University of Toronto, Computer Science Department, Toronto, ON, Canada
sacook@cs.toronto.edu

2 York University, Computer Science Department, Toronto, ON, Canada
jeff@cs.york.ca

3 University of Toronto, Computer Science Department, Toronto, ON, Canada
venkatm@cs.toronto.edu

4 University of Toronto, Computer Science Department, Toronto, ON, Canada
toni@cs.toronto.edu

Abstract
We prove exponential lower bounds on the size of semantic read-once 3-ary nondeterministic
branching programs. Prior to our result the best that was known was for D-ary branching
programs with |D| ≥ 213.

1998 ACM Subject Classification F.2.3 Tradeoffs between Complexity Measures

Keywords and phrases Branching Programs, Semantic, Non-deterministic, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.36

1 Introduction

A major question in complexity theory is whether polynomial-time is the same as log-space
or nondeterministic log-space. One approach to this problem is to study time/space tradeoffs
for problems in P . For example, for natural problems in P , does the addition of a space
restriction prevent a polynomial time solution? In the uniform setting, time-space tradeoffs
for SAT were achieved in a series of papers [7, 15, 8, 9]. Fortnow-Lipton-Viglas-Van Melkebeek
[9] shows that any algorithm for SAT running in space no(1) requires time at least Ω(nφ−ε)
where φ is the golden ratio ((

√
5 + 1)/2) and ε > 0. Subsequent works [18, 6] improved the

time lower bound to greater than n1.759.
In the nonuniform setting, the standard model for studying time/space tradeoffs is the

branching program. In this model, a program for computing a function f(x1, . . . , xn) (where
the variables take values from a finite domain D) is represented by a directed acyclic graph
with a unique source node called the start node. Each nonsink node is labelled by a variable
and the edges out of a node correspond to the possible values of the variable. Each sink
node is labelled by an output value. For Boolean functions, there is one sink node called
the accept node (or 1-node), and all other sink nodes are rejecting nodes. Executing the
program on an input corresponds to following a path from the start node, using the values
of the input variables to determine which edges to follow. The output of the program is the
value labelling the sink node reached. A D-ary branching program is deterministic if each
non-sink node has exactly D edges, one for every value in D.

∗ This work was supported by the Natural Science and Engineering Research Council of Canada.

EA
T

C
S

© Stephen Cook, Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

The length of a branching program is the number of edges in the longest path. It is clear
that length of a branching program can be seen as a measure of computation time. The size
of a branching program is the number of nodes in the program. For a boolean function fn
of n variables, let BP (fn) denote the minimum size of a branching program computing fn.
BP (fn) is closely related to the space complexity S(fn) of a non-uniform Turing machine
computing fn: S(fn) = O(log(max {BP (fn), n})) and BP (fn) = 2O(max {S(fn),logn}) [5, 17].
This motivates the study of branching program size lower bounds. In particular, size lower
bounds on length restricted branching programs translate to time/space tradeoffs.

The state of the art time/space tradeoffs for branching programs were proven in the
remarkable papers by Ajtai [1] and Beame-et-al [3]. In the first paper, Ajtai exhibited a
polynomial-time computable Boolean function such that any sub-exponential size determin-
istic branching program requires superlinear length. This result was significantly improved
and extended by Beame-et-al who showed that any sub-exponential size randomized branching
program requires length Ω(n logn

log logn).
Lower bounds for nondeterministic branching programs have been more difficult to obtain.

In this model, there can be several arcs (or no arcs) out of a node with the same value
for the variable associated with the node. An input is accepted if there exists at least one
path consistent with the input from the source to the 1-node. A nondeterministic branching
program computes a function f if its accepted inputs are exactly equal to f−1(1). From here
on, we shall restrict our attention to non-deterministic branching programs.

Length-restricted nondeterministic branching programs come in two flavors: syntactic
and semantic. A length l syntactic model requires that every path in the branching program
has length at most l, and similarly a read-k syntactic model requires that every path in the
branching program reads every variable at most k times. In the less restricted semantic
model, the requirement is only for consistent accepting paths from the source to the 1-node;
that is, accepting paths along which no two tests xi = d1 and xi = d2, d1 6= d2 are made.
This is equivalent to requiring that for every accepting path, each variable is read at most k
times. Thus for a nondeterminsitic read-k semantic branching program, the overall length of
the program can be unbounded.

Note that any syntactic read-once branching program is also a semantic read-once
branching program, but the the opposite direction does not hold. In fact, Jukna [11] proved
that semantic read-once branching programs are exponentially more powerful than syntactic
read-once branching programs, via the “Exact Perfect Matching"(EPM) problem. The input
is a (Boolean) matrix A, and A is accepted if and only if every row and column of A has
exactly one 1 and rest of the entries are 0’s i.e if it’s a permutation matrix. Jukna gave a
polynomial-size semantic read-once branching program for EPM, while it was known that
syntactic read-once branching programs require exponential size [14, 13].

Lower bounds for syntactic read-k (nondeterministic) branching programs have been
known for some time [16, 4]. However, for semantic nondeterministic branching programs,
even for read-once, no lower bounds are known for polynomial time computable functions
for the |D| = 2 case. The best lower bound known prior to our work is an exponential
lower bound for semantic read-once (nondeterministic) |D|-way branching programs, where
|D| = 213 [10]. In fact this lower bound actually holds more generally for semantic read-k
but where |D| = 23k+10.

Jukna obtains his result by showing that any time restricted semantic branching program
of small size has a large rectangle in f−1(1). He uses the explicit function of computing the
characteristic function of a linear code having minimum distance m+ 1 defined over GF (q).
Given a parity matrix Y ,the function g(Y, x) = 1 iff x is a codeword. Since codewords in a

S. Cook, J. Edmonds, V. Medabalimi, and T. Pitassi 36:3

linear code of minimum distance m+ 1 can only have an m-rectangle of size 1 he argues that
a time restricted branching program of length kn computing g requires a size of 2Ω(n/k24k).
This exponential lower bound can be obtained whenever D is sufficiently large in comparison
to k, specifically for |D| = q ≥ 23k+10.

Jukna’s result is an improvement over exponential lower bounds with a domain requirement
of 22ck obtained in [2]. Beame et.al [2] obtain their result by characterizing the function
computed by a time restricted branching program of small size as a union of shallow
decision forests where the size of the union depends on the size of the branching program.
Each shallow forest is then shown to be representable by a collection of small number
of βn-pseudo-rectangles in f−1(1). (Pseudo-rectangles are a generalization of what we
call embedded rectangles later). This gives a representation of the branching program
as a union of small (in the size ‘s’) number of βn-pseudo-rectangles. Now, if for some
function f the maximum size of a βn-pseudo-rectangle is |D|(1−ψf (β))n and the number of
yes-instances |f−1(1)| ≥ |D|(1−η(f))n then the number of βn-pseudo-rectangles will be at
least |D|(ψf (β)−η(f))n. This yields an exponential lower bound on s for sufficiently large |D|
whenever (ψf (β)−η(f)) is bounded away from 0 by some ε > 0. They then exhibit an explicit
function with this property. Their function QFM : GF (qn)→ {0, 1} is based on quadratic
forms using a modified Generalized Fourier Transform matrix. They show that there exists a
constant c > 0 such that for all k and ε ∈ (0, 1), if D ≥ 22

c
ε
k

then a non-deterministic BP of
length kn computing QFM needs size at least S = 2n log1−ε |D|. For the specific case of k = 1,
it can be shown that if their analysis of maximum size of βn-pseudo-rectangles in QFM is
tight, a domain size of at least |D| ≥ 264 is needed.

Our main result is an exponential lower bound on the size of semantic read-once non-
deterministic branching programs for a polynomial time decision problem f for 3-ary inputs.
Similar in spirit to these previous results [10, 2] we show that a small sized semantic read
once branching program is bound to have a large rectangle in f−1(1).

(?) However in addition, we show that one can always find a balanced rectangle in f−1(1)
of size r2 where r is some large constant.

A balanced rectangle is one which is reasonably close to being a square.
The particular polynomial time decision problem we use to prove the lower bound is: to

decide if a polynomial over a finite field K evaluates to a value less than a certain threshold at
a given input. The input is a pair (u, x) where u is the description of a degree d−1 polynomial
over [K] and x ∈ [K], and we want to accept if and only if u(x) < K1−δ. We actually
prove a stronger theorem: with high probability over all polynomials u, any nondeterministic
semantic read-once branching program for what we shall call Polyu (along with a hyperplane
constraint) requires exponential size. That is, even if the branching program knows the
polynomial u, for a typical u it cannot efficiently do polynomial evaluation. The main
properties of polynomials over finite fields we are using are polynomial interpolation, and
Lemma 7, which might be interpreted to mean something like: the spread of values of a
typical random polynomial of degree d over a field K is roughly close to being uniform over
K, provided K is sufficiently large.

Continuing with the above observation (?) that we can find a balanced rectangle in f−1(1)
for a function with a small semantic read once branching program, since the number of
balanced rectangles of a certain size d = r2 is small and since each one of them can be
a rectangle in f−1(1) for a relatively small number of degree d polynomials over K as a
consequence of polynomial interpolation, we argue that there must be a polynomial with
no balanced rectangle of this size in f−1(1) and hence the branching program computing it

ICALP 2016

36:4 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

should be large. A key idea of this argument is that for a balanced rectangle the sum of the
lengths of the rectangle can be at most a small fraction of its area.

By a simple padding argument, we can modify our problem Polyu and actually achieve
the lower bound for domain size 2 + ε for arbitrarily small ε > 0. In this model, we can define
the problem to have N = n+M variables, M = Θ(N) of them with domain size 3 and the
rest, with domain size 2, do not affect the output. In section 5, we show why it might be
harder to prove lower bounds for semantic read-once branching programs when |D| = 2 by
showing how these branching programs can altogether evade having an exponential number
of states in many purported choices of bottleneck layer by giving polynomial upper bounds.

2 Definitions

Throughout this article, D denotes a finite set. For finite set N , DN is the set of maps from
N to D. An element of N is called a variable index or simply an index. We normally take N
to be [n] for some integer n, and write DN for D[n]. If A ⊆ N , a point σ ∈ DA is a partial
input on A. For a partial input σ, fixed(σ) denotes the index set A on which it is defined and
unfixed(σ) denote the set N−A. If σ and π are partial inputs with fixed(σ)∩fixed(π) = ∅,
then σπ denote the partial input on fixed(σ) ∪ fixed(π) that agrees with σ on fixed(σ)
and with π on fixed(π).

For x ∈ DN and A ⊆ N , the projection xA of x onto A is the partial input on A that
agrees with x. For S ⊆ DN , SA = {xA | x ∈ S}.

2.1 Nondeterministic Semantic Read-Once Branching Programs
Let f : DN → {0, 1} be a boolean function whose input is given in |D|-ary. Let the input
variables be x1, . . . , xn where xi ∈ D for all i ≤ n. A |D|-way nondeterministic branching
program (for f) is an acyclic directed graph G with a distinguished source node qstart and a
distinguished sink node (the accept node) qaccept. We refer to nodes as states. Each non-sink
state is labeled with some input variable xi, and each edge directed out of a state is labeled
with some value b ∈ D for xi. For each Z ∈ DN , the branching program accepts Z if and
only if there exists at least one (directed) path starting at the qstart and leading to the
accepting state qaccept, and such that all labels along this path are consistent with Z. The
size of a branching program is the number states (i.e. nodes) in the graph.

A branching program is semantic read-k if for every path from qstart to qaccept that is
consistent with some input, each variable occurs at most k times along the path. For the
read-once case, a semantic branching program allows variables to be read more than once,
but each accepting path may only query each variable at most once.

2.2 Polynomial Evaluation Problem
Our hard computational problem is the polynomial evaluation problem, Poly, with parameters
K, d, δ, where 0 < δ < 1. The input is a pair (u, x) where u ∈ [K]d specifies a degree d− 1
polynomial over the field [K] (K a prime power), and x ∈ [K] specifies a field value.
Poly(u, x) = 1 if and only if the polynomial specified by u on input x evaluates to a number
less than K1−δ. (We compare two field elements by comparing them using the natural
ordering on ternary strings.)

We will work with |D|-ary branching programs (with |D| prime), and let K = |D|n. The
input will be given as a vector in D(d+1)n. The first dn coordinates specify u and the last
n coordinates specify x. Thus the total input length is (d+ 1)n. In the remainder of the

S. Cook, J. Edmonds, V. Medabalimi, and T. Pitassi 36:5

paper, |D| = 3, and thus the parameters of Poly are d, δ, n. Both d and δ will be fixed
constants. Let Polyu denote the polynomial evaluation problem with parameters d, δ, n
where the polynomial u is fixed.

The actual lower bounds we show will be for a sensitive function fu obtained from Polyu
as follows. Let a ∈ GF (q) where q = |D| is a prime number. Let h : Dn → {0, 1} be the
characteristic function of the hyperplane at a:

ha(x) = 1 iff x1 + x2 + ...+ xn = a mod q .

Fix an element a(u) for which ha accepts the largest number of vectors accepted by Polyu
and define the function

fu(x) = Polyu(x) ∧ ha(u)(x) .

We call fu sensitive because it has the property that changing the value of exactly one
variable in a yes input always gives an input vector that is a no instance. As a result any
two accepted inputs differ in the value of at least two variables. Similarly for the polynomial
evaluation problem Poly, where the coefficient vector u is part of the input, we define
f(u, x) = Poly(u, x) ∧ ha(u)(x), which is sensitive in x.

2.3 Rectangles and Embedded Rectangles
We use the same definitions and conventions as in [3]. A product U × V is called a
(combinatorial) rectangle. If A ⊆ N is an index subset and Y ⊆ DA and Z ⊆ DN−A, then
the product set Y × Z is naturally identified with the subset R = {σρ | σ ∈ Y, ρ ∈ Z} of
DN , and a set of this form is called a rectangle in DN .

An embedded rectangle R in DN is a triple (πred , πwhite, C) where πred , πwhite are disjoint
subsets of N , and C ⊆ DN satisfies: (i) The projection CN−πred−πwhite consists of a single
partial input w, (ii) if τ1 ∈ Cπred and τ2 ∈ Cπwhite , then the point τ1τ2w ∈ C. C is called the
body of R. The sets πred , πwhite are called the feet of the rectangle; the sets Cπred and Cπwhite

are the legs, and w is the spine. We can also specify an embedded rectangle by its feet, legs
and spine: (πred , πwhite, A,B,w) where πred, πwhite are the feet, A = Cπred , B = Cπwhite are
the legs, and w is the spine.

We will sometimes refer to A as the red side of the rectangle and to B as the white side
of the rectangle. The size of the rectangle is |A| · |B|, and the dimension of the rectangle is
mr-by-mw where mr = |πred | and mw = |πwhite|.

3 Lower Bound for |D| = 3

I Theorem 1. There exists constants d, δ such that for sufficiently large n, for a random u,
with probability greater than 1/4, any 3-ary nondeterministic semantic read-once branching
program for fu requires size at least 2Ω(n).

I Corollary 2. There exists constants d, δ such that for sufficiently large n, any 3-ary
nondeterministic semantic read-once branching program for f(u, x) with parameters d, δ, n
requires size at least 2Ω(n).

Overview of Proof. Call a degree d − 1 polynomial “good" if the fraction of accepting
instances is roughly what you would expect from a random function; that is, the fraction
of yes instances is at least 1

2K
−δ. Lemma 7 shows that at least half of all degree d − 1

polynomials are good.

ICALP 2016

36:6 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

The main lemma (Lemma 3) shows that for all good polynomials Polyu to their corres-
ponding sensitive function fu, we can associate with every size s = 2o(n) branching program
P computing fu, an mr-by-mw embedded rectangle RP of size r2, where r will be a large
constant, and mr and mw will be roughly equal, and will each be a constant fraction of
n. For simplicity of calculations for now, assume that mr = mw = m. The rectangle will
have the property that P accepts every input in RP ; in other words, RP is a 1-rectangle
of P. Choosing d = r2, each rectangle of size r2 can be a 1-rectangle for very few degree
d − 1 polynomials – at most a |D|−nδr2 fraction of all degree d − 1 polynomials. (This is
Lemma 6.) Secondly, the total number of such rectangles is fairly small – of size roughly
|D|O(rm) (Lemma 5). The key point is that the number of rectangles is roughly |D|2rm – the
exponent grows linearly in r. (More precisely it grows linearly in the sum of the lengths of
the sides of the rectangle, |A|+ |B|). But on the other hand, the probability that a degree
d = r2 polynomial takes on values less than K1−δ within the rectangle is roughly |D|−mr2 –
that is, the exponent grows quadratically with r. (More precisely it grows linearly in the size
of the rectangle |A|.|B|). Because |D|−nδr2 |D|O(rn) is less than 1/4, this implies that many
good degree d− 1 polynomials have no size r2 1-rectangle, thus proving the theorem.

Note that we set our parameters so that the area of the rectangle RP is at least the
degree d of the polynomial u. (Thus r2 ≥ d.) A crucial point in the above argument is that
the sum of the lengths of the sides of RP must be at most a fraction of its area. This requires
that the rectangle is reasonably close to being square. We put extra effort into making sure
that the rectangle is square (without compromising too much of its size in order to make it
square). This enables us to achieve domain size 3; a somewhat simpler argument achieves
domain size 5.

I Lemma 3 (Main Lemma). Let f : Dn → {0, 1} be any sensitive boolean function such that
the density of 1’s is at least 1

2|D|K
−δ. Suppose that the following inequalities are satisfied for

our parameters:
(1) mw = 4mr = γn;
(2) |D|mr ≤ |D|mw(1/2− 2γ)mw ;
(3) r ≤ 1

4|D|s (1/2− γ)mr |D|mr−δn.
Then if P is a |D|-way nondeterministic semantic read-once branching program of size s for
f then there is an mr-by-mw embedded rectangle R = (πred , πwhite, A,B,w) such that every
input in R is accepted by P, and where |A|, |B| = r.

Proof. Let f be a sensitive function such that the density of 1’s is at least 1
2|D|K

−δ. Suppose
there is a size s nondeterministic semantic read-once branching program, P for f . Let S0 be
the set of inputs that are accepted by P ; since P is assumed to be correct for all inputs of f ,
we have |S0| ≥ 1

2|D|K
−δ|D|n. For each accepted instance I ∈ S0, fix one accepting path, pI ,

in the branching program. Since the function is sensitive each of the n variables must be read
along any accepting path. For if some variable is not read along a computation path then
changing the value of that variable alone would produce an accepting instance. However,
this can’t be the case for a sensitive function since any two accepted inputs will have to differ
in at least two positions. So each of the n variables must be read along this path exactly
once and thus each accepting instance I has an associated permutation πI of the n variables
associated with its accepting path pI . Designate state qI as the state in pI which occurs just
after the first half of the variables in πI . Now define q to be the most common designated
state (over all accepting inputs I ∈ S0), and let S1 ⊆ S0 denote the corresponding set of
inputs whose designated state is q. Thus for each input I in S1, there is an accepting path

S. Cook, J. Edmonds, V. Medabalimi, and T. Pitassi 36:7

pI that passes through state q. Because P has size s, it follows that

|S1| ≥ |S0|/s ≥
1

2|D|sK
−δ|D|n = 1

2|D|s |D|
n−δn (1)

We now want to pick two subsets of coordinates πred ⊆ N and πwhite ⊆ N , of size mr and
mw respectively, and a set S∗ ⊆ S1 of inputs with the property that for every input I ∈ S∗,
and associated accepting path pI , not only does it pass through state q, but every coordinate
in πred is read before state q, and every coordinate in πwhite read at or after state q.

We will first pick πred greedily. For each I ∈ S1, at least n/2 of the n coordinates in
pI occur in πI before reaching state q, and thus there is some coordinate i such that for
at least half of the inputs I ∈ S1, i occurs in πI before reaching state q. After choosing
the first coordinate, there are at least |S1|/2 inputs remaining. Continue greedily until we
pick mr coordinates, πred, always choosing the most popular coordinate that occurs in πI
before reaching state q. By averaging, when the ith coordinate, i ≤ mr < γn is chosen, the
fraction of inputs that remain is at least (n/2−i)

(n−i) ≥
(n/2−γn)
(n−γn) ≥

(n/2−γn)
n = (1/2 − γ). Let

S2 ⊆ S1 denote the set of inputs such that all coordinates in πred are read before reaching q.
It follows that

|S2| ≥ (1/2− γ)mr |S1| (2)

By assumption (3) in the statement of the Lemma, we have

r ≤ 1
4|D|s (1/2− γ)mr |D|mr−δn (3)

Then from (1), (2), and (3) we have

|S2| ≥ 2r|D|n−mr (4)

For each w ∈ Dn−πred , the average number of extensions of w in S2 is 2r. We want to
prune S2 such that every w ∈ Dn−πred has at least r extensions. To do this, define S3 ⊆ S2,
where we remove all inputs (w, ∗) from S2 such that w has less than r extensions in S2. Since
we delete at most r|D|n−mr elements from S2, and |S2| ≥ 2r|D|n−mr , it follows that

|S3| ≥ r|D|n−mr (5)

Next we will choose mw coordinates, πwhite in the same greedy fashion, and let S4 denote
the set of all inputs in S3 such that all coordinates in πwhite are read after reaching q. Again
by averaging,

|S4| ≥ (1/2− 2γ)mw |S3| (6)

We will express S4 as the disjoint union of sets Rw: choose a value w for the coordinates
outside of πred ∪ πwhite. The corresponding set Rw ⊆ S4 consists of all inputs (α,w, β) such
that α is an assignment to the variables in πred , β is an assignment to the variables in πwhite,
and (α,w, β) ∈ S4.

I Lemma 4. For each w: (i) Rw is an embedded rectangle and (ii) as long as Rw is not
empty, the size of its red leg is at least r.

Proof. We will first show that Rw is an embedded rectangle. Let Sred ⊆ Dπred be the
projection of Rw onto the coordinates of πred and let Swhite ∈ Dπwhite be the projection of
Rw onto the coordinates of πwhite. Setting A = Sred, B = Swhite and w = w, we claim

ICALP 2016

36:8 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

that Rw is equal to the embedded rectangle defined by (πred , πwhite, A,B,w). To see this,
consider x, x′ ∈ A and y, y′ ∈ B such that xyw ∈ Rw, and x′y′w ∈ Rw. Let I be the input
corresponding to xyw and let pI be the corresponding path going through state q. Note
that in pI the x-variables are all read prior to reaching q, and the y-variables are read after
reaching q, and there is some split of the w variables into w1, w2 where the w1 variables
are read prior to q and the w2 variables are read after q. Similarly, let I ′ be the input
corresponding to x′y′w and let pI′ be the corresponding path. There is now a possibly
different split of w into w′1, w′2, so x′, w′1 are read before q and y′, w′2 are read after q. We
claim that xy′w ∈ Rw: consider the path (x,w1) (the first half of pI) and (y′, w′2) (the second
half of pI′). This path must be consistent since w1 and w′2 are consistent and x, y′ are on
disjoint variables. Thus there is an input consistent with this path; it is an accepting path
going through q and consistent with w; the variables in πred are all read before q, and the
variables in πwhite are all read after q. Thus it is in Rw. An analogous argument shows that
x′yw ∈ Rw. Thus Rw is an embedded rectangle.

Secondly we will show (ii) for each Rw ⊆ S4, the size of the red leg is at least r. (That
is, |A| ≥ r.) Consider a nonempty rectangle Rw with red leg A, white leg B and spine
w. Recall that the inputs in S3 consist of a partial input w+ ∈ DN−πred together with a
set A ⊆ Dπred such that |A| ≥ r. We obtain S4 from S3 by selecting mw coordinates from
N − πred , one at a time, choosing each coordinate greedily, where a coordinate is chosen if it
is read after state q in the most inputs. Consider a block of inputs (A,w+) ∈ S3. If some
input (α,w+) ∈ (A,w+) survives, then all coordinates in πwhite that were chosen must all be
read after state q on input (α,w+). But this means that for every input (α′, w+) ∈ (A,w+),
all coordinates in πwhite are also read after q. (Otherwise, some coordinate would be read
twice along this accepting input, violating the read-once condition.) Thus, either the entire
block (A,w+) is in S4, or the entire block is removed from S4.

Now let Rw = (πred , πwhite, A,B,w) ⊆ S4 be a nonempty rectangle, w ∈ DN−πred−πwhite .
Rw is obtained by taking the union of (nonempty) blocks (A′, w+) ∈ S4, w+ ∈ DN−πwhite .
Since as we argued above, for each such block, |A′| ≥ r, it follows that |A| ≥ r as well. J

Let ravg denote the average size of the white leg of the rectangle over all rectangles
Rw ⊆ S4. It is easy to see that |D|n−mwravg ≥ r|D|n−mr(1/2 − 2γ)mw . It follows that
ravg ≥ r if |D|mw−mr(1/2 − 2γ)mw ≥ 1. The latter inequality follows from condition (2).
Thus, by condition (2) assumed in the hypothesis of Lemma 3, we can pick some setting w∗
to the remaining n−mr −mw uncoloured coordinates (the coordinates that are not in πred
or πwhite) such that the white leg of the rectangle Rw∗ has size at least ravg = r. Let S∗
equal Rw∗ . By construction, both the red leg of S∗ = Rw∗ and the white leg of Rw∗ have
size at least r. Prune S∗ so that each leg has size exactly r, thus completing the proof of the
lemma. J

I Lemma 5. Let R be the set of all mr-by-mw embedded rectangles over DN such that
|A| = |B| = r, where mw = γn and mr = mw/4. Then |R| ≤ (e/γ) 5

4mw |D| 54 rmw+mw/γ .

Proof. The number of choices for πred , the coordinates of A, is
(
n
mr

)
. Given πred , we choose

r vectors from the |D|mr possible values for the elements of A. Thus the total number of
possible sets A is at most

(
n
mr

)
|D|rmr . Similarly the number of choices for the set B is at

most
(
n
mw

)
|D|rmw . The number of choices for w ∈ DN−πred−πwhite is |D|n−mr−mw . Thus |R|

is at most
(
n
mr

)(
n
mw

)
|D|rmr |D|rmw |D|n− 5

4mw . Using the inequality
(
n
k

)
≤ (enk)k we conclude

the number of choices for |R| is at most (en/mw)mw(4en/mw) 1
4mw |D|n− 5

4mw |D| 54 rmw ≤
(e/γ) 5

4mw |D| 54 rmw+mw/γ J

S. Cook, J. Edmonds, V. Medabalimi, and T. Pitassi 36:9

I Lemma 6. Define the predicate Good(R, u) to be true if for every input x in the rectangle
R, the polynomial u on input x is less than K1−δ (i.e. Polyu(x) is true). Then for all
embedded rectangles R of size d, Pru[Good(R, u)] ≤ p where p = |D|−δnd.

Proof. Assume Good(R, u). Suppose that |R| = d and let B′ ∈ [K1−δ]d specify a vector of
d accepting values. Let GoodB′(R, u) to be the event that for all x ∈ R, Polyu(x) = B′(x).
Then Pru[Good(R, u)] = K(1−δ)d · Pru[GoodB′(R, u)].

To bound Pru[GoodB′(R, u)], suppose that it is true that ∀x ∈ R, Fu(x) =
∑
i<d uix

i =
B′(x). Note that this fixes the output of the degree d−1 polynomial for d values of x. By inter-
polation, this uniquely determines the polynomial, u′. Thus, Pru[GoodB′(R, u)] = Pru[u =
u′] = K−d = |D|−nd. Overall, Pru[Good(R, u)] ≤ K(1−δ)d|D|−nd = |D|n(1−δ)d|D|−nd =
|D|−δnd. This completes the proof of Lemma 6. J

I Lemma 7. For a random u,for fixed parameters d, δ the probability that Polyu(x) does
not accept a (1 ± o(1))K−δ fraction of all the inputs is at most o(1). (Here both o(1) are
K−(1−δ)/3.)

Proof. Randomly choose the coefficients u ∈ [K]d of the d−1 degree polynomial. For each
instance x ∈ [K] (and value b ∈ [K]), let A〈x,b〉 denote the event that the output of this
polynomial on input x is b. Let ax denote the event that this value is less than K1−δ so that
x is a yes instance. Let Y =

∑
x∈K ax denote the number of yes instances for the chosen u.

Note p = Pru[ax] = K1−δ/K = K−δ because just choosing the constant coefficient u0 of the
polynomial randomly makes the polynomial’s output on x uniformly random in [K]. Hence, by
linearity of expectation Y = Exp[Y] = K ·Pru[ax] = K1−δ. We show that the A〈x,b〉 events for
different x are d-wise independent as follows. Consider any subset {x1, x2, . . . , xd} ⊂ [K] of
the instances. Knowing the value of the polynomial at each of these instances, by interpolation,
uniquely determines the coefficients u of the polynomial. Hence, if all you know about u
is the values on d−1 of these instances, then the value on the remaining is still uniformly
random within [K]. Formally stated, Pru[A〈xd,bd〉 | A〈x1,b1〉, . . . , A〈xd−1,bd−1〉] = Pru[A〈xd,bd〉].
Not fully knowing the value of the first d−1 of the instances, but only that their value
is small, give you even less information. Hence, Pru[axd | ax1 , . . . , axd−1] = Pru[axd]. It
follows that Pru[ax1 ∧ . . . ∧ axd] = Pru[ax1] · . . . · Pru[axd]. Because the ax events are d-wise
independent, it follows that the dth order standard deviation of their sum Y is the same as it
would be if they were completely independent events. We, however, only need to consider the
variance. More formally, for each x, let a′x be an independent event with probability K−δ of
success and Y ′ =

∑
x∈K a

′
x. The variance is Var[Y] = Expu[(Y −Y)2] = Expu[(

∑
x ax−Y)2].

The non-linear part of this is Expu[(
∑
x ax)2] =

∑
x,x′ Expu[ax · ax′], which we know from

pair-wise independence is
∑
x,x′ Expu[ax] ·Expu[ax′] =

∑
x,x′ Expu[a′x] ·Expu[a′x′]. The same

computation for the a′x, gives that σ2 = Var[Y] = Var[Y ′] = K ·p(1−p) ≈ KK̇−δ = K1−δ = Y .
By Chebycheff’s inequality, ∀η > 0 we have Pru(|Y −Y)| ≥ ησ) < 1

η2 . Setting η = Y
1
6 , gives

Pru(Y 6∈ (1± Y −
1
3)Y) ≤ Y −

1
3 . J

We are now ready to complete the proof of the theorem. Call a polynomial u “good" if
Polyu accepts at least a 1

2K
−δ fraction of all inputs. By Lemma 7, we know that at least

half of all u’s are good. For each good u, the corresponding sensitive function fu has density
at least 1

2|D|K
−δ. Since fu is sensitive and has sufficient density Lemma 3 tells us that any

small branching program for fu implies that there exists an mr-by-mw embedded rectangle
size r2 that is accepted (assuming that conditions (1), (2), and (3) are satisfied).

On the other hand, by union bound Lemmas 5 and 6 together tell us that at most a p|R|
fraction of degree d− 1 polynomials u have such mr-by-mw embedded rectangles of size r2

ICALP 2016

36:10 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

that are accepted. Suppose we can choose a setting of the parameters so that p|R| < 1/4. If
follows that for at least 1

4
th of all good polynomials the corresponding sensitive functions

fu do not have such mr-by-mw embedded rectangles of size r2 that are accepted since the
hyperplane constraint ha(u)(x) can only shrink an accepting rectangle. Then by Lemma 3
this implies that at least as many fu cannot have small branching programs, and thus the
theorem is proven.

It is left to show that we can set the parameters such that p|R| < 1/4, and properties
(1), (2), and (3) of Lemma 3 are satisfied. We will set the parameters as follows: |D| = 3,
mw = 4mr = γn, γ = .01, δ = γ/300, r = 3000, and d = r2. To achieve p|R| < 1/4, we
require |D|δmwr2/γ−mw/γ− 5

4 rmw > 4(e/γ) 5
4mw . Using |D| = 3 and factoring out mw, it is

sufficient if we have 3δr2/γ−1/γ− 5
4 r > 4(e/γ) 5

4 . With our choice of parameters, this is satisfied
for r ≥ 3000.

For Lemma 3, we also require assumptions (2) and (3). First for (2): |D|mr ≤ |D|mw(1/2−
2γ)mw . For |D| = 3 and mw = 4mr, this is satisfied. For (3) we require: r ≤ 1

4|D| (1/2 −
γ)mr |D|mr−δn = 1

4|D| (1/2 − γ)mr |D|mr(1−4δ/γ). For |D| = 3, γ = .01, δ = γ/300, we have
(1/2− γ)|D|(1−4δ/γ) ≥ 1.44 and thus it suffices to show r ≤ 1

12 (1.44)mr/s. This holds for our
choice r = 3000 when s ≤ 2cmr = 2cn/(4γ) for some c > 0 and sufficiently large n. Note that
|D| > 2 helps us in ensuring assumptions (2) and (3) hold.

4 Conclusion

We have proved an exponential lower bound on the size of non-deterministic semantic read
once branching programs computing a polynomial time computable function f : Dn → {0, 1}
when D = {0, 1, 2} with just three elements. Our contribution is that we bring down the
size of the domain required to achieve this. Prior to our result the best that was known
was for D-ary branching programs with |D| ≥ 213. The explicit function f for which we
show the lower bound is the decision problem of determining whether a certain degree d
polynomial over a finite field K evaluates to a value less than a certain threshold at a given
input (along with a hyperplane constraint). This result brings down the focus to the first
non-boolean case, |D| = 3 vs the boolean case, |D| = 2, since, interestingly the case where D
is boolean {0, 1} still remains open and no non-trivial lower bounds are known for binary
non-deterministic semantic read once branching programs [12]. In the next section we explore
the Booelan case.

5 Semantic Branching Programs with |D| = 2 can evade Large
Bottleneck Rectangles

In this section we show how binary non-deterministic semantic read once branching programs
can behave differently by evading lower bounds in certain bottleneck layers by having a small
number of states in those layers irrespective of what function f : {0, 1}n → {0, 1} they are
computing. The example upper bounds we give demonstrate why it is likely harder to prove
lower bounds for semantic read once branching programs with domain size |D| = 2.

When the domain size is |D| > 2, the technique is to prove that the set of yes instances
handled by any one state of the branching program contains a rectangle and then identify a
computational problem that has no large rectangle of yes instances. Hence, the rectangle for
each state must be small. Because there are exponentially many yes instances and each must
be handled by at least one state at a selected bottle neck level of the branching program,
there must be an exponential number of states at that level. We show here that for domain

S. Cook, J. Edmonds, V. Medabalimi, and T. Pitassi 36:11

size |D| = 2, the set of yes instances handled by one state can be quite arbitrary and quite
large. This does not mean that the total number of branching program states can necessarily
be small. But it does mean that at the one level of the branching program that the prover is
hoping to use for a bottleneck, the number of states might be quite small.

A lower bound that attempts to prove that a selected bottleneck level of the branching
program must have many states, must start by selecting which level of the branching program
will be the level in question. It might do this by specifying how many or which variables
have been read so far. Given any boolean computational problem with input from {0, 1}n and
a criteria for choosing the bottle neck level chosen from a wide (but not exhaustive) range
of possible choices, we now show how to fool such a lower bound, by giving a branching
program that gives a polynomial upper bound on the number states at the selected layer.

The branching program is constructed as follows. For each yes instance A ∈ {0, 1}n, we
form an accepting branching program path 〈C1(A), q(A), C2(A)〉 where q(A) denotes the
state A passes through at the bottleneck level, C1(A) the path before this level and C2(A)
that after. Note that to get a counter example to a lower bound technique using some
bottleneck layer, we don’t need to give a full poly-size branching program. We only need
the number of states q(A) to be small. It can have exponential number of states before and
after this layer. Hence, we will have all of these paths C1(A) for different yes instances A be
completely disjoint from each other. Similarly for C2(A). These paths only come together
and interact at the special layer of states q(A). In order to make the properties of this level
more arbitrary, let A1, A2 ⊂ [n] be any partition of the input variables into two parts. Let
C1(A) read all the ones in A1 and all the zeros in A2. Let C2(A) read all the zeros in A1 and
all the ones in A2. Let q(A) = 〈u, v〉 be the state, where u ∈ [n] is the number of ones in A1
and v ∈ [n] is the number of the zeros in A2. Hence only n2 states are needed in the layer.
Note that because we have allowed the computational problem to be arbitrary, other than
partitioning its yes instances based on their hamming weights, the sets of instances handled
by a state q(A) is completely arbitrary.

Note that as long as A1, A2 are comparable in size, for most of the inputs, the incoming
path C1(A) and C2(A) are of comparable length. However, the purported bottleneck layer
for which we give the above upperbound is not identical to the one we use for our lower
bound for |D| ≥ 3 in the sense that the bottleneck states like q(A) do not appear exactly
midway through the accepting paths at length n/2 on all the paths as is required in Lemma 3.
Nevertheless, the upper bound is interesting because for most inputs A the incoming and
outgoing paths through a state in the layer are of comparable length.

We will now in two ways, prove that this branching program solves the given computational
problem. We will start with a communication game interpretation. Think about the algorithm
as a game between two players C1 and C2 and Charlie who they don’t trust. Charlie shows
C1 the ones in the first part A1 of the input and the zeros in the second part A2. Assuming
he trusts Charlie, this lets C1 know the entire input. Hence, he can answer any question
about the input. The only way that Charlie can cheat is to not show all of the entries. In
order to verify that he is not lying, C1 sends to C2 the number of ones in A1 and the number
of zeros in A2. C2 can then check that they have both been shown all of what they were
supposed to see.

Now lets consider the branching program interpretation. Clearly, the branching program
described accepts all yes instances of the given problem, because it has a separate accepting
path 〈C1(A), q(A), C2(A)〉 for each yes instance A. What remains is to prove 1) the branching
program is semantic read once and 2) that no no instances are accepted. We do this by
showing for every pair 〈A,B〉 of different yes instances that pass through the same bottleneck

ICALP 2016

36:12 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

states q(A) = q(B) = 〈u, v〉 = q, that the cross path 〈C1(A), q, C2(B)〉 is inconsistent in that
it reads some variable twice with different values. Hence, by the definition of semantic, it
does not matter that this path is not read once and because it is inconsistent, it cannot
be accepting a no instance. Because A and B are different, either A1 and B1 are different
and/or A2 and B2 are different. Assume A1 and B1 are different. Because A1 and B1 have
the same number u of ones, there is an element that is one in A1 and zero in B1. Hence
C1(A) and C2(B) both read it. This element is read twice in 〈C1(A), q, C2(B)〉 with different
values and so is inconsistent.

So for D = 2, presence of a small number of states in a supposed bottleneck layer of
a branching program need not imply that there exists a balanced embedded rectangle of
accepting instances. In particular, our lower bound finds a rectangle within the set of yes
instances handled by narrowing the set down to a subset within which for many variables it
is fixed whether it is read before or after the state. However in this upper bound, whether a
variable is read before or after the state q(A) is completely determined by whether its value
is 0 or 1. Hence, fixing this fixes its value. If this is done for every variable, the set of inputs
left in the eventual rectangle identified by this lower bound method is narrowed down to a
singleton.

Acknowledgements We thank Paul Beame and Siu Man Chan for helpful discussions and
an anonymous reader for many helpful suggestions.

References
1 M. Ajtai. A non-linear time lower bound for boolean branching programs. In Proceedings

40th FOCS, pages 60–70, 1999.
2 P. Beame, T.S. Jayram, and M. Saks. Time-space tradeoffs for branching programs. J.

Comput. Syst. Sci, 63(4):542–572, 2001.
3 P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized

computation of decision problems. Journal of the ACM, 50(2):154–195, 2003.
4 Allan Borodin, A Razborov, and Roman Smolensky. On lower bounds for read-k-times

branching programs. Computational Complexity, 3(1):1–18, 1993.
5 Alan Cobham. The recognition problem for the set of perfect squares. In Switching and

Automata Theory, 1966., IEEE Conference Record of Seventh Annual Symposium on, pages
78–87. IEEE, 1966.

6 Scott Diehl and Dieter Van Melkebeek. Time-space lower bounds for the polynomial-time
hierarchy on randomized machines. SIAM Journal on Computing, 36(3):563–594, 2006.

7 L. Fortnow. Nondeterministic polynomial time versus nondeterministic logarithmic space:
Time space tradeoffs for satifiability. In Proceedings 12th Conference on Computational
Complexity, pages 52–60, 1997.

8 L. Fortnow and D. Van Melkebeek. Time-space tradeoffs for nondeterministic computation.
In Proceedings 15th Conference on Computational Complexity, pages 2–13, 2000.

9 Lance Fortnow, Richard Lipton, Dieter Van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. Journal of the ACM (JACM), 52(6):835–865, 2005.

10 S. Jukna. A nondeterministic space-time tradeoff for linear codes. Information Processing
Letters, 109(5):286–289, 2009.

11 Stasys Jukna. A note on read-k times branching programs. Informatique théorique et
applications, 29(1):75–83, 1995.

12 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

S. Cook, J. Edmonds, V. Medabalimi, and T. Pitassi 36:13

13 Stasys P Jukna. The effect of null-chains on the complexity of contact schemes. In Funda-
mentals of Computation Theory, pages 246–256. Springer, 1989.

14 Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser turing
machine classes le, nle, co-nle and pe. In Mathematical Foundations of Computer Science
1988, pages 405–413. Springer, 1988.

15 R. Lipton and A. Viglas. Time-space tradeoffs for sat. In Proceedings 40th FOCS, pages
459–464, 1999.

16 EA Okolnishnikova. On lower bounds for branching programs. Siberian Advances in Math-
ematics, 3(1):152–166, 1993.

17 Pavel Pudlak and Stanislav Zak. Space complexity of computations. Preprint Univ. of
Prague, 1983.

18 Ryan Williams. Better time-space lower bounds for sat and related problems. In Computa-
tional Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on, pages 40–49.
IEEE, 2005.

ICALP 2016

	Introduction
	Definitions
	Nondeterministic Semantic Read-Once Branching Programs
	Polynomial Evaluation Problem
	Rectangles and Embedded Rectangles

	Lower Bound for |D|=3
	Conclusion
	Semantic Branching Programs with |D|=2 can evade Large Bottleneck Rectangles

