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Abstract

This paper studies the performance of AIMD (Additive Increase Multiplicative Decrease)
TCP as an online distributed scheduling algorithm for allocating transmission rate to ses-
sions/jobs running on a general network. The network consists of a set of routers which in
this context act only as bottlenecks, i.e. when a router’s capacity has been reached, it informs
the jobs passing through it to multiplicatively back off transmission rates. The analysis is easier
when this AIMD algorithm is modeled by a continuous algorithm. We improve on that pre-
sented by Kelly to better capture the interconnectedness of the network. Extending the paper
by Edmonds, Datta, and Dymond that solves the single bottleneck case, we prove that with
extra resources, this algorithm AIMDEQUI is competitive against the optimal global algorithm
in minimizing the average transmission time of the jobs. We also bound the fairness of this
resource allocation according to three different definitions of fairness.

Keywords: AIMD, TCP, online competitive ratio, flow time, fairness, multi-bottleneck.

1 Introduction

AIMD (Additive Increase Multiplicative Decrease) is the core algorithmic component of TCP
(Transport Control Protocol) for allocating bandwidth or transmission rate to the different jobs.
This paper considers a network modeled as a general graph where each node is a router that acts as
a bottleneck with a given capacity Bk. The set of sessions/jobs that arrive and complete through
out time on the network must be allocated network bandwidth. The amount of bandwidth that
each of them will be allocated depends on the bottlenecks it passes through. In this algorithm,
each job Ji increases his bandwidth b〈i,t〉 linearly at a rate of δb〈i,t〉/δt = α (typically α = 1) until
he detects that one of the bottlenecks that his transmission passes through has reached capacity,
at which point, he cuts his bandwidth by a multiplicative factor of β (typically β = 1

2).

This scheduling problem is understood quite well when the network is restricted to a single
bottleneck. In this case, there is a limited amount B of resource, be it bandwidth or processors,
which must be allocated at each point in time to a set of online jobs. We mention processors
here only because this is the context with in which the scheduling community tends to write
[3]. The standard measure of the successful utilization of the resource in both the systems and
the scheduling communities is the average flow/response/waiting time of the jobs, computed as
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Avgi∈J [ci − ai]. The optimal scheduling algorithm is Shortest Remaining Job First which gives all
B of the bandwidth/processors to the job which is closest to completing. This algorithm is online,
in that it does not need to know what jobs will arrive in the future, but it is not non-clairvoyant
in that it needs to know the amount of work remaining in the jobs currently in the system. A
common non-clairvoyant scheduling algorithm is EQUI which simply allocates, at each point in
time t, to each job currently alive, its share B

nt
of bandwidth/processors. Though this is fair to all

users, [32] proves the competitive ratio of this online, non-clairvoyant scheduler can be as bad as
Θ( n

log n
) when measured against the optimal all-powerful, all knowing, off-line scheduler, which in

this case is Shortest Remaining Work First. When there is such a negative result, a typical way
to prove that the scheduler does perform well is to give it some extra resources before comparing
it to the optimal scheduler, [23]. (See Section 5 for additional motivation.) [9] does this proving
that EQUI is (2 + ǫ)-speed O(1 + 1

ǫ
)-competitive, meaning that when EQUI is given 2 + ǫ times as

much bandwidth/processors, it performs within a constant as well as the optimal.

Another complication is that the setting in which the AIMD algorithm is intended is distributed
in that each job/sender has no global knowledge of the state of the other jobs in the network. The
algorithm EQUI, which instantly reallocates the amount of bandwidth/processors to each job as jobs
arrive and complete, is not implementable in this setting. In contrast, AIMD can be implemented
distributively as long as each job/sender is receives feed back when the bottleneck is at its capacity.
Despite this restriction, [7] proves the AIMD algorithm quickly reconverges to EQUI. AIMD,
however, is different from EQUI in that its allocations continually increase and decrease and it
takes some (small) time for it to reconverge after jobs arrive or depart. [11] proves that if AIMD
is given a constant number of adjustment periods per job to converge then it is also O(1)-speed
O(1)-competitive.

The main purpose of this paper is to extend these results to the multi-bottleneck case. Unlike
[11], which takes into account the fact that AIMD constantly increases additively and decreases
multiplicatively, for the multi-bottleneck case, we want to simplify AIMD in two ways. The first
simplification is to smooth out the quick changes using approximating differential equations. Be-
cause the resulting algorithm is still distributed, the allocations still change gradually when a job
arrives or leaves, unlike EQUI which instantly knows to reallocate. But just as the single-bottleneck
AIMD quickly converges to the global allocation state given by EQUI when the job set does not
change, it is our strong belief that the multi-bottleneck AIMD also quickly converges to some global
allocation state. Surprisingly, however, there has not previously been a description of this converged
to allocation. Kelly et al. in [27, 25] does a good job, but the algorithm they consider is different.
In their AIMD, the frequency at which a bottleneck drops packets, instructing its jobs to decrease
their bandwidth changes as a fixed function that depends only on the current total traffic through
the bottleneck in question. In contrast, in the standard AIMD algorithm for TCP, a bottleneck
instructs its jobs to back off only when it reaches its capacity. The frequency at which this occurs
is a much more complex function of what the other bottlenecks are doing. In Section 3, we define
a new continuous model of how AIMD evolves on a general network within this setting and also
define the scheduler, AIMDEQUI, to be that to which it converges.

This paper then proves that this global on-line non-clairvoyant multi-bottleneck rate allocation
algorithm AIMDEQUI is competitive when given extra resources. Our proof technique is to reduce
this problem to proving that the algorithm EQUI in the single bottleneck case is competitive.
The result in [9], which was actually written for the processor allocation problem, then applies
directly. Comparing AIMDEQUI to EQUI requires some notion of the fairness of bandwidth
allocation. Because different jobs pass through different bottlenecks with different capacities, such
a notion is not clearly defined. The standard definition of fairness is referred to as max-min fairness
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[12, 13, 17, 19, 20]. We call this the socialistic view of fairness because it attempts to give each
job the same bandwidth. In Section 4, we consider two other notions of fairness as well. Local
fair is similar but considers only local information. Free Market fair penalizes jobs that use many
bottlenecks that are in high demand.

According to a socialistic view of fairness, [14] proves that AIMD can be unfair by a factor of
m, where m is a bound on the number of bottlenecks that a job goes through. Whether this is
tight is open. We do, however, show that according to a local view of fairness, it is never more than
a factor of m unfair and that according to a free market view, it is perfectly fair.

Finally, Section 5 proves that AIMDEQUI is O(m3)-speed O(m)-competitive, meaning that
with O(m3) times the bandwidth, the flow time under AIMDEQUI is within a factor of O(m) of
that of the optimal all knowing scheduler. We believe that it is reasonable to assume that m is a
constant because within the actual internet no transmission hops more than a half dozen times. We
are also able to prove that AIMDEQUI is O(1)-speed O(1)-competitive independent of m. However,
this result requires the assumption that the adjustment frequencies of the bottlenecks do not change
much within the life of an individual job. This we believe is a reasonable assumption because the
adjustment frequencies are a global property that should not be greatly affected by the arrival and
the completion of individual jobs. We believe that the result is true without this assumption or
minimally when given speed s = O(m), however, as of yet this has been unattainable.

There has been little work done for AIMD within multi-bottleneck networks. Some, however,
has been done for more general bandwidth scheduling algorithms [2, 4, 5, 6, 12, 13, 17, 18, 21, 22, 31].
Hahne [17, 18] proves that if each bottleneck/router relays the packets of the jobs in a round-robin
way, then the bandwidths converge to max-min fairness between the jobs. However, they do not
consider the worst case packet arrival or jobs arriving and leaving, but assume either Bernoulli
packet arrivals or the case in which there are always packets waiting to enter the system. Fatourou
et. al [12, 13] prove that another class of algorithms converge to max-min fairness. These, however,
have a global scheduler dictate an order in which the jobs “update,” where such an update requires
the job to tell any other job that shares a bottleneck with it to decrease its bandwidth.

2 Scheduling Models and Competitive Ratio

In this section, we review the formal definitions used by the scheduling community. Generally, they
consider the problem of partitioning the time of a single processor amongst the online jobs currently
alive. Each job completes in time proportional to the fraction of the processors time allocated to it.
This problem maps directly onto the single-bottle neck version of problem considered in this paper,
namely the problem of partitioning the bandwidth of a single bottleneck among the jobs. Edmonds
[9] extends this notion to that of scheduling multiple processors to jobs which unbeknownst to the
scheduler may or may not be able to effectively utilize all of the processors given to it. Similarly
in the problem of transmitting files, each sender may have a different upper bound on the rate at
which it can transmit data. This can be modeled by representing the transmission with a job whose
speedup function is fully parallelizable up to the senders capacity and then becomes sequential for
any additional bandwidth allocated to it, namely β . In such ways, this paper does use the stronger
result about arbitrary speed up functions in its reduction to the bandwidth problem. For this
reason, we will start with a review of definitions introduced in [9].

An instance consists of a collection J = {J1, . . . , Jn} where job Ji has a release/arrival time
ai and a sequence of phases

〈

J1
i , J2

i , . . . , Jqi

i

〉

. Each phase is an ordered pair 〈wq
i , Γ

q
i 〉, where wq

i is
a positive real number that denotes the amount of work in the phase and Γq

i is a function, called
the speedup function, that maps a nonnegative real number to a nonnegative real number. Γq

i (p)
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represents the rate at which work is processed for phase q of job Ji when run on p processors
running at speed 1. If these processors are running at speed s, then work is processed at a rate of
sΓq

i (p).

A phase of a job is parallelizable if its speedup function is Γ(p) = p. Increasing the number of
processors allocated to a parallelizable phase by a factor of s increases the rate of processing by
a factor of s. A phase is sequential if its speedup function is Γ(p) = 1, for all p ≥ 0. The rate
that work is processed in a sequential phase is independent of the number of processors, even if it
is zero. A speedup function Γ is nondecreasing if and only if Γ(p1) ≤ Γ(p2) whenever p1 ≤ p2. A
speedup function Γ is sublinear if and only if Γ(p1)/p1 ≥ Γ(p2)/p2 whenever p1 ≤ p2. We assume
all speedup functions Γ in the input instance are nondecreasing and sublinear.

A schedule specifies for each time, and for each job, a nonnegative real number specifying the
number of processors assigned to that job. The total number of processors assigned at any time
can be at most the number of processors. A nonclairvoyant algorithm only knows the past arrival
and completion of jobs. In particular, a nonclairvoyant algorithm does not know the current phase
q, its work wq

i , or its speedup function Γq
i .

The completion time of a job Ji, denoted ci, is the first point of time when all the work of the job
Ji has been processed. Note that in the language of scheduling, we are assuming that preemption
is allowed, that is, a job maybe be suspended and later restarted from the point of suspension. The
response/flow time of job Ji is ci − ai, which is the length of the time interval during which the job
is active. Let nt be the number of active jobs at time t. Another formulation of total flow time is
∫ ∞
0 ntδt.

Let A be an algorithm and J an instance. We denote the schedule output by A with speed
s processors on J as As(J ). Let Opt(J ) be the optimal schedule with unit speed processors on
input J . We let F (S) denote the total response time incurred in schedule S,

To understand the worst-case analysis results in the literature, we need to introduce and mo-
tivate resource augmentation analysis [23]. A scheduling algorithm A is said to be s-speed c-
competitive if

max
J

As(J )

OPT1(J )
≤ c

where As(J ) denotes the average flow time for the schedule given by A with a speed s on input J ,
and similarly OPT1(J ) denotes the flow time of the adversarial schedule for J with a unit speed.

Our analysis philosophy is to put first priority on minimizing the speed, while keeping the
competitive ratio reasonable. The reason for this is that average QoS curves such as those in figure
1(a) are ubiquitous in server systems [28]. That is, the average QoS at loads below capacity is
negligible, and the average QoS above capacity is intolerable. The concept of load is not so easy
to formally define, but generally reflects the number of users of the system. So in some sense, one
can specify the performance of such a system by simply giving the value of the capacity of the
system. In this setting, As(J ) is at most c times optimal average flow time with s times higher
load, since slowing down the speed by a factor of s is the same as increasing the load by a factor
of s. But since the optimal flow time is almost always negligible or intolerable, a modest c times
either negligible or intolerable, still gives you negligible or intolerable. So an s-speed c-competitive
algorithm should perform reasonably well up to load 1/s of the capacity of the system as long as c
is of modest size. Thus usually the goal is to find a server scheduling algorithm that is (1+ǫ)-speed
O(1)-competitive; We call such an algorithm almost fully scalable since it should perform well up
to almost peak load.

Though most scheduling papers consider the allocation of a fixed number of processors between
the active jobs, the results hold for our setting of allocating the fixed bandwidth of a single bot-
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Figure 1: (a) Standard performance curve, and (b) The worst possible performance curve of an
s-speed c-competitive online algorithm.

tleneck network. It is shown in [9] that the algorithm, EQUI, which devotes an equal amount of
processing power to each job, is a (2 + ǫ)-speed O(1 + 1/ǫ)-competitive algorithm for scheduling of

jobs with “natural” speed-up curves. The result in the original paper [9] stated EQUIs(J )
OPT1(J ) ≤ 2s

(s−2) .

This was improved in [10] for the purpose of proving Theorem 2 to 1 + O(
√

s
s−2), which does not

change the result O(1
ǫ
) when the speed s is 2+ ǫ, but when the speed s is large, the improvement is

from 2+O(1
s
) to 1+O( 1√

s
). It is likely that the competitive ratio should be 1+O(1

s
), but as of yet

that is unattainable. Another improvement needed to prove Theorem 2 that [10] provides over [9]
is that it allows the optimal scheduler to complete the fully parallelizable work and the sequential
work independently. The formal statement needed is as follows.

Theorem 1 ([10]) Let J be any set of jobs in a single bottleneck network in which each phase of

each job can have an arbitrary sublinear-nondecreasing speedup function. EQUIs(J )
OPT1(Jpar)+OPT1(Jseq) ≤

1+O(
√

s
s−2), where OPT1(Jpar) is the flow of the optimal schedule to complete only the parallelizable

phases Jpar of the jobs in J and OPT1(Jseq) only the sequential phases.

3 The Continuous AIMD Model for General Networks

In this section, we propose two new models of AIMD through a general network. The first model
is a set of differential equations similar to those given by Kelly in [27, 25]. We argue, however, that
ours is a better model of how changes in one part of the network can effect other parts. Unlike
Kelly, however, we are unable to prove that the system converges, though we have strong arguments
that it does. To avoid this problem, we will simply define another model, denoted AIMDEQUI,
which is the previous model at its steady state. It is this second model that we prove is competitive
against the optimal bandwidth scheduling algorithm. We use the following notation:

• B is a set of routers that act as bottlenecks, the kth of which has maximum bandwidth Bk.
When the scheduler has “speed” s, this maximum bandwidth of each bottleneck is increased
to s · Bk.

• J = {Ji} is the set of jobs (or sessions). Each job Ji is defined by its arrival time ai, its
file length li, and as done in [27, 25], the subset of the bottlenecks Bi that it passes through.
Conversely let Jk denote the set of jobs Ji that pass through the kth bottleneck and J〈k,t〉 to
be those active at time t. Note that as a simplifying assumption, we are ignoring the path
that a job takes through these bottlenecks and any delays caused by transmission times. In
particular, we are ignoring the fact that different jobs may have different transmission times.
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• We denote by b〈i,t〉 the bandwidth or transmission rate used by job Ji at time t. The restriction

for the kth bottleneck is that
∑

i∈J〈k,t〉
b〈i,t〉 ≤ sBk.

AIMD is not represented at the packet level but at via simple fluid equations. Though AIMD
decreases the bandwidth allocation of a session non-continuously at discrete points in time,
we will amortize this change to make all the equations continuous, as done in [27, 25].

• We denote by ci the time that the transmission of job Ji is completed. To accomplish this,
the algorithm must allocate enough bandwidth so that

∫

t∈[ai,ci]
b〈i,t〉 = li.

• We measure the quality of a scheduling algorithm using the average flow/response/waiting
time of the jobs, i.e. Avgi∈J [ci − ai].

• α is the additive increase and β the multiplicative decrease parameter set by the AIMD
algorithm. Namely, each user increases his transmission rate linearly at a constant rate
of δb〈i,t〉/δt = α (typically α = 1) until he detects that one of the bottlenecks that his
transmission passes through has reached capacity. At this point, the sender cuts his own rate
b〈i,t〉 by a multiplicative factor of β (typically β = 1

2).

• f〈k,t〉, the adjustment frequency, will denote the instantaneous frequency at time t at which

the event occurs in which the kth bottleneck reaches capacity and instructs its users to back
off.

The equations relating these values are as follows.

∀ bottlenecks k



f〈k,t〉 ≥ 0 and
∑

i∈J〈k,t〉

b〈i,t〉 = sBk



 or



f〈k,t〉 = 0 and
∑

i∈J〈k,t〉

b〈i,t〉 < sBk



(1)

∀ active jobs i
δb〈i,t〉

δt
= α − (1 − β)b〈i,t〉

∑

k∈Bi

f〈k,t〉 (2)

Equation 1 states that the total bandwidth
∑

i∈J〈k,t〉
b〈i,t〉 through the kth bottleneck is bounded

by its capacity sBk. More over, this bottleneck instructs its users to back off if and only if it is
at capacity. Equation 2 states that each job Ji continually increases his bandwidth linearly at
a rate of δb〈i,t〉/δt = α and approximates the effect of the multiplicative deceases. When any
one of the bottlenecks that Ji passes through reaches capacity, its bandwidth b〈i,t〉 decreases by a
multiplicative factor of β, i.e. from b〈i,t〉 to βb〈i,t〉, which is a decrease of (1 − β)b〈i,t〉. The number

of times that this occurs during a time period of length δt is
[

∑

k∈Bi
f〈k,t〉

]

δt for a total decrease

of
[

(1 − β)b〈i,t〉
∑

k∈Bi
f〈k,t〉

]

δt. Clearly, Equation 2 is only a differential approximation of the

decreases that occur at discrete points in time. This same approximation was made in [27, 25]. As
said, the advantage of this approximation is that it smooths out the constant oscillations between
a bottleneck reaching full capacity and then suddenly having all of allocations decrease by a factor
of β. In [11], we prove that, at least for the single bottleneck case, the effect of these oscillations
can be compensated by multiplicative changing the capacity by a constant.

The main difference between this model and Kelly’s in [27, 25] is that Kelly has a single equation
(f〈k,t〉) = µk = pk(

∑

i∈J〈k,t〉
b〈i,t〉) defining a bottleneck’s adjustment frequency f〈k,t〉 as a function pk

of the total flow
∑

i∈J〈k,t〉
b〈i,t〉 through the bottleneck. Though Kelly defines µk instead to be “the

proportion of marked packets”, it is used in the same way in Equation 2 as we do and we assume that
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this quantity reflects the proportion of the jobs passing through the bottleneck that will adjust and
hence is related to our frequency f〈k,t〉. Moreover, Kelly does not speak of the bottlenecks having a
capacity, but presumably this fixed non-negative, continuous, strictly increasing function pk can be
such that as this total flow increases towards the bottleneck’s capacity, a sufficiently strong message
is given to the jobs to back off that this capacity is never exceeded.

In contrast, our model does not have a single equation defining a bottleneck’s adjustment
frequency f〈k,t〉. We feel that this is a better model for AIMD when it is driven by bottleneck
capacities, because when an individual bottleneck adjusts in practice does depend in an intricate
way on when the other bottlenecks adjust. For example, having a job pass through a long line of m
bottlenecks with the same capacities, should be equivalent to passing through only one. In Kelly’s
model, each of these bottlenecks will send the same message as if it were the only bottleneck and
hence the job will back off m times more often. On the other hand, in our model, it is irrelevant
and undefined which one of bottlenecks will adjust. We can only make claims about

∑

k f〈k,t〉.
Given the current bandwidth allocations b〈i,t〉, the next values are determined by first solving

a system of equation for the adjusting frequencies f〈k,t〉 and then using these to compute δb〈i,t〉/δt.

The following matrix notation is useful. Let M denote the 0/1 matrix such that M〈k,i〉 = 1 iff the ith

job is in the kth bottleneck. Similarly, define the vectors B = 〈Bk〉, f =
〈

f〈k,t〉
〉

, b′ =
〈

δb〈i,t〉/δt
〉

,

0K = 〈0, . . . , 0〉, and 1n = 〈1, . . . , 1〉. In contrast, represent the bandwidths b〈i,t〉 as an n × n
matrix b with diagonals b〈i,t〉 and the rest zero. (For ease of notation, we drop the t subscript

on f , b′, and b.) Equations 1 and 2 translate into Mb1n = sB and b′ = α1n − (1 − β)bMT f .
Note there is one equation and one unknown b′i and f〈k,t〉 for each job and for each bottleneck.
We can solve these as follows. Differentiating the first gives Mb′ = 0K . Substituting the second
into this gives M(α1n − (1 − β)bMT f) = 0K or αM1n = (1 − β)MbMT f . Solving this gives the
required values f = α

(1−β)(MbMT )−1M1n. These values are used in b′ = α1n − (1 − β)bMT f =

α1n−αbMT (MbMT )−1M1n to compute b′. These in turn gives us the next values for b〈i,t〉, namely
b〈i,t+δt〉 = b〈i,t〉 + b′〈i,t〉δt. (This can’t easily be represented as a matrix because b is square and b′ is

a vector.)

b

i
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i
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i
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=

=
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Figure 2: Matrix representation for computing next b〈i,t〉.

The steady state of this system occurs when δb〈i,t〉/δt = 0. Equation 2, then gives b〈i,t〉 =
α

(1−β)/
(

∑

k∈Bi
f〈k,t〉

)

. It is our strong belief, that this system quickly converges to this state. If the

dynamic system allocates job Ji an amount that is different from this then Equation 2 automatically
moves it closer. Assume, for example that job Ji just arrived and hence, b〈i,t0〉 = 0. If we assume that
the total frequency f〈i,t〉 =

∑

k∈Bi
f〈k,t〉 remains relatively constant for a few adjustment periods,

then the single differential equation δb〈i,t〉/δt = α− (1− β)b〈i,t〉f〈i,t〉 can be solved in isolation from

the others, giving b〈i,(t0+d)〉 = α
1−β

1
f〈i,t〉

(1 − e−(1−β)f〈i,t〉d). The time until the AIMD allocation to
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the job is within a factor 1 − e−(1−β)q ≈ 1 − β−q of the steady state allocation is di = q
f〈i,t〉

. In the

single bottleneck case, this equals q adjustment periods, which corresponds exactly to the results
given in [11]. This gives that for the single bottleneck case, this system quickly converges. Whether
this occurs is not as clear (at least for me) for the multi-bottleneck case. To avoid this problem, we
will simply define another model, denoted AIMDEQUI, which is the previous model at its steady
state. Replacing Equation 2 with Equation 4 gives the equations defining AIMDEQUI to be:

∀ bottlenecks k



f〈k,t〉 ≥ 0 and
∑

i∈J〈k,t〉

b〈i,t〉 = sBk



 or



f〈k,t〉 = 0 and
∑

i∈J〈k,t〉

b〈i,t〉 < sBk



(3)

∀ active jobs i b〈i,t〉 =
α

(1 − β)
/





∑

k∈Bi

f〈k,t〉



 (4)

Note that once one determines which bottlenecks are at capacity, there is one equation and one
unknown b〈i,t〉 and f〈k,t〉 for each job and bottleneck. The simplest example, of course, is when
there is a single bottleneck. Equation 4 states that this single bottleneck would charge some fixed
amount f〈1,t〉 for its bandwidth and all jobs would be allocated an amount so that they all pay the

same, giving that all allocations are the same b〈i,t〉 = α
(1−β)f〈1,t〉

= sB1
nt

. A slightly more complex

example of such a calculation appears in Figure 3. In the matrix notation, these translate into
Mb1n = B and bMT f = α

(1−β)1n.

4 Socialistic, Local, and Free Market Views of Fairness

It is clear what a fair distribution is of a single resource like the bandwidth of a bottleneck. However,
when different jobs are restricted by different bottlenecks with different capacities, it is not clear
what is “fair”. This section defines three views of fairness: Socialistic, Local, and a Free Market,
with corresponding “Equal Partition” schedulers: S-EQUI, L-EQUI, and F-EQUI. AIMDEQUI will
be evaluated with respect to each. See Figure 3.

We refer to the standard definition of fairness, max-min fairness [12, 13, 17, 19, 20] as the
socialistic view of fairness because it attempts to give each job the same bandwidth. It allocates
the bandwidths in the unique way so that no job could be allocated more bandwidth without
decreasing that of some other job who has the same or less. S-EQUI achieves such a distribution of
bandwidth as follows. Starting with zero bandwidth to each job, increase the bandwidth of each job
equally, except fixing that to any job passing through a bottleneck that is at capacity. According
to this view, [14] proves that AIMD can be unfair by a factor of m to jobs that pass through m
bottlenecks. An open problem is to prove that this is the worst case.

In the local view, a bottleneck never gives a job more bandwidth than is fair from its local
information. In the scheduler L-EQUI, the kth bottleneck tries to allocate a fair share sBk

n〈k,t〉
of its

bandwidth to each of the n〈k,t〉 = |J〈k,t〉| jobs that pass through it. A job, however, may not be able
to receive this high of a bandwidth because of the constraints of its other bottlenecks. Therefore,
L-EQUI allocates to job Ji the minimum allocated by each of the bottlenecks through which it
passes, i.e. b〈i,t〉 = mink∈Bi

sBk

n〈k,t〉
. This locality of the fairness is used to reduce a schedule on the

general network B to one separate single bottleneck network for each of B’s bottlenecks. Using
this, Theorem 3 proves that though L-EQUI sometimes allocates less bandwidth than it could, it
is O(m2)-speed O(m)-competitive. The same result automatically applies for S-EQUI because it

8
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Figure 3: The following example demonstrates Socialistic, Local, and Free Market Fairness. There
are two bottlenecks with capacities B1 = 2 and B2 = 8. There are three jobs with J1 passing through
B1, J2 through B2 and J3 through both. Socialistic Fairness allocates b1 = b3 = 1 bandwidth to jobs
J1 and J3, fairly splitting the bandwidth of B1 = 2. Job J2 is given the remaining B2 bandwidth
b2 = B2 − b3 = 8 − 1 = 7 because doing so does not hurt the other jobs. Local Fairness allocation
is the same in this example, except that J2 is only given his fair share of B2’s bandwidth which is
b2 = B2

n2
= 8

2 = 4. Note that the second bottleneck has B2 − b2 − b3 = 8 − 4 − 1 = 3 bandwidth
left unused. AIMDEQUI or Free Market Fairness allocates price f1 to the bandwidth of the first
bottleneck and f2 to that of the second. The key requirements are that the bottlenecks are at
capacity, giving b1 + b3 = B1 = 2 and b2 + b3 = B2 = 8 and that all players pay the same for their
bandwidth giving that f1 ·b1 = f2 ·b2 = (f1 +f2) ·b3 = α

(1−β) . Changing this constant, simply scales

the prices and hence wlog α
(1−β) = 1. This gives us a total of 2 + 3 = 5 equations and 2 + 3 = 5

unknowns. Solving them gives us that the price for the bandwidths are f1 = 0.96 and f2 = 0.14.
Note that as expected the bandwidth through B1 is much more expensive because there is less of
it. J3 gets b3 = 0.93 bandwidth, which is less than the others because he is paying more. This
leaves b1 = 1.07 and b2 = 7.07 for the other jobs.

never allocates less bandwidth to any job. Lemma 3 proves that AIMDEQUI allocates at least 1
m

as much. Theorem 2, stating that AIMDEQUI is O(m3)-speed O(m)-competitive, follows.

We will now argue that the natural definition of free market fair is accomplished exactly by our
algorithm AIMDEQUI. This view of fair argues that it is not fair to allocate the same bandwidth
to every job when the jobs pass through different numbers of bottlenecks with different demands
on their bandwidth. Instead, in this view each job is charged by each bottleneck it passes through
for the bandwidth that it uses. In a supply and demand way the market fluctuates so that each job
is allocated the same cost of bandwidth. This system has K + nt unknowns and K + n equations,
where K is the number of bottlenecks and nt is the number of jobs active at time t. As such,
there should be a unique solution to the equations. More specifically, for each bottleneck, there
is the price f〈i,t〉 at which its bandwidth is charged and for each job Ji, there is bandwidth b〈i,t〉
that it is allocated. Any bottleneck that is fully utilized has its bandwidth fully allocated, i.e.
has

∑

i∈J〈k,t〉
b〈i,t〉 = sBk. On the other hand, any bottleneck that is not fully utilized should not,

by supply and demand, charge much for its bandwidth. In fact, such a bottleneck is not really
acting like a bottleneck at all and hence should be discounted, giving that it charges fk = 0 for its
bandwidth. Note that this requirement is exactly expressed by Equation 4 for AIMDEQUI. The
other requirement is that each job is charged the same amount. Being charged for its bandwidth
by each bottleneck it passes through, Job Ji is charged a total of (

∑

k∈Bi
f〈k,t〉)b〈i,t〉. Equation 4

then enforces that the allocations of bandwidth are such that this charge is the same for all jobs.

The classic property of economics is that each price fk decreases proportional to the supply,
namely its capacity sBk, and increases proportional to the demand, namely the number of jobs
n〈k,t〉 = |J〈k,t〉| passing through it or perhaps on the number nmax

〈k,t〉 that are constrained the most
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by it. The adjustment frequency f〈k,t〉 of a bottleneck has this property because Lemma 2 proves

that it is bounded within α
(1−β) [

1
m

nmax
〈k,t〉

sBk
,

n〈k,t〉

sBk
] and Lemma 1 proves equality of this relationship on

average, i.e. nt = s(1−β)
α

∑

k f〈k,t〉Bk.
The global aspect of this view of fairness is used to reduce AIMDEQUI on the entire network

B to a single network with a single bottleneck. This is used to prove Theorem 4, which states
that AIMDEQUI is O(1)-speed O(1)-competitive when these adjustment frequencies f〈k,t〉 do not
change much within the life of an individual job.

5 The Competitiveness of AIMDEQUI

The main result of this paper is that AIMDEQUI despite being online, non-clairvoyant, and dis-
tributed is O(m3)-speed O(m)-competitive.

Theorem 2 Let B be any general network. Let J be any set of jobs in which each phase of each
job can have an arbitrary sublinear-nondecreasing speedup function. Let m denote the maximum

number of bottlenecks that a job passes through. It follows that
AIMDEQUIO(m3)(J )

OPT1(J ) ≤ O(m).

Proof of Theorem 2: The result follows from Theorem 3 stating that L-EQUI is O(m2)-speed
O(m)-competitive and from Lemma 3 stating that AIMDEQUI allocates at least 1

m
as much band-

width as L-EQUI to each job.

Recall that the scheduling algorithm L-EQUI, so that no bottleneck ever gives a job more bandwidth
than is fair from its local information, allocates to job Ji the bandwidth b〈i,t〉 = mink∈Bi

sBk

n〈k,t〉
. This

notation is used now to reduce a schedule on the general network B to one separate single bottleneck
network for each of B’s bottlenecks.

Theorem 3
L-EQUIO(m2)(J )

OPT1(J ) ≤ O(m).

Proof of Theorem 3: This proof uses the fact that L-EQUI is locally fair at each bottleneck. It is
a reduction to many instances of Theorem 1. For each bottleneck within the general network B, the
proof reduces what occurs in that bottleneck to a separate single bottleneck network with capacity
Bk on a job set defined below which we will denoted J k. Because these networks have a single
bottleneck, it is equivalent to think of them as a set of jobs J k completed by Bk processors using the
scheduling algorithm Equal Partition. Also note the difference between the notations Jk and J k.
Jk consists of those jobs in the general network B that pass through the kth bottleneck. In contrast,
J k consists of those jobs in the kth single bottleneck network with capacity Bk. Though there is
a one-to-mapping between these jobs, they should be differentiated between. In many contexts,
we will used the notation As(M,J ) (for example L-EQUIO(m2)(B,J ) or EQUIO(m2)(Bk,J

k)) to
be the flow time, where M is the model, J is the set of jobs being scheduled, A is the scheduling
algorithm, and s is the speed of this algorithm. The steps used in this proof can be followed in the
summery at the bottom.

Given B and J modify them so that each job appears in exactly m bottlenecks by putting
jobs though new “fake” bottlenecks. Define L-EQUIO(m2)(B,J ) =

∑

i[c
L
i − ai] to be the total

flow/response/waiting time of the jobs, instead of the average. This change does not change the
competitive ratio. For the kth bottleneck in B, define L-EQUIJk

O(m2)(B,J ) =
∑

i∈Jk
[cL

i − ai] to be

the same but only for those jobs Jk that pass through the kth bottleneck. Because each job appears
in exactly m bottlenecks, it follows that L-EQUIO(m2)(B,J ) = 1

m

∑

k L-EQUIJk

O(m2)(B,J ).

For each bottleneck k, we define a set of jobs J k that is a mirror of the set of jobs Jk that
pass through the bottleneck. In this way, each job appears in m of these sets of jobs. However,
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at each point in time only one of these copies is a true copy with fully parallelizable work. The
remaining m − 1 copies are replaced by sequential work that act more as place holders. The
motivation is as follows. Recall that the kth bottleneck in L-EQUI attempts to allocate a fair share
(sBk)/nL

〈k,t〉 of its bandwidth to each of the nL
〈k,t〉 = |J〈k,t〉| jobs that pass through it at time

t. However, those jobs that are constrained by other bottlenecks are unable to utilize all of this
bandwidth and are allocated only bL

〈i,t〉 = mink′∈Bi
(sBk′)/nL

k′,t bandwidth. Hence, it is reasonable
for the unconstrained bottlenecks to view such phases of such jobs as being sequential. Recall that
sequential jobs complete at a fixed rate even when allocated more resources. More formally, for
each job Ji and time t, let k(i, t) denote the index of the bottleneck that constrains the job, i.e.
k(i, t) is the k′ minimizing mink′∈Bi

(sBk′)/nL
k′,t. Break ties arbitrarily. For each bottleneck k, let

let Jmin
〈k,t〉 ⊆ J〈k,t〉 denote those jobs Ji passing through the kth bottleneck for which k(i, t) = k. For

jobs Ji in Jmin
〈k,t〉 , the work completed at time t by L-EQUIO(m2)(B,J ) will be copied without change

to the job Jk
i ∈ J k. For the other jobs Ji in J〈k,t〉 \J

min
〈k,t〉 , a sequential phase is inserted into the job

Jk
i so that it completes in the same time that the work completed at time t by L-EQUIO(m2)(B,J )

completes.

The next step is to prove that L-EQUIJk

O(m2)(B,J ) ≤ EQUIO(m2Bk)(Bk,J
k). Recall that the

LHS is the partial sum of the flows associated with the kth bottleneck for the general network
when running the algorithm L-EQUI with extra speed O(m2) while the RHS is the sum of flows
associated with the kth single bottleneck network when running the algorithm EQUI with extra
speed O(m2Bk). By way of induction on t, suppose that at time t, L-EQUIO(m2)(B,J ) has completed

at least as much work on each job in J〈k,t〉 as EQUIO(m2Bk)(Bk,J
k). The bandwidth allocated

by L-EQUIO(m2)(B,J ) to job Ji is bL
〈i,t〉 = mink′∈Bi

(O(m2)Bk′)/nL
k′,t. If Ji ∈ Jmin

〈k,t〉 , then this is

equal to (O(m2)Bk)/nL
〈k,t〉. By the induction hypothesis, L-EQUIO(m2)(B,J ) is not behind and

hence nL
〈k,t〉 ≤ nE,k

t , giving that bL
〈i,t〉 ≥ (O(m2)Bk)/nE,k

t which is the bandwidth bE,k
t allocated by

EQUIO(m2Bk)(Bk,J
k). We can conclude that L-EQUIO(m2)(B,J ) completes at least as much work

on the jobs currently in Jmin
〈k,t〉 . For the other jobs in J〈k,t〉, L-EQUIO(m2)(B,J ) may allocate less

bandwidth than this because of another bottleneck. EQUIO(m2Bk)(Bk,J
k), however, will take just

as much time on this phase of this job because it is working on a sequential job which takes this
same fixed amount of time independent of the bandwidth allocated to it. This completes the proof
by induction.

The next inequality EQUIO(m2Bk)(Bk,J
k) ≤ (1+ 1

2m
)(OPTBk

(Bk,J
k
par)+OPTBk

(Bk,J
k
seq)) is

given by Theorem 1 by setting s = O(m2). Recall that OPTBk
(Bk,J

k
par) is the flow of the optimal

schedule with extra speed Bk to complete only the parallelizable phases J k
par of the jobs in J k for

the kth single bottleneck network. Similarly, OPTBk
(Bk,J

k
seq) that for only the sequential phases.

In contrast, OPT1(B,Jpar) is the flow of the optimal schedule with extra speed 1 to complete only
the parallelizable phases Jpar of the jobs in J for the general network B. Similarly, OPT1(B,Jseq).

The steps
∑

k OPTBk
(Bk,J

k
par) ≤

∑

k OPT′
Bk

(Bk,J
k
par) ≤ mOPT1(B,Jpar) are proved as fol-

lows. For each bottleneck k, define OPT′
Bk

(Bk,J
k
par) to be the single bottleneck scheduler that

allocates each job in J k the exact bandwidth that OPT1(B,Jpar) allocates its counter part in J .
Because these jobs all pass through the kth bottleneck, the total amount allocated to these jobs
by OPT1(B,Jpar) is at most Bk. Hence, OPT′

Bk
(Bk,J

k
par) too does not exceed the capacity of its

single bottleneck and hence is a valid scheduler. It will follow that the optimal scheduler for J k

can only be better, i.e. OPTBk
(Bk,J

k
par) ≤ OPT′

Bk
(Bk,J

k
par).

We will now show
∑

k OPT′
Bk

(Bk,J
k
par) ≤ mOPT1(B,Jpar). Because job Jk

i in J k
par has no
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more fully parallelizable work than its counter part in Jpar, and because the schedulers allocate the

same bandwidth to these jobs, it follows that the first completes no later, i.e. c
〈O′,k〉
i ≤ c

〈O,B〉
i . From

this the bound follows.
∑

k OPT′
Bk

(Bk,J
k
par) =

∑

k

∑

i∈Jk
(c

〈O′,k〉
i − ai) =

∑

i

∑

k∈Bi
(c

〈O′,k〉
i − ai) ≤

∑

i m(c
〈O,B〉
i − ai) = mOPT1(B,Jpar). Greater understanding, however, can be gained by seeing

when this extra factor of m is needed and when not. Recall that for each point in time t under
L-EQUIO(m2)(B,J )) only one of the m copies of job Ji actually has fully parallelizable work. If the
bottleneck k = k(i, t) that constrains job Ji does not change throughout its life, then only one copy

of Ji contributes to the sum and
∑

k∈Bi
(c

〈O′,k〉
i − ai) = (c

〈O,B〉
i − ai). However, when k = k(i, t)

changes over time, the fully parallelizable work from Ji is partitioned between the m copies. If
these optimal schedulers allocated some fixed bandwidth during the life of the job, then the same

equality,
∑

k∈Bi
(c

〈O′,k〉
i − ai) = (c

〈O,B〉
i − ai), would hold. However, suppose that OPT1(B,Jpar))

delays job Ji for a long time after it arrives. Then if the job has a little fully parallelizable work
in J k

par for each of its m bottlenecks, then this delay will contribute m times to the sum and this
factor of m is needed.

The next inequality is
∑

k OPTBk
(Bk,J

k
seq)) = OPT1(B,Jseq) + (m − 1)L-EQUIO(m2)(B,J )).

First note that the statement of the theorem allows for arbitrary sublinear-nondecreasing speedup
functions, but it is easy to prove that the worst case is when each phase of each job is either
sequential or parallelizable. Then there are two types of sequential work in a set of jobs J k. The

first type was originally in Ji ∈ J and was copied as is to J
k(i,t)
i ∈ J k(i,t). This sequential work

appears once in
∑

k OPTBk
(Bk,J

k
seq)) and once in OPT1(B,Jseq). The other type of sequential

work arises because, for each piece of work in L-EQUIO(m2)(B,J )), whether fully parallelizable or

sequential, a piece of sequential work lasting the same time is added to Jk
i for the m − 1 values of

k other than k(i, t). The equality follows.
The final inequalities OPT1(B,Jpar) ≤ OPT1(B,J ) and OPT1(B,Jseq) ≤ OPT1(B,J ) are true

because OPT has strictly less work to do in each case.
The above steps result in an expression that can be rearranged to give the last line. All these

steps are summarized as follows.

L-EQUIO(m2)(G,J )

=
1

m

∑

k

L-EQUIJk

O(m2)(G,J )

≤
1

m

∑

k

EQUIO(m2Bk)(Bk,J
k)

≤
1

m
(1 +

1

2m
)
∑

k

(OPTBk
(Bk,J

k
par) + OPTBk

(Bk,J〈k,seq〉))

≤
1

m
(1 +

1

2m
)(mOPT1(G,Jpar) + OPT1(G,Jseq) + (m − 1)L-EQUIO(m2)(G,J ))

≤ (1 +
2

m
)OPT1(G,J ) + (1 −

1

2m
)L-EQUIO(m2)(G,J ))

1

2m
L-EQUIO(m2)(G,J ) ≤ (1 +

2

m
)OPT1(G,J )

Theorem 2 can be completely tightened giving that AIMDEQUI is (2 + ǫ)-speed O(1)-
competitive if we assume that the adjustment frequencies of the bottlenecks do not to change
much within the life of an individual job. This we believe is a reasonable assumption. Recall that
the adjustment frequency f〈k,t〉 is suppose to represent how the bottleneck k at time t is “charging”
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all the jobs that pass through it for their bandwidth. This amount is a global property that should
not be greatly affected by the arrival and the completion of individual jobs.

Recall that our algorithm AIMDEQUI is perfectly free market fair, meaning that each job is
charged fk by each bottleneck it passes through for the bandwidth that it uses. In a supply and
demand way the market fluctuates so that each job is allocated the same cost of bandwidth. We
now use the global aspect of this view of fairness to reduce AIMDEQUI on the entire network B
to a single network with a single bottleneck. This is used to prove the following.

Theorem 4 Let B be any general network. Let J be any set of jobs in which each phase of
each job can have an arbitrary sublinear-nondecreasing speedup function. Suppose for each job
Ji, the ratio (

∑

k∈Bi
f〈k,t〉)/(

∑

k f〈k,t〉Bk) between adjustment frequencies does not change by more
than a factor of r through out the life of a job, where r ≥ 1 is some constant. It follows that
AIMDEQUIr(2+ǫ)(J )

OPT1(J ) ≤ O(1 + 1
ǫ
).

Proof of Theorem 4: This proof uses the fact that AIMDEQUI is Free Market Fair. It
is a simple reduction to Theorem 1 by reducing everything that is occurring within the gen-
eral network B to a single network with a single bottleneck with capacity B = 1, namely
AIMDEQUIr(2+ǫ)(B,J )

OPT1(B,J ) ≤
EQUI(2+ǫ)(1,J f )

OPT1(1,J f )
= O

(

1 + 1
ǫ

)

. Using the same notation As(M,J ), we have

that AIMDEQUIr(2+ǫ)(B,J ) is the total flow where the model is the general network B, the job set

is J , and the algorithm is AIMDEQUI with speed r(2+ ǫ). Similarly, EQUI(2+ǫ)(1,J f ) is the total

flow where the model is the single bottle neck network “1”, job set is J f , which is defined shortly,
and the algorithm is EQUI with speed (2 + ǫ). The last step is a direct application of Theorem 1.

Define F〈i,t〉 = (
∑

k∈Bi
f〈k,t〉)/(

∑

k f〈k,t〉Bk) to be a needed comparison between the adjusting
frequency of job Ji at time t and that of the overall network. By the statement of the theorem,
this does not change by more than r through out the life of the job and hence Fi ≤ F〈i,t〉 ≤ rFi for
some Fi.

Though the theorem states that each phase of each jobs in J can have an arbitrary sublinear-
nondecreasing speedup function, [9] proves that in the worst case each phase is either sequential or
parallelizable. Hence, we can construct another set of jobs J f = {JFi

i | Ji ∈ J } by taking each job
Ji ∈ J and creating the job JFi

i by scaling the work of each parallelizable phase by this constant
Fi and keeping each sequential phase the same.

The first step is to prove that AIMDEQUIr(2+ǫ)(B,J ) ≤ EQUI(2+ǫ)(1,J f )). By induction on
t, assume that at time t AIMDEQUIr(2+ǫ)(B,J ) has completed at least as much work on each

job as EQUI(2+ǫ)(1,J f ). We prove as follows that the first algorithm allocates at least 1
Fi

times

more bandwidth to job Ji at this time than the second does, i.e. bA
〈i,t〉 ≥

1
Fi

· bE
〈i,t〉. By the bound

on F〈i,t〉 given by the theorem and that on bA
〈i,t〉 given in Equation 4, Fi · bA

〈i,t〉 ≥ 1
r
F〈i,t〉 · bA

〈i,t〉 =

1
r

[

(
∑

k∈Bi
f〈k,t〉)/(

∑

k f〈k,t〉Bk)
]

·
[

α
(1−β)/(

∑

k∈Bi
f〈k,t〉)

]

= (2 + ǫ)/
(

r(2 + ǫ) (1−β)
α

(
∑

k f〈k,t〉Bk)
)

. By

Lemma 1 below, this is (2+ ǫ)/nA
t . By the induction hypothesis nA

t ≤ nE
t and hence this is at least

(2 + ǫ)/nE
t , which is the bandwidth bE

〈i,t〉, allocated by EQUI(2+ǫ)(1,J f ). Because bA
〈i,t〉 ≥

1
Fi

· bE
〈i,t〉,

AIMDEQUIr(2+ǫ)(B,J ) continues to keep up. The second algorithm has Fi times as much fully
parallelizable work and by definition sequential work completes at a fixed rate independent of the
number of processors allocated. This completes the proof by induction.

The final step in the proof is to compare the optimal algorithms OPT1(B,J ) ≥ OPT1(1,J f ).

This is done by constructing another algorithm OPTf
1 for which OPT1(B,J ) = OPTf

1(1,J f ).

Because OPT1(1,J f ) is the optimal algorithm, OPTf
1(1,J f ) ≥ OPT1(1,J f ). OPTf

1(1,J f ))
is defined to be the same as OPT1(B,J ) except that the bandwidth allocated to job Ji is
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scaled by Fi, i.e. bf
〈i,t〉 = Fi · bB〈i,t〉. OPT1(B,J ) = OPTf

1(1,J f ), because both the amount
of parallel work and the number of processors have been scaled by Fi. What remains is to
show that OPTf

1(1,J f ) does not allocate more than a total of one bandwidth at any given

time, namely
∑

i b
f
〈i,t〉 =

∑

i Fi · bB〈i,t〉 ≤
∑

i F〈i,t〉 · bB〈i,t〉 =
∑

i(
∑

k∈Bi
f〈k,t〉)/(

∑

k f〈k,t〉Bk) · bB〈i,t〉 =

(
∑

k f〈k,t〉(
∑

i∈J〈k,t〉
bB〈i,t〉))/(

∑

k f〈k,t〉Bk). Because OPT1(B,J ) cannot exceed the capacity of the

kth bottleneck, this is at most (
∑

k f〈k,t〉(Bk))/(
∑

k f〈k,t〉Bk) = 1. This completes all the required
steps of the proof.

Lemma 1 The number nt of jobs active at time t under AIMDEQUIs is nt = s(1−β)
α

∑

k f〈k,t〉Bk.

Proof of Lemma 1: nt =
∑

active i 1, which by both the left and right sides of Equa-

tion 4 equals
∑

i

∑

k∈Bi
f〈k,t〉b〈i,t〉

(1−β)
α

= (1−β)
α

∑

k f〈k,t〉(
∑

i∈J〈k,t〉
b〈i,t〉), which by Equation 3 equals

(1−β)
α

∑

k f〈k,t〉sBk.

Lemma 2 For each k, the adjustment frequency for the kth bottleneck is bounded by f〈k,t〉 ∈

α
(1−β)

[

1
m

nmax
〈k,t〉

sBk
,

n〈k,t〉

sBk

]

.

Proof of Lemma 2: Multiplying both sides of Equation 3 by f〈k,t〉 gives sf〈k,t〉Bk =
∑

i∈J〈k,t〉
f〈k,t〉b〈i,t〉 (both for the equality and the inequality versions). f〈k,t〉b〈i,t〉 ≤

(
∑

k∈Bi
f〈k,t〉)b〈i,t〉, which by Equation 4 is equal to α

(1−β) . Thus sf〈k,t〉Bk ≤
∑

i∈J〈k,t〉

α
(1−β) =

n〈k,t〉
α

(1−β) . Rearranging gives the upper bound f〈k,t〉 ≤
α

1−β

n〈k,t〉

sBk
.

For each job Ji, let k′(i, t) denote the index of the bottleneck with the highest adjust-
ing frequency that the job passes through, i.e. k′(i, t) is the k maximizing maxk∈Bi

f〈k,t〉. Let

Jmax
〈k,t〉 ⊆ J〈k,t〉 denote those jobs Ji ∈ J〈k,t〉 passing through the kth bottleneck for which

k = k′(i, t). Let nmax
〈k,t〉 = |Jmax

〈k,t〉 | denote the number of such jobs. Similar to that done before,

sf〈k,t〉Bk =
∑

i∈J〈k,t〉
f〈k,t〉b〈i,t〉 ≥

∑

i∈Jmax
〈k,t〉

f〈k,t〉b〈i,t〉. Applying the simplification (mfk′(i,t))b〈i,t〉 ≥

(
∑

k∈Bi
f〈k,t〉)b〈i,t〉 = α

(1−β) of Equation 4 gives that this is at most
∑

i∈Jmax
〈k,t〉

1
m

α
(1−β) = nmax

〈k,t〉
1
m

α
(1−β) .

Rearranging gives the lower bound f〈k,t〉 ≥
α

1−β
1
m

nmax
〈k,t〉

sBk
.

Lemma 3 The bandwidth allocated by AIMDEQUIs(J ) to job Ji at time t is at least 1
m

that

allocated by L-EQUIs(J ), i.e. b〈i,t〉 ≥
1
m

mink∈Bi

sBk

n〈k,t〉
. It follows that AIMDEQUIms(J )

L-EQUIs(J ) ≤ 1.

Proof of Lemma 3: Consider a job Ji. Equation 4 gives (mmaxk∈Bi
f〈k,t〉)b〈i,t〉 ≥

(
∑

k∈Bi
f〈k,t〉)b〈i,t〉 = α

(1−β) and hence b〈i,t〉 ≥
α

1−β
1
m

mink∈Bi

1
f〈k,t〉

. Applying the bound in Lemma 2

gives b〈i,t〉 ≥
1
m

mink∈Bi

sBk

n〈k,t〉
.

6 Open Problems

What make me slightly uncomfortable about this paper is the following. I do not know if or how
quickly the differential equations in Equations 1 and 2 converge. For Equation 3 and 4, it is not
clear to me how one determines which bottlenecks are at capacity. Once this is known, there is
one equation and one unknown b〈i,t〉 and f〈k,t〉 for each job and bottleneck. However, I don’t even
know whether these equations have a solution, not to mention a solution in which both b〈i,t〉 and
f〈k,t〉 are positive. The obvious open question is to prove Theorem 4 without its restrictions that
the adjustment frequencies do not change much through out the life of a job. Also, according to
the max-min socialistic fairness, [14] proves that AIMD can be unfair by a factor of m to jobs that
pass through m bottlenecks. An open problem is to prove that this is the worst case.
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