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a b s t r a c t

This paper studies the performance of AIMD (Additive Increase Multiplicative Decrease)
TCP as an online distributed scheduling algorithm for allocating transmission rate to
sessions/jobs running on a general network. The network consists of a set of routers
which in this context act only as bottlenecks, i.e. when a router’s capacity has been
reached, it informs the jobs passing through it to multiplicatively back off transmission
rates. The analysis is easier when this AIMD algorithm is modeled by a continuous
algorithm.We improve on that presented by Kelly to better capture the interconnectedness
of the network. Extending the paper by Edmonds, Datta, and Dymond that solves the
single-bottleneck case, we prove that with extra resources, this algorithm AIMDEQUI is
competitive against the optimal global algorithm in minimizing the average transmission
time of the jobs. We also bound the fairness of this resource allocation according to three
different definitions of fairness.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

AIMD (Additive Increase Multiplicative Decrease) is the core algorithmic component of TCP (Transport Control Protocol)
for allocating bandwidth or transmission rate to the different jobs. This paper considers a network modeled as a general
graph where each node is a router that acts as a bottleneck with a given capacity Bk. The set of sessions/jobs that arrive and
complete throughout time on the network must be allocated network bandwidth. The amount of bandwidth that each of
them will be allocated depends on the bottlenecks it passes through. In this algorithm, each job Ji increases his bandwidth
b⟨i,t⟩ linearly at a rate of δb⟨i,t⟩/δt = α (typically α = 1) until he detects that one of the bottlenecks that his transmission
passes through has reached capacity, at which point, he cuts his bandwidth by amultiplicative factor of β (typically β =

1
2 ).

This scheduling problem is understood quite well when the network is restricted to a single bottleneck. In this case,
there is a limited amount B of resource, be it bandwidth or processors, which must be allocated at each point in time to a
set of online jobs. We mention processors here only because this is the context within which the scheduling community
tends to write [3]. The standard measure of the successful utilization of the resource in both the systems and the scheduling
communities is the average flow/response/waiting time of the jobs, computed as Avgi∈J[ci − ai]. The optimal scheduling
algorithm is Shortest Remaining Job First which gives all B of the bandwidth/processors to the job which is closest to
completing. This algorithm is online, in that it does not need to know what jobs will arrive in the future, but it is not non-
clairvoyant in that it needs to know the amount of work remaining in the jobs currently in the system. A common non-
clairvoyant scheduling algorithm is EQUI which simply allocates, at each point in time t , to each job currently alive, its share
B
nt

of bandwidth/processors. Though this is fair to all users, [32] proves the competitive ratio of this online, non-clairvoyant
scheduler can be as bad as Θ( n

log n ) whenmeasured against the optimal all-powerful, all-knowing, off-line scheduler, which
in this case is Shortest RemainingWork First. When there is such a negative result, a typical way to prove that the scheduler
does perform well is to give it some extra resources before comparing it to the optimal scheduler, [23]. (See Section 5 for
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additional motivation.) [9] does this proving that EQUI is (2 + ϵ)-speed O(1 +
1
ϵ
)-competitive, meaning that when EQUI is

given 2 + ϵ times as much bandwidth/processors, it performs within a constant as well as the optimal.
Another complication is that the setting in which the AIMD algorithm is intended is distributed in that each job/sender

has no global knowledge of the state of the other jobs in the network. The algorithm EQUI, which instantly reallocates the
amount of bandwidth/processors to each job as jobs arrive and complete, is not implementable in this setting. In contrast,
AIMD can be implemented distributively as long as each job/sender receives feedback when the bottleneck is at its capacity.
Despite this restriction, [7] proves the AIMD algorithm quickly reconverges to EQUI. AIMD, however, is different from EQUI
in that its allocations continually increase and decrease and it takes some (small) time for it to reconverge after jobs arrive
or depart. [11] proves that if AIMD is given a constant number of adjustment periods per job to converge then it is also
O(1)-speed O(1)-competitive.

The main purpose of this paper is to extend these results to the multi-bottleneck case. Unlike [11], which takes into
account the fact that AIMD constantly increases additively and decreases multiplicatively, for the multi-bottleneck case,
we want to simplify AIMD in two ways. The first simplification is to smooth out the quick changes using approximating
differential equations. Because the resulting algorithm is still distributed, the allocations still change gradually when a
job arrives or leaves, unlike EQUI which instantly knows to reallocate. But just as the single-bottleneck AIMD quickly
converges to the global allocation state given by EQUI when the job set does not change, it is our strong belief that themulti-
bottleneck AIMD also quickly converges to some global allocation state. Surprisingly, however, there has not previously
been a description of this converged to allocation. Kelly et al. in [27,25] does a good job, but the algorithm they consider is
different. In their AIMD, the frequency at which a bottleneck drops packets, instructing its jobs to decrease their bandwidth
changes as a fixed function that depends only on the current total traffic through the bottleneck in question. In contrast,
in the standard AIMD algorithm for TCP, a bottleneck instructs its jobs to back off only when it reaches its capacity. The
frequency at which this occurs is a much more complex function of what the other bottlenecks are doing. In Section 3, we
define a new continuousmodel of how AIMD evolves on a general network within this setting and also define the scheduler,
AIMDEQUI, to be that to which it converges.

This paper then proves that this global on-line non-clairvoyant multi-bottleneck rate allocation algorithm AIMDEQUI is
competitivewhen given extra resources. Our proof technique is to reduce this problem to proving that the algorithm EQUI in
the single-bottleneck case is competitive. The result in [9], which was actually written for the processor allocation problem,
then applies directly. Comparing AIMDEQUI to EQUI requires some notion of the fairness of bandwidth allocation. Because
different jobs pass through different bottlenecks with different capacities, such a notion is not clearly defined. The standard
definition of fairness is referred to as max–min fairness [12,13,17,19,20]. We call this the socialistic view of fairness because
it attempts to give each job the same bandwidth. In Section 4, we consider two other notions of fairness as well. Local fair
is similar but considers only local information. Free Market fair penalizes jobs that use many bottlenecks that are in high
demand.

According to a socialistic view of fairness, [14] proves that AIMD can be unfair by a factor of m, where m is a bound on
the number of bottlenecks that a job goes through. Whether this is tight is open. We do, however, show that according to a
local view of fairness, it is never more than a factor ofm unfair and that according to a free market view, it is perfectly fair.

Finally, Section 5 proves that AIMDEQUI is O(m3)-speed O(m)-competitive, meaning that with O(m3) times the
bandwidth, the flow time under AIMDEQUI is within a factor of O(m) of that of the optimal all-knowing scheduler. We
believe that it is reasonable to assume thatm is a constant becausewithin the actual internet no transmission hopsmore than
half a dozen times. We are also able to prove that AIMDEQUI is O(1)-speed O(1)-competitive independent of m. However,
this result requires the assumption that the adjustment frequencies of the bottlenecks do not change much within the life
of an individual job. This we believe is a reasonable assumption because the adjustment frequencies are a global property
that should not be greatly affected by the arrival and the completion of individual jobs. We believe that the result is true
without this assumption or minimally when given speed s = O(m), however, as of yet this has been unattainable.

There has been little work done for AIMD within multi-bottleneck networks. Some, however, has been done for more
general bandwidth scheduling algorithms [2,4–6,12,13,17,18,21,22,31]. Hahne [17,18] proves that if each bottleneck/router
relays the packets of the jobs in a round-robin way, then the bandwidths converge to max–min fairness between the jobs.
However, they do not consider the worst case packet arrival or jobs arriving and leaving, but assume either Bernoulli packet
arrivals or the case in which there are always packets waiting to enter the system. Fatourou et al. [12,13] prove that another
class of algorithms converge to max–min fairness. These, however, have a global scheduler dictate an order in which the
jobs ‘‘update’’, where such an update requires the job to tell any other job that shares a bottleneck with it to decrease its
bandwidth.

2. Scheduling models and competitive ratio

In this section,we review the formal definitions used by the scheduling community. Generally, they consider the problem
of partitioning the time of a single processor amongst the online jobs currently alive. Each job completes in time proportional
to the fraction of the processors’ time allocated to it. This problem maps directly onto the single-bottleneck version of the
problem considered in this paper, namely the problem of partitioning the bandwidth of a single bottleneck among the jobs.
Edmonds [9] extends this notion to that of schedulingmultiple processors to jobs which unbeknownst to the scheduler may
or may not be able to effectively utilize all of the processors given to it. Similarly in the problem of transmitting files, each
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Fig. 1. (a) Standard performance curve, and (b) The worst possible performance curve of an s-speed c-competitive online algorithm.

sender may have a different upper bound on the rate at which it can transmit data. This can be modeled by representing
the transmission with a job whose speedup function is fully parallelizable up to the senders capacity and then becomes
sequential for any additional bandwidth allocated to it, namely . In such ways, this paper does use the stronger result
about arbitrary speed-up functions in its reduction to the bandwidth problem. For this reason, we will start with a review
of definitions introduced in [9].

An instance consists of a collection J = {J1, . . . , Jn} where job Ji has a release/arrival time ai and a sequence of phases
J1i , J

2
i , . . . , J

qi
i


. Each phase is an ordered pair


w

q
i , Γ

q
i


, where w

q
i is a positive real number that denotes the amount ofwork

in the phase and Γ
q
i is a function, called the speed-up function, that maps a nonnegative real number to a nonnegative real

number. Γ q
i (p) represents the rate at which work is processed for phase q of job Ji when run on p processors running at

speed 1. If these processors are running at speed s, then work is processed at a rate of sΓ q
i (p).

A phase of a job is parallelizable if its speed-up function is Γ (p) = p. Increasing the number of processors allocated to
a parallelizable phase by a factor of s increases the rate of processing by a factor of s. A phase is sequential if its speed-up
function is Γ (p) = 1, for all p ≥ 0. The rate that work is processed in a sequential phase is independent of the number of
processors, even if it is zero. A speed-up function Γ is nondecreasing if and only if Γ (p1) ≤ Γ (p2) whenever p1 ≤ p2. A
speed-up function Γ is sublinear if and only if Γ (p1)/p1 ≥ Γ (p2)/p2 whenever p1 ≤ p2. We assume all speed-up functions
Γ in the input instance are nondecreasing and sublinear.

A schedule specifies for each time, and for each job, a nonnegative real number specifying the number of processors
assigned to that job. The total number of processors assigned at any time can be at most the number of processors. A
nonclairvoyant algorithm only knows the past arrival and completion of jobs. In particular, a nonclairvoyant algorithm does
not know the current phase q, its work w

q
i , or its speed-up function Γ

q
i .

The completion time of a job Ji, denoted ci, is the first point of time when all the work of the job Ji has been processed.
Note that in the language of scheduling, we are assuming that preemption is allowed, that is, a job maybe be suspended
and later restarted from the point of suspension. The response/flow time of job Ji is ci − ai, which is the length of the time
interval during which the job is active. Let nt be the number of active jobs at time t . Another formulation of total flow time
is


∞

0 ntδt .
Let A be an algorithm and J an instance. We denote the schedule output by A with speed s processors on J as As(J). Let

Opt(J) be the optimal schedule with unit speed processors on input J. We let F(S) denote the total response time incurred
in schedule S,

To understand theworst-case analysis results in the literature,weneed to introduce andmotivate resource augmentation
analysis [23]. A scheduling algorithm A is said to be s-speed c-competitive if

max
J

As(J)

OPT1(J)
≤ c

where As(J) denotes the average flow time for the schedule given by A with a speed s on input J, and similarly OPT1(J)
denotes the flow time of the adversarial schedule for J with a unit speed.

Our analysis philosophy is to put first priority on minimizing the speed, while keeping the competitive ratio reasonable.
The reason for this is that average QoS curves such as those in Fig. 1(a) are ubiquitous in server systems [28]. That is, the
average QoS at loads below capacity is negligible, and the average QoS above capacity is intolerable. The concept of load is
not so easy to formally define, but generally reflects the number of users of the system. So in some sense, one can specify
the performance of such a system by simply giving the value of the capacity of the system. In this setting, As(J) is at most
c times optimal average flow time with s times higher load, since slowing down the speed by a factor of s is the same as
increasing the load by a factor of s. But since the optimal flow time is almost always negligible or intolerable, a modest c
times either negligible or intolerable, still gives you negligible or intolerable. So an s-speed c-competitive algorithm should
perform reasonably well up to load 1/s of the capacity of the system as long as c is of modest size. Thus usually the goal is
to find a server scheduling algorithm that is (1+ ϵ)-speed O(1)-competitive; We call such an algorithm almost fully scalable
since it should perform well up to almost peak load.

Though most scheduling papers consider the allocation of a fixed number of processors between the active jobs, the
results hold for our setting of allocating the fixed bandwidth of a single-bottleneck network. It is shown in [9] that the
algorithm, EQUI, which devotes an equal amount of processing power to each job, is a (2+ϵ)-speed O(1+1/ϵ)-competitive
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algorithm for scheduling of jobs with ‘‘natural’’ speed-up curves. The result in the original paper [9] stated EQUIs(J)

OPT1(J)
≤

2s
(s−2) .

This was improved in [10] for the purpose of proving Theorem 2 to 1+O(
√
s

s−2 ), which does not change the resultO( 1
ϵ
)when

the speed s is 2 + ϵ, but when the speed s is large, the improvement is from 2 + O( 1
s ) to 1 + O( 1

√
s ). It is likely that the

competitive ratio should be 1+O( 1
s ), but as of now that is unattainable. Another improvement needed to prove Theorem 2

that [10] provides over [9] is that it allows the optimal scheduler to complete the fully parallelizablework and the sequential
work independently. The formal statement needed is as follows.

Theorem 1 ([10]). Let J be any set of jobs in a single-bottleneck network in which each phase of each job can have an arbitrary
sublinear-nondecreasing speed-up function. EQUIs(J)

OPT1(Jpar )+OPT1(Jseq)
≤ 1 + O(

√
s

s−2 ), where OPT1(Jpar) is the flow of the optimal
schedule to complete only the parallelizable phases Jpar of the jobs in J and OPT1(Jseq) only the sequential phases.

3. The continuous AIMDmodel for general networks

In this section, we propose two new models of AIMD through a general network. The first model is a set of differential
equations similar to those given by Kelly in [27,25]. We argue, however, that ours is a better model of how changes in one
part of the network can affect other parts. Unlike Kelly, however, we are unable to prove that the system converges, though
we have strong arguments that it does. To avoid this problem, we will simply define another model, denoted AIMDEQUI,
which is the previous model at its steady state. It is this second model that we prove is competitive against the optimal
bandwidth scheduling algorithm. We use the following notation:

• B is a set of routers that act as bottlenecks, the kth ofwhich hasmaximumbandwidth Bk.When the scheduler has ‘‘speed’’
s, this maximum bandwidth of each bottleneck is increased to s · Bk.

• J = {Ji} is the set of jobs (or sessions). Each job Ji is defined by its arrival time ai, its file length li, and as done
in [27,25], the subset of the bottlenecks Bi that it passes through. Conversely let Jk denote the set of jobs Ji that pass
through the kth bottleneck and J⟨k,t⟩ to be those active at time t . Note that as a simplifying assumption, we are ignoring
the path that a job takes through these bottlenecks and any delays caused by transmission times. In particular, we are
ignoring the fact that different jobs may have different transmission times.

• We denote by b⟨i,t⟩ the bandwidth or transmission rate used by job Ji at time t . The restriction for the kth bottleneck is
that


i∈J⟨k,t⟩

b⟨i,t⟩ ≤ sBk.
As done in [1], AIMD is not represented at the packet level but via simple fluid equations. Though AIMD decreases the

bandwidth allocation of a session non-continuously at discrete points in time, we will amortize this change to make all
the equations continuous, as done in [27,25].

• We denote by ci the time that the transmission of job Ji is completed. To accomplish this, the algorithm must allocate
enough bandwidth so that


t∈[ai,ci]

b⟨i,t⟩ = li.
• We measure the quality of a scheduling algorithm using the average flow/response/waiting time of the jobs, i.e.

Avgi∈J[ci − ai].
• α is the additive increase and β the multiplicative decrease parameter set by the AIMD algorithm. Namely, each user

increases his transmission rate linearly at a constant rate of δb⟨i,t⟩/δt = α (typically α = 1) until he detects that one
of the bottlenecks that his transmission passes through has reached capacity. At this point, the sender cuts his own rate
b⟨i,t⟩ by a multiplicative factor of β (typically β =

1
2 ).

• f⟨k,t⟩, the adjustment frequency, will denote the instantaneous frequency at time t at which the event occurs in which the
kth bottleneck reaches capacity and instructs its users to back off.

The equations relating these values are as follows:

∀ bottlenecks k

f⟨k,t⟩ ≥ 0 and


i∈J⟨k,t⟩

b⟨i,t⟩ = sBk

 or

f⟨k,t⟩ = 0 and


i∈J⟨k,t⟩

b⟨i,t⟩ < sBk

 (1)

∀ active jobs i
δb⟨i,t⟩

δt
= α − (1 − β)b⟨i,t⟩


k∈Bi

f⟨k,t⟩ (2)

Eq. (1) states that the total bandwidth


i∈J⟨k,t⟩
b⟨i,t⟩ through the kth bottleneck is bounded by its capacity sBk. Moreover,

this bottleneck instructs its users to back off if and only if it is at capacity. Eq. (2) states that each job Ji continually increases
his bandwidth linearly at a rate of δb⟨i,t⟩/δt = α and approximates the effect of the multiplicative decreases. When any one
of the bottlenecks that Ji passes through reaches capacity, its bandwidth b⟨i,t⟩ decreases by a multiplicative factor of β , i.e.
from b⟨i,t⟩ to βb⟨i,t⟩, which is a decrease of (1−β)b⟨i,t⟩. The number of times that this occurs during a time period of length δt

is


k∈Bi
f⟨k,t⟩


δt for a total decrease of


(1 − β)b⟨i,t⟩


k∈Bi

f⟨k,t⟩

δt . Clearly, Eq. (2) is only a differential approximation of

the decreases that occur at discrete points in time. This same approximationwasmade in [27,25]. Aswas said, the advantage
of this approximation is that it smooths out the constant oscillations between a bottleneck reaching full capacity and then
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Fig. 2. Matrix representation for computing next b⟨i,t⟩ .

suddenly having all of its allocations decrease by a factor of β . In [11], we prove that, at least for the single-bottleneck case,
the effect of these oscillations can be compensated by multiplicative changing the capacity by a constant.

The main difference between this model and Kelly’s in [27,25] is that Kelly has a single equation (f⟨k,t⟩) = µk =

pk(


i∈J⟨k,t⟩
b⟨i,t⟩) defining a bottleneck’s adjustment frequency f⟨k,t⟩ as a function pk of the total flow


i∈J⟨k,t⟩

b⟨i,t⟩ through
the bottleneck. Though Kelly definesµk instead to be ‘‘the proportion ofmarked packets’’, it is used in the sameway in Eq. (2)
as we do andwe assume that this quantity reflects the proportion of the jobs passing through the bottleneck that will adjust
and hence is related to our frequency f⟨k,t⟩. Moreover, Kelly does not speak of the bottlenecks having a capacity, but presum-
ably this fixed non-negative, continuous, strictly increasing function pk can be such that as this total flow increases towards
the bottleneck’s capacity, a sufficiently strong message is given to the jobs to back off that this capacity is never exceeded.

In contrast, our model does not have a single equation defining a bottleneck’s adjustment frequency f⟨k,t⟩. We feel that
this is a better model for AIMD when it is driven by bottleneck capacities, because when an individual bottleneck adjusts
in practice does depend in an intricate way on when the other bottlenecks adjust. For example, having a job pass through a
long line ofm bottlenecks with the same capacities, should be equivalent to passing through only one. In Kelly’s model, each
of these bottlenecks will send the same message as if it were the only bottleneck and hence the job will back off m times
more often. On the other hand, in our model, it is irrelevant and undefined which one of the bottlenecks will adjust. We can
only make claims about


k f⟨k,t⟩.

Given the current bandwidth allocations b⟨i,t⟩, the next values are determined by first solving a system of equations for
the adjusting frequencies f⟨k,t⟩ and then using these to compute δb⟨i,t⟩/δt . The following matrix notation is useful. Let M
denote the 0/1 matrix such that M⟨k,i⟩ = 1 iff the ith job is in the kth bottleneck. Similarly, define the vectors B = ⟨Bk⟩,
f =


f⟨k,t⟩


, b′

=

δb⟨i,t⟩/δt


, 0K = ⟨0, . . . , 0⟩, and 1n = ⟨1, . . . , 1⟩. In contrast, represent the bandwidths b⟨i,t⟩ as an n × n

matrix b with diagonals b⟨i,t⟩ and the rest zero. (For ease of notation, we drop the t subscript on f , b′, and b.) Eqs. (1) and
(2) translate into Mb1n = sB and b′

= α1n − (1 − β)bMT f . Note there is one equation and one unknown b′

i and f⟨k,t⟩ for
each job and for each bottleneck. We can solve these as follows. Differentiating the first gives Mb′

= 0K . Substituting the
second into this gives M(α1n − (1 − β)bMT f ) = 0K or αM1n = (1 − β)MbMT f . Solving this gives the required values
f =

α
(1−β)

(MbMT )−1M1n. These values are used in b′
= α1n − (1 − β)bMT f = α1n − αbMT (MbMT )−1M1n to compute b′.

These in turn gives us the next values for b⟨i,t⟩, namely b⟨i,t+δt⟩ = b⟨i,t⟩ + b′

⟨i,t⟩δt . (This can’t easily be represented as a matrix
because b is square and b′ is a vector.) (See Fig. 2.)

The steady state of this system occurs when δb⟨i,t⟩/δt = 0. Eq. (2) then gives b⟨i,t⟩ =
α

(1−β)
/


k∈Bi
f⟨k,t⟩


. It is our

strong belief that this system quickly converges to this state. If the dynamic system allocates job Ji an amount that is
different from this then Eq. (2) automatically moves it closer. Assume, for example that job Ji just arrived and hence,
b⟨i,t0⟩ = 0. If we assume that the total frequency f⟨i,t⟩ =


k∈Bi

f⟨k,t⟩ remains relatively constant for a few adjustment periods,
then the single differential equation δb⟨i,t⟩/δt = α − (1 − β)b⟨i,t⟩f⟨i,t⟩ can be solved in isolation from the others, giving
b⟨i,(t0+d)⟩ =

α
1−β

1
f⟨i,t⟩

(1− e−(1−β)f⟨i,t⟩d). The time until the AIMD allocation to the job is within a factor 1− e−(1−β)q
≈ 1−β−q

of the steady state allocation is di =
q

f⟨i,t⟩
. In the single-bottleneck case, this equals q adjustment periods, which corresponds

exactly to the results given in [11]. This gives that for the single-bottleneck case, this system quickly converges. Whether
this occurs is not as clear (at least forme) for themulti-bottleneck case. To avoid this problem, wewill simply define another
model, denoted AIMDEQUI, which is the previousmodel at its steady state. Replacing Eq. (2) with Eq. (4) gives the equations
defining AIMDEQUI to be:

∀ bottlenecks k

f⟨k,t⟩ ≥ 0 and


i∈J⟨k,t⟩

b⟨i,t⟩ = sBk

 or

f⟨k,t⟩ = 0 and


i∈J⟨k,t⟩

b⟨i,t⟩ < sBk

 (3)

∀ active jobs i b⟨i,t⟩ =
α

(1 − β)


k∈Bi

f⟨k,t⟩


(4)

Note that once one determines which bottlenecks are at capacity, there is one equation and one unknown b⟨i,t⟩ and f⟨k,t⟩ for
each job and bottleneck. The simplest example, of course, is when there is a single bottleneck. Eq. (4) states that this single
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Fig. 3. The following example demonstrates Socialistic, Local, and Free Market Fairness. There are two bottlenecks with capacities B1 = 2 and B2 = 8.
There are three jobs with J1 passing through B1 , J2 through B2 and J3 through both. Socialistic Fairness allocates b1 = b3 = 1 bandwidth to jobs J1 and
J3 , fairly splitting the bandwidth of B1 = 2. Job J2 is given the remaining B2 bandwidth b2 = B2 − b3 = 8 − 1 = 7 because doing so does not hurt the
other jobs. Local Fairness allocation is the same in this example, except that J2 is only given his fair share of B2 ’s bandwidth which is b2 =

B2
n2

=
8
2 = 4.

Note that the second bottleneck has B2 − b2 − b3 = 8 − 4 − 1 = 3 bandwidth left unused. AIMDEQUI or Free Market Fairness allocates price f1 to the
bandwidth of the first bottleneck and f2 to that of the second. The key requirements are that the bottlenecks are at capacity, giving b1 + b3 = B1 = 2 and
b2 + b3 = B2 = 8 and that all players pay the same for their bandwidth giving that f1 · b1 = f2 · b2 = (f1 + f2) · b3 =

α
(1−β)

. Changing this constant simply
scales the prices and hence wlog α

(1−β)
= 1. This gives us a total of 2 + 3 = 5 equations and 2 + 3 = 5 unknowns. Solving them gives us that the price for

the bandwidths are f1 = 0.96 and f2 = 0.14. Note that as expected the bandwidth through B1 is much more expensive because there is less of it. J3 gets
b3 = 0.93 bandwidth, which is less than the others because he is paying more. This leaves b1 = 1.07 and b2 = 7.07 for the other jobs.

bottleneck would charge some fixed amount f⟨1,t⟩ for its bandwidth and all jobs would be allocated an amount so that they
all pay the same, giving that all allocations are the same b⟨i,t⟩ =

α
(1−β)f⟨1,t⟩

=
sB1
nt

. A slightly more complex example of such

a calculation appears in Fig. 3. In the matrix notation, these translate intoMb1n = B and bMT f =
α

(1−β)
1n.

4. Socialistic, local, and free market views of fairness

It is clear what a fair distribution is of a single resource like the bandwidth of a bottleneck. However, when different jobs
are restricted by different bottlenecks with different capacities, it is not clear what is ‘‘fair’’. This section defines three views
of fairness: Socialistic, Local, and a Free Market, with corresponding ‘‘Equal Partition’’ schedulers: S-EQUI, L-EQUI, and F-EQUI.
AIMDEQUI will be evaluated with respect to each. See Fig. 3.

We refer to the standard definition of fairness,max–min fairness [12,13,17,19,20] as the socialistic view of fairness because
it attempts to give each job the same bandwidth. It allocates the bandwidths in the unique way so that no job could be
allocated more bandwidth without decreasing that of some other job which has the same or less. S-EQUI achieves such a
distribution of bandwidth as follows. Starting with zero bandwidth to each job, increase the bandwidth of each job equally,
except fixing that to any job passing through a bottleneck that is at capacity. According to this view, [14] proves that AIMD
can be unfair by a factor of m to jobs that pass through m bottlenecks. An open problem is to prove that this is the worst
case.

In the local view, a bottleneck never gives a job more bandwidth than is fair from its local information. In the scheduler
L-EQUI, the kth bottleneck tries to allocate a fair share sBk

n⟨k,t⟩
of its bandwidth to each of the n⟨k,t⟩ = |J⟨k,t⟩| jobs that

pass through it. A job, however, may not be able to receive this high a bandwidth because of the constraints of its other
bottlenecks. Therefore, L-EQUI allocates to job Ji the minimum allocated by each of the bottlenecks through which it passes,
i.e. b⟨i,t⟩ = mink∈Bi

sBk
n⟨k,t⟩

. This locality of the fairness is used to reduce a schedule on the general network B to one separate
single-bottleneck network for each ofB’s bottlenecks. Using this, Theorem 3 proves that though L-EQUI sometimes allocates
less bandwidth than it could, it is O(m2)-speedO(m)-competitive. The same result automatically applies for S-EQUI because
it never allocates less bandwidth to any job. Lemma 3 proves that AIMDEQUI allocates at least 1

m asmuch. Theorem 2, stating
that AIMDEQUI is O(m3)-speed O(m)-competitive, follows.

Wewill now argue that the natural definition of freemarket fair is accomplished exactly by our algorithmAIMDEQUI. This
viewof fair argues that it is not fair to allocate the samebandwidth to every jobwhen the jobs pass throughdifferent numbers
of bottlenecks with different demands on their bandwidth. Instead, in this view each job is charged by each bottleneck it
passes through for the bandwidth that it uses. In a supply and demandway themarket fluctuates so that each job is allocated
the same cost of bandwidth. This system has K + nt unknowns and K + n equations, where K is the number of bottlenecks
and nt is the number of jobs active at time t . As such, there should be a unique solution to the equations. More specifically,
for each bottleneck, there is the price f⟨i,t⟩ at which its bandwidth is charged and for each job Ji, there is bandwidth b⟨i,t⟩ that
it is allocated. Any bottleneck that is fully utilized has its bandwidth fully allocated, i.e. has


i∈J⟨k,t⟩

b⟨i,t⟩ = sBk. On the other
hand, any bottleneck that is not fully utilized should not, by supply and demand, charge much for its bandwidth. In fact,
such a bottleneck is not really acting like a bottleneck at all and hence should be discounted, giving that it charges fk = 0
for its bandwidth. Note that this requirement is exactly expressed by Eq. (4) for AIMDEQUI. The other requirement is that
each job is charged the same amount. Being charged for its bandwidth by each bottleneck it passes through, Job Ji is charged
a total of (


k∈Bi

f⟨k,t⟩)b⟨i,t⟩. Eq. (4) then enforces that the allocations of bandwidth are such that this charge is the same for
all jobs.

The classic property of economics is that each price fk decreases proportional to the supply, namely its capacity sBk, and
increases proportional to the demand, namely the number of jobs n⟨k,t⟩ = |J⟨k,t⟩| passing through it or perhaps on the
number nmax

⟨k,t⟩ that are constrained the most by it. The adjustment frequency f⟨k,t⟩ of a bottleneck has this property because
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Lemma 2 proves that it is bounded within α
(1−β)

[
1
m

nmax
⟨k,t⟩
sBk

,
n⟨k,t⟩
sBk

] and Lemma 1 proves equality of this relationship on average,

i.e. nt =
s(1−β)

α


k f⟨k,t⟩Bk.

The global aspect of this view of fairness is used to reduce AIMDEQUI on the entire network B to a single network with
a single bottleneck. This is used to prove Theorem 4, which states that AIMDEQUI is O(1)-speed O(1)-competitive when
these adjustment frequencies f⟨k,t⟩ do not change much within the life of an individual job.

5. The competitiveness of AIMDEQUI

The main result of this paper is that AIMDEQUI despite being online, non-clairvoyant, and distributed is O(m3)-speed
O(m)-competitive.

Theorem 2. LetB be any general network. LetJ be any set of jobs inwhich each phase of each job can have an arbitrary sublinear-
nondecreasing speed-up function. Let m denote the maximum number of bottlenecks that a job passes through. It follows that
AIMDEQUI

O(m3)
(J)

OPT1(J)
≤ O(m).

Proof of Theorem 2. The result follows from Theorem 3 stating that L-EQUI is O(m2)-speed O(m)-competitive and from
Lemma 3 stating that AIMDEQUI allocates at least 1

m as much bandwidth as L-EQUI to each job. �

Recall that the scheduling algorithm L-EQUI, so that no bottleneck ever gives a job more bandwidth than is fair from its
local information, allocates to job Ji the bandwidth b⟨i,t⟩ = mink∈Bi

sBk
n⟨k,t⟩

. This notation is used now to reduce a schedule on
the general network B to one separate single-bottleneck network for each of B’s bottlenecks.

Theorem 3.
L-EQUI

O(m2)
(J)

OPT1(J)
≤ O(m).

Proof of Theorem 3. This proof uses the fact that L-EQUI is locally fair at each bottleneck. It is a reduction to many instances
of Theorem 1. For each bottleneck within the general network B, the proof reduces what occurs in that bottleneck to a
separate single bottleneck network with capacity Bk on a job set defined below which we will denote Jk. Because these
networks have a single bottleneck, it is equivalent to think of them as a set of jobs Jk completed by Bk processors using
the scheduling algorithm Equal Partition. Also note the difference between the notations Jk and Jk. Jk consists of those
jobs in the general network B that pass through the kth bottleneck. In contrast, Jk consists of those jobs in the kth single
bottleneck network with capacity Bk. Though there is a one-to-mapping between these jobs, they should be differentiated
between. In many contexts, we will used the notation As(M, J) (for example L-EQUIO(m2)(B, J) or EQUIO(m2)(Bk, Jk)) to be
the flow time, where M is the model, J is the set of jobs being scheduled, A is the scheduling algorithm, and s is the speed
of this algorithm. The steps used in this proof can be followed in the summery at the bottom.

Given B and J modify them so that each job appears in exactly m bottlenecks by putting jobs through new ‘‘fake’’
bottlenecks. Define L-EQUIO(m2)(B, J) =


i[c

L
i − ai] to be the total flow/response/waiting time of the jobs, instead of

the average. This change does not change the competitive ratio. For the kth bottleneck in B, define L-EQUIJk
O(m2)

(B, J) =
i∈Jk

[cLi − ai] to be the same but only for those jobs Jk that pass through the kth bottleneck. Because each job appears in

exactlym bottlenecks, it follows that L-EQUIO(m2)(B, J) =
1
m


k L-EQUI

Jk
O(m2)

(B, J).
For each bottleneck k, we define a set of jobs Jk that is a mirror of the set of jobs Jk that pass through the bottleneck.

In this way, each job appears in m of these sets of jobs. However, at each point in time only one of these copies is a true
copy with fully parallelizable work. The remaining m − 1 copies are replaced by sequential work that act more as place
holders. The motivation is as follows. Recall that the kth bottleneck in L-EQUI attempts to allocate a fair share (sBk)/nL

⟨k,t⟩ of
its bandwidth to each of the nL

⟨k,t⟩ = |J⟨k,t⟩| jobs that pass through it at time t . However, those jobs that are constrained by
other bottlenecks are unable to utilize all of this bandwidth and are allocated only bL

⟨i,t⟩ = mink′∈Bi(sBk′)/nL
k′,t bandwidth.

Hence, it is reasonable for the unconstrained bottlenecks to view such phases of such jobs as being sequential. Recall that
sequential jobs complete at a fixed rate even when allocated more resources. More formally, for each job Ji and time t , let
k(i, t) denote the index of the bottleneck that constrains the job, i.e. k(i, t) is the k′ minimizing mink′∈Bi(sBk′)/nL

k′,t . Break
ties arbitrarily. For each bottleneck k, let Jmin

⟨k,t⟩ ⊆ J⟨k,t⟩ denote those jobs Ji passing through the kth bottleneck for which
k(i, t) = k. For jobs Ji in Jmin

⟨k,t⟩, the work completed at time t by L-EQUIO(m2)(B, J) will be copied without change to the job
Jki ∈ Jk. For the other jobs Ji in J⟨k,t⟩ \ Jmin

⟨k,t⟩, a sequential phase is inserted into the job Jki so that it completes in the same
time that the work completed at time t by L-EQUIO(m2)(B, J) completes.

The next step is to prove that L-EQUIJk
O(m2)

(B, J) ≤ EQUIO(m2Bk)(Bk, Jk). Recall that the LHS is the partial sum of the
flows associated with the kth bottleneck for the general network when running the algorithm L-EQUI with extra speed
O(m2) while the RHS is the sum of flows associated with the kth single-bottleneck network when running the algorithm
EQUI with extra speed O(m2Bk). By way of induction on t , suppose that at time t , L-EQUIO(m2)(B, J) has completed at
least as much work on each job in J⟨k,t⟩ as EQUIO(m2Bk)(Bk, Jk). The bandwidth allocated by L-EQUIO(m2)(B, J) to job Ji
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is bL
⟨i,t⟩ = mink′∈Bi(O(m2)Bk′)/nL

k′,t . If Ji ∈ Jmin
⟨k,t⟩, then this is equal to (O(m2)Bk)/nL

⟨k,t⟩. By the induction hypothesis,
L-EQUIO(m2)(B, J) is not behind and hence nL

⟨k,t⟩ ≤ nE,k
t , giving that bL

⟨i,t⟩ ≥ (O(m2)Bk)/n
E,k
t which is the bandwidth bE,k

t

allocated by EQUIO(m2Bk)(Bk, Jk). We can conclude that L-EQUIO(m2)(B, J) completes at least as much work on the jobs
currently in Jmin

⟨k,t⟩. For the other jobs in J⟨k,t⟩, L-EQUIO(m2)(B, J) may allocate less bandwidth than this because of another
bottleneck. EQUIO(m2Bk)(Bk, Jk), however, will take just as much time on this phase of this job because it is working on a
sequential job which takes this same fixed amount of time independent of the bandwidth allocated to it. This completes the
proof by induction.

The next inequality EQUIO(m2Bk)(Bk, Jk) ≤ (1 +
1
2m )(OPTBk(Bk, Jk

par) + OPTBk(Bk, Jk
seq)) is given by Theorem 1 by setting

s = O(m2). Recall that OPTBk(Bk, Jk
par) is the flow of the optimal schedule with extra speed Bk to complete only the

parallelizable phases Jk
par of the jobs in Jk for the kth single-bottleneck network. Similarly, OPTBk(Bk, Jk

seq) that for only
the sequential phases. In contrast, OPT1(B, Jpar) is the flow of the optimal schedule with extra speed 1 to complete only
the parallelizable phases Jpar of the jobs in J for the general network B. Similarly, OPT1(B, Jseq).

The steps


k OPTBk(Bk, Jk
par) ≤


k OPT

′

Bk(Bk, Jk
par) ≤ mOPT1(B, Jpar) are proved as follows. For each bottleneck

k, define OPT′

Bk(Bk, Jk
par) to be the single-bottleneck scheduler that allocates each job in Jk the exact bandwidth that

OPT1(B, Jpar) allocates its counterpart in J. Because these jobs all pass through the kth bottleneck, the total amount
allocated to these jobs by OPT1(B, Jpar) is at most Bk. Hence, OPT′

Bk(Bk, Jk
par) too does not exceed the capacity of its

single bottleneck and hence is a valid scheduler. It will follow that the optimal scheduler for Jk can only be better, i.e.
OPTBk(Bk, Jk

par) ≤ OPT′

Bk(Bk, Jk
par).

We will now show


k OPT
′

Bk(Bk, Jk
par) ≤ mOPT1(B, Jpar). Because job Jki in Jk

par has no more fully parallelizable work
than its counterpart in Jpar , and because the schedulers allocate the same bandwidth to these jobs, it follows that the first

completes no later, i.e. c⟨
O′,k⟩

i ≤ c⟨O,B⟩

i . From this the bound follows.


k OPT
′

Bk(Bk, Jk
par) =


k


i∈Jk
(c⟨

O′,k⟩
i − ai) =

i


k∈Bi
(c⟨

O′,k⟩
i − ai) ≤


i m(c⟨O,B⟩

i − ai) = mOPT1(B, Jpar). Greater understanding, however, can be gained by seeing
when this extra factor of m is needed and when not. Recall that for each point in time t under L-EQUIO(m2)(B, J)) only one
of the m copies of job Ji actually has fully parallelizable work. If the bottleneck k = k(i, t) that constrains job Ji does not

change throughout its life, then only one copy of Ji contributes to the sum and


k∈Bi
(c⟨

O′,k⟩
i − ai) = (c⟨O,B⟩

i − ai). However,
when k = k(i, t) changes over time, the fully parallelizable work from Ji is partitioned between the m copies. If these

optimal schedulers allocated some fixed bandwidth during the life of the job, then the same equality,


k∈Bi
(c⟨

O′,k⟩
i − ai) =

(c⟨O,B⟩

i − ai), would hold. However, suppose that OPT1(B, Jpar)) delays job Ji for a long time after it arrives. Then if the job
has a little fully parallelizable work in Jk

par for each of its m bottlenecks, then this delay will contribute m times to the sum
and this factor ofm is needed.

The next inequality is


k OPTBk(Bk, Jk
seq)) = OPT1(B, Jseq) + (m − 1)L-EQUIO(m2)(B, J)). First note that the statement

of the theorem allows for arbitrary sublinear-nondecreasing speed-up functions, but it is easy to prove that the worst case
is when each phase of each job is either sequential or parallelizable. Then there are two types of sequential work in a set of
jobs Jk. The first type was originally in Ji ∈ J and was copied as is to Jk(i,t)i ∈ Jk(i,t). This sequential work appears once in

k OPTBk(Bk, Jk
seq)) and once in OPT1(B, Jseq). The other type of sequential work arises because, for each piece of work in

L-EQUIO(m2)(B, J)), whether fully parallelizable or sequential, a piece of sequential work lasting the same time is added to
Jki for the m − 1 values of k other than k(i, t). The equality follows.

The final inequalities OPT1(B, Jpar) ≤ OPT1(B, J) and OPT1(B, Jseq) ≤ OPT1(B, J) are true because OPT has strictly
less work to do in each case.

The above steps result in an expression that can be rearranged to give the last line. All these steps are summarized as
follows:

L-EQUIO(m2)(G, J) =
1
m


k

L-EQUIJk
O(m2)

(G, J)

≤
1
m


k

EQUIO(m2Bk)(Bk, Jk)

≤
1
m


1 +

1
2m


k

(OPTBk(Bk, Jk
par) + OPTBk(Bk, J⟨k,seq⟩))

≤
1
m


1 +

1
2m


(mOPT1(G, Jpar) + OPT1(G, Jseq) + (m − 1)L-EQUIO(m2)(G, J))

≤


1 +

2
m


OPT1(G, J) +


1 −

1
2m


L-EQUIO(m2)(G, J))

1
2m

L-EQUIO(m2)(G, J) ≤


1 +

2
m


OPT1(G, J) �
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Theorem 2 can be completely tightened giving that AIMDEQUI is (2 + ϵ)-speed O(1)-competitive if we assume that the
adjustment frequencies of the bottlenecks do not to change much within the life of an individual job. This we believe is a
reasonable assumption. Recall that the adjustment frequency f⟨k,t⟩ is supposed to represent how the bottleneck k at time t is
‘‘charging’’ all the jobs that pass through it for their bandwidth. This amount is a global property that should not be greatly
affected by the arrival and the completion of individual jobs.

Recall that our algorithm AIMDEQUI is perfectly free market fair, meaning that each job is charged fk by each bottleneck it
passes through for the bandwidth that it uses. In a supply and demandway themarket fluctuates so that each job is allocated
the same cost of bandwidth.We nowuse the global aspect of this view of fairness to reduce AIMDEQUI on the entire network
B to a single network with a single bottleneck. This is used to prove the following.

Theorem 4. Let B be any general network. Let J be any set of jobs in which each phase of each job can have an arbitrary
sublinear-nondecreasing speed-up function. Suppose for each job Ji, the ratio (


k∈Bi

f⟨k,t⟩)/(


k f⟨k,t⟩Bk) between adjustment
frequencies does not change by more than a factor of r throughout the life of a job, where r ≥ 1 is some constant. It follows that
AIMDEQUIr(2+ϵ)(J)

OPT1(J)
≤ O(1 +

1
ϵ
).

Proof of Theorem 4. This proof uses the fact that AIMDEQUI is Free Market Fair. It is a simple reduction to Theorem 1
by reducing everything that is occurring within the general network B to a single network with a single bottleneck with

capacity B = 1, namely AIMDEQUIr(2+ϵ)(B,J)

OPT1(B,J)
≤

EQUI(2+ϵ)(1,Jf )

OPT1(1,Jf )
= O


1 +

1
ϵ


. Using the same notation As(M, J), we have that

AIMDEQUIr(2+ϵ)(B, J) is the total flow where the model is the general network B, the job set is J, and the algorithm
is AIMDEQUI with speed r(2 + ϵ). Similarly, EQUI(2+ϵ)(1, Jf ) is the total flow where the model is the single-bottleneck
network ‘‘1’’, job set is Jf , which is defined shortly, and the algorithm is EQUI with speed (2 + ϵ). The last step is a direct
application of Theorem 1.

Define F⟨i,t⟩ = (


k∈Bi
f⟨k,t⟩)/(


k f⟨k,t⟩Bk) to be a needed comparison between the adjusting frequency of job Ji at time t

and that of the overall network. By the statement of the theorem, this does not change by more than r throughout the life
of the job and hence Fi ≤ F⟨i,t⟩ ≤ rFi for some Fi.

Though the theorem states that each phase of each jobs in J can have an arbitrary sublinear-nondecreasing speed-up
function, [9] proves that in the worst case each phase is either sequential or parallelizable. Hence, we can construct another
set of jobs Jf

= {JFii | Ji ∈ J} by taking each job Ji ∈ J and creating the job JFii by scaling the work of each parallelizable
phase by this constant Fi and keeping each sequential phase the same.

The first step is to prove that AIMDEQUIr(2+ϵ)(B, J) ≤ EQUI(2+ϵ)(1, Jf )). By induction on t , assume that at time t
AIMDEQUIr(2+ϵ)(B, J) has completed at least as much work on each job as EQUI(2+ϵ)(1, Jf ). We prove as follows that the
first algorithm allocates at least 1

Fi
timesmore bandwidth to job Ji at this time than the second does, i.e. bA

⟨i,t⟩ ≥
1
Fi

·bE
⟨i,t⟩. By the

boundon F⟨i,t⟩ given by the theoremand that on bA
⟨i,t⟩ given in Eq. (4), Fi·bA⟨i,t⟩ ≥

1
r F⟨i,t⟩·bA⟨i,t⟩ =

1
r


(


k∈Bi
f⟨k,t⟩)/(


k f⟨k,t⟩Bk)


·

α
(1−β)

/(


k∈Bi
f⟨k,t⟩)


= (2 + ϵ)/


r(2 + ϵ)

(1−β)

α
(


k f⟨k,t⟩Bk)

. By Lemma 1 below, this is (2 + ϵ)/nA

t . By the induction

hypothesis nA
t ≤ nE

t and hence this is at least (2+ϵ)/nE
t , which is the bandwidth bE

⟨i,t⟩, allocated by EQUI(2+ϵ)(1, Jf ). Because
bA

⟨i,t⟩ ≥
1
Fi

· bE
⟨i,t⟩, AIMDEQUIr(2+ϵ)(B, J) continues to keep up. The second algorithm has Fi times as much fully parallelizable

work and by definition sequential work completes at a fixed rate independent of the number of processors allocated. This
completes the proof by induction.

The final step in the proof is to compare the optimal algorithms OPT1(B, J) ≥ OPT1(1, Jf ). This is done by constructing
another algorithm OPTf1 for which OPT1(B, J) = OPTf1(1, Jf ). Because OPT1(1, Jf ) is the optimal algorithm, OPTf1(1, Jf ) ≥

OPT1(1, Jf ). OPTf1(1, Jf )) is defined to be the same as OPT1(B, J) except that the bandwidth allocated to job Ji is scaled
by Fi, i.e. b

f
⟨i,t⟩ = Fi · bB

⟨i,t⟩. OPT1(B, J) = OPTf1(1, Jf ), because both the amount of parallel work and the number of
processors have been scaled by Fi. What remains is to show that OPTf1(1, Jf ) does not allocate more than a total of one
bandwidth at any given time, namely


i b

f
⟨i,t⟩ =


i Fi · bB

⟨i,t⟩ ≤


i F⟨i,t⟩ · bB
⟨i,t⟩ =


i(


k∈Bi
f⟨k,t⟩)/(


k f⟨k,t⟩Bk) · bB

⟨i,t⟩ =

(


k f⟨k,t⟩(


i∈J⟨k,t⟩
bB

⟨i,t⟩))/(


k f⟨k,t⟩Bk). Because OPT1(B, J) cannot exceed the capacity of the kth bottleneck, this is at most
(


k f⟨k,t⟩(Bk))/(


k f⟨k,t⟩Bk) = 1. This completes all the required steps of the proof. �

Lemma 1. The number nt of jobs active at time t under AIMDEQUIs is nt =
s(1−β)

α


k f⟨k,t⟩Bk.

Proof of Lemma 1. nt =


active i 1, which by both the left and right sides of Eq. (4) equals


i


k∈Bi
f⟨k,t⟩b⟨i,t⟩

(1−β)

α
=

(1−β)

α


k f⟨k,t⟩(


i∈J⟨k,t⟩

b⟨i,t⟩), which by Eq. (3) equals (1−β)

α


k f⟨k,t⟩sBk. �

Lemma 2. For each k, the adjustment frequency for the kth bottleneck is bounded by f⟨k,t⟩ ∈
α

(1−β)


1
m

nmax
⟨k,t⟩
sBk

,
n⟨k,t⟩
sBk


.
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Proof of Lemma 2. Multiplying both sides of Eq. (3) by f⟨k,t⟩ gives sf⟨k,t⟩Bk =


i∈J⟨k,t⟩
f⟨k,t⟩b⟨i,t⟩ (both for the equality and

the inequality versions). f⟨k,t⟩b⟨i,t⟩ ≤ (


k∈Bi
f⟨k,t⟩)b⟨i,t⟩, which by Eq. (4) is equal to α

(1−β)
. Thus sf⟨k,t⟩Bk ≤


i∈J⟨k,t⟩

α
(1−β)

=

n⟨k,t⟩
α

(1−β)
. Rearranging gives the upper bound f⟨k,t⟩ ≤

α
1−β

n⟨k,t⟩
sBk

.
For each job Ji, let k′(i, t) denote the index of the bottleneck with the highest adjusting frequency that the job passes

through, i.e. k′(i, t) is the k maximizing maxk∈Bi f⟨k,t⟩. Let Jmax
⟨k,t⟩ ⊆ J⟨k,t⟩ denote those jobs Ji ∈ J⟨k,t⟩ passing through the

kth bottleneck for which k = k′(i, t). Let nmax
⟨k,t⟩ = |Jmax

⟨k,t⟩| denote the number of such jobs. Similar to that done before,
sf⟨k,t⟩Bk =


i∈J⟨k,t⟩

f⟨k,t⟩b⟨i,t⟩ ≥


i∈Jmax
⟨k,t⟩

f⟨k,t⟩b⟨i,t⟩. Applying the simplification (mfk′(i,t))b⟨i,t⟩ ≥ (


k∈Bi
f⟨k,t⟩)b⟨i,t⟩ =

α
(1−β)

of

Eq. (4) gives that this is at most


i∈Jmax
⟨k,t⟩

1
m

α
(1−β)

= nmax
⟨k,t⟩

1
m

α
(1−β)

. Rearranging gives the lower bound f⟨k,t⟩ ≥
α

1−β
1
m

nmax
⟨k,t⟩
sBk

. �

Lemma 3. The bandwidth allocated by AIMDEQUIs(J) to job Ji at time t is at least 1
m that allocated by L-EQUIs(J), i.e. b⟨i,t⟩ ≥

1
m mink∈Bi

sBk
n⟨k,t⟩

. It follows that AIMDEQUIms(J)

L-EQUIs(J)
≤ 1.

Proof of Lemma 3. Consider a job Ji. Eq. (4) gives (mmaxk∈Bi f⟨k,t⟩)b⟨i,t⟩ ≥ (


k∈Bi
f⟨k,t⟩)b⟨i,t⟩ =

α
(1−β)

and hence b⟨i,t⟩ ≥

α
1−β

1
m mink∈Bi

1
f⟨k,t⟩

. Applying the bound in Lemma 2 gives b⟨i,t⟩ ≥
1
m mink∈Bi

sBk
n⟨k,t⟩

. �

6. Open problems

What make me slightly uncomfortable about this paper is the following. I do not know if or how quickly the differential
equations in Eqs. (1) and (2) converge. For Eqs. (3) and (4), it is not clear to me how one determines which bottlenecks are at
capacity. Once this is known, there is one equation and one unknown b⟨i,t⟩ and f⟨k,t⟩ for each job and bottleneck. However, I
don’t even knowwhether these equations have a solution, not tomention a solution inwhich both b⟨i,t⟩ and f⟨k,t⟩ are positive.
The obvious open question is to prove Theorem 4 without its restrictions that the adjustment frequencies do not change
much throughout the life of a job. Also, according to themax–min socialistic fairness, [14] proves that AIMD can be unfair by
a factor ofm to jobs that pass throughm bottlenecks. An open problem is to prove that this is the worst case.

For further reading

[1,8,15,16,24,26,29,30,33–36].
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