
TCP is Competitive Against a Limited Adversary∗

[Extended Abstract]

Jeff Edmonds
jeff@cs.yorku.ca

Suprakash Datta
datta@cs.yorku.ca

Patrick Dymond
patrick@cs.yorku.ca

Computer Science Department
York University, Toronto, Canada

ABSTRACT
While the well-known Transport Control Protocol (TCP) is
a de facto standard for reliable communication on the Inter-
net, and performs well in practice, the question “how good
is the TCP/IP congestion control algorithm?” is not com-
pletely resolved. In this paper, we provide some answers
to this question using the competitive analysis framework.
First, we prove that for networks with a single bottleneck
(or point of congestion), TCP is competitive to the optimal
global algorithm in minimizing the user-perceived latency or
flow time of the sessions. Specifically, we show that with
O(1) times as much bandwidth and O(1) extra time per
job, TCP is O(1)-competitive against an optimal global al-
gorithm. We motivate the need for allowing TCP to have
extra resources by observing that existing lower bounds for
non-clairvoyant scheduling algorithms imply that no online,
distributed, non-clairvoyant algorithm can be competitive
with an optimal offline algorithm if both algorithms were
given the same resources. Second, we show that TCP is fair
by proving that it converges quickly to allocations where
every session gets its fair share of network bandwidth.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—Internet

General Terms
Algorithms, Performance, Theory

Keywords
TCP/IP, performance evaluation, competitive analysis, con-
gestion control, scheduling.

∗This research was supported in part by grants from NSERC
and CITO.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03, June 7–9, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

1. INTRODUCTION
Most of the traffic on the Internet today is generated

by applications which use the transport control protocol
(TCP). According to one study [27], 95% of the bytes and
90% of the packets sent over the Internet use TCP. TCP
is a large and complex protocol that solves several differ-
ent problems, including reliable data transfer, flow control,
congestion control, and fair allocation of network resources.
Most of the research efforts towards evaluating the quality
of TCP have concentrated on evaluating (either empirically
or analytically) the value of some performance metric. In
this paper we take a different approach towards the prob-
lem, and evaluate the performance of TCP using the tradi-
tional competitive analysis framework [23]. Thus, we com-
pare the performance of TCP (which is an online algorithm)
with that of an optimal offline algorithm. In this paper,
we study the performance of TCP on single-bottleneck net-
works, i.e., in a network where there is a single point of
congestion. We prove that (a simplified version of) TCP
satisfies the transmission requests of all users in an efficient
and fair way. We show that existing lower bounds from
non-clairvoyant scheduling theory imply that no online, dis-
tributed, non-clairvoyant algorithm can be competitive with
an all-powerful adversary. This suggests that the power of
the adversary should be limited to level the playing field.
The most popular approach for doing this is to explicitly
limit the adversary in some way, e.g., by limiting its free-
dom in choosing its inputs. In this paper, we use an al-
ternative approach that has been utilized very successfully
in scheduling theory [5, 13, 8], viz., giving the online al-
gorithm strictly more resources compared to the adversary.
Using this approach, we first prove that TCP performs com-
petitively against any all-powerful adversary if it is given a
constant times more bandwidth and either (a) some extra
time, or (b) we assume that no job is smaller than a cer-
tain size. Second, we study the fairness properties of TCP
and prove that TCP converges quickly to allocations where
every session gets its fair share of network bandwidth.

An interesting byproduct of our paper is that it empha-
sizes and exploits a very natural connection between the
TCP congestion control algorithm and the theory of online
algorithms and non-clairvoyant scheduling. This provides a
new theoretical approach for analyzing TCP variants and ex-
ploring parameter settings under different network assump-
tions.

This paper is organized as follows. Section 2 describes the
our simplified model of TCP. Section 3 describes how TCP

can be viewed as a scheduling algorithm, and introduces the
scheduling model. Section 4 surveys the literature on the
performance analysis of TCP and results from scheduling
theory relevant to this paper. Section 5 presents the main
results of the paper. The proofs of some theorems in Sec-
tion 5 are deferred to the Appendix.

2. THE TCP CONGESTION CONTROL
ALGORITHM

While TCP solves several problems, this paper focuses on
the congestion control (prevention, detection, and reaction
to congestion in the network) algorithm of TCP. TCP runs
at every sender/receiver in a distributed manner. There is
no communication between different sessions. In this pa-
per (as in most papers in the literature), we model only
the basic algorithmic strategy used by TCP. This strategy
(commonly referred to as additive-increase-multiplicative-
decrease or AIMD) is very simple: at every step, each source
is allowed to increase its sending rate by an additive con-
stant α. When it detects congestion, the TCP algorithm
requires the sender to cut its sending rate by a multiplica-
tive constant β. In this paper, we refer to this action as an
adjustment.

Detection of network congestion is a difficult task, since no
support from switches and routers is assumed (TCP does not
receive any messages from the switches or routers that pack-
ets pass through en route to their destinations. Congestion
can only be inferred (perhaps incorrectly) from end-to-end
observations. TCP sends acknowledgments to the sender for
every packet that reaches its destination, and infers conges-
tion from the late arrival or non-arrival of acknowledgments.

We emphasize that in reality, TCP uses windows of packet
sequence numbers and a “self-clocking” mechanism instead
of actual transmission rates. TCP also has many other de-
tails that we do not model in this paper. For example, we
do not model the fact that the maximum possible window
size is limited to a constant (often 32 kB). The reader is re-
ferred to the books by Kurose [17] and Stevens [26] for more
information on the protocol.

Our model of the TCP congestion control algorithm is as
follows. The sender of each job Ji uses TCP to determine the
rate bT

i (t) at which it transmits its job Ji (Throughout the
paper, we use the superscript T to denote that this band-
width was allocated by TCP). This sender has no knowl-
edge about the other jobs; it starts with bT

i (t) = 0, and
increases its transmission rate linearly at a constant rate of
∂bT

i (t)/∂t = α (typically α = 1) until it infers that the bot-
tleneck has reached capacity (from non-acknowledgment of
some packet). At this point, the sender cuts its own rate
bT
i (t) by a multiplicative factor of β (typically β = 1

2
). We

call this an adjustment point. After each such adjustment,
the sender resumes increasing the rate linearly at a rate of
α. When the total transmission rate through the bottleneck
exceeds its capacity, the bottleneck “loses” the excess data.
For simplicity, we will assume that there is a fixed delay of
δ between when a bottleneck loses some transmission and
when the senders learn about it.

3. TCP VIEWED AS A SCHEDULING
ALGORITHM

We model the transmission of a file of data through a net-
work as the flow of a fluid that can be allocated a variable

bandwidth/transmission rate. Similarly, we model the ex-
ecution of a fully parallelizable job that can be allocated a
variable (real) number of processors. Within these abstrac-
tions, the problem of scheduling bandwidth to a number
of transmission sessions is identical to that of scheduling a
number of processors to a set of parallelizable jobs. The
latter problem has a rich history of results [22, 13, 5, 8].
This paper applies and extends those results to the former
problem.

3.1 The scheduling problem
We assume that there is a single bottleneck in our net-

work1 which causes all data losses. In reality this bottleneck
may be a link or a router. We assume that the bottleneck
has a maximum capacity B; if data arrives at a rate higher
than B, the excess data is lost. The input consists of a set
of jobs (or sessions) J = {Ji}. Each job Ji is defined by its
arrival time ai and its length (or size) li. In keeping with
Scheduling Theory, we associate with each job a speedup
function Γ(x); this function models the parallelizability of
the job by providing the speedup (or reduction in the time
of execution of the job) obtained if it was given x amount
of resources. Examples of “natural” speed-up functions are
fully parallelizable Γ(x) = x and sequential Γ(x) = 1 work.

A scheduling algorithm ALGs must schedule the transmis-
sion of the jobs at speed s (i.e. with s times the resources
given to the all-powerful adversary). At each time t, the al-
gorithm allocates bA

i (t) bandwidth to job Ji passing through
it. Since the bottleneck has capacity sB,

P
i∈Jt

bA
i (t) ≤ sB.

A job of length li completes at time cA
i if the algorithm al-

locates enough bandwidth so that
R cA

i
ai

bA
i (t)dt = li.

We use the flow time L(ALGs) of a scheduling algorithm
ALGs as a measure of its performance. The flow time [22,
13, 5, 8] is the average time between the arrival time and
completion time of a job, i.e. Avgi∈J [cA

i − ai]. This mea-
sure is sometimes called the user-perceived latency in the
Systems literature. As mentioned before, we measure the
performance of an algorithm by its competitive ratio which
is defined as the ratio of the flow time of ALGs to the flow
time of the optimal algorithm for the worst set of jobs, i.e.,

maxJ
L(ALGs(J))
L(OPT1(J))

. In this paper, we allow algorithm ALGs

to have some extra time D(J) as well. In this case, the

competitive ratio is defined as maxJ
L(ALGs(J))

L(OPT1(J)+D(J))
. We

emphasize that the subscript for the optimal algorithm OPT
is used to remind the reader that the optimal algorithm is
given less resources than the online algorithm.

Any algorithm that solves the preceding scheduling prob-
lem must be an online algorithm [2] (since it must allocate
its bandwidth as jobs arrive, without knowledge of future
arrivals), non-clairvoyant [22, 13, 5] (it only knows when
a job arrives and when it completes, but does not know
the amount of work remaining or the parallelizability of the
jobs) and distributed (the sender of a job has no knowledge
of the other jobs or even the maximum bandwidth of the
bottlenecks). It only receives limited feedback about his
own transmission loss due to bottleneck overflow. While
it is known that the Shortest-Remaining-Work-First is the
optimal scheduling algorithm for this problem when all the
jobs are fully parallelizable, neither non-clairvoyant nor dis-

1For preliminary results on the general case (multiple bot-
tlenecks), please see the manuscript [6]

tributed scheduling algorithms have enough information to
execute the Shortest-Remaining-Work-First algorithm. The
optimal scheduler, in contrast, has complete information
about all jobs. Equivalently, we can assume that the
optimal scheduler is the adversary that chooses the worst-
case input which is good for itself and bad for the online
algorithm.

4. RELATED WORK AND OUR RESULTS
As we have mentioned before, most of the existing analy-

ses of TCP attempt to evaluate explicitly some performance
metric after making some probabilistic assumptions on the
inputs. In contrast, competitive analysis makes no assump-
tions about inputs and provides worst-case results. We sur-
vey relevant previous work in both areas in the following
two subsections. Then, we turn to relevant work on the
fairness of the TCP congestion control algorithm. Relevant
work from the theory of non-clairvoyant scheduling algo-
rithms are surveyed next. The final subsection presents our
results.

4.1 Probabilistic analysis of TCP congestion
control

Many papers study the efficiency of TCP by evaluating
its throughput. Most of these make the simplifying assump-
tion that every packet gets dropped with probability p in-
dependent of all other packet drops. Under this assump-
tion, several papers [20, 18] show that for low values of p,
TCP throughput is proportional to 1/

√
p. The same result

was proved in [24] for more elaborate models of TCP. [25]
showed that throughput decreases faster (roughly propor-
tional to 1/p) at higher values of p. All these papers assume
constant round-trip times. Misra and Ott [21] incorporated
state-dependent packet loss probabilities into their model
and studied the stationary distribution of the congestion
window.

Kelly et al. [16, 15] consider multibottleneck models but
constant round-trip times. Using control-theoretic methods,
they prove that a simplified version of the TCP congestion
control algorithm is stable – i.e., it converges to a stable
equilibrium point which results in fair allocations of the bot-
tleneck capacities. Johari and Tan [12] and Massoulie [19]
study the effect of variable round-trip times on stability and
show that stability is achieved even under this assumption.
It is worth noting that all these papers deal with rates in-
stead of windows of sequence numbers to simplify the anal-
ysis. It is worth noting that we do not study any of the
many enhancements to TCP proposed in recent years which
rely on router support to aid the TCP congestion control
algorithm. An important example of such enhancement is
explicit congestion notification (ECN), in which the router
explicitly passes information about the congestion it sees to
senders of packets. We are currently extending our results
for the case where routers run a randomized active queue
management algorithm somewhat similar to RED [10].

4.2 Competitive analysis of TCP congestion
control

The problem of analyzing TCP congestion control using
competitive analysis was suggested by Karp et al. [14], who
attempted to find theoretical reasons for the empirically ob-
served superiority of TCP to most of the proposed alterna-
tives. In their model, a TCP session attempts to guess a

threshold u (intuitively the ideal transmission rate for the
session), and the network (modeled as an adversary) im-
poses a cost c(x, u) on the session where x is the current
guess of the session. They assume u to be a positive integer
and that the algorithm knows an upper bound n on u. They
also consider a dynamic version of the problem where the
threshold u can change over time and study ways in which
the power of the adversary can be limited in changing the
threshold u. Recently, Arora et al. [1] studied the same
model and proposed an optimal randomized algorithm for
the same problem.

4.3 Fairness of TCP congestion control
Chiu and Jain [3] studied fairness and efficiency of the

additive-increase-multiplicative-decrease rate adjustment al-
gorithm from a control-theoretic standpoint. The main re-
sult of their paper is that as long as no jobs arrive or com-
plete, TCP converges towards fair allocations (they show

that the global measure
P

i∈J bT
i (t))2

(n
P

i∈J
(bT

i
(t))2)

converges to 1).

Subsequently, several papers (e.g., [9, 11]) studied fairness
issues in TCP.

4.4 Previous Scheduling Results
Kalyanasundaram and Pruhs [13] present a simple non-

clairvoyant algorithm Balance and prove that for every set of
jobs it performs within a factor of s

s−1
= 1+ 1

ǫ
of the optimal

schedule as long as it is given s = 1+ǫ times the speed. Such
an algorithm is said to be a O(1)-speed O(1)-competitive al-
gorithm. Equi-partition (EQUI) is a simple, natural and fair
scheduling algorithm that is used extensively in practice. It
allocates an equal (potentially non-integer) number of pro-
cessors to each unfinished job. Edmonds [5, 7] proves that
EQUI is competitive as long as it is given s = 2 + ǫ times
the speed, even (rather surprisingly) for jobs with fully par-
allelizable and sequential phases.

Motwani et al. [22] prove that for every deterministic non-
clairvoyant scheduler without any extra power (i.e., the sched-
uler has no more resources than the optimal algorithm, or
equivalently, without any limitations imposed on the power
of the adversary), there is a set of n jobs on which the sched-

uler does a factor of Ω(n1/3) worse than the optimal sched-
ule. For EQUI, this ratio is Ω(n

log n
). It is likely this lower

bound holds for all distributed schedulers when the optimal
algorithm has the same resources as the distributed sched-
uler.

4.5 Our Results
In this paper, we view TCP as a very simple and nat-

ural online, non-clairvoyant and distributed scheduling al-
gorithm. We show that (our simplified version of) TCP is
competitive against an optimal offline scheduler, provided
we limit the power of the adversary.

Chiu et al. [3] proved that if no jobs come in or leave, TCP
converges quickly to EQUI with (1+β

2
)B total bandwidth. In

this paper, we extend their results and allow jobs to arrive
and leave over time. Under these assumptions, TCP takes
longer to converge to EQUI. For periods of time after the
arrival or the completion of jobs, some jobs may not be given
their fair share of the bandwidth. Therefore, the algorithm
may no longer be competitive, especially if these starved
jobs are short.

Our first result, (in Section 5.2), proves that for TCP with
s = O(1) extra bandwidth and D(J) extra time,

L(TCPs(J))
L(OPT1(J))+D(J)

= O(1).2 Here D(J) is some extra time

which can be crudely upper bounded by O
�

|J |(1−β)B
α

�
,

where |J | is the number of jobs in J . Intuitively, this cap-
tures the fact that TCP needs O(1) extra time per job to
be competitive. We will defer the actual definition of D(J)
to Section 5.2 for simplicity of exposition, where we will
show that D(J) is typically much smaller than this upper
bound. Our second result, (in Section 5.3), shows that TCP
converges quickly to the allocations produced by EQUI. In
particular, it bounds the total time that a job is not getting
its fair share to being at most a few adjustment periods at
the beginning and the end of each job. The length of an ad-
justment period is at most O(1−β

α
B

n(t)
) when there are n(t)

jobs in the system at time t, because it only takes this much
time for n(t) jobs increasing their individual bandwidth at a
rate of α to increase the total bandwidth from the decreased
total of (1 − β)B back to the bottleneck’s capacity B. We
expect that this will typically be a small fraction of the job’s
total life.

Our results can be interpreted as follows. First, TCP is
O(1)-competitive if the adversary is limited in the manner
described before and all sessions are of a certain minimum
length. In the presence of short sessions, the competitive
ratio may not be a constant, in keeping with the intuition
that EQUI (and of course OPT) may finish small jobs much
faster than TCP. To our knowledge, this is the first result
on the competitiveness of the TCP congestion control al-
gorithm (we note that the results of Dooly et al. [4] were
for a different problem, even though it concerned TCP and
involved competitive analysis). Another interesting aspect
of our work is that we prove our results by comparing TCP
to EQUI instead of the optimal algorithm. In our simplified
model, EQUI captures precisely the notion of fairness used
by TCP,3 and this allows us to prove fairness properties as a
byproduct. It is worth pointing out that our fairness results
are subsumed by similar results proved for multi-bottleneck
networks in [16, 15, 12, 19].

Finally, our results hold for any constant α, β satisfying
α > 0 and 0 ≤ β < 1. In Section 5.5, we quantify some of
the tradeoffs involved in choosing the parameters α and β.

5. FAIRNESS AND EFFICIENCY OF TCP
Due to space limitations, we will prove our results for the

case δ = 0, corresponding to the assumption that senders
receive instantaneous feedback when bottleneck capacity is
exceeded. In the full version, we prove our results for δ > 0.
The Appendix also contains some results for δ > 0.

2We point out that an equivalent form of our result is
L(TCPs(J))−D(J)

L(OPT1(J))
= O(1). However, this version is less

meaningful if L(TCPs(J)) ≤ D(J).
3We remind the reader that TCP congestion control uses
windows of sequence numbers and not rates. Therefore, two
sessions may have the same window sizes but use differ-
ent bandwidths if they have different roundtrip times. This
complicates the notion of fairness in more complex models
of TCP.

5.1 Lower bounds for non-clairvoyant
schedulers

TCP, being on-line, non-clairvoyant, and distributed, is
not always able to compete against an optimal scheduler.
We motivate the need to give TCP a constant times ex-
tra bandwidth and some extra time to adjust by showing
that lower bounds for non-clairvoyant schedulers imply lower
bounds for TCP.

Motwani et al. [22] prove that for every deterministic non-
clairvoyant scheduler (of which TCP is an example), the

competitive ratio is Ω(n1/3). Thus TCP needs at least a
constant factor more resources than the optimal algorithm
in order to be competitive.

For EQUI, the competitive ratio is known to be Ω(n
log n

).

Kalyanasundaram and Pruhs [13] prove that even with speed
s = 2 − ǫ, EQUI has competitive ratio of Ω(nǫ). It is only
with speed s = 2+ ǫ, that Edmonds [5] proves that EQUI is
O(1)-competitive. Since EQUI has more information than
TCP, it is reasonable to expect that TCP also needs a speed
s satisfying s ≥ 2 + ǫ.

5.2 Extra bandwidth and adjustment time
Ideally one would like to show that TCP, even though

it is on-line, non-clairvoyant, and distributed, always has a
competitive user perceived latency (or flow time). However,
this is not true. We will prove that TCP is competitive if it is
given more resources than the optimal algorithm. The extra
resources are a constant times more bandwidth and either
some extra time (equal to a constant number of adjustment
periods per job). The latter is unnecessary if all the jobs
live for at least a constant number of adjustment periods.

We prove our results by comparing TCP to EQUI, which
we already know is competitive if it has a constant factor
more bandwidth than the optimal. We now describe the
intuitive reasons for the extra powers needed by TCP in
order to be perform as well with EQUI (and thus be com-
petitive). Since no sender in our model knows about the
other senders, it takes a while for the system to adjust to
jobs arriving and completing. In contrast, EQUI adjusts its
allocations instantly. We prove that despite this, TCP con-
verges towards EQUI exponentially fast for each job. We
show that at all adjustment points, at least q periods after
a job arrives, the bandwidth allocated by TCP to the job
is at least a factor of 1 − βq of that allocated by EQUI (see
Theorem 3). We will choose some constant q and compen-
sate TCP for this remaining gap by giving it an extra factor
of 1

1−βq bandwidth.
Further, because TCP is a distributed algorithm, it is dif-

ficult for the algorithm to continually utilize all of the avail-
able bandwidth. For the AIMD algorithm, the total band-
width used varies linearly between βB and B, where B is
the capacity bandwidth of the bottleneck. Therefore, TCP
utilizes on average only β+1

2
of the available bandwidth. It

follows that TCP needs a factor of 2
β+1

extra bandwidth to
compete with any centralized algorithm.

Finally, an extra (1 + 1
q
) factor is required to compensate

for the effect of other jobs arriving and completing. Com-
bining all of these factors, TCP needs to be given a factor
of s = (2 + ǫ)(1

1−βq)(2
β+1

)(1 + 1
q
) more bandwidth than the

optimal scheduler is given.
In order for TCP to be competitive we must also either

give each job the extra time of a constant number of ad-

justment periods to adjust or require all the jobs to live at
least a constant number of adjustment periods. An adjust-
ment period is the period between consecutive adjustment
points. Lemma 2 shows that the length of an adjustment

period is (1−β)B

αnT (t)
, where nT (t) denotes the (average) number

jobs alive under TCP during the period4. Adjustment peri-
ods may vary in length, and so we make precise the notion
of “the time of a constant number of adjustment periods”
below.

When a job first arrives, EQUI allocates it a fair share of
the bandwidth. The optimal scheduler may allocate all the
bandwidth to the job with the shortest remaining work in
order to complete it quickly. In contrast, TCP forces the new
job to start with a transmission rate of zero. Nevertheless,
a job’s allocation converges exponentially quickly to that
given by EQUI. In particular a job needs to wait q complete
adjustment periods for its rate to be at least a factor of
1 − βq of that of EQUI.

ai
τ
j+1

τ
j+2

τ τ
j+3

τ c
im

τ
m+1

τ
j+q

time

D

qa qc

Di

D
i D i

/q /q

j

i
ca

bandwidth
of session i

Figure 1: The time of a constant number of adjust-

ment periods per jobs.

More formally, consider a set of jobs J = {Ji}. Let τj ,
j = 0, . . . be the times of the adjustment points. Let ja

i

denote the index of the first adjustment time τ(ja
i) after job

Ji arrives, i.e. ja
i

def
= minj{j | τj ≥ ai}. (See Figure 1.)

Let Da
i denote the length of the first q complete adjustment

periods of job i, i.e., Da
i

def
= τ(ja

i +q) − ai.
A job may not get its fair share of the bandwidth in the

last adjustment period when the multiplicative constant β is
close to zero. With this setting, all jobs drastically decrease
their transmission rate when the bottleneck reaches capac-
ity. If a job completes shortly after this adjustment, it does
not have a reasonable allotment of bandwidth during this
last fractional adjustment period. Let jc

i denote the index
of the last adjustment time τ(jc

i) before job Ji completes, i.e.

jc
i

def
= maxj{j | τj ≤ cT

i }. Let Dc
i denote the fractional time

of this last adjustment period, i.e. Dc
i

def
= cT

i − τ(jc
i).

Even when a job is neither arriving nor completing, we
will see that having other jobs arrive or complete may tem-

4The length of an adjustment period is upper bounded by

a (possibly large) constant, viz., (1−β)B
α

. We express this

length in terms of nT (t) to demonstrate that the length
is much smaller if there is a number of jobs or sessions in
progress.

porarily cause a job to receive less than its fair allotment
of bandwidth. We will have these other jobs “pay” for this.
Let Dqa

i and Dqc
i denote q times the complete length of the

first and last adjustment periods that job Ji is in, namely,

let Dqa
i

def
= q · (τ(ja

i) − τ(ja
i −1)) and Dqc

i
def
= q · (τ(jc

i +1) − τ(jc
i)).

Summing up, let D(J)
def
=
P

i∈J (Da
i + Dc

i + Dqa
i + Dqc

i)
denote the sum of these times over all jobs. Note that this
is O(q) adjustment periods per job. Our main result states
that if TCP is given the constant factor s more bandwidth

and D(J) extra time to adjust, then L(TCPs(J))
L(OPT1(J))+D(J)

=

O(1). Equivalently we could write L(TCPs(J))−D(J)
L(OPT1(J))

= O(1).

Note that in keeping with [5], our theorems are proved
for general jobs – we allow each job Ji to have an arbitrary
number of phases and each phase to have an arbitrary non-
decreasing sublinear speedup function Γi,k(b), representing
the rate at which work is executed for phase k of job i when
allocated b processors. Thus, our results hold even if each
transmission request came with a specified upper and lower
bound on the rate at which the data could be transmitted
or received.

Theorem 1. Let α > 0, β ∈ [0, 1), δ ≥ 0, q ≥ 1 be an
integer, s = (2 + ǫ)(1

1−βq)(2
β+1

)(1 + 1
q
), and J be any set

of jobs in which each phase of each job can have an arbi-
trary sublinear-nondecreasing speedup function. Let D(J)
be the length of O(q) adjustment periods per job, with each

adjustment period being of length (1−β)B

αnT (t)
+(1−β)δ. For any

non-fully parallelizable phase job, give TCPs(J) the speedup
function 4β+4

5β+3
Γi,k(b) whenever OPT1(J) is given Γi,k(b).

Alternatively, give the same speedup functions, but change
the factor of (2

β+1
) within s to 1

β
(which is reasonable unless

β is close to zero.) Then L(TCPs(J))
L(OPT1(J))+D(J)

= O
�
1 + 1

ǫ

�
.

Alternatively, we could require all jobs to live at least a
constant number of adjustment periods. In this case, the
extra time to adjust is not needed because if each job lives
for O(q) adjustment periods, then

D(J)
def
=

X
i∈J

O(q) adjustment periods

≤ O(
X
i∈J

cT
i − ai)

def
= O(L(TCPs(J))).

Corollary 2. Let q ≥ 1 be an integer, J be any set of
jobs in which each job lives for O(q) adjustment periods and
s = (2 + ǫ)(1

1−βq)(2
β+1

)(1 + 1
q
). Then

L(TCPs(J))

L(OPT1(J))
= O

�
1 +

1

ǫ

�
.

5.3 TCP converges to EQUI
We prove that TCP converges to EQUI by comparing

what TCP and EQUI would allocate on a job-by-job, moment-
by-moment basis as jobs arrive and complete.

First, we prove that at all adjustment points, at least q
periods after a job arrives, the bandwidth allocated by TCP
to the job is at least a factor of (1 − βq) of what EQUI
would allocate given the same speed. Interestingly, at this
point a job could still have a constant fraction of the total
bandwidth, βqB, which might be considerably more than its
share sB

nT (t)
. We must wait O(log n + q) phases until we are

sure that TCP allocates no more than a factor (1 + βq) of
what EQUI would allocate.

Theorem 3. Let q ≥ 1 be an integer, s be any value,
and J be any set of jobs. For each job Ji and for all times
t = τja

i +q+j, j ≥ 0, bT
i (t) ≥ (1 − βq) sB

nT (t)
, where bT

i (t)

denotes the bandwidth allocated by TCPs(J) to job Ji at
time t and nT (t) denotes the number jobs alive at this time.
On the other hand, at all times t ≥ τ

ja
i +

log(n)
log(1/β)

+q
, bT

i (t) ≤
(1 + βq) sB

nT (t)
.

The proof of this theorem is given in the Appendix.
While it may seem from Theorem 3 if we give TCP 2

β+1
times as much bandwidth, all jobs get their fair share of the
bandwidth, this does not hold, due to the arrivals and de-
partures of other jobs. For example, when jobs complete, it
takes TCP some time to allocate the freed bandwidth. In
contrast, EQUI would instantly reallocate the freed band-
width to the existing jobs. We now bound the amount of
time during which such a discrepancy occurs. We will define
Less(J) to be the total time over which TCPs allocates a
job less bandwidth than EQUI2+ǫ would allocate, and prove
that this is at most O(q) adjustment periods per job, i.e.
Less(J) ≤ D(J).

More formally, for each job Ji and each adjustment pe-
riod [τj , τj+1], we say that the job during this period receives
less allocation than EQUI2+ǫ would give if the job’s average
transmission rate during this phase is less under TCPs(J)
than it would be under EQUI2+ǫ, i.e. Avgt∈[τj,τj+1]b

T
i (t) <

Avgt∈[τj,τj+1]
(2+ǫ)B

nT (t)
. We consider the average over the phase,

in order to compensate for the fact that TCP decreases and
increases the transmission rates each phase.

Let Lessi denote the sum of the lengths of all the ad-
justment periods during the life of job Ji for which the job

receives less. Let Less(J)
def
=
P

i∈J Lessi denote the total
time over which a job is allocated less than its share.

Theorem 4. Let q ≥ 1 be an integer, J be any set of jobs
and s = (2+ ǫ)(1

1−βq)(2
β+1

)(1+ 1
q
). Then Less(J) ≤ D(J).

We refer the reader to the Appendix for a proof of this
theorem when the jobs are fully parallelizable. In the full
version, we show how we can extend this result to hold for
arbitrary sublinear-nondecreasing speedup functions.

5.4 Proof of the competitiveness of TCP
In this section, we prove Theorem 1, i.e., TCPs is com-

petitive when given both extra bandwidth and extra time to
adjust. This is done by proving that it is competitive against
EQUI2+ǫ which we already know is competitive against the
optimal scheduler OPT1.
Proof of Theorem 1: Given any job set J , we construct
another set of jobs J ′ and follow the following proof “out-
line”.

L(TCPs(J))

L(OPT1(J)) + D(J)

≤
L(EQUI(2+ǫ)(J ′))

L(OPT1(J ′
par)) + L(OPT1(J ′

seq))

= O
�

1 +
1

ǫ

�
First, we need to prove the inequality L(TCPs(J)) =

L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)). The set of jobs J ′ is
designed specifically so that TCPs(J) and TCPs(J ′) are

identical, yet TCPs(J ′) always has completed at least as
much as EQUI2+ǫ(J) on every job. By definition, TCPs(J)
allocates more bandwidth to jobs then EQUI2+ǫ would allo-
cate in all adjustment periods except for those during which
the job receives less. J ′ is designed to be exactly the same
as J except that the work completed during these less ad-
justment periods is deleted and replaced with a sequential
phase lasting the length of the period. Sequential phases

have speedup functions , namely Γ(b) = 1. No scheduler
can get ahead on a sequential phase of a job, because no
matter how much resource (here the resource is the band-
width and not processors), the phase gets completed at a
fixed rate. By design, the computation times do not change
from TCPs(J) to TCPs(J ′) and hence L(TCPs(J)) =
L(TCPs(J ′)). Lemma 1 below formally proves that
TCPs(J ′) is never behind EQUI2+ǫ(J) on any job and so
its user-perceived latency (flow time) is competitive, i.e.
L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)). This gives the first in-
equality required in the above proof outline.

By definition, J ′
seq and J ′

par contain respectively only the
sequential and the non-sequential phases of jobs in J ′. The
inequality L(OPT1(J)) ≥ L(OPT1(J ′

par)) holds since J has
more work than J ′

par.
The last inequality that needs to be proved is D(J) ≥

Less(J) = L(OPT1(J ′
seq)). L(OPT1(J ′

seq)), by definition,
is the flow time of this set of purely sequential jobs under
the optimal scheduler. Independent of the bandwidth al-
located, this is simply the sum of the sequential work in
each job. By design this is the total time that TCPs(J)
allocates a job less bandwidth than EQUI2+ǫ would allo-
cate during a phase, which by definition is Less(J). Hence,
L(OPT1(J ′

seq)) = Less(J). Finally, Theorem 4 proves that
Less(J) ≤ D(J). This completes all the inequalities re-
quired in the proof outline above.

Lemma 1. L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)).

Proof of Lemma 1: TCPs(J ′) allocates more band-
width to the non-sequential phases than EQUI2+ǫ would
allocate. We must now prove that this is also more than
EQUI2+ǫ(J ′) actually does allocate. We prove by induc-
tion on t that at each point in time TCPs(J ′) has com-
pleted at least as much work on each job as EQUI2+ǫ(J ′)),
i.e., L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)). We observe that
this also bounds the number of jobs active at time t, i.e.
nT (t) ≤ nE

t . Consider the next time instance. If the next
phase of a job in J ′ is non-sequential then it must be com-
pleted under TCPs(J ′) during an adjustment period during

which the job does not receive less allocation than (2+ǫ)B

nT (t)

that EQUI2+ǫ would give in the same circumstances. By
the induction hypothesis, nT (t) ≤ nE

t and hence the job

does not receives less allocation than (2+ǫ)B

nE
t

, which is what

EQUI2+ǫ(J ′) does allocate. On the other hand, if the next
phase of a job is sequential, the job completes at the same
fixed rate, irrespective of how much bandwidth is allocated
to the job. Hence, we conclude that TCPs(J ′) completes
at least as much work on each job as EQUI2+ǫ(J ′)) for the
next ∂t time. This completes the inductive proof.

The last inequality in Theorem 1 follows directly from the
competitiveness of EQUI, which was proved in the following
theorem in [5] and improved slightly [7] in order to be used
here. Also, [7] allows the optimal scheduler to complete the
fully parallelizable work independently from the sequential
work.

Theorem 5 ([7]). Let J be any set of jobs in which
each phase of each job can have an arbitrary sublinear, non-
decreasing speedup function. Then

L(EQUI(2+ǫ)(J))

2L(OPT1(J))

≤
L(EQUI(2+ǫ)(J))

L(OPT1(Jpar)) + L(OPT1(Jseq))

≤ O(1 +
1

ǫ
),

where Jpar and Jseq contain respectively only the non-sequential
and the sequential phases of the jobs J .

5.5 Tradeoffs with settings of the TCP param-
etersα and β

We will now describe the tradeoffs involved in choosing the
parameters α and β. The key effects are as follows. Setting
the multiplicative constant β is a tradeoff between TCP’s
utilization of the bandwidth and the rate of the convergence
of TCP to EQUI. These effects are reflected in Theorem 1
by the extra speed
s = (2 + ǫ)(1

1−βq)(2
β+1

)(1 + 1
q
) and the extra time D(J) =

O((1−β)B

αnT (t)
+ δ) required by TCP to be competitive. Setting

the additive constant α is a trade off between the amount
of packet loss and the rate of the convergence.

The following lemma derives the dependence of the length
of an adjustment period on α and β. Large adjustment
periods decrease the frequency of adjustments, but short
adjustment periods decrease the time D(J) that jobs must
wait until they gets their fair allocation of bandwidth.

Lemma 2. The length of an adjustment period is

|τj+1 − τj | = (1−β)B

αnT (t)
+ (1 − β)δ, where nT (t) denotes the

(average) number jobs alive under TCP during the period.

Proof of Lemma 2: At the point in time when the bottle-
neck reaches capacity, the total bandwidth allocated to jobs
is clearly the bottleneck’s capacity B. If there is a delay of
δ in time before the senders detect packet loss, then during
this time each sender continues to increase its transmission
rate at the additive rate of α. The total transmission rate
after this delay will be B + αnT (t)δ.

We consider two strategies that TCP might take at this
point. The first strategy is for the sender to decrease its
transmission rate to the fraction β of its current rate of
sending data. Doing this would decrease the total trans-
mission rate to β(B + αnT (t)δ). (It is problematic if this
delay δ is so big that this adjusted rate is still bigger than
the capacity B of the bottleneck.) The second strategy is to
decrease its transmission rate to a fraction β of the current
rate that data passes through the bottleneck without getting
dropped. Doing this would decrease the total transmission
rate to only βB. (Here there is no limit on how large the
delay δ can be.)

With either strategy, the total bandwidth allocated con-
tinues to increase at a rate of αnT (t). The time required

for the total to increase again to B is B−β(B+αnT (t)δ)

αnT (t)
in

the first strategy and only B−βB
αnT (t)

in the second. The to-

tal length of the adjustment period is this plus the δ delay

time, which is either |τj+1 − τj | = (1−β)B

αnT (t)
+ (1 − β)δ or

|τj+1 − τj | = (1−β)B

αnT (t)
+ δ.

Lemma 3. The scheduling algorithm TCP becomes
precisely the scheduling algorithm EQUI in the limit as
β → 1, α → ∞, and δ = 0.

Proof of Lemma 3: With α increased towards infinity,
TCP converges instantly to EQUI. This instantly-converging
TCP still decreases its bandwidth allocation by a factor of
β each adjustment point for an average total bandwidth uti-
lization of β+1

2
B. Increasing the multiplicative constant β

towards 1 increases this utilized bandwidth towards the full
B.

Lemma 4. For the extreme parameter settings β → 1,
α → ∞, and δ = 0, when TCP is precisely EQUI, our new
Theorem 1, which bounds the competitiveness of TCP, is
tight with the old Theorem 5, which bounds the competitive-
ness of EQUI.

Proof of Lemma 4: By setting q = 1
(1−β)2

and increasing

β to one, the extra bandwidth
s = (2+ǫ)(1

1−βq)(2
β+1

)(1+ 1
q
) required in Theorem 1 goes to

s = (2+ǫ) in the limit. This is precisely the extra speed that
EQUI needs. The extra time D(J) is O(q) adjustment pe-

riods per job, which is w = O(q · (1−β)B

αnT (t)
). By setting α = q

and increasing β to one, this goes to zero in the limit. Fi-
nally, the required change 4β+4

5β+3
Γi,k(b) in the speedup func-

tion and/or the new factor of 1
β

within s both disappear

with β = 1.

Lemma 5. If one sender has a longer delay δ before ad-
justing than other senders, then the rate at which it sends
data will be the same, but it will experience less packet loss
than the other senders.

Proof of Lemma 5: The sender with the longer delay δ
uses the same parameters α and β as the other senders and
has the same time |τj+1 − τj | between adjustments. Hence,
the rate that it transmits will increase and decrease in the
same way, except shifted forward in time. This will mean
that this sender is having its peak transmission rate at a
latter point in time after the other have already decreased
their rates. It follows that this sender will have less packet
loss.

6. REFERENCES
[1] S. Arora and W. Brinkman. An optimal online

algorithm for a bandwidth utilization problem. In
Proceedings of the thirteenth annual ACM-SIAM
Symposium on Discrete Algorithms, pages 535–539,
2002.

[2] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
1998.

[3] D. Chiu and R. Jain. Analysis of the increase and
decrease algorithms for congestion avoidance in
computer networks. Computer networks and ISDN
systems, 17(1):1–14, 1989.

[4] D. R. Dooly, S. A. Goldman, and S. D. Scott. TCP
dynamic acknowledgement delay: theory and practice.
In ACM Symposium on Theory of Computing, pages
23–26, 1998.

[5] J. Edmonds. Scheduling in the dark. In ACM
Symposium on Theory of Computing, pages 179–188,
1999.

[6] J. Edmonds. On the competitiveness of TCP within a
general network. Draft available at
http://www.cs.yorku.ca/∼jeff/research/tcp, 2001.

[7] J. Edmonds. Scheduling in the dark – improved
results: manuscript. available at
http://www.cs.yorku.ca/∼jeff/research, 2001.

[8] J. Edmonds and K. Pruhs. Broadcast scheduling:
When fairness is fine. In Accepted for publication in
SODA 2002, 2001.

[9] S. Floyd. Connections with multiple congested
gateways in packet-switched networks, part I:
One-way traffic. Computer communications review,
21(5):30–47, October 1991.

[10] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, 1993.

[11] T. R. Henderson, E. Sahouria, S. McCanne, and R. H.
Katz. On improving the fairness of TCP congestion
avoidance. In Proceedings of IEEE Globecom ‘98,
volume 1, pages 539–544, 1998.

[12] R. Johari and D. Tan. End-to-end congestion control
for the internet: delays and stability. IEEE/ACM
Transactions on Networking, 9:818–832, 2001.

[13] B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as Clairvoyance. Journal of the ACM,
47(4):617–643, 2000.

[14] R. Karp, E. Koutsoupias, C. Papadimitriou, and
S. Shenker. Optimization problems in congestion
control. In IEEE Symposium on Foundations of
Computer Science, pages 66–74, 2000.

[15] F. Kelly. Mathematical modelling of the internet. In
Bjorn Engquist and Wilfried Schmid (Eds.),
Mathematics Unlimited – 2001 and Beyond. Springer,
2001.

[16] F. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability. In Journal of the Operational
Research Society, volume 49, 1998.

[17] J. Kurose and K. Ross. Computer Networking: A
top-down approach featuring the internet.
Addison-Wesley publishing company, 2000.

[18] T. Lakshman and U. Madhow. The performance of
networks with high bandwidth-delay products and
random loss. IEEE/ACM transactions on networking,
5(3), 1997.

[19] L. Massoulie. Stability of distributed congestion
control with heterogeneous feedback delays. IEEE
Transactions on Automatic Control, 47:895–902, 2002.

[20] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP congestion
avoidance algorithm. Computer communications
review, 27(3):67–82, July 1997.

[21] A. Misra and T. Ott. The window distribution of
idealized TCP congestion avoidance with variable
packet loss. In Proceedings of INFOCOM, pages
1564–1572, March 1999.

[22] R. Motwani, S. Phillips, and E. Torng.
Non-clairvoyant scheduling. Theoretical computer
science (Special issue on dynamic and on-line
algorithms), 130:17–47, 1994.

[23] R. Motwani and P. Raghavan. Randomized

Algorithms. Cambridge University Press, 1995.

[24] T. Ott, J. Kemperman, and M. Mathis. The stationary
behavior of ideal TCP congestion avoidance, August
1996. ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP throughput: a simple model and its
empirical validation. In Proceedings of SIGCOMM,
pages 303–314, 1988.

[26] W. R. Stevens. TCP illustrated : volume I.
Addison-Wesley publishing co., 1994.

[27] K. Thompson, G. J. Miller, and R. Wilder. Wide-area
internet traffic patterns and characteristics. IEEE
Network, 11(6):10–23, November 1997.

APPENDIX

A. PROOFS OF THEOREMS
We re-state and prove Theorem 3.

Theorem 1. Let q ≥ 1 be an integer, s be any value,
and J be any set of jobs. For each job Ji and for all times
t = τja

i +q+j, j ≥ 0, bT
i (t) ≥ (1 − βq) sB

nT (t)
, where bT

i (t)

denotes the bandwidth allocated by TCPs(J) to job Ji at
time t and nT (t) denotes the number jobs alive at this time.
On the other hand, at all times t ≥ τ

ja
i +

log(n)
log(1/β

+q
, bT

i (t) ≤
(1 + βq) sB

nT (t)
.

Note that sB
nT (t)

is the amount that EQUIs would allocate

to the job were it in this situation. However, it may not be
the amount sB

nE
t

that EQUIs(J) does allocate at this time

within its computation on the set of jobs J , because with
different bandwidth allocations jobs may complete at dif-
ferent times under TCPs(J) and EQUIs(J) and hence the
number of jobs nT (t) and nE

t alive under them at time t may
be different. We use EQUIs vs EQUIs(J) to differentiate
between “would” and “does”.
Proof of Theorem 3: Fix some job Ji. We will classify
each unit of bandwidth allocation as either being adjusted or
unadjusted depending on whether the bandwidth is allocated
fairly from this job’s Ji’s perspective. We prove that the
amount of adjusted bandwidth converges exponentially to
being all the bandwidth and then prove that our job Ji is
allocated a fair share of the adjusted bandwidth.

When the job Ji first arrives it is initially allocated no
bandwidth. Hence, it considers all bandwidth allocation to
be unadjusted. When at a rate of α each job is allocated
more bandwidth, this new bandwidth allocation is consid-
ered to be adjusted.

At adjustment points, we assume that both the job’s ad-
justed and unadjusted bandwidth allocations are decreased
by this factor β. At job Ji’s first adjustment point, τja

i
, the

total unadjusted bandwidth in the system is at most sB,
this being the capacity of the bottleneck. At each adjust-
ment point, every job decreases its unadjusted bandwidth
by a factor β and never increases its unadjusted bandwidth
again. Hence, at the time of job Ji’s (q + 1)st adjustment
point, τja

i +q, the total unadjusted bandwidth in the system
is at most βqsB. At points of adjustment, the total band-
width of any kind in the system is exactly the capacity sB
of the bottleneck. It follows that at time τja

i
+q the total

adjusted bandwidth in the system is at least (1 − βq)sB.

When job Ji first arrives at time ai, no job has any ad-
justed bandwidth. At each point in time, each job alive in-
creases its adjusted bandwidth at the same rate α and hence
they continue to have the same amount. Jobs that arrive af-
ter our job Ji may have less adjusted bandwidth than Ji and
jobs that complete release all of their bandwidth, but these
events only make it better for Ji. The point is that Ji has at
least as much adjusted bandwidth as any other job. It fol-
lows that at time τja

i +q, the amount of adjusted bandwidth

that Ji has is bT
i (t) ≥ (1 − βq) sB

nT (t)
.

We consider two strategies for dealing with a time delay
of δ before the senders adjust. The above proof assumes the
first strategy, namely that in which each sender decreases
its transmission rate to the fraction β of its current rate of
sending data independent of how much of the data is be-
ing lost. Now consider the second strategy, in which each
sender decreases its transmission rate to a fraction β of the
current rate that data passes through the bottleneck with-
out being dropped. Here the rate at which a sender loses
data affects its next adjusted transmission rate. Define the
transmission that is being lost as being neither unadjusted
nor adjusted so that during the δ delay the total amounts
of unadjusted and adjusted bandwidth stay fixed. How-
ever, during this time, the adjusted bandwidth gets shifted
from the jobs/senders with more than their share to those
with less. Though the bottleneck is at capacity, each sender
continues to increase its transmission rate. This is consid-
ered adjusted bandwidth. Simultaneously the bottleneck in-
creases the rate that the sender’s transmission is lost, which
decreases the adjusted bandwidth. The bottleneck is as-
sumed to drop each packet with a fixed probability. Hence,
a sender’s rate of transmission loss is proportional to its cur-
rent transmission rate. Hence, senders with less than their
share of bandwidth lose less. This effect only helps to ensure
that our job/sender Ji has at least its share of the adjusted
bandwidth and helps to speed up the overall rate of conver-
gence to EQUI.

For completeness, we will now give an upper bound on the
bandwidth that an individual job might be allocated. Sup-
pose that initially a particular job has all sB of the band-
width. After q adjustments, the job still has βqsB of the

bandwidth. However, after log(n)
log(1/β)

+ q adjustment phases,

the unadjusted bandwidth has decreased to at most βq sB
nT (t)

.

Hence, bT
i (t) ≤ (1 + βq) sB

nT (t)
.)

We re-state and prove Theorem 4.

Theorem 2. Let q ≥ 1 be an integer, J be any set of jobs
and s = (2+ ǫ)(1

1−βq)(2
β+1

)(1+ 1
q
). Then Less(J) ≤ D(J).

Proof of Theorem 4: Under TCPs(J), a job may be
allocated less than its fair share of the bandwidth at any
point during its life. We classify these times into three types
based on whether they occur when the job first arrives, in the
middle of its life, or as it is completing. Let Lessa

i denote
the amount of time t ∈ [ai, τ(ja

i +q)] within job Ji’s first q

adjustment phases that it is allocated less than (2+ǫ)B

nT (t)
(on

average over the adjustment period). Let Lessm
i denote the

same within the middle of its life, t ∈ [τ(ja
i +q), τ(jc

i)]. Finally,
let Lessc

i denote the same within the job’s last adjustment
phase, t ∈ [τ(jc

i), ci]. Clearly, Lessi = Lessa
i + Lessm

i + Lessc
i .

Recall that D(J) =
P

i∈J (Da
i + Dc

i + Dqa
i + Dqc

i). Sim-
ply by definition, Lessa

i ≤ Da
i and Lessc

i ≤ Dc
i , because

these are the times of the first q and the last one adjust-
ment phases during which job Ji is alive. What remains in
proving Less(J) ≤ D(J) is to prove that

P
i∈J Lessm

i ≤P
i∈J (Dqa

i + Dqc
i). This will not be proved on a job-by-job

basis but on an adjustment phase-by-adjustment phase ba-
sis with the jobs that are arriving and completing “paying”
for the jobs that are not.

������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

��

��

��

������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������

��

������
������
������
������

������
������
������

������
������
������

τ
j+1

τ j

jobs arriving

jobs passing through

jobs completing

Figure 2: nc
j , na

j , and np
j denotes the number of jobs

that respectively complete, arrive, and pass through

the adjustment period [τj , τj+1].

Consider some adjustment period at time [τj , τj+1]. Let
nc

j denote the number of jobs that are active at the beginning
of this period and which complete during it, na

j the number
that arrive during it and are active at the end of it, and np

j

the number that pass through the entire period. We ignore
the jobs that arrive and complete within the period. (See
Figure 2.) We will consider two cases.
Case 1: nc

j + na
j ≥ 1

q
np

j .

The only jobs that can contribute to
P

i∈J Lessm
i are the np

j

jobs that are passing through the phase, because contribut-
ing jobs must be in the middle of their lives. These jobs
may not contribute anything either because they are allo-
cated sufficient bandwidth or because they are not actually
in the middle of their lives. However, the most that they
can contribute is the full length of this adjustment period.

The nc
j +na

j jobs that either complete or arrive during this
adjustment period each contribute q times the full length of
this adjustment period to

P
i∈J (Dqa

i + Dqc
i).

It follows that the contribution of this adjustment period
to
P

i∈J Lessm
i is at most np

j · (τj+1 − τj), which because
of the case assumption is at most q(nc

j + na
j) · (τj+1 − τj),

which is at most the contribution of this adjustment period
to
P

i∈J (Dqa
i + Dqc

i).

Case 2: nc
j + na

j < 1
q
np

j or more specifically nc
j < 1

q
np

j and

na
j < 1

q
np

j .
For this case, we will prove that this adjustment period con-
tributes nothing to

P
i∈J Lessm

i , because all the jobs that
are past their first q adjustment phases are allocated on aver-

age at least (2+ǫ)B

nT (t)
during this adjustment period [τj , τj+1].

Consider any such job Ji.
By definition, we know that the number of jobs alive

at the beginning of the phase is nT
τj

= nc
j + np

j . Hence,
by Theorem 3 we know that immediately before this be-
ginning adjustment point t = τj , job Ji is allocated at

least (1 − βq) sB
nc

j
+n

p
j

bandwidth. However, being an adjust-

ment point, the job decreases its transmission rate by a fac-
tor of β. Hence the rate at the beginning of the phase is
β(1 − βq) sB

nc
j
+n

p
j
. By the assumption of the claim, this is

at least β(1 − βq) sB
1
q

n
p
j +n

p
j

= β(1 − βq)(1
1+1/q

) sB
n

p
j
. Similarly,

the number of jobs alive at the end of the phase is nT
τj+1

=

np
j +na

j and hence at this time the bandwidth Ji is allocated

is at least (1 − βq) sB
n

p
j +na

j
≥ (1 − βq)(1

1+1/q
) sB

n
p
j
. During the

phase, the allocation to job Ji is increased linearly. Hence,
the average (effective) transmission rate for the job during
this phase is the average of these beginning and the end-
ing rates. This average is (β+1

2
)(1−βq)(1

1+1/q
) sB

n
p
j
. Because

s is set to (2
β+1

)(1
1−βq)(1 + 1

q
)(2 + ǫ), this average trans-

mission rate is at least (2+ǫ)B

n
p
j

. (Note that having a δ time

delay while the bottleneck stays at capacity only helps this
average.)

We must now bound what EQUI2+ǫ would allocate jobs.
We know that for each point in time t during this phase,
the number of jobs nT (t) alive is at least np

j , because by
definition this is the number that passes through the phase.

It follows that that this average rate (2+ǫ)B

n
p
j

that TCPs(J)

allocates job Ji is at least the amount (2+ǫ)B

nT (t)
that EQUI2+ǫ

would allocate at any point in time t ∈ [τj , τj+1] during the
adjustment period. Hence job Ji does not receive less dur-
ing this phase and hence this adjustment period contributes
nothing to

P
i∈J Lessm

i .
From these two cases, we can conclude thatP
i∈J Lessm

i ≤P
i∈J (Dqa

i + Dqc
i) and hence that

Less(J) ≤ D(J).

