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Metric Space

M = (X,D) is a metric space.

X is a set.

D is a distance function on X, i.e., satisfies triangle inequality.

Examples

Any normed space.

Graphs with shortest path distance.

. . .

. . . . . .
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Embedding between metric spaces

Given M = (X,dX) and M′ = (Y ,dY).

Embedding f : X 7→ Y .

Metric distortion
f has distortion α if

∀x1,x2 ∈ X dX(x1,x2) ≤ dY (f (x1), f (x2)) ≤ α ·dX(x1,x2).

dist(f ) =maxexp(f ) × maxcontr(f )

Well-studied subject: Worst case distortion.

Relative Embeddings: Given X, find near-optimal embedding f : X 7→ Y
efficiently.
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Computational problems (Approximate min. distortion)
Bijection and Injection

Bijection

Given two finite metric spaces X,Y of the same size n. Approximate the
minimum distortion bijection f : X 7→ Y .

Introduced in [KRS04].

Injection

Given finite metric space X of size n and infinite metric space Y with fixed
dimensionality. Approximate the minimum distortion injection of f : X 7→ Y .

Remark: Although different problems, share the same approximability.

Notation α vs. ̙: Given X it is NP-hard to check if ∃ f : X 7→ Y with
distortion ≤ α or every f has distortion > ̙. Notice that
1≤ α < ̙.
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Related Work

Dimension Approximability References
Bijection (X,Y ⊆ Rd) Injection (Y = Rd)

d = 1
OPT, if dist ≤ 3+2

√
2 [KRS04]

OPT, if dist ≤ 5+2
√

6 [CMO+08]
poly(n) vs. poly(n) poly(n) vs. poly(n) [HP05], [BCIS05]

d = 2
NP-hard [BCIS06]

c1 vs. c2 c′1 vs. c′2 This paper
poly(n) vs. poly(n) [MS08]

d ≥ 3
a vs. 3a NP-hard [PS05], [Edm07]

a vs. Ω(log1/4−ε n)a c vs. poly(n) [KS07], [MS08]

Notation α vs. ̙: Given X it is NP-hard to check if ∃ f : X 7→ Y with
distortion ≤ α or every f has distortion > ̙. Notice that
1≤ α < ̙.
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Our Results

It is NP-hard to decide whether the minimum distortion of

1 a bijection between two finite subsets of R2 under ℓ2 is at least α or at
most ̙, where 1 < α < ̙.

2 an injection of a finite metric space onto R2 under ℓ∞ is at least α′ or at
most ̙′, where 1 < α′ < ̙′.
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Our Results

It is NP-hard to decide whether the minimum distortion of

1 a bijection between two finite subsets of R2 under ℓ2 is at least α or at
most ̙, where 1 < α < ̙. Core of the talk

2 an injection of a finite metric space onto R2 under ℓ∞ is at least α′ or at
most ̙′, where 1 < α′ < ̙′.

A. Zouzias (University of Toronto) Inapproximability for planar embedding problems SODA 2010 6 / 21



Bijection Proof Outline

Outline
1 Given 3SAT formula φ. Construct instance of bijection problem.
2 Construct pair X,Y ⊆ R2, |X| = |Y | s.t.

If φ is SAT, then X embeds into Y with distortion at most α.
If f : X 7→ Y bijection with distortion at most ̙, then φ is SAT.

Key Ideas:

Locally there are two possible low-distortion bijections between X→ Y .
Encode binary decision.

Bypass crossing obstacle (as in [PS05, KS07]) by considering different
scales when crossing.

Description of construction: By giving subsets of input (• ∈ X) and target
space (◦ ∈ Y) simultaneously.

f (•)→◦

A. Zouzias (University of Toronto) Inapproximability for planar embedding problems SODA 2010 7 / 21



Bijection Proof Outline

Outline
1 Given 3SAT formula φ. Construct instance of bijection problem.
2 Construct pair X,Y ⊆ R2, |X| = |Y | s.t.

If φ is SAT, then X embeds into Y with distortion at most α.
If f : X 7→ Y bijection with distortion at most ̙, then φ is SAT.

Key Ideas:

Locally there are two possible low-distortion bijections between X→ Y .
Encode binary decision.

Bypass crossing obstacle (as in [PS05, KS07]) by considering different
scales when crossing.

Description of construction: By giving subsets of input (• ∈ X) and target
space (◦ ∈ Y) simultaneously.

f (•)→◦

A. Zouzias (University of Toronto) Inapproximability for planar embedding problems SODA 2010 7 / 21



The construction
Gears - Chains

Gear

Chain

Main Idea: Sufficient low-distortion =⇒ gears spin and chains “spin”.
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The construction - Details
Gear

Chain is similar but open.
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The construction - Details
Binary Decision

or

Main Idea: In any low-distortion f only two embeddings, i.e., spin clock-wise
or counter-clockwise.
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The construction - Details
Connecting Gear/Chain

Key point Sufficient low-distortion =⇒ neighbor gears and gears/chains
have opposite spins.
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The construction
Connection - Clause

Key point Sufficient low-distortion =⇒ opposite spins.

Clause Connect chains to encode a boolean constraint.
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The construction
1-in-3 3SAT

Restrict each clause to be satisfied by exactly one literal. 1-in-3 3SAT is
NP-complete [Sch78].
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Final construction

Notice that |X| = |Y |.
This subset of X,Y encodes the 1-in-3 clause χ̄1∨χ2∨ χ̄3.
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Final construction
1-in-3 sat spin

true

A 1-in-3 SAT assignment of χ̄1∨χ2∨ χ̄3.
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The construction - Details
How to deal with crossings?

Vertical and horizontal chains.
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The construction - Details
How to deal with crossings?

Vertical and horizontal chains.

Gap M =⇒ No vertical point is mapped to horizontal chain.
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The construction - Details
How to deal with crossings?

Up / Down

Vertical and horizontal chains.

Gap M =⇒ No vertical point is mapped to horizontal chain.
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The construction - Details
How to deal with crossings?

Left / RightUp / Down

Vertical and horizontal chains.

Gap M =⇒ No vertical point is mapped to horizontal chain.

Horizontal chain’s distances change exponentially.
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Analysis

We show the following:

Yes instances

If φ is 1-in-3 3SAT, then exists f with distortion at most α.
Simple calculations give that α = 3.61+ ε.

No instances

For any f with distortion ≤ ̙, we construct a 1-in-3 sat
assignment for φ.
If the distortion is at most ̙ = 4−O(ε). Then

The spins are still well-defined
Neighborly gear/chains have opposite spin
Hence an 1-in-3 assignment for φ if well-defined
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Summary

Inapproximability results for planar bijection problem.

Inapproximability for injection problem requires significantly different
ideas.

Open Problems:

Tighten the approximation gap, i.e., values of best constants α and ̙.

Approximability when distortion ≈ 1+ ε.

Is there an efficient algorithm when the optimal distortion is at most 1+ ε

for R2, similar to [KRS04, CMO+08].
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Thank You
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