
Online Scalable Scheduling for the `k-norms of Flow Time
Without Conservation of Work

Jeff Edmonds∗ Sungjin Im† Benjamin Moseley‡

Abstract
We address the scheduling model of arbitrary speed-up
curves and the broadcast scheduling model. The former
occurs when jobs are scheduled in a multi-core system
or on a cloud of machines. Here jobs can be sped up
when given more processors or machines. However, the
parallelizability of the jobs may vary and the algorithm
is required to be oblivious of the parallelizability of a
job. The latter model is natural in wireless and LAN
networks where requests (or jobs) can be simultaneously
satisfied together. Both settings are similar in that two
schedules can do different amounts of work to satisfy all
the jobs. We focus on optimizing the `k- norms of flow
time. Recently, Gupta et al. [24] gave a (k + ε)-speed
O(1)-competitive algorithm for the `k norms of flow time
in both scheduling settings for fixed k. Inspired by this
work, we give the first analysis of a scalable algorithm,
i.e. (1 + ε)-speed O(1)-competitive, for all `k-norms of
flow time in both settings for fixed k and 0 < ε ≤ 1. Both
problems have a strong lower bound without resource
augmentation, so this is the best result that can be shown
in the worst case setting up to a constant factor in the
competitive ratio.

1 Introduction
Scheduling jobs which arrive online is a fundamental
problem. In the most basic setting there are n jobs which
arrive over time. Each job i has a fixed processing time pi.
This is the amount of time the scheduler must spend on job
i to complete the job. In the online setting the arrival time
ai of job i is the first time the scheduler is aware of the job.
The system must decide the order in which jobs should
be scheduled. The goal of the scheduler is to optimize
the quality of service the clients receive. The most well
studied quality of service metric in scheduling theory is

∗York University, Canada. jeff@cs.yorku.ca. Supported in part by
NSERC Canada.
†Department of Computer Science, University of Illinois, 201 N.

Goodwin Ave., Urbana, IL 61801. im3@illinois.edu. Partially
supported by NSF grants CCF-0728782, CNS-0721899, and Samsung
Fellowship.
‡Department of Computer Science, University of Illinois, 201 N.

Goodwin Ave., Urbana, IL 61801. bmosele2@illinois.edu.
Partially supported by NSF grant CNS-0721899.

average (total) flow time1. The flow time of a schedule is∑
i(Ci − ai) where Ci is the time the scheduler satisfies

job i. Notice that the total flow time is equal to the total
time all jobs must wait to be satisfied.

It is well known that in the standard single machine
scheduling setting the algorithm Shortest-Remaining-
Processing-Time (SRPT) is an optimal algorithm for total
flow time. Now consider a more complicated schedul-
ing setting where there are m machines (processors) and
jobs can be assigned to one or more processors simultane-
ously. That is, jobs can be scheduled on processors in par-
allel. We will adopt a standard parallel computing model
[15, 19, 17, 30, 10] that first appeared in [16]. This model
is known as the arbitrary speed-up curves model. Here,
each job i consists of a collection of phases that must be
processed in a sequential order. According to the phase
the job is in, the job may be considerably sped up when
assigned to multiple processors, may not be sped up at
all or some variation thereof. This accurately captures the
practical scheduling setting where a phase of a job may
require a lot of computation which can be considerably
sped up when assigned to multiple machines. However,
another phase of a job may not require much computation,
but rather consists of a series of Input/Output operations
which cannot be sped up by being given more computa-
tional power. To further capture the practical setting, we
require that our algorithm be non-clairvoyant. That is, the
algorithm is completely unaware of the processing time
of the jobs or their parallelizability. Scheduling jobs with
varying parallelizability has been a central focus of recent
research [15, 19, 10, 24].

It is well known that no non-clairvoyant algorithm
can be O(1)-competitive for average flow time, even the
standard single machine model. Due to this strong lower
bound, we will be assuming a resource augmentation
model [27]. In this model the algorithm is given s-speed
and is compared to an 1-speed optimal solution. We say
that an algorithm is s-speed c-competitive if, for all job
sequences, the algorithm running processors at speed s
has an objective within c times the optimal solution for
the objective running processors at speed 1. An algorithm
that is (1 + ε)-speed O(1)-competitive for 0 < ε ≤ 1

1Flow time is also known as response time or waiting time

is said to be scalable. This is because the algorithm is
O(1)-competitive when given the minimum possible extra
resources over the adversary. For problems with strong
lower bounds without resource augmentation, this is the
best result that can be shown in the worst case setting. The
first positive result for average flow time in the speed up
curves setting was shown about a decade ago [15]. It was
shown that that EQUI (round-robin) is (2+ε)-speedO(1)-
competitive. Recently, [19] gave an elegant potential
function analysis to show that an algorithm called LAPS
is scalable.

Notice that since we have assumed jobs can have
varying degrees of parallelizability, different schedules
can do different amounts of work to satisfy the same set
of jobs. A similar situation arises in a different scheduling
model known as broadcast scheduling. The broadcast
model is most natural in a wireless or LAN network.
Here there is a server where pages of information are
stored. Clients send requests to the server for a page of
information. The sever must satisfy all of the requests.
More than one client may send a request for the same
page. The server can satisfy multiple requests by a
single broadcast since the clients are listening in on a
multicast channel. Along with practical interest, this
scheduling model has received a considerable amount
of attention over the last decade in both the offline and
online settings in scheduling theory [7, 2, 1, 8, 25, 3, 5].
Work has also been done in stochastic and queuing theory
literature [14, 13, 33, 34]. In the broadcast setting,
a scheduler can satisfy multiple requests for the same
page by a single broadcast. Like the arbitrary speed-
up curves setting, different schedules can do different
amounts of work. That is, there is not conservation of
work between two schedules. This makes scheduling
problems considerably more difficult, especially in the
online setting. The difficulty is that it is hard to relate
the amount of work done by an online algorithm to that
by the optimal solution.

Average flow time in the broadcast setting has re-
ceived a significant amount of attention recently. It was
first studied in the offline setting using non-trivial lin-
ear programming techniques with resource augmentation
[28, 21, 22, 23]. Later, NP-hardness was shown [20, 11].
The best result known offline with resource augmenta-
tion is a (1 + ε)-speed O(1)-approximation [3]. With-
out resource augmentation the best result known is a
O(log2 n/ log log n)-approximation [4]. It is still open
whether this problem admits a O(1)-approximation.

It was shown that without resource augmentation any
online deterministic algorithm is Ω(n)-competitive [28].
The natural algorithm Longest-Wait-First was shown to
be 6-speed O(1)-competitive [18]. The analysis of this
algorithm has been recently improved to (3.4 + ε)-speed
O(1)-competitive [12]. It was a long standing open

problem whether there exists a scalable online algorithm
for average flow time in broadcast scheduling. This
question was recently answered in the affirmative [26,
5]. In [17] a reduction was given from the broadcast
setting to the arbitrary speed-up curves model. The
reduction translates any s-speed c-competitive algorithm
for average flow time for arbitrary speed-up curves into a
2s-speed c-competitive algorithm for the same objective
in broadcast scheduling. The reduction was recently
improved to output a s+ ε-speed c

ε -competitive algorithm
where ε > 0 [5], which implies that a broadcast version
of LAPS is a scalable algorithm for average flow time in
broadcast scheduling.

Minimizing the total flow time is a natural objective;
unfortunately, in practice algorithms which optimize the
flow time are not implemented due to a lack of fairness.
Indeed, one can easily construct examples where an op-
timal algorithm for minimizing the total flow time may
starve individual jobs of processing power for an arbitrary
amount of time. Implementing a fair algorithm is one of
the highest priorities in most systems [32]. A popular and
practical method to enforce the fairness of a schedule is to
optimize the `k-norm of flow time for some fixed k > 1.
That is minimizing k

√∑
i(Ci − ai)k. In practice, it is

usually the case that k ∈ [2, 3]. Notice that average flow
time is equivalent to the `1 norm of flow time. By opti-
mizing the `k norm of flow time, the algorithm minimizes
the variance of the jobs, thus ensuring fairness while re-
ducing the flow time. Although a schedule that optimizes
the `k norm of flow time for k > 1 may have a larger aver-
age flowtime over a schedule that optimizes the `1 norm,
the variance of flow time will be reduced. This will make
the system more predictable on average for the individual
jobs, which is generally more desirable [32, 31].

In an influential paper of Bansal and Pruhs it was
shown that any online (clairvoyant) deterministic algo-
rithm is nΩ(1)-competitive for the `k norms of flow time
without resource augmentation in the standard single
machine scheduling setting where k > 1 [6]. This
contrasts with the fact that SRPT is optimal in the `1
norm in this setting. The same authors showed that SRPT
is a scalable algorithm for the `k norms of flow time
on a single machine in the standard scheduling setting
[6]. They also showed that the non-clairvoyant algorithm
Shortest-Elapsed-Time-First (SETF) is scalable. In the
broadcast model Chekuri et al. showed that a variation of
LWF is O(k)-speed O(k)-competitive for the `k-norms
of flow time. Later, Gupta et al. [24] introduced two inter-
esting algorithms that generalize LAPS and the broadcast
version of LAPS shown in [5]. These algorithms were
shown to be (k + ε)-speed O(k) competitive for fixed
ε > 0 for the `k-norms of flow time in the broadcast
setting and arbitrary speed-up curves setting, respectively.

Results: We focus on the `k norms of flow time in the
broadcast model and the arbitrary speed up curve model.
In this paper we consider the algorithms of [24]. We show
that these algorithms are (1 + ε)-speed O(1)-competitive
algorithm for the `k norm of flow time for both scheduling
settings where k is any fixed integer and ε is sufficiently
small. Given the strong lower bounds for the two prob-
lems, the algorithms introduced are essentially the best
positive result that can be shown in the worst case setting
up to a constant factor in the competitive ratio for fixed
k and ε. Specifically, we show the following theorem for
the broadcast setting.

THEOREM 1.1. There is an algorithm that is (1 + ε)-
speed O(1

ε4)-competitive for the `k of flow time in the
broadcast setting where k ≥ 1 and 0 < ε < 1.

Notice that the competitive ratio is uniform for all k.
Our competitive ratio for the `k norm is within a O(1

ε)
factor of the best known algorithm for the `1 norm of flow
time in broadcast scheduling for any k ≥ 1 [5]. In the
arbitrary speed up curve model, we prove the following
theorem.

THEOREM 1.2. The algorithm WLAPS is (1 + 12ε)-
speed O(k

ε2k+1)-competitive for the `k-norm objective for
each fixed k where 0 < ε ≤ 1

24k .

Here our competitive ratio grows with k. There is a
Ω(log n) lower bound on any algorithm with O(1)-speed
in the arbitrary speed up curves setting for the `∞-norm,
which suggests that an algorithm’s competitive ratio may
need to grow with k [29].
Techniques: To show that an algorithm is O(1) compet-
itive in scheduling theory, it suffices to show that at any
time the increase in the algorithm’s objective function is
within a constant of the increase in the optimal solution’s
objective function. This is called a local argument. For
instance, this was used to show that SETF is a scalable al-
gorithm for the `k norms of flow time on a single machine
in the standard setting. However, this property does not
hold in some scheduling problems. It was shown in [28]
that no algorithm can be locally competitive with the opti-
mal solution for the `1 norm in broadcast scheduling. This
was due to the fact that an adversary may do a consider-
ably less amount of work as compared to the algorithm to
satisfy all the requests.

To avoid a local argument we use a potential function
analysis. This has recently become popular in scheduling
theory [15, 19, 24, 9]. In this work we introduce an
interesting potential function. Our potential function takes
insights from [19, 24, 9, 5]. The potential function of
[24] is most closely related to our potential function.
The potential function is designed to approximate, at any
time, our algorithm’s future cost minus the adversary’s

future cost. Thus, our potential function tries to relate the
algorithm’s current status to the optimal solution’s current
status.

We will show the competitiveness of our algorithms
as follows. Let Φ(t) denote our potential function.
The potential function will be designed so that Φ(0) =
Φ(∞) = 0. Let dA(t)

dt (resp. dO(t)
dt) be the increase in

the algorithm’s (respectively OPT’s) objective function at
time t. Let dΦ(t)

dt be the change in Φ(t). We will show
that dA(t)

dt + dΦ(t)
dt ≤ cdO(t)

dt at all times t where c > 0
is a constant. Knowing that Φ(0) = Φ(∞) = 0, this im-
plies that A =

∫∞
0

[dA(t)
dt]dt =

∫∞
0

[dA(t)
dt + dΦ(t)

dt]dt ≤∫∞
0
cdO(t)

dt dt = cOPT. This will complete our analysis.

2 Arbitrary Speed Up Curves
We will be assuming a machine augmentation model [27].
In this model, our algorithm will be given sm processors
and is compared to an optimal solution that is given m
processors. It is well known that speed augmentation is
as powerful as machine augmentation, thus our results
translate into the speed augmentation model.

Formally, a problem instance consists of a collection
of jobs {1, 2, . . . , n}. Each job i has an arrival time ai and
this is the time the scheduler is first aware of the job. The
job i consists of a sequence of phases 〈i1, i2, . . . , iπi〉. A
single phase π is represented by tuple 〈wπi ,Γπi 〉. Here wπi
is a real number that represents the amount of work in
the phase and Γπi is the speedup function for the phase.
The function Γπi (p) maps a nonnegative real number to a
nonnegative real number. The value of Γπi (p) is the rate
work is processed for phase π of job i when the job is
given p processors running at speed 1. If these processors
are running at speed s then phase π gets processed at a rate
of sΓπi (p). We assume that the function Γπi is arbitrary,
yet nondecreasing and sublinear (Brent’s theorem). That
is, a job cannot be processed slower by being given more
processors and a job does cannot be processed at a more
efficient rate by being given more processors.

A feasible schedule specifies at each time how many
processors are assigned to each job. At any time, the total
number of processors assigned to jobs can be at most sm,
the number of processors. A job can be assigned to a
non-integral number of processors. Given a schedule Ss
with sm processors, let S(i, t) processors be assigned to
job i at time t. Say that at time tπ phase π is started
for job i and this phase is completed at time tπ+1 then∫ tπ+1

tπ
Γπi (Ss(i, t))dt = wπi . The time tπ+1 is also the

time that phase π+1 is started. The completion timeCi of
job i occurs when the final phase of the job is completed.

For the `k-norm objective, the total cost is(∑
i∈[n](Ci − ai)k

)1/k

. It is useful to note that mini-
mizing this objective function is equivalent to minimizing

∑
i∈[n](Ci−ai)k after taking the `k norm objective func-

tion to the power k. We will call (Ci−ai)k the kth power
flow time of job i. For the rest of this paper, we will focus
on minimizing this objective.

We assume that our algorithm is non-clairvoyant, in
that the algorithm only knows when jobs arrive, how many
processors it assigned to the job over time and when a
job completes. Notice that the algorithm is unaware of
the phases of a job, the speedup function of the phases
or what phase a job is in. Although, this may seem
to be too harsh on the algorithm, as stated we will be
able to show that a non-clairvoyant algorithm can be
O(1)-competitive with just a small amount of resource
resource augmentation even under this very restrictive
setting. Further, this accurately models the practical
systems where it is unlikely that complete information is
known on the parallelizability of jobs.

Following the lead of [15, 19, 24] we will focus
only on restricted instances. Here each phase π of a
job i is either fully parallelizable, that is Γπi (p) = p
or the phase is sequential Γπi (p) = 1. Notice that by
definition of a sequential phase, a job can be processed
even if no processors are assigned to the job. In [24] it
was shown that any worst case instance is of this form.
Intuitively, this restriction does not give any advantage to
the algorithm since we have assumed the algorithm is non-
clairvoyant.

2.1 Algorithm It is known that a single s speed pro-
cessor is as powerful as a s unit speed processors. This is
because a s speed processor can simulate s unit speed pro-
cessors. Knowing this, we focus on restricted instances,
scale the number of processors by m and assume that the
optimal solution is given a single unit speed processor and
the algorithm is given s unit speed processors. Let β and
ε be constants such that β = εk and ε ≤ 1/(24k). The
speed our algorithm is given is then s = 1 + 12ε.

The algorithm we consider is WLAPS, Weighted
Latest Arrival Processor Sharing, which was introduced in
[24]. The algorithm WLAPS takes a parameter β. Before
defining WLAPS, some notation is introduced. For each
job i ∈ [n], let wi(t) = k(t − ai)k−1. The value of
wi(t) is the rate at which the kth power flowtime of job
i increases at time t. If job i is unsatisfied by WLAPS,
wi(t) is the increase in WLAPS objective function due
to job i. Let Na(t) denote the jobs which have been
released yet are unsatisfied by WLAPS at time t. Let
w(t) =

∑
i∈Na(t) wi(t). Let N ′a(t) denote the set of

jobs in Na(t) that have the latest arrival times such that∑
i∈N ′

a
wi(t) = βw(t).

The algorithm WLAPS at time t shares its processing
power amongst the jobs in N ′a(t) in proportion to their
weights. For job i ∈ N ′a(t), WLAPS processes job i at a

rate of xi(t) := s wi(t)βw(t) . Notice that the total processing
power used by WLAPS at any time is at most s.

Say that at some time t there does not exist a set of
latest arriving jobs whose total weight is exactly βw(t).
Then the definition of WLAPS needs to be modified. In
this case, let N ′a(t) be the minimal set of latest arriving
jobs whose weight exceed βw(t). The algorithm WLAPS
only works on jobs in N ′a(t). Let job j be the job which
arrived the earliest in N ′a(t). The amount of processing
power WLAPS gives every job in N ′a \ {j} is defined
as before. The job j receives processing power xj(t) :=

s·
βw(t)−(

∑
i∈N′a(t)\{j}

wi(t))

βw(t) . The processing power given
to job j is proportional to the weight of j that overlaps the
β fraction of the total weight. Throughout the analysis we
will assume that there exists a set of latest arriving jobs
whose total weight is exactly βw(t). This assumption is
not needed for the analysis. However, the analysis is more
readable with the assumption.

2.2 Potential Function We assume WLOG that all jobs
arrive at distinct times. Let No(t) be the set of released,
yet unsatisfied jobs in the optimal solutions schedule.
Let xi(t) denote the amount of parallel work for job i
which OPT has done but WLAPS has not at time t; if
WLAPS have processed more parallel work for job i than
OPT, then xi(t) is zero. An analogous quantity yi(t)
is defined for sequential work of job i. Let σi be the
total sequential work for job i. To analyze WLAPS we
will use a potential function analysis. For this analysis
we will define a potential function Φ(t). The potential
function Φ(t) will not increase when a job arrives nor
when a job is completed by OPT or WLAPS. Further,
Φ(0) = Φ(∞) = 0. During all times [t, t + dt] when
no job arrives or is completed, it will be shown that
d
dt WLAPS(t) + d

dtΦ(t) ≤ c d
dt OPT(t), where c is some

constant. Here d
dt WLAPS(t) =

∑
i∈Na(t) wi(t) and

d
dt OPT(t) =

∑
i∈No(t) wi(t). If Φ(t) meets each of these

conditions then WLAPS is c competitive. Our potential
function Φ(t) is defined as follows:

Φ(t) :=
∑

i∈Na(t)

(
t− ai +

1
ε

∑
aj ≥ ai
j ∈ Na(t)

xj(t)
)k

+(
2
ε

)2k+1
∑

i∈Na(t)

wi(t)yi(t)

2.3 Intuition Behind the Potential Function Let
Φ1(t) be the first term of Φ(t) and Φ2(t) be the second
term of Φ(t). The boundary conditions of our potential
function are satisfied trivially. When job i arrives at time
t, the potential function has no change since t − ai = 0
and xi = 0 on arrival. The optimal solution completing
a job has no effect on the potential function. When al-

gorithm completes a job i the potential function can only
decrease, since all terms are positive.

Before analyzing the change in Φ, we discuss high
level intuition of the analysis. As stated, in [6] it was
shown that SRPT and SJF are scalable algorithms when
all jobs have only one phase which is fully parallelizable.
To prove this, the authors used a local argument. They
showed that at each time t, the sum of the agek−1 of the
jobs that are still alive under the algorithm’s schedule is
at most a constant c times the corresponding value for
those that are alive under the optimal schedule. When
jobs can have a varying degree of parallelizability, this
local property no longer holds. This is why we resort to a
potential function based argument. When the algorithm’s
current costs are less than c times the optimal’s, the
algorithm saves some into a bank account so that when
the algorithm’s current costs are higher than this, he can
pay for them by withdrawing these reserves. The potential
function measures how much is currently in the bank.
The proof must show that at each point in time, these
costs balance, namely that d

dt WLAPS(t) + d
dtΦ(t) ≤

c d
dt OPT(t).

Consider a time t. The increase rate in our objec-
tive function at time t is

∑
i∈Na(t) wi(t). Likewise the

increase rate in the optimal solution’s objective function
is
∑
i∈No(t) wi(t). If the increase in OPT’s objective is

comparable to the increase in WLAPS objective, then we
can charge the increase of WLAPS’ objective directly to
the optimal solution along with any increase in Φ(t). This
is where the definition of the algorithm is crucially used,
since WLAPS is defined by the ages of jobs, it will help
relate the ages of WLAPS’ unsatisfied jobs to OPT’s un-
satisfied jobs. However, if the two objectives are not com-
parable then the decrease in Φ(t) must be used to pay for
the increase in WLAPS objective. Here there are two
cases either most of the ages of jobs that are being pro-
cessed by WLAPS are in a sequential phase or they are
in a parallel phase.

First say that most of the ages of the jobs WLAPS
are working on are in a sequential phase. In this case,
each of the jobs in a sequential phase gets processed
whether or not WLAPS devotes processing power to the
jobs. Since all of these jobs are being processed at a fast
rate, WLAPS will be completing enough work to show
that WLAPS is drifting its queue towards the optimal
solution’s queue. This case is captured by the second term
in the potential function, Φ2. Intuitively, wi(t)yi(t) is an
approximation of the remaining cost job i will pay in the
algorithm’s objective function for sequential phases.

The second case is when our algorithm is process-
ing mostly parallel work. Here, since the algorithm is
processing jobs with more speed than the adversary is,
via resource augmentation, we will again drift towards
the adversary’s queue. This case is captured by the first

term in the potential function. This is, Φ1(t) will de-
crease enough to pay for any increase in the algorithm’s
objective. Intuitively, we derive Φ1 by observing that
(t− ai +

∑
aj≥ai,j∈Na(t) xj(t))

k is an approximation of
remaining cost job i will pay in the algorithm’s objective
function for parallel phases.

2.4 Analysis For simple notation, let Wi(t) :=

k
(
t − ai + 1

ε

∑
aj≥ai,j∈Na(t) xj(t)

)k−1

. We will study
each of the changes in Φ(t) separately depending on
where the change comes from. In the final analysis, we
will aggregate all the changes.

OPT’s processing: First we consider the change in Φ(t)
when the optimal solution processes jobs which are in a
parallel phase. Let job q be the job with the latest arrival
time in Na(t). The largest increase in Φ1(t) occurs when
the optimal solution processes job q. Since the optimal
solution has 1-speed, xq(t) increases at a rate of at most

1. Thus we have d
dtΦ1(t) ≤ 1

ε

∑
i∈Na(t) k

(
t − ai +

1
ε

∑
aj≥ai,j∈Na(t) xj(t)

)k−1

= 1
ε

∑
i∈Na(t)Wi(t).

We now address the change in Φ2(t). The optimal
solution processes each job i in No(t) at a rate of 1 if
i is in sequential phase, thus increasing yi(t) at a rate
of at most 1. Recall that a job in a sequential phase
is processed at a rate of 1 whether or not it receives
any processing power. In the worst case, every job
in No(t) is in a sequential phase. Thus d

dtΦ2(t) ≤
(2
ε)2k+1

∑
i∈No(t) wi(t)dt ≤ (2

ε)2k+1 d
dt OPT(t). Hence

the total change rate of Φ(t) due to OPT’s processing is
d
dtΦ(t) ≤ 1

ε

∑
i∈Na(t)Wi(t) + (2

ε)2k+1 d
dt OPT(t).

WLAPS’s processing: We partition Na(t) into S(t) and
P(t) such that S(t) contains all jobs in Na(t) that are
in a sequential phase and P(t) contains all jobs in Na(t)
that are in a parallel phase under the schedule of WLAPS
at time t. Let P ′(t) := N ′a(t) ∩ P(t) and S ′(t) =
N ′a(t) ∩ S(t). Consider any job j ∈ P ′(t) \ No(t).
Since OPT has completed job j, the variable xj(t) is
just the remaining amount of parallel work for job i for
WLAPS to process. Therefore, xj(t) decreases at a rate of
−s wi(t)βw(t) by the definition of how WLAPS distributes its
s processors at each time. Note that this change occurs in∑
aj≥ai,j∈Na(t) xj(t) for any job i ∈ Na(t)\N ′a(t). This

is because all jobs in N ′a(t) (the jobs WLAPS chooses
to process) have arrived no later than any job in Na(t) \
N ′a(t). Hence,

d
dt

Φ1(t) ≤ −1
ε

 ∑
j∈P′(t)\No(t)

s
wj(t)
βw(t)

(2.1)

·

 ∑
i∈Na(t)\N ′

a(t)

Wi(t)


For the final analysis we need to obtain an upper

bound on (2.1). The following propositions and lemmas
will be useful tools. The two following easy propositions
were shown in [24].

PROPOSITION 2.1. For any job i,∑
aj≥ai,j∈Na(t) xj(t) ≤ t− ai.

This proposition easily follows since∑
aj≥ai,j∈Na(t) xj(t) is the amount of parallel work

OPT is ahead of WLAPS for jobs released after time ai.
Since OPT has 1 processor, this is at most t − ai. The
following proposition is trivial since yi(t) can grow at a
rate of at most 1 at each time.

PROPOSITION 2.2. For any job i, yi(t) ≤ t− ai.

The following proposition is easily obtained by ap-
plying proposition 2.1.

PROPOSITION 2.3.
∑
i∈Na(t)Wi(t)

≤
∑

i∈Na(t)

(1 +
1
ε

)k−1wi(t) = (1 +
1
ε

)k−1 d
dt

WLAPS(t).

By Proposition 2.1, we can bound a part of (2.1),

∑
i∈Na(t)\N ′

a(t)

Wi(t) =
∑

i∈Na(t)

Wi(t)−
∑

i∈N ′
a(t)

Wi(t)

≥
∑

i∈Na(t)

Wi(t)− (1 +
1
ε

)k−1
∑

i∈N ′
a(t)

wi(t)

=
∑

i∈Na(t)

Wi(t)− β(1 +
1
ε

)k−1
∑

i∈Na(t)

wi(t)

≥
[
1− β(1 +

1
ε

)k−1
] ∑
i∈Na(t)

Wi(t)

(2.2)

The last equality is due to the definition of N ′a(t),
and the last inequality is due to Wi(t) ≥ wi(t) for all
i ∈ Na(t). And by the definition of P ′(t), we have

∑
j∈P′(t)\No(t)

wj(t)
βw(t)

≥ 1
βw(t)

[∑
j∈N ′

a(t)

wj(t)−
∑
j∈S(t)

wj(t)

−
∑

j∈No(t)

wj(t)
]

= 1− 1
βw(t)

[∑
j∈S(t)

wj(t) +
∑

j∈No(t)

wj(t)
]

(2.3)

From (2.1), (2.2) and (2.3), we have

d
dt

Φ1(t) ≤ −s1
ε

(
1− β(1 +

1
ε

)k−1
)

(
1− 1

βw(t)

[∑
j∈S(t)

wj(t) +
∑

j∈No(t)

wj(t)
]) ∑

i∈Na(t)

Wi(t)

(2.4)

For any job i ∈ S(t)\No(t), yi(t) decreases at a rate
of 1 by definition of sequential work. Thus, d

dtΦ2(t) ≤
−(2

ε)2k+1
∑
i∈S(t)\No(t) wi(t).

Time Elapse: We now address the change in Φ(t) due to
the change in time. The change in Φ1(t) is d

dtΦ1(t) =∑
i∈Na(t)Wi(t). The change in Φ2(t) is, d

dtΦ2(t) =
(2
ε)2k+1

∑
i∈Na(t) k(k − 1)(t− ai)k−2yi(t).

Our goal is now to bound d
dtΦ2(t) by d

dt WLAPS(t).
To this end, we partition jobs in Na(t) into ‘old’ jobs
O(t) and ‘young’ jobs Y(t). Recall that σi is the total
sequential work for job i. A job i ∈ Na(t) is in Y(t)
if (t − ai) ≤ k(2

ε)2k+1σi; otherwise, the job is in O(t).
The increase in Φ2(t) due to jobs in Y(t) will be charged
directly to the optimal solution’s cost in the following
lemma. This idea is similar to that given in [24] and the
proof can be found in the appendix.

LEMMA 2.1.
∫ ∞

0

∑
i∈Y(t)

k(k − 1)(t − ai)k−2yi(t)dt ≤

kk+1(
2
ε

)k(2k+1)OPT.

The change in Φ2(t) due to old jobs is at
most (2

ε)2k+1
∑
i∈O(t) k(k − 1)(t − ai)k−2σi(t) ≤∑

i∈O(t) k(t− ai)k−1 ≤
∑
i∈Na(t) k(t− ai)k−1, by def-

inition of old jobs. Thus after excluding the young jobs,
the total increase in Φ(t) due to the change in time is,
d
dtΦ(t) ≤ 2

∑
i∈Na(t)Wi(t).

2.5 Completing the Analysis: For the final analysis,
we add the upper bound on the change for each of the
cases we studied in the previous section. Let d

dtΦ′(t)
denote the change (rate) that is obtained from d

dtΦ(t) by
removing the increase due to time elapse for the young
jobs. We will show that d

dt WLAPS(t) + d
dtΦ′(t) ≤

2(2
ε)2k+1 d

dt OPT(t). Then we will have

WLAPS =
∫ ∞

0

(d
dt

WLAPS(t)
)

dt

=
∫ ∞

0

(d
dt

WLAPS(t) +
d
dt

Φ(t)
)

dt

[Since Φ(0) = Φ(∞) = 0]

≤
∫ ∞

0

(d
dt

WLAPS(t) +
d
dt

Φ′(t)
)

dt

+kk+1(
2
ε

)k(2k+1)OPT

≤
∫ ∞

0

(
2(

2
ε

)2k+1 d
dt

OPT(t)
)

dt

+kk+1(
2
ε

)k(2k+1)OPT

≤ 3kk+1(
2
ε

)k(2k+1)OPT

The first inequality comes from Lemma 2.1, which
gives an upper bound on the total increase due to time
elapse over all times for the young jobs. Recall that we
have been considering the objective of minimizing the
sum of the kth power flowtime. Since we are actually
interested in `k-norms we take the outer kth root, which
proves Theorem 1.2.

It now remains to show d
dt WLAPS(t) + d

dtΦ′(t) ≤
2(2
ε)2k+1 d

dt OPT(t). By adding the upper bounds we
obtained in the previous section, we have

d
dt

WLAPS(t) +
d
dt

Φ′(t) ≤(
3 +

1
ε

) ∑
i∈Na(t)

Wi(t)(2.5)

−s1
ε

(
1− β(1 +

1
ε

)k−1
)(

1− 1
βw(t)

[∑
j∈S(t)

wj(t)(2.6)

+
∑

j∈No(t)

wj(t)
]) ∑

i∈Na(t)

Wi(t)

−(
2
ε

)2k+1
∑

i∈S(t)\No(t)

wi(t)(2.7)

+(
2
ε

)2k+1 d
dt

OPT(t)(2.8)

We remind the reader that (2.6) and (2.7) come from
the change due to WLAPS’s processing jobs in a parallel
phase and jobs in a serial phase, respectively. Recall that
β = εk and s ≥ 1+12ε, where 0 < ε ≤ 1

24k . We consider
three cases.
Case (a):

∑
i∈No(t) wi(t) ≥ εβ

∑
i∈Na(t) wi(t). This

is the easiest case where OPT has jobs whose total
weight is comparable to that of the jobs in WLAPS’s
queue. In this case, by Proposition 2.3 and simple

algebra, (2.5)+(2.8) ≤ 4
ε (2
ε)k−1 d

dt WLAPS(t)+(2.8) ≤
2(2
ε)2k+1 d

dt OPT(t).

Case (b):
∑
i∈S(t)\No(t) wi(t) ≥ εβ

∑
i∈Na(t) wi(t). In

this case, the decrease due to WLAPS’s processing jobs in
a sequential phase will offset other positive terms. Again,
by Proposition 2.3 and an easy calculation, (2.5)+(2.7) ≤
4
ε (2
ε)k−1 d

dt WLAPS(t) − εβ(2
ε)2k+1 d

dt WLAPS(t) ≤ 0.
And clearly, (2.8) ≤ 2(2

ε)2k+1 d
dt OPT(t).

Case (c): Neither case (a) nor case (b). Then we have∑
i∈No(t) wi(t) +

∑
i∈S(t) wi(t) ≤ 3εβ

∑
i∈Na(t) wi(t).

This is the case where most (in terms of weights) of the
jobs WLAPS are processing are in a parallel phase. By
simple algebra, (2.5) + (2.6) ≤ 1+3ε

ε

∑
i∈Na(t)Wi(t) −

1
ε s(1− ε(1 + ε

k)k−1)(1− 3ε)
∑
i∈Na(t)Wi(t) ≤ 0. In all

cases the desired inequality holds, and this completes the
analysis.

3 Broadcast Scheduling
The broadcast setting is defined as follows. There are n
pages of information stored at a server. Page p has size σp.
Over time requests arrive for specific pages. Each request
is for one page and there can be multiple requests for the
same page. The arrival time of a request ri is ai. The
page ri requests will be defined when needed. Each page
p is divided into unit pieces (1, p), (2, p), . . . (σp, p). One
unit piece can be broadcasted by the server in a unit time
slot. A request ri for page p is satisfied if it receives each
of the integer pieces of page p in sequential order; here
some pieces of other pages can be transmitted between
the pieces of page p. Notice that multiple requests can be
satisfied simultaneously. The time a request is satisfied
or completed by our algorithm is denoted as Ci. The flow
time of a request ri is (Ci−ai). The goal of the scheduler
is to minimize the `k norm of flow time k

√∑
i(Ci − ai)k.

3.1 Fractional `k norm Flow Time To bound the `k
norm of flow time of a schedule, we will focus on bound-
ing the total kth power flow time of a schedule,

∑
i(Ci −

ai)k. Here we have dropped the outer kth root. To do
this, we focus on bounding the kth power flow time of a
fractional schedule. In a fractional schedule the server is
allowed to broadcast an infinitesimal amount of data for
more than one page in a single time slot. Let yp(t) de-
note the rate at which page p is broadcasted at time t. In
the fractional model, the finish time of a request is dif-
ferent than in the integral model. The finish time of re-
quest ri for page p is now defined to be the first time t
that

∫ t
ai
yp(t)dt = σp. Notice that in this setting a re-

quest need not receive the unit pieces of page p sequen-
tially. Bansal et al. [5] showed a reduction from the inte-
gral broadcast setting to the fractional broadcast setting.
This reduction implies that a s-speed c-competitive algo-

rithm for the fraction broadcast setting can be converted
into an algorithm that is s(1 + ε′)-speed O(cε′) for the in-
tegral broadcast setting where ε > 0. See [24] for details.
Due to this reduction, we will focus on the fractional set-
ting.

3.2 Algorithm Let β = ε2k−1 > 0 and 0 < ε < 1
10

be constants. We assume that our algorithm is given
s = 1 + 10ε speed. Let Na(t) and No(t) denote the
set of unsatisfied requests at time t under the algorithm’s
schedule and OPT schedule, respectively. We will, for
simple notation, sometimes use i ∈ to denote ri ∈. For a
request ri, let wi(t) = k(t − ai)k−1 be the rate at which
the kth power flow time of request ri increases at time t.
This will also be called the weight of ri at time t. Let
w(t) =

∑
i∈Na(t) wi(t). Let N ′a(t) ⊆ Na(t) denote the

set of the earliest arriving requests in Na(t) whose total
weight adds up to βw(t). As in the arbitrary speed up
curves setting, we use a simplifying assumption that there
is a set of earliest arriving requests whose weights sum up
to be exactly βw(t).

We denote the algorithm as BWLAPS, that is, the
broadcast version of LAPS. The algorithm BWLAPS
devotes its processing power to the requests in N ′a(t).
A request ri ∈ N ′a(t) is processed at a rate of xi(t) =
s wi(t)βw(t) . Notice that the total speed used is at most s. By
processing a request ri for page p, we mean that the page
p is broadcasted. More formally, let Sp(t) be the set of
requests for page p in Na(t). Then page p is broadcasted
at a rate of yp(t) =

∑
i∈Sp(t) xi(t).

3.3 Potential Function Let y∗p(t)dt be the rate at
which that OPT broadcasts page p at time t. Let
Opt(t1, t2, p) =

∫ t2
t1
y∗p(t)dt. For a request ri let

On(t1, t2, ri) =
∫ t2
t1
xi(t)dt. Say that request ri is for

page p, then we define zi(t) to be On(t,∞,ri)·Opt(ai,t,p)
σp

.
Our potential function is now defined as,

Φ(t) :=
∑

i∈Na(t)

(t− ai +
1
ε

∑
rj ∈ Na(t)
aj ≥ ai

zj(t))k.

Notice that our potential function uses the variable
zi, rater than xi as in the speed up curves setting. This
is used because there could be multiple requests for the
same page. It is designed to mimic the properties of xi
in the speed-up curves setting: A key property of xi was
that the increase in

∑
i xi(t) due to OPT’s processing dt

amount of work is at most dt; this is not true anymore in
the broadcast setting. However it can be shown that the
total increase in

∑
i zi(t) is also at most dt; see the proof

of Lemma 3.1. Further, if OPT has satisfied ri (for page
p) and BWLAPS broadcasts p at a rate of s for dt time
then the decrease in zi is at least sdt.

The boundary conditions of our potential function
are satisfied trivially. When job i arrives at time t, the
potential function has no change since t − ai = 0 and
zi(t) = 0 on arrival. The optimal solution completing
a job has no effect on the potential function. When
algorithm completes a job i the potential function can only
decrease, since all terms are positive. For the remaining
analysis, to simplify notation, we let Wi(t) = k(t− ai +
1
ε

∑
rj∈Na(t),aj≥ai zj(t))

k−1.

3.4 Continuous Change in Φ(t) It remains to con-
sider the change in Φ during a time interval [t, t +
dt] when no jobs arrive or are completed. Let
d
dt BWLAPS(t) =

∑
ri∈Na(t) k(t − ai)k−1dt and let

d
dt OPT(t) =

∑
ri∈No(t) k(t − ai)k−1dt. The values of

d
dt BWLAPS(t) and d

dt OPT(t) are the increase rate of the
kth power flow time of BWLAPS’ schedule and OPT’s,
respectively. Our goal is to show that d

dt BWLAPS(t) +
d
dtΦ(t) ≤ 1

β (2
ε)k+1 d

dt OPT(t) at all times t.
Before we proceed, we introduce some simple lemma

and proposition. The following easy lemma was shown in
[5]; for completeness, we put its proof in Appendix A.

LEMMA 3.1. For any job i ∈ Na(t) it is the case that∑
rj∈Na(t),aj≥ai zj(t) ≤ (t− ai).

The following proposition easily follows from the
above lemma.

PROPOSITION 3.1.
∑
i∈Na(t)Wi(t) ≤

∑
i∈Na(t)(1 +

1
ε)k−1wi(t) ≤ (2

ε)k−1 d
dt BWLAPS(t).

We address each of the possible changes in Φ(t).
First it is easy to see that the change in Φ(t) due to
time is

∑
i∈Na(t)Wi(t). We now address the change

in Φ(t) due to OPT’s processing. Let page p be the
page OPT broadcasts at time t and let Sp(t) be the
requests in Na(t) for page p. First we observe that∑
rj∈Sp(t),aj≥ai On(t,∞, rj) ≤ σp due to the fact that

the algorithm needs to broadcast page p for at most a
σp amount of time to satisfy each request for page p
in Na(t). Also, we have that ∆Opt(aj , t, p) ≤ dt
because the optimal solution has only 1 speed. Using
these two facts, for any request ri ∈ Na(t) we can
bound the change in

∑
rj∈Na(t),aj≥ai zj(t) to be at most∑

rj∈Sp(t),aj≥ai
On(t,∞,rj)

σp
· ∆Opt(aj , t, p) ≤ dt. This

allows us to upper bound the change in Φ(t) due to OPT’s
processing to be 1

ε

∑
i∈Na(t)Wi(t).

Now it can easily be seen that the change in Φ(t)
due to our algorithm’s processing is non-positive. For the
remainder of the analysis, we will consider two cases.
Case (a): d

dt BWLAPS(t) ≤ 1
βε

d
dt OPT(t). In this case

we can charge d
dt BWLAPS(t) and d

dtΦ(t) directly

to the optimal solution. Indeed, by Proposition 3.1
and simple algebra, d

dt BWLAPS(t) + d
dtΦ(t) ≤∑

i∈Na(t) wi(t) + (1 + 1
ε)
∑
i∈Na(t)Wi(t) ≤

2(2
ε)k d

dt BWLAPS(t) ≤ 1
β (2

ε)k+1 d
dt OPT(t)

Case (b): d
dt BWLAPS(t) > 1

βε
d
dt OPT(t). For this case

the decrease in Φ(t) due to our algorithm’s processing will
play a crucial role to offset other increases. By a similar
reasoning as done in the analysis for the arbitrary speed up
curve setting, the total change (rate) due to our algorithm’s
processing is at most,

1
ε

(
∑

i∈N ′
a(t)\No(t)

d
dt
zi(t))

∑
i∈Na(t)\N ′

a(t)

Wi(t)(3.9)

Note that for any ri ∈ N ′a(t) \ No(t), it is the case
that d

dtzi(t) ≤
d
dtOn(t,∞, ri) = − wi(t)

βw(t) by definition
of BWLAPS. Using the assumption that 1

βε
d
dt OPT(t) <

d
dt BWLAPS(t), we observe that

∑
i∈N ′

a(t)\No(t)

d
dt
zi(t) = −

∑
i∈N ′

a(t)\No(t)

swi(t)
βw(t)

≤ −
∑

i∈N ′
a(t)

swi(t)
βw(t)

+
∑

i∈No(t)

swi(t)
βw(t)

≤ −s(1− ε).

By simple algebra and Proposition 3.1 we have that∑
i∈Na(t)\N ′

a(t)

Wi(t) =
∑

i∈Na(t)

Wi(t)−
∑

i∈N ′
a(t)

Wi(t)

≥
∑

i∈Na(t)

Wi(t)− (1 +
1
ε

)k−1
∑

i∈N ′
a(t)

wi(t)

≥ (1− β(1 +
1
ε

)k−1)
∑

i∈Na(t)

Wi(t)

[Since
∑

i∈N ′
a(t)

wi(t) = β
∑

i∈Na(t)

wi(t)

≤ β
∑

i∈Na(t)

Wi(t)]

Thus we obtain (3.9) ≤ − s(1−ε)ε (1 − β(1 +
1
ε)k−1)

∑
i∈Na(t)Wi(t).

We are now ready to complete this case. Recall that
0 < ε < 1/10, s = 1 + 10ε, and β = ε2k−1. Then
by combining the change due to the changes in time,
OPT’s processing and the algorithm’s processing we have
d
dt BWLAPS(t) + d

dtΦ(t) ≤ (2 + 1
ε −

s(1−ε)
ε (1− β(1 +

1
ε)k−1)

∑
i∈Na(t)Wi(t) ≤ 0.

Thus in both cases (a) and (b), the desired inequality
d
dt BWLAPS(t) + d

dtΦ(t) ≤ 1
β (2

ε)k+1 d
dt OPT(t) and we

are now ready to complete our analysis.

BWLAPS =
∫ ∞

0

(d
dt

BWLAPS(t) +
d
dt

Φ(t)
)

dt

≤
∫ ∞

0

1
β

(
2
ε

)k+1 d
dt

OPT(t)dt =
2k+1

ε3k
OPT

By taking the outer kth root in the objective function
and scaling ε and β we have the following theorem.

THEOREM 3.1. The algorithm BWLAPS is (1 + ε)-
speed O(1

ε3)-competitive for the `k of flow time in the
fractional broadcast setting where k ≥ 1 and 0 < ε < 1.

Using the reduction from the fractional broadcast
setting to the integral setting, we have Theorem 1.1.

4 Conclusions
In this paper we have shown a scalable algorithm for
the `k norms of flow time in broadcast scheduling for
all k ≥ 1. We also have given a scalable algorithm for
the same objective in the speed-up curves setting for any
fixed k ≥ 1. Our competitive ratio grows with k for the
speed up curves setting. We have preliminary evidence
of a Ω(k ln k) lower bound on algorithms that are given
speed at most 1 + ε where ε ≤ 1. Though there is an
exponential gap between these upper and lower bound, it
does indicate that the competitive ratio should grow with
k. It would be interesting to tighten the gap between the
upper and lower bounds. Our lower-bound will appear in
a full version of this paper.

It is important to note that our algorithms depend on
the speed ε. That is β depends on ε in WLAPS and
BWLAPS. It would be interesting to show, in either
setting, that a scalable algorithm must depend on ε to
be O(1)-competitive for fixed k or to give a scalable
algorithm that does not explicitly depend on ε.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-
based data delivery using broadcast disks. Personal Com-
munications, IEEE [see also IEEE Wireless Communica-
tions], 2(6):50–60, Dec 1995.

[2] Demet Aksoy and Michael J. Franklin. ”rxw: A schedul-
ing approach for large-scale on-demand data broadcast.
IEEE/ACM Trans. Netw., 7(6):846–860, 1999.

[3] Nikhil Bansal, Moses Charikar, Sanjeev Khanna, and
Joseph (Seffi) Naor. Approximating the average response
time in broadcast scheduling. In SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 215–221, 2005.

[4] Nikhil Bansal, Don Coppersmith, and Maxim Sviri-
denko. Improved approximation algorithms for broadcast
scheduling. SIAM J. Comput., 38(3):1157–1174, 2008.

[5] Nikhil Bansal, Ravishankar Krishnaswamy, and
Viswanath Nagarajan. Better scalable algorithms for
broadcast scheduling. Technical report, 2009.

[6] Nikhil Bansal and Kirk Pruhs. Server scheduling in the lp
norm: a rising tide lifts all boat. In STOC, pages 242–250,
2003.

[7] Amotz Bar-Noy, Randeep Bhatia, Joseph (Seffi) Naor, and
Baruch Schieber. Minimizing service and operation costs
of periodic scheduling. Math. Oper. Res., 27(3):518–544,
2002.

[8] Yair Bartal and S. Muthukrishnan. Minimizing maximum
response time in scheduling broadcasts. In SODA ’00:
Proceedings of the eleventh annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 558–559, 2000.

[9] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N.
Muralidhara. A competitive algorithm for minimizing
weighted flow time on unrelatedmachines with speed aug-
mentation. In STOC, pages 679–684, 2009.

[10] Ho-Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed
scaling of processes with arbitrary speedup curves on a
multiprocessor. In SPAA, pages 1–10, 2009.

[11] Jessica Chang, Thomas Erlebach, Renars Gailis, and
Samir Khuller. Broadcast scheduling: algorithms and
complexity. In SODA ’08: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms,
pages 473–482. Society for Industrial and Applied Mathe-
matics, 2008.

[12] Chandra Chekuri, Sungjin Im, and Benjamin Moseley.
Longest wait first for broadcast scheduling. In WAOA
’09: Proceedings of 7th Workshop on Approximation and
Online Algorithms, 2009.

[13] R. K. Deb. Optimal control of bulk queues with compound
poisson arrivals and batch service. Opsearch., 21:227–
245, 1984.

[14] R. K. Deb and R. F. Serfozo. Optimal control of batch
service queues. Adv. Appl. Prob., 5:340–361, 1973.

[15] Jeff Edmonds. Scheduling in the dark. Theor. Comput.
Sci., 235(1):109–141, 2000.

[16] Jeff Edmonds, Donald D. Chinn, Tim Brecht, and Xiaotie
Deng. Non-clairvoyant multiprocessor scheduling of jobs
with changing execution characteristics. J. Scheduling,
6(3):231–250, 2003.

[17] Jeff Edmonds and Kirk Pruhs. Multicast pull scheduling:
When fairness is fine. Algorithmica, 36(3):315–330, 2003.

[18] Jeff Edmonds and Kirk Pruhs. A maiden analysis of
longest wait first. ACM Trans. Algorithms, 1(1):14–32,
2005.

[19] Jeff Edmonds and Kirk Pruhs. Scalably scheduling pro-
cesses with arbitrary speedup curves. In SODA ’09: Pro-
ceedings of the Nineteenth Annual ACM -SIAM Sympo-
sium on Discrete Algorithms, pages 685–692, Philadel-
phia, PA, USA, 2009. Society for Industrial and Applied
Mathematics.

[20] Thomas Erlebach and Alexander Hall. Np-hardness of
broadcast scheduling and inapproximability of single-
source unsplittable min-cost flow. J. Scheduling,
7(3):223–241, 2004.

[21] Rajiv Gandhi, Samir Khuller, Yoo-Ah Kim, and Yung-
Chun (Justin) Wan. Algorithms for minimizing response

time in broadcast scheduling. Algorithmica, 38(4):597–
608, 2004.

[22] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy,
and Aravind Srinivasan. Dependent rounding in bipartite
graphs. In FOCS ’02: Proceedings of the 43rd Symposium
on Foundations of Computer Science, pages 323–332,
2002.

[23] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy,
and Aravind Srinivasan. Dependent rounding and its
applications to approximation algorithms. J. ACM,
53(3):324–360, 2006.

[24] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy,
Benjamin Moseley, and Kirk Pruhs. Scheduling jobs with
varying parallelizability to reduce variance. In SPAA ’10:
22nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2010.

[25] Alexander Hall and Hanjo Täubig. Comparing push- and
pull-based broadcasting. or: Would “microsoft watches”
profit from a transmitter?. In Proceedings of the 2nd In-
ternational Workshop on Experimental and Efficient Algo-
rithms (WEA 03), pages 148–164, 2003.

[26] Sungjin Im and Benjamin Moseley. An online scalable
algorithm for average flow time in broadcast scheduling.
In SODA ’10: Proceedings of the Twentieth Annual ACM
-SIAM Symposium on Discrete Algorithms, 2010.

[27] Bala Kalyanasundaram and Kirk Pruhs. Speed is as
powerful as clairvoyance. J. ACM, 47(4):617–643, 2000.

[28] Bala Kalyanasundaram, Kirk Pruhs, and Mahendran Ve-
lauthapillai. Scheduling broadcasts in wireless networks.
Journal of Scheduling, 4(6):339–354, 2000.

[29] Kirk Pruhs, Julien Robert, and Nicolas Schabanel. Min-
imizing maximum flowtime of jobs with arbitrary paral-
lelizability. Manuscript, 2010.

[30] Julien Robert and Nicolas Schabanel. Non-clairvoyant
scheduling with precedence constraints. In ACM-SIAM
Symposium on Discrete Algorithms, pages 491–500, 2008.

[31] Abraham Silberschatz and Peter Galvin. Operating Sys-
tem Concepts, 4th edition. Addison-Wesley, 1994.

[32] Andrew S. Tanenbaum. Modern Operating Systems. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 2007.

[33] J. Weiss. Optimal control of batch service queues
with nonlinear waiting costs. Modeling and Simulation,
10:305–309, 1979.

[34] J. Weiss and S. Pliska. Optimal policies for batch service
queueing systems. Opsearch, 19(1):12–22, 1982.

A Omitted Proofs

Proof of [Lemma 2.1]

(LHS) ≤
∑
i∈[n]

∫ ai+k(2
ε)2k+1σi

ai

k(k − 1)(t− ai)k−2yi(t)dt

[From definition of Y(t)]

≤
∑
i∈[n]

∫ ai+k(2
ε)2k+1σi

ai

k(k − 1)(t− ai)k−1dt

[By Proposition 2.2]

= (k − 1)
∑
i∈[n]

(k(
2
ε

)2k+1)kσki ≤ kk+1(
2
ε

)k(2k+1)OPT

[Since OPT ≥
∑
i∈[n] σ

k
i]

2

Proof of [Lemma 3.1] Let Sp(t) denote the set of re-
quests in Na(t) that are for page p. First notice that∑
rj∈Sp(t) On(t,∞, rj) ≤ σp for all times t and pages

p. Indeed, each request rj ∈ Sp(t) is satisfied once page
p has been broadcasted by an amount of σp. By definition
of On the claim follows. For any fixed request ri ∈ Na(t)
for page p we have that,∑

rj∈Na(t),aj≥ai

zj(t)

=
∑
p

∑
rj∈Sp(t),aj≥ai

On(t,∞, rj) · Opt(aj , t, p)
σp

≤
∑
p

∑
rj∈Sp(t),aj≥ai

On(t,∞, rj) · Opt(ai, t, p)
σp

=
∑
p

Opt(ai, t, p)
[1
σp

∑
rj∈Sp(t),aj≥ai

On(t,∞, rj)
]

≤
∑
p

Opt(ai, t, p) [Since
∑
rj∈Sp(t) On(t,∞, rj) ≤ σp]

≤ (t− ai) [Since OPT has 1-speed]

2

