
Online SchedulingKirk Pruhs � Ji�r�� Sgall y Eric Torng zSeptember 29, 20031 IntroductionIn this chapter, we summarize research e�orts on several di�erent problems that fall under the rubric ofonline scheduling. In online scheduling, the scheduler receives jobs that arrive over time, and generallymust schedule the jobs without any knowledge of the future. The lack of knowledge of the future generallyprecludes the scheduler from guaranteeing optimal schedules. Thus much research has been focused on�nding scheduling algorithms that guarantee schedules that are in some way not too far from optimal.We focus on problems that arise within the ubiquitous client-server setting. In a client-server system,there are many clients and one server (or a perhaps a few servers). Clients submit requests for service to theserver(s) over time. In the language of scheduling, a server is a processor, and a request is a job. Applicationsthat motivate the research we survey include multiuser operating systems such as Unix and Windows, webservers, database servers, name servers, and load balancers sitting in front of server farms.The area of online scheduling is much too large for a chapter sized unabridged survey. Our goal is tohighlight the critical ideas and techniques that have driven much of the recent research and to focus attentionon the open problems that appear to be most interesting.1.1 Online Paradigms and NotationThe idea behind an online algorithm is that the algorithm does not have access to the entire input instanceas it makes its decisions. For a thorough introduction to online algorithms that extends beyond onlinescheduling algorithms, please refer to the book by Borodin and El Yaniv [30] and the collection of surveys [56].In scheduling, we model a range of di�erent environments which di�er in the way the information is released.These are discussed below, as well as some additional notation speci�c to online problems that we use tosupplement the standard three-�eld notation introduced in Chapter 1.In the online-time paradigm, the scheduler must decide at each time t which job to run at time t. Problemswithin the online-time model typically have release dates, and the scheduler is not aware of the existence ofa job until its release date. Once a job is released, we assume that the scheduler learns the processing time ofa job. For example, a web server serving static documents might reasonably be modeled by the online-timemodel since the web server can know the size of the requested �le. In contrast, in the online-time-nclv model,the scheduler is given no information about the processing time of a job at its release date. For example, theprocess scheduling component of an operating system is better modeled by the online-time-nclv model thanthe online-time model since the operating system typically will not know the execution time of a process.This lack of knowledge of the processing time is called nonclairvoyance.�ComputerScienceDepartment. University of Pittsburgh. Pittsburgh, PA 15260USA. E-mail kirk@cs.pitt.edu. Supportedin part by NSF grant CCR-0098752, NSF grant ANI-0123705, NSF grant ANI-0325353, and a grant from the United States AirForce.yMathematical Institute, AS CR, �Zitn�a 25, CZ-11567 Praha 1, Czech Republic. E-mail sgall@math.cas.cz. Partiallysupported by Institute for Theoretical Computer Science, Prague (project LN00A056 of M�SMT �CR), grant 201/01/1195 of GA�CR, and cooperative grant KONTAKT-ME476/CCR-9988360-001 from M�SMT �CR and NSF.zDepartment of Computer Science and Engineering. Michigan State University. East Lansing, MI 48824 USA. E-mailtorng@msu.edu. Supported in part by NSF grant CCR-9701679, NSF grant CCR-0105283, and NSF grant EIA-0219229.1



If preemption is not allowed for problems in either the online-time or online-time-nclv model, and jobs canhave arbitrary processing time, then there is usually a trivial example that shows that any online schedulerwill produce schedules that are far from optimal. This is why server systems, such as operating systemsand web servers, generally allow preemption. Thus most research in online scheduling assumes preemptionunless all jobs have similar processing times (as could be the case for a name server, for example). In theonline setting, there is another possibility, which is meaningless for o�ine algorithms. Namely, a running jobcan be stopped and later restarted from the beginning on the same or di�erent machine(s). Thus in order to�nish, a job has to be assigned to the same machine(s) for its whole running time without an interruption;in the o�ine case this is equivalent to non-preemptive scheduling as the un�nished parts of a job can simplybe removed from the schedule. This possibility will be denoted by pmtn-restart in the middle (job) �eld ofthe three-�eld notation.In the online-list paradigm, the jobs are ordered in a list/sequence. As soon as the job is presented, weknow all its characteristics, including the processing time. The job has to be assigned to some machine andtime slots (consistent with the restrictions of the given problem) before the next job is seen. The schedulingalgorithm cannot change this assignment once it has been made. In the online-list model, in contrastto the online-time and online-time-nclv models, the time between when jobs are assigned is irrelevant ormeaningless. The online-list model might be an appropriate model for a load balancer sitting in front of aserver farm.The notation online-time, online-time-nclv or online-list will be included in the job �eld of the three-�eldnotation. So, for example, 1jonline-time; rj; pmtnjPFj represents the problem of minimizing total 
ow timeon identical machines in the online-time model with preemption, which models the problem faced by a webserver. And P jonline-listjCmax is the problem of minimizing the makespan on identical machines when jobsare presented one by one.1.2 Competitive AnalysisGiven that an online algorithm has only partial knowledge of the input instance, for most problems, no onlinealgorithm can produce an optimal solution for all input instances. Probably the most obvious method forevaluating the worst-case performance of an algorithm is the worst-case relative error between the quality ofthe computed solution for an instance and the quality of the corresponding optimal solution. For example,this is the standard technique for evaluating polynomial-time approximation algorithms for NP-hard prob-lems. In the context of online algorithms, this method is called competitive analysis [73, 99]. Let f(A; I)denote the objective value of the schedule produced by algorithm A on input instance I where A could bean online or o�ine algorithm and f be an objective value that we are trying to minimize such as makespanor total 
ow time. We say that an online algorithm A is c-competitive if f(A; I) � c � f(OPT; I) + b forany input instance I for a �xed constant b where OPT is the optimal o�ine scheduling algorithm for thisproblem. For most of the problems we consider, we can ignore the additive constant b. This follows from thefact that scheduling problems are typically scalable; by scaling all the jobs so that the objective is arbitrarilylarge, the possible bene�t of the additive constant disappears. The competitive ratio of algorithmA, denotedcA, is the in�mum of c such that A is c-competitive.The goal in any problem is to �nd an algorithm with a competitive ratio as small as possible. Ideally,this competitive ratio should be a constant independent of any parameter of the input instance such as thenumber of jobs faced, but we shall see this is not always possible.1.3 Worst-case Analysis and Other AlternativesCompetitive analysis allows us to prove lower bounds using the so-called adversary method. This meansthat a malicious omnipotent adversary uses the partial schedule generated by the online algorithm to decidewhat further jobs should be generated. If the algorithms considered are deterministic, this process can besimulated beforehand, and thus it provides a lower bound on the competitive ratio.For many scheduling problems, worst case competitive analysis gives quite strong lower bounds. Forexample, for the problem of 1jonline-time-nclv; rj; pmtnjPFj, the competitive ratio of every deterministicalgorithm is 
(n1=3), see [80]. Consider for the moment the possibility that we have an O(n1=3)-competitivealgorithm A for this problem. In absence of other information, this is positive evidence of the superiority2



of A to other possible algorithms with higher competitive ratios. However, given the magnitude of theO(n1=3) guarantee on relative error, it is probable that an operating system designer would not take this asstrong evidence to adopt A. Such situations have led to the development of many alternative techniques foranalyzing online algorithms.Randomized algorithms. One standard alternative is to consider randomized algorithms that makerandom choices as they construct a schedule. We say that a randomized algorithm A is c-competitive ifE[f(A; I)] � c � f(OPT; I) for all input instances I where E[f(A; i)] is the expected cost of algorithm A oninput instance I. This corresponds to the so-called oblivious adversary in online algorithms terminology [25,30]. An oblivious adversary has to commit to an input instance a priori without any knowledge of the randomevents internal to the algorithm. Intuitively, this takes away the `unfair' power of the adversary to completelypredict the behavior of the algorithm. The assumption of an oblivious adversary is appropriate for schedulingproblems where the scheduling decisions do not a�ect future input. Even in situations where the obliviousadversary assumption is not fully justi�ed, such an analysis might still provide new insights. For some onlinescheduling problems, the use of randomized algorithms dramatically decreases the competitive ratio. Forexample, the competitive ratio for 1jonline-time-nclv; rj; pmtnjPFj drops from 
(n1=3) to �(logn) whenone allows randomized algorithms against an oblivious adversary [21].The most common technique for proving a lower bound on the competitive ratio for any randomizedalgorithm against an oblivious adversary is Yao's technique. In Yao's technique you lower bound the ex-pected competitive ratio of any deterministic algorithm on an input distribution of your choosing. Generallythis expected lower bound for deterministic algorithms also then lower bounds the competitive ratio forany randomized algorithm against an oblivious adversary. However, there are some cases, particularly formaximization problems, where one needs to be a bit careful in applying this technique. For more informationsee [30].Resource augmentation. Another alternative that has proven especially useful in the context of onlinescheduling is resource augmentation. The recent popularity of resource augmentation analysis of schedulingproblems emanates from a paper by Kalyanasundaram and Pruhs [67]. The term resource augmentation, andthe associated terminology we use, was introduced by Phillips, Stein, Torng and Wein [83]. In this model,we augment the online algorithm with extra resources in the form of faster processors or extra processors.For now, we focus on faster processors as most resource augmentation results utilize faster processors. LetAs denote an algorithm that works with processors of speed s where s � 1. We say that an online algorithmA is an s-speed c-competitive algorithm if f(As; I) � c � f(OPT1; I) for all input instances I.Research with resource augmentation has focused on two primary goals. The �rst focuses on minimizingthe speed subject to the constraint that the competitive ratio is O(1). To understand this goal, we �rst needto understand how client-server systems typically behave. Figure 1(a) depicts \typical" average performancecurves for client-server systems. That is, the average performance at loads below capacity is good, and theaverage performance above capacity is intolerable. So, in some sense, one can specify the performance ofsuch a system by simply giving the value of the capacity of the system. Note that formally de�ning load(or capacity) is not easy, but load generally re
ects the size of jobs and their rate of arrival over time. Wenext need to understand what it means to have s-speed processors. An alternative interpretation is thatthe jobs created have processing time pj=s. That is, we can interpret the load as shrinking by a factor ofs. This means that an s-speed c-competitive algorithm A performs at most c times worse than the optimalperformance on inputs with s times higher load. Assuming that the optimal performance does correspondto the curves in Figure 1(a) and is either good or intolerable, a modest c times either good or intolerablestill gives you quite good or intolerable. So an s-speed c-competitive algorithm should perform reasonablywell up to load 1=s of the capacity of the system as long as c is of modest size. Thus an ideal resourceaugmentation result would be to prove an algorithm is (1 + �)-speed O(1)-competitive.We call a (1 + �)-speed O(1)-competitive algorithm almost fully scalable since it should perform well upto almost the peak capacity of the system. For many scheduling problems, there are almost fully scalablealgorithms even though there are no O(1)-competitive algorithms. The intuition behind this is that if asystem's load is near its capacity, then the scheduler has no time to recover from even small mistakes. Notemany of the strong lower bounds for online scheduling problems utilize input instances where the load is3



essentially the capacity of the system.
Load

Average
Performance

OptimalOnline

Load

Average
Performance(a) (b)Figure 1: (a) Standard performance curve, and (b) The worst possible performance curve of an s-speedc-competitive online algorithm.The second goal is to �nd s-speed 1-competitive algorithms for these problems for as small a value of sas possible. The intuition behind these results is that s represents the tradeo� between extra resources andthe partial knowledge that the online algorithm faces. That is, with s times faster processors, the onlinealgorithm is able to overcome its lack of knowledge of the input instance and produce a schedule that is atleast as good as the one produced by the optimal o�ine algorithm.Semi-online algorithms. One reason for a relatively poor performance of online algorithms is a possiblyarbitrarily large variance of job parameters. For example, many greedy algorithms perform badly if theyhave to handle many jobs of similar size and a few very large jobs. Such inputs may be rare in applications,and we may want to avoid them in the analysis by giving the algorithm some additional knowledge. Asemi-online algorithm may know in advance the value of the optimum, the size of the largest job, or thejobs may be required to arrive sorted. Such algorithms are often studied in the online-list environment;we shall mention a few examples in that section. While such algorithms may not be implementable in anonline environment, the hope is that they will reveal some interesting aspects of the problem not revealed byother analysis. Also, a semi-online algorithm with known optimal makespan can be used to create an onlinealgorithm using the so-called doubling strategy, see Section 3.4. Another related possibility is to make thealgorithm general, but study the dependence of the competitive ratio on the variance of some parameter (forexample, the ratio of the largest and the smallest processing times).Average-Case Analysis. Average-case analysis of algorithms is desirable if we have a reasonable approxi-mation of what the input distribution should be. For some client server systems, this is known. For example,tra�c for a web server is often modeled using a Poisson distribution for job arrivals and independent identicalZipf distributions for job lengths [31].While there are many alternative analysis options, we note that worst-case analysis of online algorithmsis of fundamental importance. In addition to the standard arguments in its favor (guarantee under anycircumstances, etc.), in many online systems, positive feedback appears and thus bad situations may happenmore often than one would expect. For example, in many embedded scheduling systems, a request notserviced su�ciently quickly may be reissued.1.4 HistoryMany natural heuristics for scheduling are in fact online algorithms; thus some of the early schedulingliterature prove bounds on the performance of online algorithms, in current terminology.4



The �rst proof of competitiveness of an online algorithm for a scheduling problem, and perhaps for anyproblem, was given by Graham in 1966 [62]. It is quite remarkable that this happened at about the same timeas Edmonds discovered his famous polynomial time algorithm for matching in graphs, long before notionslike polynomial time and NP-hard problems were standard.Graham [62] studied a simple deterministic greedy algorithm, now commonly called List Scheduling, forP jjCmax. Each job is scheduled to a machine with currently the smallest load (total size of jobs assignedto it). Graham proved that the job arrival order can change the resulting makespan by a factor of atmost 2 � 1=m and that this bound is the best possible. Since this algorithm and a slightly re�ned analysisworks in all three online environments we consider, even with release times and precedence constraintsif jobs arrive over time, we get a (2 � 1=m)-competitive online algorithm for Pmjonline-list; rjjCmax andPmjonline-time-nclv; prec; rjjCmax.Graham [62] even considered the case when the number of machines changes, again giving tight bounds forthis algorithm. Today we may view this as a result on resource augmentation. In the follow-up paper [63],Graham shows that the factor of 2 � 1=m decreases to 4=3 � 1=(3m) if we require the jobs to arrive ina sequence sorted according to non-increasing processing times. Thus this is a semi-online algorithm forPmjonline-listjCmax.Two other early papers that contain results about online scheduling algorithms are [87, 39]. The �rst onegives an optimal (1-competitive) algorithm for P jonline-time; pmtnjCmax and explicitly mentions that thealgorithm is online. (Actually, the algorithm is not quite online, since it assumes that at any time, the nextrelease time of a job is known. This additional assumption was later removed in [64].) The second paperis, to our best knowledge, the �rst one that states explicitly a lower bound on the performance ratio of anyonline algorithm for some scheduling problem, namely the bound of 
(pm) for Qmjonline-time-nclvjCmax;the paper even suggests that restarts may be helpful, a conjecture later proven to be correct [98].Around 1990 new results were discovered concerning many variants of online scheduling, both old andnew. The development over the last 15 years is the main topic of this chapter.1.5 Organization of the ChapterIn Section 2, we focus on the problem of scheduling jobs that arrive over time, both clairvoyantly andnonclairvoyantly. We focus our e�orts primarily on minimizing total 
ow time and related objective functions,but we also brie
y discuss related results on other objective functions. In Section 3, we focus on the problemof scheduling jobs one by one. As nonclairvoyance does not really make sense in this model, we cover onlyclairvoyant algorithms. Most research in this area has focused on minimizing the makespan.1.6 Related AreasAs we stated earlier, we do not provide a complete overview of all research in online scheduling. We admitthat our choices are necessarily idiosyncratic.One particularly interesting and important class of problems that we do not cover is that of real-timescheduling where jobs have deadlines. This topic is covered in Chapter 33 of this book.We do not cover any of results for minimizing total completion time or total weighted completion time.Some discussion of o�ine algorithms for these problems can be found in Chapter 13 of this book. Noteseveral of the techniques used for o�ine algorithms can be adapted to construct online algorithms.There seem to be only a limited amount of results concerning online shop scheduling, we refer to thesurvey [34] for some references.We also do not cover any average-case analysis results in this chapter. More information can be foundin part V of this book and in particular in Chapter 38.2 Jobs that Arrive Over TimeIn this section we discuss online scheduling problems in the job model online-time.5



2.1 Standard AlgorithmsMost results in the literature end up analyzing one of a handful of standard algorithms. We now intro-duce these algorithms, along with their standard abbreviations and some brief comments. The standardclairvoyant algorithms are:SRPT The algorithm Shortest Remaining Processing Time always runs the job with the least remainingwork. It is well known that SRPT is optimal for average 
ow time on 1 processor.FIFO The algorithm First In First Out always runs the job with the earliest release time. It is well knownthat FIFO is optimal for maximum 
ow time on 1 processor. FIFO is also called First Come FirstServed in the literature.SJF The algorithm Shortest Job First always runs the job with the least initial work. For resource aug-mentation analysis results, SJF is often easier to analyze than SRPT.HDF The algorithm Highest Density First always runs the job with the highest density, which is the weightof the job divided by the initial work of the job.The standard nonclairvoyant algorithms are:RR The algorithm Round Robin devotes an equal amount of processing resources to all jobs. An under-standing of RR is important because it is the underlying scheduling algorithm for many technologies.For example, the congestion control protocol within the ubiquitous TCP Internet protocol can beviewed as scheduling connections through a single bottleneck using RR. This algorithm is also calledProcessor Sharing, or Equi-Partition.SETF The algorithm Shortest Elapsed Time First devotes all the resources to the job that has been pro-cessed the least. In the case of ties, this amounts to RR on the jobs that have been processed theleast. While RR perhaps most intuitively captures the notion of fairness, SETF can be seen as fair inan a�rmative action sense of fairness.MLF The algorithm Multi-Level Feedback algorithm can be viewed as mimicking SETF, while keeping thenumber of preemptions per job to be logarithmic. In most real systems, preemptions take a nontrivialamount of time. In MLF, there are a collection Q0; Q1; : : : of queues. There is a target processing timeTi associated with each queue. Typically, Ti = 2i+1, but some results require more slowly growingtargets, e.g. Ti = (1 + �)i+1. Each job Jj gets processed for Ti � Ti�1 units of time while in queue Qibefore being promoted to the next queue, Qi+1. MLF maintains the invariant that it is always runningthe job in the front of the lowest nonempty queue.It is of natural interest to ask about the scheduling algorithms used by current server technology. Un-fortunately, because of the messiness of real software, it is often debatable what the best abstraction of theimplemented algorithm is. Let us give a couple of examples. Currently the most commonly used web serversoftware is Apache. The underlying scheduler for the Apache is usually described to be FIFO. But it wouldprobably be more accurate to say that threads are allocated to pending requests on a FIFO basis, and thenthreads are scheduled using another algorithm. Often it is reported that the underlying process schedulingalgorithm for the Unix and Windows NT operating systems is MLF. But in Unix and NT there are onlya �xed number of queues, where the lowest priority queue may be scheduled using RR. Thus whether theunderlying scheduler is best viewed as MLF or RR depends on the relationship between the job sizes andthe largest job quantum.2.2 Objective FunctionsPerhaps the most intuitive measure of Quality of Service (QoS) received by an individual job Ji is the 
owtime Fi = Ci � ri. The terminology is not standard, and 
ow time is also called response time, wait time,latency etc. Another intuitive QoS measure for a job Ji is the stretch Si = (Ci � ri)=pi. If a job has stretchs, then it appears to the client that it received dedicated service from a speed 1=s processor. One motivation6



for considering stretch is that a human user may have some feeling for the work of a job. For example, inthe setting of a web server, the user may have some knowledge about the size of the requested document(for example the user may know that video documents are generally larger than text documents) and maybe willing to tolerate a larger response time for larger documents.In order to get a QoS measure for a collection of jobs, one needs to combine the QoS measures for theindividual jobs in some way. Almost all the literature uses an lp norm for some 1 � p � 1. For example,the lp norm of the 
ow times is (Pni=1 F pi )1=p.By far the most commonly used QoS measure in the computer systems literature is average 
ow time,that is, the l1 norm of 
ow times. Schedules with good average QoS may still provide very bad QoS to somesmall number of jobs. In the computer systems literature these jobs are said to be starved. Some schedulingsystems such as process scheduling in Unix have mechanisms to try to prevent starvation. To measure howwell a schedule avoids starvation, one may use the l1 norm. However, an optimal schedule under the l1norm may provide relatively lousy service to the majority of jobs. A common compromise in many settingsis the lp norm, for something like p = 2 or p = 3. The lp, 1 < p < 1, objective function still considers theaverage in the sense that it takes into account all values, but because xp is strictly a convex function of x,the lp norm more severely penalizes outliers than the standard l1 norm.2.3 Notation and Analysis TechniquesIf A is an algorithm and I is an input instance, then A(I) will refer to the schedule that A outputs on I.If F is an objective function and S is a schedule, then F (S) is the value of the objective function on thatschedule. OPT generally refers to the optimal schedule.A common di�culty in presenting scheduling results is keeping the notational complexity manageable.One technique to achieve this, which we will adopt, is to drop notation when it is understood. For example,A may refer to the schedule that algorithm A produces on some understood input, as well the value of someunderstood objective function on that schedule.The majority of analyses in this area use local competitiveness. Let A(t) be the rate at which theobjective function is increasing at time t for the scheduling algorithm A. Generally, A(t) has a nice physicalinterpretation. For example, if the objective function is total 
ow time, then A(t) is the number of un�nishedjobs at time t.A local competitiveness argument has the following form. The argument starts by �xing an arbitrarytime t. The argument then shows that A(t) � c �OPT (t), where OPT (t) is the schedule that minimizes therate of the increase of the objective function for the speci�c time t under consideration. So if the objectivefunction was average 
ow time, OPT (t) would be the schedule that minimizes the number of un�nishedjobs at time t. Note that this gives the adversary some advantage since she is not constrained to have anyconsistency between the schedules OPT (t) and OPT (t0) for two di�erent times. But the compensation forthe human prover is that the structure of the schedules OPT (t) are often simpler to deal with than globallyoptimal schedules. It then immediately follows that A is c-competitive in the global sense sinceA = Z 10 A(t) dt � Z 10 c �OPT (t) dt � c �OPTThe condition that A(t) � c � OPT (t), is called local c-competitiveness. Note that in any local c-competitiveness argument, it must be the case that c � 1. To see this consider an instance consistingof just one job.Sometimes a local competitiveness argument is not possible because no matter what the online algorithmdoes, the adversary can get in the lead for at least a short period of time. In general, if a local competitivenessargument is not possible, there is usually a relatively straightforward instance that formally demonstratesthis. Also in general, arguments that do not use local competitiveness are more complicated. We willparticularly emphasize the analyses in the literature that do not use local competitiveness.Often our competitive ratios will depend on some parameter. Following standard convention we generallyuse n to denote the number of jobs, and m to denote the number of processors. We use Pmax to denote themaximum processing time of any job, Pmin to denote the minimum processing time of any job, and use Pto denote Pmax=Pmin. 7



In the context of resource augmentation results, or other results where there are variable speed processors,the processing time of a job is not �xed. So it no longer makes sense to call pi processing time. Instead, piis usually referred to as the work of a job. The time that a job is processed is then its work divided by theaverage speed at which it is processed.2.4 Clairvoyant Scheduling to Minimize Average/Maximum Flow/StretchIn this subsection, we focus on the online-time model where the scheduling algorithms know the processingrequirements of jobs as soon as they are released. We �rst cover results for the total 
ow time and totalstretch objective functions that measure average response time for clients. We then discuss results for the max
ow and max stretch objective functions that measure server fairness to outlier jobs. In both subsections,we �rst summarize the results and then highlight some of the key proofs behind these results. We assumethat the algorithms are preemptive except when considering maximum 
ow.2.4.1 Total Flow Time and Total StretchFor both single machine scheduling and parallel machine scheduling, SRPT has, within constant factors,the best possible competitive ratio of any online algorithm for minimizing both total 
ow time and to-tal stretch. On a single machine, SRPT is an optimal algorithm for minimizing total 
ow time, i.e.,1jonline-time; pmtn; rjjPFj. On parallel machines, it is �(min(logP; logn=m))-competitive for minimiz-ing total 
ow time, i.e., P jonline-time; pmtn; rjjPFj, and this is known to be optimal within constantfactors [76]. The lower bound applies to randomized as well as deterministic online algorithms. A simpleranalysis of SRPT's performance for minimizing 
ow time is available in [74]. Applying resource augmentationto P jonline-time; pmtn; rjjPFj, Phillips, Stein, Torng, and Wein showed that SRPT is a (2� 1=m)-speed1-competitive algorithm for minimizing total 
ow time [83]. McCullough and Torng improved this resultby showing that SRPT is an s-speed 1=s-competitive for minimizing total 
ow time for s � 2 � 1=m [78].That is, SRPT \optimally" uses its faster processors. Meanwhile, SRPT is 2-competitive for minimizingtotal stretch on a single machine, 1jonline-time; pmtn; rjjPSj, it is 14-competitive for minimizing totalstretch on parallel machines, P jonline-time; pmtn; rjjPSj , and no 1-competitive online algorithm exists forminimizing total stretch on a single machine or parallel machines [81].While SRPT has essentially the best possible competitive ratio, it utilizes both preemptions and jobmigrations to achieve its performance. Awerbuch, Azar, Leonardi, and Regev developed an algorithmwithoutjob migration (each job is processed on only one machine) that is (O(min(logP; logn))-competitive withrespect to total 
ow time [7] and 37-competitive with respect to total stretch [24]. Chekuri, Khanna, and Zhudeveloped a related algorithm without migration that is (O(min(logP; logn=m))-competitive with respect tototal 
ow time and 17:32-competitive with respect to total stretch [33]. If migration is allowed, a modi�edalgorithm is 9:82-competitive for minimizing total stretch [33]. While these algorithms never migrate jobs,they do hold some jobs in a central pool after their release date. Avrahami and Azar developed an algorithmwithout migration with immediate dispatch (each job is assigned to a machine upon its release) that isO(min(logP; logn))-competitive for minimizing total 
ow time [5]. Chekuri, Khanna, and Kumar haveshown that Avrahami and Azar's immediate dispatch algorithm is almost fully scalable for minimizing bothtotal 
ow time and total stretch [32].The di�erence between one machine and parallelmachines. We now examine why online algorithmscan do well for minimizing total 
ow time on a single machine but cannot do well for minimizing total 
owtime on parallel machines. The key observation is that for any time t on a single machine, SRPT hascompleted as many jobs as any other algorithm.The following notation will be used throughout this subsection. Let A(t) be both the set of un�nishedjobs for algorithm A applied to input instance I at time t as well as the number of jobs in this set. Thespeci�c meaning should be clear from context. Furthermore, let Aj(t) be the jth smallest job in A(t) as wellas that job's remaining processing time, and let Aj(t) be the jth largest job in A(t) as well as that job'sremaining processing time. Again, the speci�c meaning should be clear from context.8



Algorithm Total Flow Time Total StretchUniprocessor Parallel Machines Uniprocessor Parallel MachinesBest Upper 1 �(min(logP; logn=m)) 2 9:82BoundBest Lower 1 �(min(logP; logn=m)) 1:036 1:093BoundSRPT 1 �(min(logP; logn=m)) 2 14Speed-s SRPT 1=s 1=s ? ?s � 2� 1=mNo migration �(min(logP; logn=m)) 17:32Immediate dispatch �(min(logP; logn)) ?Speed-(1 + �) O(1 + 1=�) O(1 + 1=�)immediate dispatchTable 1: Summary of results for minimizing total 
ow time and total stretch for single processor and parallelmachines.Lemma 2.1 Consider any input instance I, and schedule S, and any time t. When we consider a singlemachine environment, SRPT (t) � S(t).To prove this, we typically prove a stronger result �rst.Lemma 2.2 Consider any input instance I, any schedule S that never idles the machine unnecessarily,any time t, and any integer k � 0. When we consider a single machine environment, Pkj=1 SRPT j(t) �Pkj=1 Sj (t).Lemma 2.2 implies Lemma 2.1. Consider any schedule S for some input instance I at an arbitrary timet. We �rst observe that PSRPT (t)j=1 SRPT j(t) =PS(t)j=1 Sj(t) since neither algorithm ever unnecessarily idlesthe processor. Suppose S(t) < SRPT (t) and let y = S(t). Then it must be the case that Pyj=1 Sj(t) >SRPT j(t). Since this contradicts Lemma 2.2, it follows that S(t) � SRPT (t).Note that the number of un�nished jobs is the weight of the schedule at any time, and thus SRPT islocally 1-competitive on a single machine. No comparable guarantee can be made in the parallel machineenvironment, even for randomized algorithms. In particular, no online algorithm can be locally c-competitivefor any constant c as demonstrated by the following proof from Leonardi and Raz [76].Theorem 2.3 Any randomized online algorithm for P jonline-time; pmtn; rjjPFj is 
(logP )-competitive.Likewise, any such algorithm is 
(log(n=m))-competitive.Proof Sketch. We focus on deterministic algorithms but the argument is essentially unchanged for ran-domized algorithms. The lower bound is obtained by considering a family of input instances composed ofrepeating phases Pi for i � 0 followed eventually by a stream of short jobs. The �rst phase P0 is organizedas follows. At time 0, release a collection of m=2 long jobs of size P . At times 0 through P=2� 1, release acollection of m short jobs of size 1. One algorithm A1 �nishes all the short jobs by time P=2 by devoting allm machines to the short jobs from time 0 to time P=2. A second algorithm A2 �nishes all jobs by time Pby devoting m=2 of the machines to the long jobs and the other m=2 machines to the short jobs.If an online algorithm A is not locally (logP )-competitive with A1 at time P=2, we introduce m jobs ofsize 1 for P 2 time units starting at time P=2. It can be easily seen that the competitive ratio of any suchalgorithm A will be 
(logP ). Since n = O(mP 2), it follows that the algorithm will also be 
(log(n=m)).Thus, we can focus our attention on algorithms that are locally (logP )-competitive with algorithm A1at time P=2. Since A1(P=2) = m=2, this means that A must �nish all but roughly m logP short jobs by9



time P=2. This means that at most m logP time units can be devoted to the long jobs before time P=2. IfP is su�ciently larger than m, this means that the m=2 long jobs will still have remaining processing timesof essentially P=2 at time P .Phase Pi for i � 1 has an initial release time of Ri = 2P � P=2i�1 and a \halfway" time of Hi =Ri + P=2i�2. The m=2 long jobs of length P=2i are released at time Ri while the short jobs of length 1are released at times Ri through Hi � 1. As before, there is an algorithm A1 that �nishes all the shortjobs of phase Pi by time Hi while another algorithm A2 �nishes all the jobs of phase Pi by Ri+1. Similarto the analysis of phase P0, any online algorithm that is not locally (logP )-competitive with algorithm A1at time Hi has a competitive ratio of 
(logP ) and 
(log(n=m)). Thus, we restrict our attention to onlinealgorithms that are locally (logP )-competitive with the algorithm A1 that �nishes all short jobs of phase Piby time Hi. After phase PlogP�1, such an online algorithm will not have �nished any of its long jobs fromany phase. Thus, the online algorithm will have m=2 logP jobs left while OPT will have no jobs left. Wenow introduce a stream of m jobs of length 1 for P 2 time units, and these algorithms also have competitiveratios of 
(logP ) and 
(log(n=m)), and the result follows.The structure of SRPT's extra jobs. From the lower bound argument above, we see that unlike in thesingle machine case, SRPT can idle some of the parallel machines unnecessarily leading to situations whereSRPT has many more un�nished jobs than some other schedule for the same input instance. However,Leonardi and Raz were able to show that while SRPT can have arbitrarily more extra jobs, there is astructure to these extra jobs. This leads to an upper bound on SRPT's 
ow time. We present a briefanalysis of SRPT utilizing crucial ideas from [76] and [81].The concept of volume [76] captures the total remaining work that needs to be completed at any time.For any schedule S, any input instance I, any time t, let the volume vol(S; t) = Pj Sj(t) be the sum ofremaining processing times of jobs in S(t). Let the volume di�erence V 0(S; t) = vol(SRPT; t) � vol(S; t) bethe di�erence in volume between SRPT's schedule and any other schedule S. We will be interested in focusingon some restricted subsets of jobs when looking at volumes and volume di�erences. Let vol(S; t; x) be thesum of remaining processing times in S(t) when restricted to jobs of size at most x, and let V 0(S; t; x) =vol(SRPT; t; x) � vol(S; t; x).The following proof from [81] provides a bound on V 0(S; t; x).Lemma 2.4 For any time t, any input instance I, any real x, and any schedule S, V 0(S; t; x) � mx.Proof Sketch. Suppose there are at most m jobs with remaining processing times at most x in SRPT (t).Then clearly vol(SRPT; t; x) � mx and the result follows. Thus assume there are more than m jobs withremaining processing times at most x in SRPT (t).Let t0 be the last moment before time t where fewer than m jobs of remaining processing time at most xexist in SRPT's schedule. To simplify the proof description, we also use t0 to denote the moment immediatelyafter t0 (i.e. the moment where there are now more than m jobs with remaining processing time at mostx in SRPT (t0)). If no such time exists, t0 = 0. Clearly, during the interval (t0; t], SRPT will devote all mmachines to jobs with remaining processing times at most x, so we can bound V 0(S; t; x) by V 0(S; t0; x).We now analyze V 0(S; t0; x). There were y � m jobs of size at most x at time t0. These contributeat most yx work to vol(SRPT; t0; x). New jobs with processing times at most x might arrive, but thesejobs will contribute to both vol(SRPT; t0; x) and vol(S; t0; x), so they do not a�ect V 0(S; t0; x). Finally, them� y machines not working on jobs with remaining processing times at most x may create m� y jobs withremaining processing times of x. No other jobs of size at most x can be created at time t0 and the resultfollows.Applying a result from [81], we derive the following characterization of the extra jobs in SRPT's schedule.We �rst consider the case where S has �nished all jobs at time t.Lemma 2.5 For any input instance I, for any schedule S, any time t where S(t) = 0, and any i �SRPT (t)� 2m, SRPT2m+i(t) � Pmin(m=(m � 1))i for i � 0, and the sum of these 2m + i smallest jobs inSRPT (t) is at least mPmin(m=(m � 1))i. 10



Proof Sketch. We prove this result by induction on i. We �rst show the base case for i = 0. SRPT canhave at most m jobs with remaining processing time less than Pmin as such a job will never be preemptedby a newly arriving job. The next m smallest jobs in SRPT's schedule must have size at least Pmin and thebase case follows. We now assume the result holds for some n and show that it applies for n + 1.By the induction hypothesis, we know that the sum of the 2m + n smallest jobs in SRPT (t) �mPmin(m=(m�1))n. Let y denote the size of the (2m+n+1)st smallest job in SRPT (t). From Lemma 2.4,we have that V 0(S; t; y) � my. Since vol(S; t) = 0, this means vol(SRPT; t; y) � my. However, we knowthat vol(SRPT; t; y) � mPmin(m=(m � 1))n + y. Thus, we derive that my � mPmin(m=(m � 1))n + ywhich means that y = SRPT2m+n+1(t) � Pmin(m=(m � 1))n+1 completing the �rst part of the induction.Adding this lower bound on SRPT2m+n+1(t) with the lower bound on the sum of the 2m+ n smallest jobsin SRPT (t) completes the second part of the induction and the result follows.We can extend this result and eliminate the restriction that S(t) = 0 as follows.Lemma 2.6 For any input instance I, for any schedule S, any time t, and any i � SRPT (t) � 2m� S(t),SRPT2m+i+S(t)(t) � Pmin(m=(m � 1))i.Proof Sketch. The key observation is that an un�nished job j 2 S(t) of size z cannot increase the number ofjobs in SRPT (t) by more than one, and this job must have size at least z. Consider for example the job S1(t)of size z. Despite the existence of job S1(t), vol(S; t; y) = 0 for all y < z, and thus vol(SRPT; t; y) � my.The fact that vol(S; t; z) = z (assuming no other jobs of size z are in S(t)) implies vol(SRPT; t; z) � mz + zwhich allows the addition of one job of size at least z to SRPT (t) in addition to the jobs generated by theargument of Lemma 2.6.With this result, we can now derive the following bound on SRPT (t).Theorem 2.7 For any input instance I, any schedule S, and any time t, SRPT (t) � S(t) +m(2 + lnP ).Proof Sketch. Applying Corollary 2.6, we have that SRPT (t) � S(t) + 2m + logm=(m�1) P . Now(m=(m � 1))m = (1 + 1=(m � 1))m � e for m � 2. Thus, logm=(m�1) P � m lnP and the result follows.To derive the upper bound on SRPT's 
ow time, we �rst observe that the contribution of jobs in SRPT (t)that correspond to jobs in S(t) to SRPT's 
ow time is at most the total 
ow time incurred by S(I). Wenow divide time into two categories: intervals where all m machines are busy and intervals where somemachines are idle. SRPT can only have extra jobs during busy times. If we focus only on the active jobsduring these busy times, their contribution to SRPT's 
ow time is at most the sum of processing timesof jobs, and this is clearly a lower bound on the optimal 
ow time. Note there are m active jobs at anytime during these busy intervals. Thus, the at most O(m logP ) extra jobs in SRPT's schedule during thesebusy intervals is at most O(logP ) more than the m active jobs, and it then follows that SRPT is O(logP )-competitive for the problem of minimizing total 
ow time, P jonline-time; pmtn; rjjPFj. To prove thatSRPT is O(log(n=m))-competitive requires more sophisticated arguments which we omit.Eliminating migration and immediate dispatch. The key idea in algorithms that eliminate migrationis the idea of classifying jobs by size [7, 33, 5]. In [7], jobs are classi�ed as follows: a job j whose remainingprocessing time is in [2k; 2k+1) is in class k for �1 < k <1. Note that jobs change classes as they execute.This class de�nition re
ects the structure of extra jobs in SRPT's schedule �rst observed in [76].The algorithmA uses the following data structures to organize the jobs. There is a central pool containingjobs not yet assigned to any machine. With each machine, we associate a stack to hold jobs currently assignedto that machine.The algorithm A works as follows. Each machine processes the job at the top of its stack. When a newjob arrives, the algorithm looks for a machine that is idle or currently processing a job of a higher classthan the new job. If it �nds one, the new job is pushed into that machine's stack and its processing begins.Otherwise, the job enters the central pool. Finally, if a job is completed on some machine, the algorithmcompares the job at the top of the stack of that machine with the minimum class of any job in the pool. Ifthe minimum in the pool is smaller than the class of the job on top of the stack, then any job in the poolof that minimum class is then pushed onto that stack. Using ideas similar to those used in [76], they derivethe following result. 11



Lemma 2.8 For any input instance I, for any schedule S, and for any time t when all m machines arebusy, A(t) � 2S(t) +mO(logP ).Again, this leads to the result that the algorithm isO(logP )-competitive. With more work, this algorithmcan be shown to be O(logn)-competitive, slightly worse than O(log(n=m))-competitive.New algorithms proposed in [33] achieve the same bounds as SRPT within constant factors for minimizingtotal 
ow time by modifying the class de�nition from [7]. A job is now assigned to class k if its originalprocessing time is in the range [2k; 2k+1). Thus, the class of a job does not change as it executes. Thissimpli�es the analysis of their algorithm, particularly when considering total stretch. Furthermore, theirsimpler analysis allows the optimization of the constant used to de�ne classes (the de�nitions above useconstant 2).A new algorithm that dispenses with the central pool of unassigned jobs was proposed in [5]. That is, eachjob is immediately assigned to a machine, and there is no migration of jobs. They show that this algorithm isO(min(logP; logn))-competitive for minimizing total 
ow time on parallel machines. This algorithm uses theclass de�nition of [33]. When a job j of class k arrives, it is assigned to the machine that has been assignedthe minimum total processing time of jobs of class k so far. That is, Graham's List Scheduling rule is usedto assign jobs to machines within each class of jobs. Note that this assignment rule ignores information suchas what is the current load on each machine or which jobs in the speci�ed class have actually been processedor completed at the current time. Each machine then implements the SRPT algorithm which is optimal forscheduling jobs on a single machine to minimize 
ow time. However, to simplify the analysis, they analyzea modi�ed version of this algorithm that uses SJF on each machine instead.Here are a few of the key observations in the analysis of this algorithm [5]. The �rst fact is that thedi�erence in total volume of jobs of any class k assigned to any two machines by any time t is at most 2k+1,the size of the largest job in class k, since they use greedy List Scheduling. This implies that di�erence inthe total volume of work processed by any time t of jobs in class at most k on any two machines is at most2k+2. Combining these two observations implies that the di�erence in un�nished work from jobs of class atmost k at any time t on any two machines is at most 2k+3. With these facts, [5] are able to apply many ofthe arguments used in the analysis of other algorithms without migration to prove the 
ow time bound fortheir algorithm.Resource Augmentation Results. With su�ciently faster processors, [83] showed that SRPT will neverhave extra jobs. Speci�cally, they extended Graham's analysis of List Scheduling [62] to show that any s-speed algorithm where s � 2� 1=m that never idles a machine when jobs are available always completes asmuch work by any time t as any 1-speed algorithm on the same input instance. Adding to this the greedynature of SRPT, their analysis shows that speed-(2 � 1=m) SRPT is locally 1-competitive.This result has recently been improved to show that SRPT is an s-speed 1=s-competitive algorithm fors � 2 � 1=m [78]. The analysis in [78] uses some new ideas to prove a competitiveness bound smaller than1. First is the idea that s-speed processors can be approximated by multiplying release dates by a factorof s. In [83, 78], the resulting input instance is called a stretched input instance. The key observation isthat an algorithm on a stretched input instance will incur a 
ow time exactly s times larger than the samealgorithm using s-speed processors on the original input instance. Thus, they need only show that SRPTon an s-stretched input instance does as well as the optimal algorithm does on the original input instanceto prove the 1=s bound for s-speed SRPT. This introduces a complication as they need to compare SRPTon a stretched input instance to the optimal algorithm on the original input instance, and thus jobs arereleased at di�erent times for the two algorithms. They overcome this di�culty by introducing a proxyalgorithm for the original input instance. This proxy algorithm will in some cases produce schedules thatare not legal. This is acceptable since the proxy algorithm is used for analysis purposes only. However, theydo need to introduce a charging scheme to handle cases when the schedule is not legal. They then show thatthe proxy algorithm is locally 1-competitive and that the proxy algorithm incurs a 
ow time on the originalinput instance that is at least as large as the 
ow time incurred by SRPT on the s-stretched input instance.This argument does not use local competitiveness but rather a structural relationship between the the proxyschedule and the SRPT schedule on the stretched input instance.Chekuri, Khanna, and Kumar have shown that the immediate dispatch algorithm of Avrahami and Azaris almost fully scalable for total 
ow time and total stretch [32]. This result also applies when the algorithm12



is given extra machines instead of faster machines, and the result extends to show that the algorithm isalmost fully scalable for lp norms of 
ow and stretch for all p � 1. Their analysis builds upon Bansal andPruhs' analysis of SJF and SRPT for minimizing lp norms of 
ow and stretch on a single machine [14]. Theseresults are discussed in more detail in Section 2.5.A few open questions remain regarding resource augmentation and minimizing total 
ow time. Whilewe now know that there is an almost fully scalable algorithm for minimizing total 
ow time on parallelmachines, no such analysis is known for SRPT.Open Problem 2.9 For the problem P jonline-time; pmtm; rjjPFj , is SRPT almost fully scalable?Furthermore, from [83], we know that SRPT is at least as good as optimal when given speed-(2 � 1=m)machines and that no speed-(22=21 � �) 1-competitive algorithm exists for minimizing total 
ow time onparallel machines for m � 2 and � > 0.Open Problem 2.10 For the problem P jonline-time; pmtm; rjjPFj, what is the minimum speed s suchthat there exists an s-speed 1-competitive algorithm, and what is the corresponding algorithm?Both of these questions can be extended to all lp norms of 
ow and stretch.The di�erence between total stretch and total 
ow time. At �rst glance, it may seem surprisingthat there exist algorithms with constant approximation factors for total stretch on parallel machines butnot total 
ow time. This discrepancy is explained by considering the structure of extra jobs for SRPT andthe fact that the total stretch objective function weights jobs by the inverse of their original processingtimes. For example, while SRPT (t)� S(t) can be unbounded, there can only be a relatively few extra jobswith small remaining processing times in SRPT's schedule at any time. In particular, the large jobs add anegligible amount to the total weight of jobs at any given moment. This property is exploited more explicitlyin the algorithms that use job classi�cations.For example, consider the algorithm of [33] and consider the jobs on the stack of any machine of theiralgorithm. Suppose the job that is currently executing is from class k. The original processing times of theremaining jobs on the stack for that machine are at least 2k+1; 2k+2; 2k+3; : : :, and their weights sum to atmost 1=2k. This is at most twice the weight of the job currently executing and thus the increase in totalstretch can be charged to this currently executing job. Handling jobs in the central pool is more complicatedand we ignore these details.On the other hand, we observe that no online algorithm can be optimal for minimizing total stretch on asingle machine while there does exist an optimal online algorithm, namely SRPT, for minimizing total 
owtime on a single machine. The lower bound example below shows that we can create a situation where itis optimal to prioritize one job j1 over a second job j2 in some cases while in other cases, it is optimal toprioritize job j2 over job j1.Lemma 2.11 No online algorithm can be better than 1.036-competitive for the problem of minimizing totalstretch on a single machine [81].Proof Sketch. Consider an adversary strategy using at most 3 jobs of sizes q, m, and s where q > m > s.Under the �rst scenario, the job of size q is released at time 0, and the job of size m is released at time q� kfor some k � m, and the third job is never released. Under the second scenario, the third job of size s isreleased at time q. The adversary makes its decision on which scenario to implement based on the onlinealgorithm's decisions up to time q.The optimal strategy for the �rst scenario is to run the second job as soon as it arrives. The optimalstrategy for the second scenario is to �nish the �rst job �rst, run the third job as soon as it arrives, and then�nish the second job. Clearly no online algorithm can do both. Using a proper choice of q, m, s, and k, thebound of 1.036 follows.More detailed analysis of SRPT for total stretch [81]. The analysis of SRPT for total stretch ona single machine utilizes a matching property between the jobs waiting in SRPT's queue at any time t andthe jobs in any other schedule S's queue at time t. 13



Lemma 2.12 For any input instance I, for any schedule S, and any time t, and any k > 1, SRPTk(t) �Sk�1(t).Proof Sketch. Suppose this is not true at some time t. Let k > 1 be the smallest integer such that therelationship does not hold. Let b = SRPTk(t). It follows that the number of jobs in SRPT (t) of size atmost b is at least k, while the number of jobs in S(t) of size at most b is at most k � 2. Furthermore, giventhe de�nition of k, we have that SRPTj(t) � Sj�1(t) for 1 < j < k. Thus, vol(SRPT; t; b) � vol(S; t; b) �b + SRPT1(t) which means that V 0(S; t; b) > b. This is a contradiction since Lemma 2.4 implies thatV 0(S; t; b) � b, and the result follows.With this matching property, [81] bound the amount that SRPT's waiting jobs contribute to SRPT'stotal stretch by the total stretch incurred by any other algorithm. They then observe that the total stretchincurred by SRPT's active job over time is exactly n which is a lower bound on the optimal total stretch,and the factor of 2 result follows.In the parallel machine case, there is the extra complication that SRPT has extra jobs. However, giventhe structural property observed earlier, [81] are able to derive a similar mapping of some of SRPT's waitingjobs to at least as small un�nished jobs for schedule S. The unmapped jobs for SRPT then obey the structureobserved earlier and their total contribution to total stretch can be bounded by a constant times the optimaltotal stretch.2.4.2 Maximum Flow Time and Maximum StretchWhile SRPT and the related algorithms perform well for client jobs on average, these algorithms do havethe undesirable property of starving some jobs in order to service most jobs well. For example, consider aninput instance on a single machine where a job with processing time 2 is released at time 0 and jobs withprocessing time 1 are released at unit intervals starting at time 0 and ending at time x. SRPT will alwaysprocess the jobs with processing time 1 delaying the job with processing time 2 until the end of the longstream of jobs, so its 
ow time will be x+3. An alternative algorithmwould schedule the job with processingtime 2 �rst and then schedule the jobs with processing time 1 in order of their arrival. The 
ow time ofthe job with processing time 2 will be 2 while the 
ow time of all jobs with processing time 1 will be 3. Aswe can make x as large as we desire, this shows that for the Fmax or Smax objective functions on a singlemachine, i.e., 1jonline-time; pmtn; rjjFmax and 1jonline-time; pmtn; rjjSmax, SRPT is 
(n)-competitive.Di�erent algorithms are needed to provide good guarantees for maximum
ow and maximumstretch. Thebest results known for these objective functions come from Bender, Chakrabarti, and Muthukrishnan [26]and Bender, Muthukrishnan, and Rajaraman [27]. For maximum 
ow, [26] show that FIFO is (3 � 2=m)-competitive for P jonline-time; pmtn; rjjFmax and provide a lower bound of 4=3 for any non-preemptivealgorithm for m � 2. (The paper claims a lower bound of 3=2, but the proof seems to work only fora 4=3 lower bound.) The maximum stretch objective function turns out to be harder to minimize thanmaximum 
ow. This stands as an interesting contrast to the case of total stretch and total 
ow time where,in the parallel machine environment, there exist constant competitive algorithms for total stretch but noconstant competitive algorithms for total 
ow time, even with preemption. For maximum stretch on asingle machine, 1jonline-time; pmtn; rjjSmax, [26] provides an algorithm that is O(P 1=2)-competitive that isbased on the earliest deadline �rst (EDF) real-time scheduling algorithm, and they provide a lower bound of
(P 1=3) on the competitive ratio of any online algorithm for maximum stretch. A simpler and more e�cientalgorithm to achieve the O(P 1=2) bound is given in [27]. No results are known for maximum stretch onparallel machines, P jonline-time; pmtn; rjjSmax. These results are summarized in Table 2.Maximum 
ow. The fact that FIFO, a non-preemptive algorithm, is constant competitive for minimizingmaximum
ow shows how this problem is quite di�erent than that of minimizing total 
ow time. We providebelow a proof that FIFO is optimal for the single machine environment.Theorem 2.13 FIFO is an optimal algorithm for minimizing maximum 
ow time on a single machine,1jonline-time; pmtn; rjjFmax [26].Proof Sketch. Without loss of generality, we consider only input instances I such that there is no idletime in FIFO(I). Consider any such input instance I and a job j such that Fj is maximized in FIFO(I).14



Algorithm Max Flow Time Max StretchUniprocessor Parallel Machines Uniprocessor Parallel MachinesBest Upper Bound 1 3� 2=m O(P 1=2) ?Non-preemptive Lower Bound 1 4=3 
(P ) 
(P )Preemptive Lower Bound 1 ? 
(P 1=3) ?Table 2: Summary of results for minimizing max 
ow time and max stretch for single processor and parallelmachines.This means that from time rj to time Cj, FIFO is working only on jobs that had release times at most rj.Since FIFO is not idle prior to rj, it is not possible to �nish all the jobs released prior to rj plus job j anyearlier than Cj. Thus, in any schedule for input instance I, some job released at time no later than rj mustcomplete no earlier than Cj, and the result follows.When we consider parallel machines, it is no longer true that FIFO is not idle prior to the release timeof the job with maximum 
ow time in FIFO(I). Thus, FIFO is not optimal for the parallel machineenvironment, but it is still constant competitive.The only lower bound known for this problem is 4=3 for m = 2 [26] for non-preemptive algorithms. Attime 0, two jobs with processing time 3 are released. If the algorithm starts both jobs by time 1, a job withprocessing time 6 is released at time 1; otherwise, no more jobs are released. In the �rst case, the optimalFmax is 6 while the online algorithm's Fmax is at least 8. In the second case, the optimal Fmax is 3 while theonline algorithm's Fmax is at least 4.Maximum stretch.Theorem 2.14 On a single machine, no preemptive online algorithm is P 1=3=2-competitive for minimizingmaximum stretch, 1jonline-time; pmtn; rjjSmax [26].Proof Sketch. Consider the following input instance. Two jobs with length P are released at time 0.Meanwhile, jobs of size k = P 2=3 � 1 are released at times 2P � k; 2P; : : : ; P 4=3� k. To simplify the proof,we assume that y = P 4=3 � 2P is an integral multiple of k.An optimal schedule for minimizing maximum stretch for this input is FIFO which results in a maximumstretch of 2. Thus, for an online algorithm to be P 1=3=2-competitive, the �rst two jobs must be completedby time P 4=3 giving them a stretch of P 1=3. This means one of the length k jobs cannot complete beforeP 4=3 + k.Now suppose that jobs of length 1 arrive every unit of time starting at time P 4=3 and ending at time2P 4=3�k�1. Either one of the length 1 jobs �nishes at essentially 2P 4=3 or one of the length k jobs �nishesthen. In the �rst case, the maximum stretch will then be at least k + 1 = P 2=3=2 while in the second case,the maximum stretch will be essentially P 4=3=k > P 2=3=2. Meanwhile, the optimal algorithm schedules thejobs of size 1 and size k as they arrive and �nishes one of the jobs of size P at time 2P 4=3. The result thenfollows.One algorithm for minimizing maximum stretch uses ideas from real-time scheduling. Suppose the onlinealgorithm somehow knew in advance what the maximum stretch S� for the input instance would be. It couldthen treat each job j as if it had a deadline of rj + S�pj and use algorithms from real-time scheduling toattempt to meet all deadlines. One such online algorithm is Earliest Deadline First (EDF) that prioritizesavailable jobs by their deadlines breaking ties arbitrarily. EDF is known to legally complete all jobs by theirdeadlines on a single machine if it is possible to do so. By the de�nition of maximum stretch, it clearlyis possible to schedule all jobs such that they end by rj + S�pj . Thus, EDF armed with knowledge of themaximum stretch of the input instance is an optimal online algorithm.Unfortunately, the online algorithm cannot possibly know the maximum stretch ahead of time. Instead,the best that any online algorithm can do is compute what the maximum stretch of an input instance wouldbe if no more jobs arrive. This algorithm, stretch-so-far [26] has a further re�nement of overestimating the15



maximum stretch computed so far by setting a job's deadline to be rj + �S�pj where � � 1. Choosing anappropriate value of � is critical to minimizing maximum stretch. Also note that the deadlines will changeas S� is re�ned. Stretch-so-far with � = 1 is P -competitive for this problem [26]. If � is instead chosen to beO(P 1=2), the algorithm is then O(P 1=2)-competitive. Note that the P 1=2 used here is based on the jobs seenso far, so this is an online algorithm. Constant competitive algorithms exist if there are only two distinctjob lengths [26].While stretch-so-far achieves a competitive ratio of O(P 1=2), it has the disadvantage of requiring 
(n2)processing per job arrival. In particular, the optimal maximum stretch must be recalculated on each jobarrival requiring the algorithm to remember all jobs seen so far at any point in time during its execution. Asimpler greedy strategy that achieves the same competitive ratio is proposed in [27]. Suppose that Pmin = 1and P = Pmax is known to the online algorithm. Their algorithm computes a pseudostretch for each availablejob at any time t that is (t � rj)=P 1=2 if 1 � pj � P 1=2 and is (t � rj)=P if P 1=2 < pj � P . That is, theyreplace the pj in the denominator by P 1=2 if the job is small and P if the job is larger. This algorithm isO(P 1=2)-competitive. However, it assumes a priori knowledge of Pmin and Pmax. To make this more online,they assume that the algorithm knows the minimum job size 1 in advance, and they use the largest job seenso far as their estimate for P , recalculating as needed when new jobs arrive.2.5 lp Norms of Flow and StretchIn this section, we consider the problems of minimizing the lp norms of 
ow times and stretch. We discussboth clairvoyant and nonclairvoyant algorithms. Recall that the motivation for considering the lp, 1 < p <1,norms of 
ow and stretch was that they represent some compromise between optimizing for the worst caseQoS and the average QoS. Although most of the results we give below also hold when p = 1 and whenp = 1. The these results generalize both the average and maximal 
ow and stretch, since the total 
owtime or stretch is then the l1 norm while maximum 
ow time or stretch is the l1 norm.Let us initially focus on one machine. The study of lp norms of 
ow and stretch was initiated by Bansaland Pruhs [14]. Bansal and Pruhs [14] show that are no no(1)-competitive online clairvoyant schedulingalgorithms for any lp norm, 1 < p < 1 of either 
ow or stretch. This is a bit surprising, at least for 
owtime, as there are optimal online algorithms, SRPT and FIFO, for the l1 and l1 norms of 
ow time.Theorem 2.15 For the problems 1jonline-time; pmtn; rjj(PF pj )1=p and 1jonline-time; pmtn; rjj(PSpj )1=p,1 < p <1, the competitive ratio of any randomized algorithm A against an oblivious adversary is n
(1).Proof Sketch. We only give lower bound proofs for 
ow norms, and only for deterministic algorithms. It iseasy to extend the lower bound to randomized algorithms using Yao's technique. The input is parameterizedby integers L, � = (p+ 1)=(p� 1), and � = 2. A long job of size L arrives at time 0. From 0 to time untiltime L� � 1 a job of size 1 arrives every unit of time.In the case that A does not �nish the long job by time L� then this is the whole input. Then F p(A) isat least the 
ow of the long job, which is at least L�p. In this case the adversary could �rst process the longjob and then process the unit jobs. Hence, F p(Opt) = O(Lp + L� � Lp) = O(L�+p). The competitive ratiois then 
(L�p���p), which is 
(L) by our choice of �.Now consider the case that A �nishes the long job by time L�. In this case L�+� short jobs of length1=L� arrive every 1=L� time units from time L� until 2L��1=L�. One strategy for the adversary is to �nishall jobs, except for the long job, when they are released. Then F p(Opt) = O(L� �1p+L�+� � (1=L�)p+L�p).It is obvious that the dominant term is L�p, and hence, F p(Opt) = O(L�p). Now consider the subcasethat A has at least L=2 unit jobs un�nished by time 3L�=2. Since these un�nished unit jobs must havebeen delayed by at least L�=2, F p(A) = 
(L � L�p). Clearly in this subcase the competitive ratio is 
(L).Alternatively, consider the subcase that A has �nished at least L=2 unit jobs by time 3L�=2. Then A hasat least L�+�=2 released, and un�nished, small jobs at time 3L�=2. By the convexity of F p, the optimalstrategy for A from time 3L�=2 onwards is to delay each small job by the same amount. Thus A delaysL�+�=2 short jobs by at least L=2. Hence in this case, F p(A) = 
(L�+� �Lp). This gives a competitive ratioof 
(L�+�+p��p), which by the choice of � is 
(L).This negative result motivated Bansal and Pruhs [14] to fall back to resource augmentation analysis.They showed that the standard clairvoyant algorithms SJF and SRPT are almost fully scalable for lp norms16



of 
ow and stretch. They showed that SETF and MLF are almost fully scalable for 
ow objective functions,but not for stretch objective functions. In contrast, RR is not almost fully scalable even for 
ow objectivefunctions. This is a bit surprising as starvation avoidance is an often cited reason for adopting RR.While the analysis of SJF used a local competitive argument, the analysis of SRPT was not strictly alocal competitiveness argument as a newly released job Ji is not counted until time ri+�(pi). The analysisof SETF and MLF used the same method that Bansal et al. [13] used to analyze nonclairvoyant averagestretch. We shall sketch the analysis of SJF.Theorem 2.16 For the problems 1jonline-time; pmtn; rjj(PF pj )1=p, and 1jonline-time; pmtn; rjj(PSpj )1=p,SJF is (1 + �)-speed O(1=�)-competitive.Proof Sketch. The proof is by local competitiveness on the objective function PF pj . Let U (SJF; t) andU (Opt; t) denote the un�nished jobs at time t in SJF and Opt respectively, and D = U (SJF; t)�U (Opt; t).Let Agep(X; t) denote the sum over all jobs Ji 2 X of (t � ri)p�1. Note that A(t), the rate of increaseof the objective function for algorithm A, is the sum over all Ji 2 U (A; t) of Agep(U (A; t); t). That is,F p(A) = p RtAgep(U (A; t); t) dt.Thus to have a local competitiveness argument, it is su�cient to establish thatAgep(D; t) � O(1=�p)Agep(U (Opt; t); t)This is established in the following manner. Let V (t; �) denote the aggregate un�nished work at time tamong those jobs Jj that satisfy the conditions in the list �. Let 1; : : : ; k denote the indices of jobs in Dsuch that p1 � p2 : : : � pk. Consider the jobs in D in the order in which they are indexed. Assume that weare considering job Ji. One can allocate to Ji an �pi=4(1+�) amount of work from V (t; fJj 2 U (Opt; t); rj �t � �(t � ri)=(4(1 + �)); pj � pig) that was previously not allocated to a lower indexed job in D. Thisestablishes O(1=�p) local competitiveness for F p for the following reasons. The total un�nished work ineach Jj 2 U (Opt; t) is associated with O(1=�) longer jobs in D. Since the jobs Jj are 
(�) as old as Ji, thecontribution to Agep(U (Opt; t); t) for Jj is 
(�p�1) as large as the contribution of Ji to Agep(U (SJF; t); t).Using the same reasoning, and the fact that pj � pi, one establishes local competitiveness for Sp.Chekuri, Khanna, and Kumar [32] show how to combine immediate dispatching algorithm of Avrahamiand Azar [5] with a scheduling policy such as SJF to obtain an almost fully scalable algorithm for lp normsof 
ow and stretch on multiple machines. The analysis is essentially a local competitive argument similar toBansal and Pruhs' [14] analysis of SJF and SRPT.2.6 Weighted Flow TimeIn the online weighted 
ow time problem, each job Ji has an associated positive weight wi that is revealedto the clairvoyant scheduler at the release time of Ji. The objective function is PwiFi. If all wi = 1 thenthe objective function is total 
ow time, and if all wi = 1=pi then the objective function is total stretch.Some systems, such as the Unix operating system, allows di�erent processes to have di�erent priorities. InUnix, users can use the nice command to set the priority of their jobs. Weights provide a way that a systemmight implement priorities. For the moment let us focus on one machine.Becchetti, Leonardi, Marchetti-Spachemella, and Pruhs [22] show that besides being a su�cient condition,local c-competitiveness is a necessary condition for an algorithm to be c-competitive.Theorem 2.17 Every c-competitive deterministic algorithm A for 1jonline-time; rj; pmtnjPwjFj must belocally c-competitive.Proof Sketch. Suppose there is a time t where A(t) > cOPT (t). The adversary can punish the onlinealgorithm by bringing in a stream of dense short jobs with the following properties. The density of thejobs in the stream is large enough so that the optimal strategy for all algorithms is to run each of thesejobs immediately. At the same time, the weight of the jobs in the stream can be made small enough sothe contribution of the stream jobs to the total weighted 
ow time is arbitrarily close to 0 when the streamjobs are run immediately. The stream is made long enough so that the ratio of A's total 
ow time whencompared to the adversary's total 
ow time is arbitrarily close to A(t)=OPT (t).17



At �rst glance, it may seem impossible for the stream of jobs to be dense enough to warrant runningimmediately yet have low enough weight that they contribute almost nothing to the total weighted 
ow time.This phenomenon becomes clearer when we consider the following example. Consider a job with weight x,processing time 1, and thus density x released at some time t and compare this to a stream of x jobs ofweight 1, processing time 1=x, and thus density also x released at times t; t+ 1=x; : : : ; t+ (x� 1)=x. If bothare processed immediately, the job of weight x will contribute x to the total weighted 
ow time while thestream of weight 1 jobs will contribute only 1 to the total weighted 
ow time. On the other hand, if both aredelayed by 1 time unit and then processed at time t+1, then the increase in total weighted 
ow time due tothe delay for both cases will be exactly x. What we see is that the stream of density x jobs incurs the samedelay cost as the one job with weight x, but the actual processing costs are vastly di�erent. Finally observethat we can push this to the extreme where the stream of density x jobs have arbitrarily small weight � > 0and processing times �=x. If the stream jobs are processed immediately, they add only � to the total weighted
ow time. If the stream jobs are delayed by 1 time unit and then processed at time t + 1, the increase inweighted 
ow time will still be exactly x.The following instance shows that the obvious greedy algorithms have high competitive ratios. Considerthe following set of jobs, released at time 0: One job of weight k, length k2, and hence density 1=k, and k3jobs of weight 1, length 1, and hence density 1. Two natural schedules are: (1) First run the low density jobfollowed by the k3 high density jobs, and (2) First run the k3 high density jobs followed by the low densityjob. It is easy to see that the �rst algorithm is not constant locally competitive at time k3, and that thesecond algorithm is not constant locally competitive at time k3 + k2 � 1. In fact, what the online algorithmshould do in this instance is to �rst run k3 � k of the high density jobs, then run the low density job, andthen �nish with the remaining k high density jobs. This instance demonstrates that the scheduler has tobalance between delaying low density jobs, and delaying low weight jobs.Using this intuition, Chekuri, Khanna, and Zhu gave an O(log2 P )-competitive algorithm for a singlemachine [33]. This algorithm is semi-online; it needs a priori knowledge of P . The algorithm partitionsjobs based on approximate weights and on approximate densities. It then considers the weight classes fromlargest to smallest. Assume it is considering weight class w. It runs the densest job Ji from weight class w ifand only if the total weight of jobs, with weight < w and density greater than the density of Ji, is less thanw. Otherwise it is safe for the algorithm to proceed to lower weight and higher density jobs. The analysis isa rather complicated local competitiveness argument.If all jobs have the same weight, or if all jobs have the same processing time, or if all jobs have the samedensity, then O(1)-competitiveness is easy. This leads to 3 obvious algorithms. The algorithm partitionsthe jobs based on approximate weight or length, or density. Some job in the partition with maximumtotal weight is run. All jobs within a partition are run using the O(1)-competitive algorithm for sameweight/length/density jobs. Intuitively, all of these algorithms should have competitive ratios that are linearin the number of partitions, or equivalently, logarithmic in the range of possible weights/lengths/densities.Bansal and Dhamdhere [12] proved this for the version of the algorithm where you partition based on theweight. The analysis is a local competitiveness argument that is a variation on the local competitivenessargument for SRPT.Perhaps the most intellectually intriguing open question in online scheduling in the online-time model,with a 
ow or stretch objective function, is:Open Problem 2.18 For the problem 1jonline-time; pmtn; rjjPwjFj, is there an O(1)-competitive clair-voyant algorithm?Several positive results have been developed for weighted 
ow time problems using resource augmentation.Phillips, Stein, Torng, and Wein [83] showed that an algorithm they named Preemptively-Schedule-By-Halvesis 2-speed 1-competitive algorithm for minimizing total weighted 
ow time on a single machine. Becchetti,Leonardi, Marchetti-Spachemella, and Pruhs [22] observed that the analysis of Phillips et al. [83] also appliedto HDF. Furthermore, using a more direct local competitiveness argument, Becchetti et al. [22] showed thatHDF is (1 + �)-speed (1 + 1=�)-competitive on a single machine.Bansal and Pruhs then consider the problem of minimizing the weighted lp norms of 
ow time [15].They show that HDF is almost fully scalable for the problem 1jonline-time; pmtn; rjj(PwjF pj )1=p. Theythen consider the obvious generalization, Weighted SETF (WSETF), of the nonclairvoyant algorithm SETF.18



WSETF operates as follows. For a job Ji, let xi(t) denote the amount of work done on that job by time t.Amongst jobs with the smallest xi(t)=wi, WSETF splits the processor proportionally to weights of the jobs.They show that WSETF is almost fully scalable for the problem 1jonline-time-nclv; pmtn; rjj(PwjF pj )1=p.The analysis of HDF and WSETF are similar to the analysis of SJF and SETF in [14].For the parallel machine setting, only a few results are known. Chekuri, Khanna, and Zhu [33] givea lower bound on the competitive ratio of any algorithm of 
(min(pP;pW; (n=m)1=4) for the problemP jonline-time; pmtn; rjjPwjFj where W is the largest weight. Becchetti et al. [22] show that HDF is a(2 + �)-speed O(1)-competitive algorithm for the same problem.2.7 Semi-Clairvoyant Scheduling for Average Flow/StretchThe concept of semi-clairvoyant scheduling was introduced by Bender, Muthukrishnan, and Rajaraman[27]. A semi-clairvoyant algorithm only has approximate knowledge about processing times. A strong semi-clairvoyant algorithm knows a constant approximation of the remaining processing time of a job, and a weaksemi-clairvoyant algorithm knows only a constant approximation of the original processing time of a job.While there may be some practical application for these results, for example a web server serving dynamicdocuments may only be able to estimate the size of resulting document as it dynamically constructs thedocument, the main motivation seems to be that such results may then be used as subroutines in otheralgorithms that round the processing times of jobs. Rounding processing times often seems to make thedevelopment of an algorithm or analysis simpler.For the parallel machine setting, both the strong and weak semi-clairvoyant models are not signi�cantlydi�erent than the clairvoyant setting when considering the total 
ow time and total stretch objective functionsbecause of the classi�cation nature of the clairvoyant non-migratory algorithms developed earlier. Forexample, the algorithm of Awerbuch et al. [7] that classi�es jobs according to their remaining processingtimes can be adapted to be a strong semi-clairvoyant algorithm for minimizing total 
ow time and totalstretch while the algorithms of Chekuri et al. [33] and Avrahami and Azar [5] that classify jobs accordingto their initial processing times can be adapted to be weak semi-clairvoyant algorithms for minimizing total
ow time and/or stretch. Thus, we focus on the uniprocessor setting for the remainder of this subsection.Let us �rst consider strong semi-clairvoyant algorithms on a single machine. The most obvious algorithmis to run the job that appears to have the least remaining processing time. Bender et al. [27] show that thisalgorithm is O(1)-competitive with respect to average stretch, but is only �(logP )-competitive with respectto average 
ow time. They then give modi�ed algorithm that is O(1)-competitive with respect to average
ow time. The main idea behind this algorithm is that if there is a choice between two jobs with similarremaining processing times, then the algorithm should favor the job whose initial processing time was less.We now consider weak semi-clairvoyant algorithms. Bender et al. [27] show that the obvious generalizationof SJF is O(1)-competitive with respect to average stretch. Bender, Muthukrishnan, and Rajaraman [27] alsoproposed an algorithm for average 
ow time. The basic idea of this algorithm is to run the apparent shortestjob �rst, except in one special case. This special case is that if the job Ji with the apparent least originalprocessing time has not been run at all, and the job Jj with the second least apparent original processingtime has been partially run, and there are no other jobs with comparable apparent original processing times,then Jj is run instead of Ji.Becchetti, Leonardi, Marchetti-Spachemella, and Pruhs [23] showed that this algorithm is in fact O(1)-competitive with respect to average 
ow time. A simpler analysis was developed by Nikhil Bansal. Bansal'sanalysis was a variation of the local competitiveness analysis of SRPT. At any time, order both the onlinealgorithms jobs and the adversary's jobs by increasing remaining processing time. Then Bansal shows thatthe following invariant always holds: The total work contained in the online algorithm's jobs up to the kthunexecuted job, is at least the total work in the adversary's �rst k jobs. It is straightforward to observe thatthis invariant implies O(1)-competitiveness.Becchetti et al. [23] show that there is no weak semi-clairvoyant algorithm that can be simultaneouslyO(1)-competitive with respect to average 
ow time and average stretch. This is in contrast to the clairvoyantsetting where SRPT is O(1)-competitive with respect to both objective functions.19



2.8 Nonclairvoyant Scheduling to Minimize Average/Maximum Flow/StretchIn the online-time-nclv model, the nonclairvoyant scheduler is given no information about the processingtime of a job. For example, the process scheduling component of an operating system is best viewed as beingnonclairvoyant in that the operating system in general does not know the execution times of the variousclient processes.2.8.1 Maximum and Average Flow Time on One MachineIf the objective function is minimizing maximum 
ow, then a nonclairvoyant scheduler can still be optimalsince FIFO does not require knowledge of the processing times of the jobs. The situation for average 
owlooks more bleak. The optimal algorithm is SRPT. However, from the nonclairvoyant scheduler's point ofview, any job might conceivably be the one with shortest remaining processing time. In the absence ofany information about remaining processing times, the most obvious nonclairvoyant algorithm is probablyRR. Motwani, Philips and Torng [80] show that RR is 2-competitive in the case that all jobs are releasedat time 0. However, Matsumoto [77], and independently Motwani, Philips and Torng [80] showed that thecompetitive ratio for RR is 
(n= logn) in the case of release dates. Kalyanasundaram and Pruhs [67] notedthat a variation of this lower bound instance shows that modest resource augmentation is not enough toallow RR to be O(1)-competitive.Theorem 2.19 For the problem 1jonline-time-nclv; pmtn; rjjPFj, the competitive ratio of RR is at least
(n= logn), and the competitive ratio of RR with speed s, 1 < s < 2 processor is at least 
(n2�s).Proof Sketch. Let s = 1 + �. We divide time into stages. Let the ith stage, i � 0 start at time ti. We lett0 = 0, and t1 = 1 + �. There are two jobs of length (1 + �) released at time t0, and one job is released ateach time ti, i � 1, with length p(i) that is exactly the same length as RR has left on each of the previousjobs. In order to guarantee that the adversary can �nish the job released at time ti�1 by time ti, i � 2, welet ti = ti�1 + p(i � 1). Observe that during the interval [ti�1; ti], RR executes each of the i + 1 jobs forp(i � 1)=(i + 1) units of time. Since RR also uses a 1 + � speed processor, the work done on a job duringthat interval is (1 + �)p(i � 1)=(i + 1). Therefore, we get the recurrencep(i) = p(i� 1)� (1 + �)p(i � 1)i + 1 = � i� �i+ 1�p(i � 1)The total 
ow time for the adversary is then �(Pni=1 1=(i � �)1+�), which is a convergent sum. The total
ow time for RR is then �(Pni=1 i=(i � �)1+�), which is �(n1��). The result then follows.More generally, Motwani, Phillips and Torng [80] showed that the competitive ratio of every deterministicnonclairvoyant algorithm for average 
ow is 
(n1=3). Thus one can not get a strong positive result fordeterministic nonclairvoyant algorithms using standard competitive analysis. This construction is the basisfor most general lower bound proofs on average 
ow time.Theorem 2.20 For the problem 1jonline-time-nclv; pmtn; rjjPFj, the competitive ratio of every determin-istic algorithm is 
(n1=3).Proof Sketch. We present an adversary strategy which works in two stages. In the �rst stage, the adversaryreleases k jobs at time 0 and lets the algorithm A schedule them for k time units. The adversary ensuresthat the remaining processing time of each job at time k for A is 1=(k � 1) while OPT has 1 un�nished jobat time k. The second stage starts at time k, when the adversary releases a job of length 1=(k � 1) every1=(k � 1) time units apart, until time k2. No matter what A does after time k, A has a total 
ow time of
(k3) while OPT has total 
ow time O(k2).This strong lower bound motivated Kalyanasundaram and Pruhs [67] to propose resource augmentationanalysis as a standard method of analysis. Notice that in this lower bound example the load after time k is 1.Furthermore, if the nonclairvoyant scheduler had a slightly faster processor, then it would not be behind attime k. Kalyanasundaram and Pruhs [67] showed that SETF is almost fully scalable. In [67] the algorithmSETF was called Balance. 20



Theorem 2.21 For the problem 1jonline-time-nclv; pmtn; rjjPFj, SETF is (1 + �)-speed (1 + 1=�)-competitive.Proof Sketch. We give the intuition here using the borrow technique introduced in [67]. The proof isa local competitiveness argument. That is, at any particular time t, SETF does not have too many moreun�nished jobs than the adversary. Let Ji and Jj be jobs such that SETF is running Jj during the timeinterval [a; b] � [ri; Ci]. The adversary may then do (b � a) units of work on Ji during time [a; b]. Wethink of this as the adversary borrowing (b� a) units of work from Jj to give to Ji. Borrowing can also betransitive; Ji can borrow from Jj which can borrow from Jk, etc. This borrowing might be advantageousto the adversary if Ji is almost �nished by SETF. Let wi(t) be the remaining un�nished work on job Ji forSETF at time t. If the adversary is going to �nish a job Ji, then it must arrange for Ji to borrow at least�wt(i) units of work since the adversary's processor is � slower than the processor used by SETF. However,the description of SETF ensures that this time can only come from jobs that SETF ran for less time thanSETF ran Ji. Hence, we would expect that each job that the adversary borrows time from can only be usedto �nish 1=� jobs that SETF has not �nished.Berman and Coulston [29] improved this result for larger speeds. They showed that SETF is s-speed2=s-competitive for total 
ow time for s � 2. They showed inductively that for each job that is added to aschedule, the increased cost that SETFs pays is at most 2=s the cost that the adversary pays.Turning to randomized algorithms, Motwani, Philips and Torng [80] showed that the competitive ratio fortotal 
ow time of every randomized algorithm against an oblivious adversary is 
(logn). Kalyanasundaramand Pruhs [68] noted that this argument can be modi�ed to give a lower bound of 
(P ). Recall that anoblivious adversary must �x the input a priori.Theorem 2.22 For the problem 1jonline-time-nclv; pmtn; rjjPFj, The competitive ratio of every random-ized algorithm against an oblivious adversary is 
(logn).Proof Sketch. We use Yao's technique and prove a lower bound on the competitive ratio of deterministicalgorithms on a particular input distribution.The jobs are released in two phases. In the �rst phase, at time 0, k jobs are released whose sizesare independently drawn from the exponential distribution with mean 1. The scheduling algorithm is thenallowed to run until time k�2k3=4. Because the expected remaining work of an un�nished job is independentof how long it has been executed, the state of the un�nished jobs for the nonclairvoyant algorithm at timek�2k3=4 is the same for all nonclairvoyant algorithms. Hence, at the end of the �rst stage, the nonclairvoyantalgorithm has remaining 
(k3=4) jobs with remaining work at least 1. With high probability, the adversaryscheduler can set aside k3=4= logk jobs of size at least (log k)=4, and �nish all other jobs by the end of the�rst phase.The second phase consists of releasing a job of size 1 at each time unit, for a total of k2 time units.Clearly the nonclairvoyant algorithm should execute these jobs before the large jobs it has remaining fromthe �rst phase, for a expected total 
ow time of 
(k2:75). The adversary executes the second phase jobsas they arrive, and lastly schedules the set-aside jobs. The expected total waiting time of the adversaryalgorithm is O(k2:75= log k).It is not at all obvious what strategy a randomized algorithm should adopt in order to obtain a logarithmiccompetitive ratio. One bene�t of resource augmentation analysis of deterministic algorithms is that theanalysis can suggest a randomized strategy. This problem is an example of this phenomenon. Let us re
ecton Kalyanasundaram and Pruhs' resource augmentation analysis of SETF [67] for a moment. One sees thatto argue that SETF is locally O(c � d)-competitive, it is su�cient to argue the following property holds:For an at least 1=c fraction of SETF's un�nished jobs, it is the case that they have at least 1=dof their original processing time left un�nished.This suggests �nding a randomized algorithm that favors newly released jobs (like SETF does) and thatguarantees the above property holds with high probability. This line of reasoning led Kalyanasundaram andPruhs [68] to propose the algorithm RMLF. RMLF is identical to MLF except that the target of each job inqueue Qi is 2i+1 minus an exponentially distributed independent random variable.21



We now give some intuition why this approach should give poly-logarithmic competitiveness. Assumethat at time 0 the adversary releases a collection of n jobs of length 2i + x. The adversary is hoping that atthe �rst time that all remaining un�nished jobs for RMLF are all in Qi+1 that the following holds: it is thecase that RMLF will have !(1) jobs in Qi+1 and that these jobs are almost all almost �nished. For example,if RMLF uniformly at random selected the target between 2i and 2i+1, then by picking x = 2i=pn, theadversary could expect that RMLF has pn jobs with at most a 1=pn of their initial processing time left.By bringing in a stream of small jobs, the adversary could then push the competitive ratio up to 
(n�). SoRMLF wants that the number of targets set to X � 2i=logn should be a constant fraction of the number oftargets set to X. By setting the targets randomly in this way, you expect that a constant fraction of the jobshave 1=logn of their original processing time left. Two more points need to be made. First, this argument isnot valid if x is very small, that is if the jobs have very little processing time left on the job when it reachesQi. However, in this case, each job is �nished in Qi and does not reach Qi+1 with very high probability.Second, in order to turn this into a formal proof, you need to have a high probability argument, which addsanother factor of logn to the calculated competitive ratio. This argument can be formalized to show thatRMLF is O(log2 n)-competitive for the problem 1jonline-time-nclv; pmtn; rjjPFj.This O(log2 n) analysis can be improved. Kalyanasundaram and Pruhs [68] showed that RMLF is�(logn log logn) against an adversary that at all times knows the outcome of all of the random eventsinternal to RMLF up until that time. This accounts for the possibility of inputs where future jobs maydepend on the past schedule. Becchetti and Leonardi [21] improved upon this analysis to obtain a tightanalysis of RMLF.Theorem 2.23 For the problem 1jonline-time-nclv; pmtn; rjjPFj, RMLF is O(logn)-competitive againstan oblivious adversary.Note that if the target for jobs in queue Qi is ci, then MLF is c-speed O(1)-competitive. In particular,if c = 1 + �, MLF devolves into SETF and is also almost fully scalable. These facts (SETF/MLF is almostfully scalable, and RMLF is optimally competitive amongst randomized algorithms) provide strong supportfor the adoption of MLF for process scheduling within an operating system.Open Problem 2.24 Obtain a tight bound on the competitive ratio of deterministic algorithms for theproblem 1jonline-time-nclv; pmtn; rjjPFj. On one hand, given that there is a high, 
(n1=3), lower boundon the competitive ratio, this may seem to be only of academic interest. On the other hand, this is arguablythe most basic problem in nonclairvoyant scheduling, and it is quite unsatisfactory that a tighter bound isnot known.2.8.2 Maximum and Average Stretch on One MachineKalyanasundaram and Pruhs [66] observed that the competitive ratio for maximum stretch is 
(n) fornonclairvoyant algorithms and also that resource augmentation is of minimal help. For average stretch, itis easy to see that the competitive ratio for nonclairvoyant algorithms is 
(n) and 
(P ). However, Bansal,Dhamdhere, Konemann, and Sinha [13] show that a moderately positive result can be obtained using resourceaugmentation.Theorem 2.25 For the problem 1jonline-time-nclv; pmtn; rjjPSj , MLF is an O(1)-speed O(log2 P )-competitive algorithm.Proof Sketch. It is easy to see that one cannot prove MLF (J) = O(OPT (J)) using local competitiveness(even if MLF has O(1) faster processor). To see this consider the case of a single unit length job and a smallnumber of long jobs released at time 0. One can verify that every nonclairvoyant algorithm will be 
(P )locally competitive at say time 2.To show that MLF (J) = O(log2 P ) � OPT (J), there are two main ideas in the proof. The �rst mainidea was to show that MLF (J) = O(SJF (L)), where J is the original input, and L is some other inputderived from J . In this modi�ed instance L, each job Ji in J is replaced by a collection of jobs withgeometrically increasing work, with aggregate work pi, and with release date ri. The idea is that at any22



particular time, MLF has the original job Ji in the jth queue if and only if SJF �nished the j � 1 shortestjobs in L corresponding to Ji.To show MLF (J) = O(SJF (L)), Bansal et al. [13] introduce an auxiliary objective function, calledinverse work, that can be used to show local competitiveness. Let wi(t) be the amount of work done on jobi by time t. Then the inverse work for a job is RCjrj 1=wj(t) dt. Clearly the inverse work of a job is greaterthan its stretch R Cjrj 1=pj dt. Hence, MLF (J) �MLF 0(J), where MLF 0(J) is total inverse work. Then theauthors show that by local competitiveness that MLF 0(J) = O(SJF (L)). Applying Becchetti, Leonardi,Marchetti-Spachemella, and Pruhs' [22] analysis of HDF, they conclude that SJF (L) with a slightly fasterprocessor has total stretch O(OPT (L)).To �nish the proof, one needs to upper bound OPT (L) by O(log2P )�OPT (J). The second main idea wasthe method used to relate OPT (L) and OPT (J). Given the schedule OPT (J), one can construct a schedulefor L (which is a union of geometrically scaled copies of J) in the following way. Take the schedule OPT (J)and consider suitably scaled down copies of this schedule. These schedules are thought of running a scaleddown copy of J with some carefully chosen processor speed. Executing all these schedules simultaneouslycan be thought of as a schedule for L. Bansal et al. [13] show that this scaling can be done in such a waythat the total additional speed required is O(1) and the total stretch for L is O(log2 P ) �OPT (J).For the problem 1jonline-time-nclv; pmtn; rjjPSj , Bansal et al. [13] also shows that every O(1)-speedalgorithm has a competitive ratio of 
(logP ). If all release dates are zero, Bansal et al. [13] gives anO(logP )-competitive algorithm, and prove a general 
(logn) lower bound on the competitive ratio.2.8.3 Average Flow Time on Parallel MachinesAn immediate question that one has to ask when formalizing a scheduling problem on parallel machines iswhether a single job can simultaneously run on multiple machines. In some settings this may not be possible;in other settings this may be possible but the speed-up that one obtains may vary. Thus one can get myriaddi�erent scheduling problems on parallel machines depending on what one assumes. A very general model isto assume that each job has a speed-up function that speci�es how much the job is sped up when assignedto multiple machines. More formally, a speed-up function �(s) measures the rate at which work is �nishedon the job if s processing resources (say s processors) are given to the job.The simplest speed-up model is the fully parallelizable where �(s) = s. Fully parallelizable work hasthe property that if you devote twice as many resources to the work, it completes at twice the rate. Thenormal assumption in the uniprocessor scheduling literature is that all work is fully parallelizable. In theuniprocessor setting, this means that if you devote a fraction f of a single processor to a job, you willcomplete work at rate f instead of rate 1. To simplify notation, we will often use the word parallel insteadof fully parallelizable when there is no possibility of ambiguity.The normal multiprocessor setting can be modeled by the speed-up function �(s) = s for s � 1 and�(s) = 1 for s > 1. That is, a job is fully parallelizable on one processor, but assigning the job to multipleprocessors does not help.In any real application, speed-up functions will be sublinear and non-decreasing. A speed-up functionis sublinear if doubling the number of processors at most doubles the rate at which work is completed onthe job. A speed-up function is non-decreasing if increasing the number of processors does not decreasethe rate at which work is completed on the job. One can also generalize this so that jobs are made ofphases, each with their own speed-up function. We will use the notation scj in the job �eld of the three-�eldscheduling notation to denote parallel machines with job phases that have speed-up curves that are sublinearand non-decreasing.We typically assume that a nonclairvoyant scheduling algorithm does not know the speed-up function ofany job. Given how little knowledge a nonclairvoyant scheduler has in this setting, there are few naturalalgorithms to consider. The obvious ones to analyze are SETF and RR. Edmonds showed that SETF is nota good algorithm when jobs are not fully parallelizable [42].Theorem 2.26 The deterministic and randomized versions of SETF are not s-speed O(1)-competitive if thespeed-up curves of jobs are not fully parallelizable no matter how large s is [42].23



Furthermore, in a remarkable analysis, Edmonds showed that RR is (2+ �)-speed O(1+1=�)-competitive forjobs with phases that have speed-up functions that are sublinear and non-decreasing [42]. His result extendswith slightly weaker bounds to the case where RR is given extra machines instead of faster machines.Theorem 2.27 For the problem P jonline-time-nclv; pmtn; rj; scjjPFj, RR is (2 + �)-speed O(1 + 1=�)-competitive.One obvious di�culty in constructing an O(1)-speed O(1)-competitiveness analysis for RR is that, as theexample lower bound instance in Theorem 2.19 shows, one can not use a local competitiveness argument.One of Edmonds' insights was the identi�cation of an appropriate potential function so that one couldprove local competitiveness in an amortized sense. Arguably another insight was that analysis of RR for1jonline-time-nclv; pmtn; rjjPFj, seems to require the introduction of speed-up curves. It is at least ofacademic interest whether there is an analysis of RR for 1jonline-time-nclv; pmtn; rjjPFj that does notrequire the generalization to speed-up curves. Edmonds' analysis is too involved to give in its entirety here.We shall instead focus on the intuition that the proof gives about why RR performs reasonably well.A key step in the proof is the introduction of the constant speed-up curve where �(s) = c for all s � 0and some constant c > 0. Devoting additional processing resources to constant jobs does not result in anyfaster processing of these jobs. In fact constant jobs complete at the same rate even if they are not run.The motivation for de�ning the constant speed-up curve is its utility for analytic purposes, not as a modelof real job behavior. Note, Edmonds uses the term sequential instead of constant in [42].With this de�nition of constant jobs, Edmonds transforms each possible input into a canonical inputthat is streamlined. An input is streamlined if: (1) every phase is either fully parallelizable or constant, and(2) the adversary is able to execute each job at its maximum possible speed. This implies that at any onetime, the adversary has only one parallel job phase to which it is allocating all of its resources. The idea ofthis transformation is that if RR is devoting more resources to some work than the adversary, it is to theadversary's advantage to make this work be constant work that completes at the rate that the adversary wasoriginally processing that work. In contrast, if the adversary is devoting more resources to a job than is RR,and the adversary has no other un�nished jobs, then it is to the adversary's advantage to make this work tobe fully parallelizable. If the adversary has several un�nished jobs, then the transformation is only slightlymore involved; each bit of work is replaced by a constant phase, followed by a parallel phase, followed bya constant phase. As a consequence of this transformation, you get that the adversary is never behind RRon any job. Given that the input is streamlined, we can for simplicity assume that RR has one processor ofspeed s = 2 + � and OPT has one processor of speed 1.We now turn to the potential function �, which is de�ned to be the work that has not been completedby RR but that has been completed by the adversary. Then �(t) is the rate of change of � at time t.Edmonds then proves local competitiveness using this potential function. That is, he shows that at all timest, RRs(t) � O(1 + 1=�)OPT (t) + �(t).We now give the intuition behind the Edmonds' proof from [42]. Let lt be the number of constant jobsat time t. Note that lt is the same for all schedules. RR devotes at most s=(lt+1) of its speed to the uniquefully parallelizable job that the adversary is working on at time t. To ensure that RR falls further behindon this job, lt must be at least s or else RR may complete as much work on the parallel job as OPT does attime t. On the other hand, the adversary does not want lt to be too large as the adversary must also paythis cost.The key observation is that as the fully parallelizable work on which RR is behind builds up, RR self-adjusts by devoting more resources to this parallel work. Let mt be the number jobs with parallel work forRR at time t. Note that mt can be larger than 1 since RR is behind the adversary in some jobs. RR devotess=(lt+mt) of its s speed to each of the lt+mt jobs it sees. Hence, RR completes fully parallelizable work ata rate of s �mt=(lt +mt). Since the adversary works at unit rate on the fully parallelizable work, RR fallsbehind on this work at a rate of at most 1 � s �mt=(lt +mt). The steady state is when this rate is 0, thatis, when mt = lt=(s � 1).In this steady state, the competitive ratio is then at most (lt+ lt=(s�1))=(lt+1) � s=(s�1). Intuitively,RR tries to move to this steady state. To see this consider that RR is either above or below this steadystate. If mt < lt=(s � 1) then more fully parallelizable work is being released than RR is completing, andhence RR is falling further behind and the potential function increases. The potential function increase is24



compensated by the fact that RR's 
ow time is increasing at a slower rate than it is at steady state. Onthe other hand, if mt > lt=(s � 1) then RR must be catching up to the adversary in terms of uncompletedparallel work. In this case, the decrease in the potential function must pay the additional increase in 
owtime that RR has to pay for being behind.Note that the speed s has to be at least 2 + � in order for the potential function to decrease quicklyenough. A simple instance that shows that speed 2 is required is n jobs, with equal processing time, that allarrive at time 0. In this case RR needs speed at least 2 so that it is always O(1)-competitive in terms of thenumber of un�nished jobs.The obvious and interesting open question is then:Open Problem 2.28 Is there an almost fully scalable algorithm in the case of sublinear and non-decreasingspeed-up functions when the objective function is total 
ow time?Edmonds, Datta, and Dymond [43] extend Edmonds' analysis of RR to Internet TCP protocol. Becchettiand Leonardi [21] extend their analysis of RMLF to show that it is O(logn log(n=m))-competitive on mmachines under the assumption that jobs may not be simultaneously run on multiple machines.2.9 Multicast Pull Scheduling for Average FlowIn a multicast/broadcast system, when the server sends a requested page/item, all outstanding client requeststo this page are satis�ed by this multicast. The system may use broadcast because the underlying physicalnetwork provides broadcast as the basic form of communication (e.g. if the network is wireless or thewhole system is on a LAN). Multicast may also arise in a wired network as a method to provide scalabledata dissemination. One commercial example of a multicast-pull client-server system is Hughes' DirecPCsystem. In the DirecPC system the clients request documents via a low bandwidth dial-up connection, andthe documents are broadcast via high bandwidth satellite to all clients. In this section we will restrict ourattention to the case that the objective function is total 
ow time. We use the notation B in the machine�eld of the 3-�eld scheduling notation to denote broadcast, or more precisely, multicast pull.While this problem is interesting in its own right, it is also interesting because of its connection to weighted
ow time and its surprising connection to scheduling jobs with speed-up functions. We �rst explain why thisproblem generalizes weighted 
ow time. If one restricts the instances in multicast pull scheduling such thatfor each page, all requests for that page arrive at the same time, then the multicast pull scheduling problemand the weighted 
ow scheduling problem are identical. Here the number of requests that arrive for the pageis the weight.At �rst glance, it seems that the only di�culty the scheduler faces is how to favor both shorter pagesas well as more popular pages. However, the situation is more complicated than this. Consider the casewhere all pages have the same size. The obvious algorithm to consider is Most Requests First (MRF) thatbroadcasts the page with the most outstanding requests thus generalizing the HDF weighted schedulingalgorithm. At �rst, one might even be tempted to think that MRF is optimal. Kalyanasundaram, Pruhs,and Velauthapillai [69] showed that MRF is not O(1)-speed O(1)-competitive.Lemma 2.29 For the problem Bjonline-time; pmtn; rj; pj = 1jPFj, the algorithm MRF is not O(1)-speedO(1)-competitive.Proof Sketch. Assume that MRF has an s = O(1) speed processor. Let k = n2. At time 0, the adversaryrequests pages P1; � � � ; Pn�s once each, and requests pages Pn�s+1; � � � ; Pn twice each. At each time t,1 � t � k, the adversary requests pages Pn�s+1; � � � ; Pn twice each.For all times t 2 [1; k], MRF will broadcast pages Pn�s+1; � � � ; Pn. Only after time k will MRF �nallybroadcast pages P1; � � � ; Pn�s. Since the initial requests to pages P1; : : : ; Pn�s are not satis�ed by MRFduring the �rst k time units, the total 
ow time for MRF is 
(nk), which is 
(n3) since k = n2.On the other hand, for time 1 � i � n � s, the adversary broadcasts page Pi. >From this time on,the adversary broadcasts pages Pn�s+1; � � � ; Pn in a round robin fashion from time (n � s) + 1 to time k.Each of the O(ns) requests made before time n � s is satis�ed within n time units, and each of the O(ks)requests made after time n� s is satis�ed within s time units. Hence, the total 
ow time for the adversary25



is O(sn2 + ks2), which is O(n2) since k = n2 and s = O(1). Therefore, the competitive ratio for MRF is
(n).The lower bound instance in Lemma 2.29 shows that the online scheduler has to be concerned withhow to best aggregate jobs. Without knowledge of the future or resource augmentation, this turns out tobe impossible. Kalyanasundaram, Pruhs, and Velauthapillai [69] show that no O(1)-competitive algorithmexists even in the case of unit pages if preemption is not allowed. Edmonds and Pruhs [44] extend the lowerbound to the case that preemption is allowed.Lemma 2.30 For the problem Bjonline-time; pmtn; rj; pj = 1jPFj, the competitive ratio of every random-ized online algorithm A against an oblivious adversary is 
(n) where n is the number of di�erent pages.Proof Sketch. We give only the deterministic lower bound proof. This can be generalized to a lowerbound for randomized algorithms using Yao's technique. At time 0, every page is requested once. Then nopages are requested until time n=2. From time 1 until time n=2, the adversary broadcasts the n=2 pages notbroadcasted by A by time n=2. At time n=2, the adversary requests all of the pages previously broadcastedby A. Note that there are at most n=2 such pages and they were not previously broadcasted by the adversary.No more pages are requested until time n. After the broadcast at time n, the adversary has satis�ed all ofthe requests to date, while A has at least n=2 unsatis�ed requests. At each time t, for t from n to k = n2,the adversary requests the page broadcasted by A at time t� 1. Hence, at each time in [n; k], A has n=2+1unsatis�ed requests. At each time t 2 [n + 1; k + 1], the adversary can satisfy the request at time t � 1.Hence, the adversary has at most 1 unsatis�ed request at each time t 2 [n+1; k]. Hence, the total 
ow timefor the adversary is O(n2 + k), and the total 
ow time for A is 
(nk).Before considering upper bounds, we need to note that several reasonable models are possible dependingon what one assumes about the capabilities of the server and the clients to send and receive segments of thepages out of order. For example, it is not clear whether a client that requests a large page, in the middle ofthe broadcast, will need the whole page rebroadcast, or only the �rst half. For example, in a protocol, like thehttp protocol, where the content is identi�ed only in the header, rebroadcast would be required. Pruhs andUthaisombut [84] compare the optimal schedules, under various objective functions, in the di�erent models.They show that allowing the server to send segments out of order is of no real bene�t. On the other hand,they show that the ability of the clients to receive data out of order can drastically improve the average 
owtime, but not the maximum 
ow time. Further they show that a speed 2 server can compensate for clientsnot be able to receive pages out of order.The general lower bound in Lemma 2.30 actually contains the key insight that ties multicast pull schedul-ing to scheduling with speed-up curves and thus suggests a possible algorithm. After the online algorithmhas performed a signi�cant amount of work on a page that was requested by a single client, the adversarycan again direct another client to request that page. The online algorithm must service this second requestas well. In contrast, the optimal schedule knows not to initially give any resources to the �rst request be-cause the broadcast for the second request simultaneously services the �rst. Thus, even though the onlinealgorithm devotes a lot of resources to the �rst request and the optimal algorithm devotes no resources to the�rst request, it completes under both at about the same time. In this regard, the work associated with the�rst request can be thought of as \constant". This suggests that the real di�culty of broadcast schedulingis that the adversary can force some of the work to have a constant speed-up curve.Formalizing this intuition, Edmonds and Pruhs [44] give a method to convert any nonclairvoyant unicastscheduling algorithm A to a multicast scheduling algorithm B under the assumption that the clients mustreceive all pages in order. A unicast algorithm can only answer one request at a time. All the standardalgorithms listed in section 2.1 are unicast algorithms. Edmonds and Pruhs [44] show that if A works wellwhen jobs can have parallel and constant phases, then B works well if it is given twice the resources. Thebasic idea is that B simulates A, creating a separate job for each request, and then the amount of time thatB broadcasts a page is equal to the amount of time that A runs the corresponding jobs. More formally, if Ais an s-speed c-competitive unicast algorithm, then its counterpart, algorithm B, is a 2s-speed c-competitivemulticast algorithm. In the reduction, each request in the multicast pull problem is replaced by a job whosework is constant up until the time that either the adversary starts working on the job or the online algorithm�nishes the job. After that time, the work of the replacement job is parallel. The amount of parallel workis such that A will complete a request exactly when B completes the corresponding job.26



Using RR for algorithm A, one obtains an algorithm, called BEQUI in [44], that broadcasts each pageat a rate proportional to the number of outstanding requests. Using Edmonds' analysis of RR for jobs withspeed-up functions, one gets the following result.Theorem 2.31 For the problem Bjonline-time-nclv; pmtn; rjjPFj, under the assumption that all pagesmust be received in order, BEQUI is (4 + �)-speed O(1 + 1=�)-competitive.Note that BEQUI preempts even unit sized jobs. Edmonds and Pruhs also give a (4 + �)-speed O(1 +1=�)-competitive algorithm BEQUI-EDF for the problem Bjonline-time; rj; pj = 1jPFj . The idea of thealgorithm is to simulate BEQUI to give a deadline for each request of the release time of that job plussome constant times the 
ow time of the job in BEQUI's schedule. BEQUI-EDF then runs the job with theEarliest Deadline First.For the problem Bjonline-time; rj; pj = 1jPFj , the most popular algorithm in the computer systemsliterature is Longest Wait First (LWF). LWF always services the page for which the aggregate waiting timesof the outstanding requests for that page is maximized. In the natural setting where for each page, the requestarrival times have a Poisson distribution, LWF broadcasts each page with frequency roughly proportional tothe square root of the page's arrival rate, which is essentially optimal. Edmonds and Pruhs [45] provide ananalysis of LWF. They show that LWF is 6-speed O(1)-competitive, but is not almost fully scalable. It isnot too di�cult to see that there is no possibility of proving such a result using local competitiveness. Therather complicated analysis given by Edmonds and Pruhs [45] compares the total cost of LWF to the totalcost of the adversary.The obvious interesting open question is then:Open Problem 2.32 For the problems Bjonline-time; pmtn; rjjPFj , Bjonline-time-nclv; pmtn; rjjPFj,Bjonline-time; rj; pj = 1jPFj, is there an almost fully scalable algorithm? For the problemsBjonline-time; pmtn; rjjPFj , Bjonline-time-nclv; pmtn; rjjPFj one should consider both the version wherethe client has to receive the page in order, and the version where the client can receive the page out of order.Bartal and Muthukrishnan [20] stated that FIFO is 2-competitive when the objective is minimizingmaximum 
ow time under the assumption clients may receive documents out of order.2.10 Nonclairvoyant Scheduling to Minimize MakespanA general reduction theorem from [98] shows that in any variant of scheduling in online-time-nclv envi-ronment with makespan objective, any batch-style �-competitive algorithm can be converted into a 2�-competitive algorithm in a corresponding variant which in addition allows release times. In [54] it is provedthat for a certain class of algorithms the competitive ratio is increased only by additive 1, instead of the fac-tor of 2 in the previous reduction; this class of algorithms includes all algorithms that use a greedy approachsimilar to List Scheduling. The intuition beyond these reductions is that if the release times are �xed, theoptimal algorithm cannot do much before the last release time. In fact, if the online algorithm would knowwhich job is the last one, it could wait until its release, then use the batch-style algorithm once, and achievethe competitive ratio of � + 1 easily. These reductions are completely satisfactory if we are interested onlyin the asymptotic behavior of the competitive ratio. However, if the competitive ratio is a constant, we maybe interested in a tighter result.In the basic model where the only characteristic of a job is the running time, there is not much we can doif we do not know it. For the basic problem P jonline-time-nclvjCmax, no deterministic algorithm is betterthan 2� 1=m, i.e., better than List Scheduling, and randomization does not help much, as the lower boundis (2 � O(1=pm)) [98]. In Section 1.4 we mentioned that List Scheduling is (2 � 1=m)-competitive evenfor P jonline-time-nclv; prec; rjjCmax. (Hence we do not lose anything in the competitive ratio for allowingrelease times, unlike in the general reductions above.)2.10.1 Di�erent SpeedsHere we consider both uniformly related machines and unrelated machines. In the case of related machines,the speed of each machine is the same for all jobs and given in advance. For unrelated machines, the speeds27



are di�erent for each job, and we assume that the speed for each job on each machine is known when the jobis released. Only the running time is not known (i.e., for each job we know the relative speeds of machines).If no preemptions are allowed, even for uniformly related machines, Qmjonline-time-nclvjCmax, a simpleexample shows that no algorithm is better than 
(pm)-competitive [39]. A matching, O(pm)-competitive,algorithm is known even for unrelated machines, Rmjonline-time-nclvjCmax, see [39]. This is not verysatisfactory, as a trivial greedy algorithm is m-competitive even for Rmjonline-time-nclv; prec; rjjCmax,see [46].However, for related machines, allowing preemptions or even only restarts helps signi�cantly. In thiscase we can use a variant of a doubling method to convert an arbitrary o�ine algorithm into an on-line algorithm. Since we do not know the running times, we guess that all jobs have some chosen run-ning time, then run the appropriate schedule. If any job is not �nished in the guessed time, we stopit, double its estimate, and repeat the procedure for all such jobs. This method, together with addi-tional improvements, yields an O(logm)-competitive algorithm for uniformly related machines with restarts,Qmjonline-time-nclv; pmtn-restart; rjjCmax [98]. A matching lower bound shows that this is optimal evenfor Qmjonline-time-nclv; pmtnjCmax [98].2.10.2 Parallel JobsIn this variant, each job is characterized by its running time and the number of identical machines (processors)it requests. This is denoted by sizej in the middle �eld of the three-�eld notation. While the running timesare unknown, the number of machines a job requests is known as soon as the job becomes available. Weconsider two variants according to how strict the request is. In the �rst, the jobs are non-malleable, whichmeans that they have to be scheduled on the requested number of machines. On the other hand, malleablejobs may be scheduled on fewer machines, at the cost of increasing the processing time. Most of the time weconsider ideally malleable jobs. Using the terminology of speed-up curves, such jobs are fully parallelizableup to the requested number of machines. That is, scheduling on q0 < q machines takes time pq=q0 instead ofthe original processing time p.Consider the simplest greedy approach for batch-style algorithms: whenever there are su�ciently manymachines idle, we schedule some job on as many machines as it requests. This leads to (2�1=m)-competitivealgorithm, regardless of the rule by which we choose the job to be scheduled (note that here we have ameaningful choice, as we know how many machines each job requests), even with release times, i.e., forP jonline-time-nclv; sizej ; rjjCmax [82]. This is optimal, as the basic model corresponds to the special casewhen each job requests only one machine. Moreover, this algorithm works even for non-malleable jobs.If we allow precedence constraints, P jonline-time-nclv; sizej ; precjCmax, no reasonable online algorithmexists for non-malleable parallel jobs. For deterministic algorithms there is a lower bound of m on thecompetitive ratio (a trivial greedy algorithm matches this) [53], and for randomized algorithms there is alower bound of m=2 [94].In contrast, with ideallymalleable jobs, P jonline-time-nclv; sizej ; precjCmax allows a constant competitiveratio. The optimal competitive ratio for deterministic algorithms for P jonline-time-nclv; sizej ; precjCmax is1 + � � 2:6180 [53]. The optimal strategy is again greedy, with the following rules for using malleability ofthe jobs: (i) If there is an available job requesting q machines and q machines are idle, schedule this job onq machines. (ii) Otherwise, if less than m=� machines are busy and some job is available (requesting moremachines), schedule it on all available machines. Note that this algorithm uses malleability only for largejobs. Accordingly, if there is an upper bound on the number of machines a job can use, we can get betteralgorithms and also algorithms for non-malleable jobs. The tight tradeo�s are given in [53].In practice, it is perhaps not realistic to assume that any subset of machines can be used for a paralleljob. A model which takes into account a particular network topology of the parallel machine was consideredin [55, 53, 95] (without precedence constraints, with precedence constraints, and randomized algorithms,respectively). In this model, if the underlying network is, for example, a mesh (two-dimensional array),each job requests a rectangular subset of processors with given dimensions. Perhaps the most interestingresults in this area concern the power of randomization. For Pmjonline-time-nclv; sizejjCmax with the meshrestriction, no deterministic algorithm has a constant competitive ratio, the tight bound is �(plog logm);on the other hand, there exists a randomized O(1)-competitive algorithm. This randomized algorithm isbased on random sampling, and it is one of the �rst results showing the power of randomization in the area28



of online algorithms. In contrast, if we allow precedence constraints, there are lower bounds showing thatrandomization does not change the competitive ratio signi�cantly. For a more complete survey of results forvarious topologies (linear array, hypercube, mesh), see [97].3 Scheduling Jobs One by OneThis paradigm corresponds most closely to the standard model of request sequences in competitive analysis.It can be formulated in the language of online load balancing as the case where the jobs are permanent andthe load is their only parameter corresponding to our processing time. Consequently, there are many resultson load balancing that extend the basic results on online scheduling in a di�erent direction. As a referencein this area, we recommend the survey [8].In this paradigm, we do not allow release times and precedence constraints, as these restrictions appearto be unnatural with scheduling jobs one by one. In most of the variants, it is also su�cient to assign eachjob to some machine(s) for some length of time, but it is not necessary to specify the actual time slot(s). Inother words, it is not necessary or useful to introduce idle time on any machine. An exception is the area ofpreemptive scheduling on related machines where introducing idle times seems to be very useful.We �rst give the results considering minimizing the makespan; only in Sections 3.8 and 3.9 do we brie
ymention results for other objective functions, namely minimizing the lp norm and the total completion time.3.1 The Basic ModelWe start by studying the basic parallel machine scheduling problem P jonline-listjCmax. This is probably themost extensively studied online scheduling problem, yet many questions remain open. In this section, we areinterested in deterministic algorithms.We have m machines and a sequence of jobs characterized by their processing times. The jobs arepresented one by one, and we have to schedule each job to a single machine before we see the next one.There are no additional constraints, preemption is not allowed, all the machines have the same speed, andthe objective function is the makespan.The greedy List Scheduling algorithm schedules each arriving job on a least loaded machine. FromGraham's analysis [62], it follows that the competitive ratio of List Scheduling is 2� 1=m. This is provablythe best possible for m = 2 and m = 3 [52], but for larger m it is possible to develop better algorithms.From the analysis of List Scheduling, it is clear what is the main issue in designing algorithms betterthan List Scheduling. If all machines have equal loads and a job with long processing time is presented, wemay create a schedule which is almost twice as long as the optimal one. This is a problem if the scheduledjobs are su�ciently small, and the optimal schedule can distribute them evenly on m�1 machines in parallelwith the last long job on the remaining machine. Thus, to achieve better results, we have to create someimbalance and keep some machines lightly loaded in preparation for large jobs that have not yet arrived.To design a good algorithm, current results use two di�erent approaches. One is to schedule each job onone of the two currently least loaded machines [60, 36]. This gives better results than List Scheduling for anym � 4, and achieves the currently best upper bounds for small m. However, for large m, the competitiveratio still approaches 2. The di�culty is that this approach only ensures that there is one lightly loadedmachine. Thus, after many small jobs and two long jobs, we get a long schedule and the competitive ratiois at least 2� 2=m.To keep the competitive ratio bounded away from 2 even for largem, it is necessary to keep some constantfraction of machines lightly loaded. Such an algorithm was �rst developed in [17]. Later better algorithmsbased on this idea were designed in [72, 1, 58] to give the currently best upper bounds for large m. Theanalysis of all these algorithms is relatively complicated. However, at a basic level, all of these algorithmsuse the following three lower bounds on the optimal makespan: (i) the total processing time of all jobsdivided by m, (ii) the largest processing time of any job, and (iii) the sum of the mth largest and m + 1stlargest processing times. It has recently been shown that we cannot prove any deterministic algorithm has abetter competitive ratio than 1.919 using only these lower bounds on the optimal makespan [2]. It has beenconjectured that an improved algorithm and an improved analysis might by using additional lower boundson the optimal makespan that include the size of the 2m + 1st largest processing time, or in general the29



km+1st processing time for k � 2. However, we still cannot prove any deterministic algorithm has a bettercompetitive ratio than 1.917 using these additional lower bounds on the optimal makespan [2].The lower bounds for this problem are typically proven by explicitly giving a hard sequence of jobs. Theobservation that List Scheduling is optimal for m = 2; 3 is due to [52]. For m = 4, the lower bound isp3 � 1:7321, see [85, 86]. The other lower bounds for small m are from [36]. The lower bounds for large mwere gradually improved in [18, 1, 85].The current state of our knowledge is summarized in Table 3. For comparison we include also thecompetitive ratio of List Scheduling. (See Section 3.2 for a discussion of results for randomized algorithmsand Section 3.3 for preemptive scheduling.)deterministic randomized preemptivem LS upper bound lower bound upper bound lower bound upper and lower bound2 1.5000 1.5000 1.5000 1.3333 1.3333 1.33333 1.6666 1.6666 1.6666 1.5373 > 1:4210 1.42104 1.7500 1.7333 1.7321 1.6567 1.4628 1.46285 1.8000 1.7708 1.7462 1.7338 1.4873 1.48736 1.8333 1.8000 1.7730 1.7829 1.5035 1.50357 1.8571 1.8229 1.7910 1.8168 1.5149 1.51491 2.0000 1.9230 1.8800 1.9160 1.5819 1.5819Table 3: Current bounds for Pmjonline-listjCmax and Pmjonline-list; pmtnjCmax.3.2 Randomized AlgorithmsMuch less is known about randomized algorithms for the basic model P jonline-listjCmax studied in Sec-tion 3.1. We only have a known optimal randomized algorithm for the case m = 2. A 4=3-competitiverandomized algorithm and a matching lower bound for two machines, P2jonline-listjCmax, was presentedin [17].First we show that this is best possible. Consider a sequence of three jobs with processing times 1,1, and 2. After the �rst two jobs, the optimal makespan is 1, so the expected makespan of the onlinealgorithm has to be at most 4=3. This means that after the �rst two jobs, the expected load of the lessloaded machine is at least 2=3, and after the third job, even if it is always scheduled on the smaller machine,the expected makespan is at least 2=3 + 2 = 8=3. Since the optimum is 2, the algorithm cannot be betterthat 4=3-competitive.In the proof, we can replace the �rst two jobs by an arbitrary sequence of jobs with total processing time2. Hence the proof actually shows that in any 4=3-competitive algorithm, the expected load of the moreloaded machine has to be at least twice as much as the expected load of the other machine at all times. Thishas to be tight whenever we can partition the jobs into two sets with exactly the same sum of processingtimes. The most natural way to design an algorithmwith this in mind is to keep the desired ratio of expectedloads at all times. It turns out this works, with some additional considerations for large jobs [17, 97].The idea of the lower bound for two machines can be extended to an arbitrary number of machines [35, 96].This leads to a lower bound of 1=(1 � (1 � 1=m)m), which approaches e=(e � 1) � 1:5819 for large m andincreases with increasing m. This lower bound shows that for m machines, the expected loads should bein geometric sequence with the ratio m : (m � 1), if the machines are always ordered so that their loadsare non-decreasing. (For example, for m = 3, the ratio of loads is 4 : 6 : 9.) An algorithm based on thisinvariant would be a natural generalization of the optimal algorithm for two machines from [17]; it wouldalso follow the suggestion from [37] (see Section 3.3). However, it is impossible to always maintain this ratioof expected loads. For three machines, P3jonline-listjCmax, we know that this lower bound of 27=19 is nottight [100]. More precisely, we know that for some " > 0, there is no (27=19+ ")-competitive algorithm, butthe value of " is very small and not explicit in [100]. 30



New randomized algorithms for small m were developed in [92, 88]. They are provably better thanany deterministic algorithm for m = 3; 4; 5 and better than the currently best deterministic algorithm form = 6; 7. They always assign the new job on one of the two least loaded machines, similar to the deterministicalgorithms for small m from [60, 36]. Consequently, the competitive ratio approaches two as m grows.Another observation is that any randomized algorithm that never assigns jobs to the most loaded machineis at best 1:5-competitive. Consider a sequence of 2 jobs with processing time 1 andm�1 jobs with processingtime 2. The �rst two jobs are assigned to two distinct machines due to the restriction of the algorithm. Afterthe remaining jobs, the makespan is at least 3, while the optimum is 2.Recently a new 1.916-competitive randomized algorithm for any number of machines, P jonline-listjCmax,was given in [2]. It is interesting that this algorithm as well as the algorithms for smallm from [88] are barelyrandom, i.e., need only a �nite number of random bits (or di�erent schedules) independent of the numberof jobs. In contrast to this, the optimal algorithm for m = 2 from [17] needs to maintain an increasingcollection of schedules; their number is linear in the number of jobs. Note also that 1.916 is better thanthe best possible deterministic competitive ratio provable using \standard" lower bounds on the optimalmakespan.To summarize, we have the optimal randomized algorithm for m = 2, a signi�cant improvement over thedeterministic algorithms for small m and a tiny improvement over the deterministic algorithms for large m.See Table 3.3.3 Preemptive SchedulingNext we consider the preemptive version of the problem, P jonline-list; pmtnjCmax. Each job may be assignedto one or more machines and time slots (the time slots have to be disjoint, of course), and this assignmenthas to be determined completely as soon as the job is presented. In this model the o�ine case is easily solved,and the optimal makespan is the maximum of the maximal processing time and the sum of the processingtimes divided by m (i.e., the average load of a machine), see Chapter 3.It is easy to see that the lower bounds from Section 3.2 hold in this model, too, as they only use thearguments about expected load (with the exception of the improved bound for 3 machines). This againleads to a lower bound of 1=(1� (1� 1=m)m), which approaches e=(e � 1) � 1:5819 for large m, valid evenfor randomized algorithms [37]. As it turns out, there exists a deterministic algorithm matching this lowerbound. It essentially tries to preserve the invariant that the expected loads are in geometric sequence withthe ratio m : (m � 1) with some special considerations for large jobs [37].Thus, in this model, both deterministic and randomized cases are completely solved, giving the samebounds as the randomized lower bounds in Table 3. Moreover, we know that randomization does not help.This agrees with the intuition. In the basic model, randomization can serve us to spread the load of a jobamong more machines, but we still have the problem that the individual con�gurations cannot look exactlyas we would like. With preemption, we can maintain the ideal con�guration by spreading the loads as wewish among the m machines. Thus, preemption is more powerful than randomization.3.4 Semi-Online Algorithms with Known Optimum and Doubling StrategiesAssuming that the algorithm knows the optimum value of the objective function is perhaps not realistic froma practical viewpoint. However, as the following theorem shows, such a semi-online algorithm can be usedas a building block for an online algorithm for the same problem. Instead of a known optimal makespan, weuse an estimate and double it whenever it turns out that the estimate was too small.Theorem 3.1 Suppose that for some scheduling problem in the online-list environment with the objectiveto minimize makespan there exists an R-competitive semi-online algorithm if the optimum is known. Thenfor the same problem there exists both a deterministic online algorithm with competitive ratio 4R and arandomized online algorithm with competitive ratio eR < 2:7183 �R.Proof Sketch. Let G0 be the value of the optimal schedule considering only the �rst job of the sequenceand let OPT be the optimal makespan on the whole instance. Let AG denote the semi-online algorithmprovided with the information that G is the optimalmakespan. First note that if G � OPT , then AG always31



produces a schedule with makespan at most RG: the sequence can be appended with jobs that increase themakespan to exactly G and on this appended sequence the algorithm guarantees not to schedule any jobafter time RG.The deterministic online algorithm computes G0 and sets G := G0 upon the arrival of the �rst job. Thenit runs the algorithm AG modi�ed so that the jobs are scheduled in time interval [RG; 2RG) instead of[0; RG). If AG fails to schedule the next job, the online algorithm sets G := 2G and starts the algorithmAG with the new value of G. The intervals in which the algorithm AG schedules for di�erent values of Gare disjoint and thus the algorithm is well de�ned. The value of G can be increased only when G < OPT ,by the property of the semi-online algorithm mentioned above. Thus at the end of the algorithm we haveG � 2 �OPT and the �nal makespan is at most 2RG � 4R �OPT and the algorithm is 4R-competitive.The randomized online algorithm computes G0 and sets G := G0 � ez , where z is a random variableuniformly distributed in [0; 1) and e is the base of natural logarithms. Then it runs the algorithm AGmodi�ed so that the jobs are scheduled in the time interval [RG �1=(e�1); RG �e=(e�1)) instead of [0; RG).If AG fails to schedule the next job, the online algorithm sets G := eG and starts the algorithm AG with thenew value of G. Again, the intervals in which the algorithmAG schedules for di�erent values of G are disjointand the value of G can be increased only when G < OPT . Thus at the end of the algorithm G is at mostG0 = G0�ek+z where k is the smallest integer such that this value is at least OPT . This is equivalent to sayingthat x = ln(G0=OPT ) is the fractional part of y = ln(G0=OPT ) + k+ z. Since z is uniform in [0; 1), k is aninteger and ln(G0=OPT ) is a constant, x is also uniformly distributed in [0; 1). The expected value of the �nalmakespan is at mostExp[RG0�e=(e�1)] = Exp[Rex�OPT �e=(e�1)] = Exp[ex]�R�OPT �e=(e�1) = eR�OPTand the algorithm is eR-competitive.A doubling strategy similar to this theorem is a very common tool in computer science. In the areaof online algorithms, it leads to optimal algorithms for search on a line (also known as cow-path problem)and its generalizations, both for deterministic and randomized algorithms, see [11, 71, 70]. In the contextof online scheduling, it was used the �rst time in [98, 3], see Sections 2.10.1 and 3.5. In some cases, toget currently best results, this method may need some re�nements, however, the basic idea of multiplyingthe estimate by a �xed constant as well as type of distribution used for the initial guess of a randomizedalgorithm is always the same.If the optimum is known, the problem P jonline-listjCmax is also studied as so-called online bin-stretching.We know that the jobs �t into some number of bins of some height, and we ask how much we need to \stretch"the bins to �t the jobs online. For two machines, there exists a 4=3-competitive algorithm and this is tight.For more machines a 1:625-competitive algorithm is presented in [10]. Of course, in this case, doublingalgorithms are not useful as other algorithms perform better.For uniformly related machines non-preemptive scheduling, Qjonline-listjCmax, scheduling a job on theslowest machine that completes the job by the time equal to twice the optimal makespan is a 2-competitivesemi-online algorithm [3]. For preemptive scheduling on related machines, Qjonline-list; pmtnjCmax, we caneven produce an optimal schedule if the optimal makespan is known; a 1-competitive semi-online algorithmis given in [47] for two machines and in [41] for any number of machines.3.5 Di�erent SpeedsFor uniformly related machines, most results are based on the doubling strategy from Section 3.4 or itsvariants. For non-preemptive scheduling, Qjonline-listjCmax, a simple doubling strategy leads to a con-stant competitive ratio [3]. The competitive ratio can be improved by using more sophisticated analysis ofdoubling strategies. The current best algorithms are 3 + p8 � 5:828-competitive deterministic and 4.311-competitive randomized [28]. For an alternative very nice presentation see [16]. The lower bounds are 2.438for deterministic algorithms [28] and 2 for randomized algorithms [51].For uniformly related machines preemptive scheduling, Qjonline-list; pmtnjCmax, we already mentionedthat it is possible to design an optimal (1-competitive) semi-online algorithm if the optimal makespan isknown in advance. Thus, by Theorem 3.1, this yields 4-competitive deterministic and 2.7183-competitiverandomized algorithms [41]. The lower bound is 2 both for deterministic and randomized algorithms [51].For unrelated machines, Rjonline-listjCmax, it is possible to obtain O(logm)-competitive deterministic al-gorithm [3, 75]. A matching lower bound of 
(logm) holds both for deterministic and randomized algorithms32



deterministic randomizedpreemption m LS upper bound lower bound upper bound lower boundnon-preemptive 2 1.618 1.618 1.618 1.528 1.5001 �(logm) 5.828 2.438 4.311 2.000preemptive 2 1.500 1.333 1.333 1.333 1.3331 �(logm) 4.000 2.000 2.718 2.000Table 4: Current bounds for Qmjonline-listjCmax and Qmjonline-list; pmtnjCmax.even in the special case of the so-called restricted assignment, where each job speci�es a set of machines onwhich it may be processed (it is processed in�nitely slowly on the others) and besides this restriction all themachines have the same speed [9]. The lower bound also works for Rjonline-list; pmtnjCmax.It is interesting that both for related and unrelated machines, the optimal algorithms are asymptoticallybetter than List Scheduling. Here List Scheduling is modi�ed so that the next job is always scheduled sothat it will �nish as early as possible (for the case of identical speed this is clearly equivalent to the moreusual formulation that the next job is scheduled on the machine with the smallest load). For unrelatedmachines, Rjonline-listjCmax, the competitive ratio of List Scheduling is exactly m [3]. For related machines,Qjonline-listjCmax and Qjonline-list; pmtnjCmax, the competitive ratio of List Scheduling is asymptotically�(logm) [38, 3, 41] (the lower bound, the upper bound, and the preemptive case, respectively). The exactcompetitive ratio for m = 2 is � and for 3 � m � 6 it is equal to 1+p(m � 1)=2 [38]; moreover for m = 2; 3it can be checked easily that there is no better deterministic algorithm.For two machines, Q2jonline-listjCmax and Q2jonline-list; pmtnjCmax, we are able to analyze the situationfurther, depending on the speeds [50]. We �rst consider the non-preemptive problem. Suppose that the speedsof the two machines are 1 and s � 1. It is easy to see that List Scheduling is the best deterministic onlinealgorithm for any choice of s. For s � � the competitive ratio is 1+ s=(s+ 1), increasing from 3=2 to �. Fors � � the competitive ratio is 1 + 1=s, decreasing from � to 1; this is the same as for the algorithm whichputs all the jobs on the faster machine. It turns out that this is also the best possible randomized algorithmfor s � 2. On the other hand, for any s < 2, randomized algorithms are better than deterministic ones, andthe overall upper bound is 1.5278. The competitive ratio of the optimal deterministic preemptive algorithmis better than the competitive ratio of the optimal non-preemptive randomized algorithm for any s � 1.Furthermore, the worst-case is the identical machine case when s = 1. In contrast, without preemption, theworst competitive ratio (both deterministic and randomized) is achieved for some s > 1 [50, 101].The current bounds for scheduling on uniformly related machines are summarized in Table 4.3.6 Semi-Online AlgorithmsIn addition to algorithms that know the optimum which we discussed in Section 3.4, the most commonlystudied semi-online variant is the one where the jobs arrive sorted according to their processing times. Incase of the makespan objective, the jobs are sorted largest �rst, i.e., by non-increasing processing time, toimprove the performance.When the jobs are sorted, the greedy online algorithmList Scheduling becomes the so-called LPT (LargestProcessing Time �rst) semi-online algorithm. We already mentioned that for P jonline-listjCmax, the com-petitive ratio of LPT is 4=3� 1=(3m), see [63]. For related machines the competitive ratio of LPT is a smallconstant, unlike List Scheduling which is only �(logm)-competitive. For Qjonline-listjCmax, the competitiveratio of LPT is between 1.52 and 1.66 [59]; a better upper bound of 1.58 is claimed in [40], but the proofappears to be incomplete. For Q2jonline-listjCmax, the complete analysis of the dependence of the compet-itive ratio on the speed ratio was given in [79]. For Qjonline-list; pmtnjCmax, the competitive ratio of LPTis 2, see [41].The semi-online case of P jonline-listjCmax and P jonline-list; pmtnjCmax was further studied in [89]. Itturns out that for P2jonline-listjCmax, LPT is an optimal deterministic algorithm. For randomized algo-rithms a better competitive ratio of 8/7 is possible and optimal. For P jonline-list; pmtnjCmax, the optimal33



competitive ratio is (1+p3)=2 � 1:336; this is surprisingly higher than the performance of LPT in the non-preemptive case. The semi-online case of Q2jonline-listjCmax and Q2jonline-list; pmtnjCmax was completelyanalyzed in [48, 49].3.7 Scheduling with RejectionsIn this version, jobs may be rejected at a certain penalty. Each job is characterized by the processing timeand the penalty. A job can either be rejected, in which case its penalty is paid, or scheduled on one of themachines, in which case its processing time contributes to the completion time of that machine (as usual).The objective is to minimize the makespan of the schedule for accepted jobs plus the sum of the penaltiesof all rejected jobs. Again, there are no additional constraints and all the machines have the same speed.The main goal of an online algorithm is to choose the correct balance between the penalties of the rejectedjobs and the increase in the makespan for the accepted jobs. At the beginning, it might have to reject somejobs if the penalty for their rejection is small compared to their processing time. However, at some point, itwould have been better to schedule some of the previously rejected jobs since the increase in the makespandue to scheduling those jobs in parallel is less than the total penalty incurred.We �rst look at deterministic algorithms in the case when preemption is not allowed [19]. At �rst it wouldseem that a good algorithm has to do well both in deciding which jobs to accept, and on which machinesto schedule the accepted jobs. However, it turns out that after the right decision is made about rejections,it is su�cient to schedule the accepted jobs using List Scheduling. This is certainly surprising, as we knowthat without rejections, List Scheduling is not optimal. Thus, it is natural to expect that any algorithm forscheduling with rejections would bene�t from using a better algorithm for scheduling the accepted jobs.We can solve this problem optimally for m = 2 and for unbounded m; the competitive ratios are � and1 + �, respectively. However, the best competitive ratio for �xed m � 3 is not known. It certainly tends to1 + �, which is the optimum for unbounded m, but the rate of convergence is not clear. While the upperbound is 1 + � � 1=m (i.e., the same rate of convergence as for List Scheduling), the lower bound is only1 + �� 1=O(logm).The lower bounds for smallm from [19] work also for preemptive deterministic algorithms, but for large myield only a lower bound of 2. An improved algorithm for deterministic preemptive scheduling was designedin [93]. It achieves competitive ratio 2:3875 for all m. An interesting question is whether a better than2-competitive algorithm can be found for m = 3: we know several di�erent 2-competitive algorithms evenwithout preemption, but the lower bound does not match this barrier.Randomized algorithms for this problem, both with and without preemption, were designed in [91, 90, 93].No algorithms better than the deterministic ones are known for large m. The lower bounds for randomizedscheduling without rejection (Table 3) clearly apply here (set the penalties in�nitely large), and no betterlower bounds are known.The results are summarized in Table 5. The deterministic lower bounds apply both for algorithms withand without preemption, with the exception of arbitrary m where the lower bound is only 2 with preemption.deterministic deterministic upper bounds randomized upper boundsm lower bounds non-preemptive preemptive non-preemptive preemptive2 � � 1:6180 � � 1.5000 1.50003 1.8392 2.0000 2.0000 1.8358 1.77744 1.9276 2.1514 2.0995 2.0544 2.02275 1.9660 2.2434 2.1581 2.1521 2.09411 1 + � � 2:6180 1 + � 2:3875 { {Table 5: Current bounds for algorithms scheduling jobs one by one with possible rejection.34



3.8 Minimizing the lp NormHere we minimize the lp norm of the vector of the loads of machines, instead of the makespan, which isequivalent to the l1 norm. Of special interest is the Euclidean l2 norm, the square root of the sum ofsquares of loads, which has a natural interpretation in load balancing [8, 6]. For identical machines, aconvexity argument implies that if all the machine loads are equal, the schedule is optimal. Thus, similar tomeasuring makespan, this performance measure quanti�es how well we can approximate this ideal schedule;however note that a single overloaded machine has a much smaller e�ect on the lp objective.Minimizing the l2 norm on identical machines was studied in [4]. List Scheduling is p4=3-competitive,and this is optimal. The performance of List Scheduling is not monotone in the number of machines. It isequal to p4=3 only for m divisible by 3; otherwise it is strictly better. More surprisingly, there exists analgorithm which is for su�ciently large m better than p4=3� � for some � > 0. Since the lower bound ofp4=3 holds for m = 3, this means that the optimal competitive ratio is also not monotone in m. This isperhaps a most interesting feature of these results: for the basic problem PmjjCmax we often expect, basedon the current results, that the competitive ratio will increase with the number of machines m; this intuitionthus fails at least for a slightly di�erent objective function. For a general p, the same approach leads also toan algorithm better than List Scheduling for large m.For unrelated machines, [6] gives a simple greedy algorithm with a competitive ratio 1 + p2 for the l2norm and O(p) for a general lp norm. In contrast to makespan, the competitive ratio is a constant that doesnot depend on the number of machines or jobs.3.9 Minimizing the Total Completion TimeIn this variant it is necessary to use idle times, as we have to �nish the jobs with short processing times �rstto minimize the total completion time. Even on a single machine, 1jonline-listjPCj , it is hard to design agood algorithm and the competitive ratio depends on the number of jobs logarithmically. More precisely,there exists a deterministic (logn)1+"-competitive algorithm on a single machine without preemptions, butno logn-competitive algorithm exists even if preemption is allowed [57].3.10 Open problemsRandomized algorithms. We still understand very little about the power of randomization in this onlineparadigm, despite some recent progress. In particular, for the basic problem P jonline-listjCmax, the lowerbound is 1.581 while the best algorithm is 1.916-competitive; this gap is quite large compared to the case ofdeterministic algorithms. It is reasonable to expect that improvements of the algorithm are more likely, butthe lower bound of [100] for P3jonline-listjCmax indicates some possibility of improving the lower bound aswell.Preemptive scheduling on related machines. In the o�ine case, QjpmtnjCmax we understand pre-emptive scheduling very well. The optimum is easy to calculate and the structure of optimal schedules iswell understood [65, 61]. In the online identical machine case, P jonline-list; pmtnjCmax we have a similarcomplete understanding of the optimal online algorithm. Despite some e�ort, the case of online schedulingon uniformly related machines, Qjonline-list; pmtnjCmax remains open. Our intuition is that, similarly as forP jonline-list; pmtnjCmax, randomization should not help and thus the deterministic 4-competitive algorithmcan be improved.AcknowledgmentsWe are grateful to many colleagues for useful comments, pointers to the literature, and manuscripts. Withoutthem this survey could not possibly cover as many results as it does.35



References[1] S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29:459{473, 1999.[2] S. Albers. On randomized online scheduling. In Proc. 34th Symp. Theory of Computing (STOC), pages134{143. ACM, 2002.[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications tomachine scheduling and virtual circuit routing. Journal of the ACM, 44:486{504, 1997.[4] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in the lp norm. InProc. 9th Symp. on Discrete Algorithms (SODA), pages 426{435. ACM/SIAM, 1998.[5] N. Avrahami and Y. Azar. Minimizing total 
ow time and total completion time with immediatedispatching. In Proc. 15th Symp. on Parallel Algorithms and Architectures (SPAA), pages 11{18.ACM, 2003.[6] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Load balancing in thelp norm. In Proc. 36th Symp. Foundations of Computer Science (FOCS), pages 383{391. IEEE, 1995.[7] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the 
ow time without migration. SIAMJournal on Computing, 31:1370{1382, 2001.[8] Y. Azar. On-line load balancing. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: TheState of the Art, pages 178{195. Springer, 1998.[9] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journal of Algorithms,18:221{237, 1995.[10] Y. Azar and O. Regev. On-line bin stretching. Theoretical Computer Science, 268:17{41, 2001.[11] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and Computation,106:234{252, 1993.[12] N. Bansal and K. Dhamdhere. Minimizing weighted 
ow time. In Proc. 14th Symp. on DiscreteAlgorithms (SODA), pages 508{516. ACM/SIAM, 2003.[13] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. Non-clairvoyant scheduling for mean slowdown.In Proc. 20th Symp. on Theoretical Aspects of Computer Science (STACS), volume 2607 of LectureNotes in Computer Science, pages 260{270. Springer, 2003.[14] N. Bansal and K. Pruhs. Server scheduling in the Lp norm: A rising tide lifts all boats. In Proc. 35thSymp. Theory of Computing (STOC), pages 242{250. ACM, 2003.[15] N. Bansal and K. Pruhs. Server scheduling in the weighted lp norm. Manuscript, 2003.[16] A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with temporary jobs.Journal of Scheduling, 3:259{272, 2000.[17] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for an ancient scheduling problem.Journal Computer Systems Science, 51:359{366, 1995.[18] Y. Bartal, H. Karlo�, and Y. Rabani. A better lower bound for on-line scheduling. InformationProcessing Letters, 50:113{116, 1994.[19] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multiprocessor schedulingwith rejection. SIAM Journal on Discrete Mathematics, 13:64{78, 2000.[20] Y. Bartal and S. Muthukrishnan. Minimizing maximum response time in scheduling broadcasts. InProc. 11th Symp. on Discrete Algorithms (SODA), pages 558{559. ACM/SIAM, 2000.36



[21] L. Becchetti and S. Leonardi. Non-clairvoyant scheduling to minimize the average 
ow time on singleand parallel machines. In Proc. 33rd Symp. Theory of Computing (STOC), pages 94{103. ACM, 2001.To appear in JACM.[22] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted 
ow time anddeadline scheduling. In RANDOM-APPROX, volume 2129 of Lecture Notes in Computer Science,pages 36{47. Springer, 2001.[23] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Semi-clairvoyant scheduling. InProc. 11th European Symp. on Algorithms (ESA), volume 2832 of Lecture Notes in Computer Science.Springer, 2003.[24] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Scheduling to minimize average stretch withoutmigration. In Proc. 11th Symp. on Discrete Algorithms (SODA), pages 548{557. ACM/SIAM, 2000.[25] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Widgerson. On the power of randomizationin on-line algorithms. In Proc. 22nd Symp. Theory of Computing (STOC), pages 379{386. ACM, 1990.[26] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling contin-uous job streams. In Proc. 9th Symp. on Discrete Algorithms (SODA), pages 270{279. ACM/SIAM,1998.[27] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch scheduling. InProc. 13th Symp. on Discrete Algorithms (SODA), pages 762{771. ACM/SIAM, 2002.[28] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. Journal ofAlgorithms, 35:108{121, 2000.[29] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. Nordic Journal of Computing,6(2):181{193, 1999.[30] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge UniversityPress, 1998.[31] R. C�aceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web proxy caching: The devil isin the details. In Proceedings of the ACM SIGMETRICS Workshop on Internet Server Performance,1998.[32] C. Chekuri, S. Khanna, and A. Kumar. Multi-processor scheduling to minimize lp norms of 
ow andstretch. Manuscript, 2003.[33] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weighted 
ow time. In Proc. 33rd Symp. Theoryof Computing (STOC), pages 84{93. ACM, 2001.[34] B. Chen, C. N. Potts, and G. J. Woeginger. A review of machine scheduling: Complexity, algorithmsand approximability. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,volume 3, pages 21{169. Kluewer, 1998.[35] B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online scheduling. Infor-mation Processing Letters, 51:219{222, 1994.[36] B. Chen, A. van Vliet, and G. J. Woeginger. New lower and upper bounds for on-line scheduling.Operations Research Letters, 16:221{230, 1994.[37] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line scheduling.Operations Research Letters, 18:127{131, 1995.[38] Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing,9:91{103, 1980. 37



[39] E. Davis and J. M. Ja�e. Algorithms for scheduling tasks on unrelated processors. Journal of theACM, 28:721{736, 1981.[40] G. Dobson. Scheduling independent tasks on uniform processors. SIAM Journal on Computing,13:705{716, 1984.[41] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related machines.Manuscript.[42] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 235:109{141, 2000.[43] J. Edmonds, S. Datta, and P. W. Dymond. Tcp is competitive against a limited adversary. In Proc.15th Symp. on Parallel Algorithms and Architectures (SPAA), pages 174{183. ACM, 2003.[44] J. Edmonds and K. Pruhs. Multicast pull scheduling: when fairness is �ne. Algorithmica, 36:315{330,2003.[45] J. Edmonds and K. Pruhs. A maiden analysis of longest wait �rst. In Proc. 15th Symp. on DiscreteAlgorithms (SODA). ACM/SIAM, 2004.[46] L. Epstein. A note on on-line scheduling with precedence constraints on identical machines. InformationProcessing Letters, 76:149{153, 2000.[47] L. Epstein. Bin stretching revisited. Acta Informatica, 39:97{117, 2003.[48] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related ma-chines. In Proc. 27th Symp. on Mathematical Foundations of Computer Science (MFCS), volume 2420of Lecture Notes in Computer Science, pages 245{256. Springer, 2002.[49] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize makespan ontwo related machines. Operations Research Letters, 30:269{275, 2002.[50] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized on-line scheduling fortwo related machines. Journal of Scheduling, 4:71{92, 2001.[51] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related machines. OperationsResearch Letters, 26(1):17{22, 2000.[52] U. Faigle, W. Kern, and G. Tur�an. On the performane of online algorithms for partition problems.Acta Cybernetica, 9:107{119, 1989.[53] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal online scheduling of parallel jobs withdependencies. Journal of Combinatorial Optimization, 1:393{411, 1998.[54] A. Feldmann, B. Maggs, J. Sgall, D. Sleator, and A. Tomkins. Competitive analysis of call admissionalgorithms that allow delay. Technical Report CMU-CS-95-102, Carnegie-Mellon University, 1995.[55] A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines. Theoretical ComputerScience, 130:49{72, 1994.[56] A. Fiat and G. J. Woeginger, editors. Online Algorithms: The State of the Art. Springer, 1998.[57] A. Fiat and G. J. Woeginger. On-line scheduling on a single machine: Minimizing the total completiontime. Acta Informatica, 36:287{293, 1999.[58] R. Fleischer and M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3:343{353, 2000.[59] D. K. Friesen. Tighter bounds for LPT scheduling on uniform processors. SIAM Journal on Computing,16:554{560, 1987. 38



[60] G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worst case ratio thanGraham's list scheduling. SIAM Journal on Computing, 22:349{355, 1993.[61] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor systems. Journal of theACM, 25:92{101, 1978.[62] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563{1581, 1966.[63] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics,17:263{269, 1969.[64] K. S. Hong and J. Y.-T. Leung. On-line scheduling of real-time tasks. IEEE Transactions on Com-puting, 41:1326{1331, 1992.[65] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling. Journal of theACM, 24:32{43, 1977.[66] B. Kalyanasundaram and K. Pruhs. Fault-tolerant scheduling. In Proc. 26th Symp. Theory of Com-puting (STOC), pages 115{124. ACM, 1994.[67] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM,47:214{221, 2000.[68] B. Kalyanasundaram and K. Pruhs. Minimizing 
ow time nonclairvoyantly. Journal of the ACM,50:551{567, 2003.[69] B. Kalyanasundaram, K. R. Pruhs, and M. Velauthapillai. Scheduling broadcasts in wireless networks.Journal of Scheduling, 4:339{354, 2001.[70] M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algorithms. Journal ofAlgorithms, 29:142{164, 1998.[71] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomizedalgorithm for the cow-path problem. Information and Computation, 131:63{79, 1996.[72] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling problem.Journal of Algorithms, 20:400{430, 1996.[73] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching. Algorithmica,3:79{119, 1988.[74] S. Leonardi. A simpler proof of preemptive 
ow-time approximation. In Approximation and On-lineAlgorithms, Lecture Notes in Computer Science. Springer, 2003.[75] S. Leonardi and A. Marchetti-Spaccamela. On-line resource management with applications to routingand scheduling. Algorithmica, 24:29{49, 1999.[76] S. Leonardi and D. Raz. Approximating total 
ow time on parallel machines. In Proc. 29th Symp.Theory of Computing (STOC), pages 110{119. ACM, 1997.[77] T. Matsumoto. Competitive analysis of the Round Robin algorithm. In Proc. 3rd International Symp.on Algorithms and Computation (ISAAC), volume 650 of Lecture Notes in Computer Science, pages71{77. Springer, 1992.[78] J. McCullough and E. Torng. SRPT optimally uses faster machines to minimize 
ow time. In Proc.15th Symp. on Discrete Algorithms (SODA). ACM/SIAM, 2004.[79] P. Mireault, J. B. Orlin, and R. V. Vohra. A parametric worst case analysis of the LPT heuristic fortwo uniform machines. Operations Research, 45:116{125, 1997.39



[80] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical Computer Science,130:17{47, 1994.[81] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Online scheduling to minimizeavarage strech. In Proc. 40th Symp. Foundations of Computer Science (FOCS), pages 433{443. IEEE,1999.[82] E. Naroska and U. Schwiegelshohn. On an on-line scheduling problem for parallel jobs. InformationProcessing Letters, 81:297{304, 2002.[83] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmenta-tion. Algorithmica, pages 163{200, 2002.[84] K. Pruhs and P. Uthaisombut. A comparison of multicast pull models. In Proc. 10th European Symp.on Algorithms (ESA), volume 2461 of Lecture Notes in Computer Science, pages 808{819. Springer,2002.[85] J. F. Rudin III. Improved Bound for the Online Scheduling Problem. PhD thesis, The University ofTexas at Dallas, 2001.[86] J. F. Rudin III and R. Chandrasekaran. Improved bound for the online scheduling problem. SIAMJournal on Computing, 32:717{735, 2003.[87] S. Sahni and Y. Cho. Nearly on line scheduling of a uniform processor system with release times.SIAM Journal on Computing, 8:275{285, 1979.[88] S. Seiden. Barely random algorithms for multiprocessor scheduling. Journal of Scheduling, 6:309{334,2003.[89] S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with decreasing job sizes. OperationsResearch Letters, 27:215{221, 2000.[90] S. S. Seiden. More multiprocessor scheduling with rejection. Technical Report Woe-16, TU-Graz, 1997.[91] S. S. Seiden. Randomization in On-line Computation. PhD thesis, University of California, Irvine,1997.[92] S. S. Seiden. Randomized online multiprocessor scheduling. Algorithmica, 28:173{216, 2000.[93] S. S. Seiden. Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science,262:437{458, 2001.[94] J. Sgall. On-line scheduling on parallel machines. PhD thesis, Technical Report CMU-CS-94-144,Carnegie-Mellon University, Pittsburgh, PA, U.S.A., 1994.[95] J. Sgall. Randomized on-line scheduling of parallel jobs. Journal of Algorithms, 21:149{175, 1996.[96] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information ProcessingLetters, 63:51{55, 1997.[97] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: The Stateof the Art, pages 196{231. Springer, 1998.[98] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line. SIAM Journalon Computing, 24:1313{1331, 1995.[99] D. Sleator and R. E. Tarjan. Amortized e�ciency of list update and paging rules. Communications ofthe ACM, 28:202{208, 1985.[100] T. Tich�y. Randomized on-line scheduling on 3 processors. Operations Research Letters, 2003. Toappear. 40



[101] J. Wen and D. Du. Preemptive on-line scheduling for two uniform processors. Operations ResearchLetters, 23:113{116, 1998.

41


