Online Scheduling

Kirk Pruhs * Jiif Sgall Eric Torng *

September 29, 2003

1 Introduction

In this chapter, we summarize research efforts on several different problems that fall under the rubric of
online scheduling. In online scheduling, the scheduler receives jobs that arrive over time, and generally
must schedule the jobs without any knowledge of the future. The lack of knowledge of the future generally
precludes the scheduler from guaranteeing optimal schedules. Thus much research has been focused on
finding scheduling algorithms that guarantee schedules that are in some way not too far from optimal.

We focus on problems that arise within the ubiquitous client-server setting. In a client-server system,
there are many clients and one server (or a perhaps a few servers). Clients submit requests for service to the
server(s) over time. In the language of scheduling, a server is a processor, and a request is a job. Applications
that motivate the research we survey include multiuser operating systems such as Unix and Windows, web
servers, database servers, name servers, and load balancers sitting in front of server farms.

The area of online scheduling is much too large for a chapter sized unabridged survey. Our goal is to
highlight the critical ideas and techniques that have driven much of the recent research and to focus attention
on the open problems that appear to be most interesting.

1.1 Online Paradigms and Notation

The idea behind an online algorithm is that the algorithm does not have access to the entire input instance
as it makes its decisions. For a thorough introduction to online algorithms that extends beyond online
scheduling algorithms, please refer to the book by Borodin and El Yaniv [30] and the collection of surveys [56].
In scheduling, we model a range of different environments which differ in the way the information is released.
These are discussed below, as well as some additional notation specific to online problems that we use to
supplement the standard three-field notation introduced in Chapter 1.

In the online-time paradigm, the scheduler must decide at each time ¢ which job to run at time¢. Problems
within the online-time model typically have release dates, and the scheduler is not aware of the existence of
a job until its release date. Once a job is released, we assume that the scheduler learns the processing time of
a job. For example, a web server serving static documents might reasonably be modeled by the online-time
model since the web server can know the size of the requested file. In contrast, in the online-time-nclv model,
the scheduler is given no information about the processing time of a job at its release date. For example, the
process scheduling component of an operating system is better modeled by the online-time-nclv model than
the online-time model since the operating system typically will not know the execution time of a process.
This lack of knowledge of the processing time is called nonclairvoyance.

*Computer Science Department. University of Pittsburgh. Pittsburgh, PA 15260 USA. E-mail kirk@cs.pitt.edu. Supported
in part by NSF grant CCR-0098752, NSF grant ANI-0123705, NSF grant ANI-0325353, and a grant from the United States Air
Force.

tMathematical Institute, AS CR, Zitna 25, CZ-11567 Praha 1, Czech Republic. E-mail sgall@math.cas.cz. Partially
supported by Institute for Theoretical Computer Science, Prague (project LNOOA056 of MSMT CR)7 grant 201/01/1195 of GA
CR, and cooperative grant KONTAKT-ME476/CCR-9988360-001 from MSMT CR and NSF.

{Department of Computer Science and Engineering. Michigan State University. East Lansing, MI 48824 USA. E-mail
torng@msu.edu. Supported in part by NSF grant CCR-9701679, NSF grant CCR-0105283, and NSF' grant EIA-0219229.

If preemption is not allowed for problems in either the online-time or online-time-nclv model, and jobs can
have arbitrary processing time, then there is usually a trivial example that shows that any online scheduler
will produce schedules that are far from optimal. This is why server systems, such as operating systems
and web servers, generally allow preemption. Thus most research in online scheduling assumes preemption
unless all jobs have similar processing times (as could be the case for a name server, for example). In the
online setting, there is another possibility, which is meaningless for offline algorithms. Namely, a running job
can be stopped and later restarted from the beginning on the same or different machine(s). Thus in order to
finish, a job has to be assigned to the same machine(s) for its whole running time without an interruption;
in the offline case this is equivalent to non-preemptive scheduling as the unfinished parts of a job can simply
be removed from the schedule. This possibility will be denoted by pmtn-restart in the middle (job) field of
the three-field notation.

In the online-list paradigm, the jobs are ordered in a list/sequence. As soon as the job is presented, we
know all its characteristics, including the processing time. The job has to be assigned to some machine and
time slots (consistent with the restrictions of the given problem) before the next job is seen. The scheduling
algorithm cannot change this assignment once it has been made. In the online-list model, in contrast
to the online-time and online-time-nclv models, the time between when jobs are assigned is irrelevant or
meaningless. The online-list model might be an appropriate model for a load balancer sitting in front of a
server farm.

The notation online-time, online-time-nclv or online-list will be included in the job field of the three-field
notation. So, for example, 1|online-time, r;, pmtn| Y F; represents the problem of minimizing total flow time
on identical machines in the online-time model with preemption, which models the problem faced by a web
server. And P|online-list|Cpyax is the problem of minimizing the makespan on identical machines when jobs
are presented one by one.

1.2 Competitive Analysis

Given that an online algorithm has only partial knowledge of the input instance, for most problems, no online
algorithm can produce an optimal solution for all input instances. Probably the most obvious method for
evaluating the worst-case performance of an algorithm is the worst-case relative error between the quality of
the computed solution for an instance and the quality of the corresponding optimal solution. For example,
this is the standard technique for evaluating polynomial-time approximation algorithms for NP-hard prob-
lems. In the context of online algorithms, this method is called competitive analysis [73, 99]. Let f(A,I)
denote the objective value of the schedule produced by algorithm A on input instance I where A could be
an online or offline algorithm and f be an objective value that we are trying to minimize such as makespan
or total flow time. We say that an online algorithm A is c-competitive if f(A,I) < ¢- f(OPT,I) + b for
any input instance I for a fixed constant b where OPT is the optimal offline scheduling algorithm for this
problem. For most of the problems we consider, we can ignore the additive constant b. This follows from the
fact that scheduling problems are typically scalable; by scaling all the jobs so that the objective is arbitrarily
large, the possible benefit of the additive constant disappears. The competitive ratio of algorithm A, denoted
ca, is the infimum of ¢ such that A is c-competitive.

The goal in any problem is to find an algorithm with a competitive ratio as small as possible. Ideally,
this competitive ratio should be a constant independent of any parameter of the input instance such as the
number of jobs faced, but we shall see this is not always possible.

1.3 Worst-case Analysis and Other Alternatives

Competitive analysis allows us to prove lower bounds using the so-called adversary method. This means
that a malicious omnipotent adversary uses the partial schedule generated by the online algorithm to decide
what further jobs should be generated. If the algorithms considered are deterministic, this process can be
simulated beforehand, and thus it provides a lower bound on the competitive ratio.

For many scheduling problems, worst case competitive analysis gives quite strong lower bounds. For
example, for the problem of 1|online-time-nclv, r;, pmtn| > F;, the competitive ratio of every deterministic
algorithm is Q(n'/3), see [80]. Consider for the moment the possibility that we have an O(n'/3)-competitive
algorithm A for this problem. In absence of other information, this is positive evidence of the superiority

of A to other possible algorithms with higher competitive ratios. However, given the magnitude of the
O(nl/?’) guarantee on relative error, it is probable that an operating system designer would not take this as
strong evidence to adopt A. Such situations have led to the development of many alternative techniques for
analyzing online algorithms.

Randomized algorithms. One standard alternative is to consider randomized algorithms that make
random choices as they construct a schedule. We say that a randomized algorithm A is c-competitive if
E[f(A,I)] <ec- f(OPT,I) for all input instances I where E[f(A,)] is the expected cost of algorithm A on
input instance I. This corresponds to the so-called oblivious adversary in online algorithms terminology [25,
30]. An oblivious adversary has to commit to an input instance a priori without any knowledge of the random
events internal to the algorithm. Intuitively, this takes away the ‘unfair’ power of the adversary to completely
predict the behavior of the algorithm. The assumption of an oblivious adversary is appropriate for scheduling
problems where the scheduling decisions do not affect future input. Even in situations where the oblivious
adversary assumption is not fully justified, such an analysis might still provide new insights. For some online
scheduling problems, the use of randomized algorithms dramatically decreases the competitive ratio. For
example, the competitive ratio for 1|online-time-nclv, r;, pmtn| Y F; drops from Q(n'/3) to O(logn) when
one allows randomized algorithms against an oblivious adversary [21].

The most common technique for proving a lower bound on the competitive ratio for any randomized
algorithm against an oblivious adversary is Yao’s technique. In Yao’s technique you lower bound the ex-
pected competitive ratio of any deterministic algorithm on an input distribution of your choosing. Generally
this expected lower bound for deterministic algorithms also then lower bounds the competitive ratio for
any randomized algorithm against an oblivious adversary. However, there are some cases, particularly for
maximization problems, where one needs to be a bit careful in applying this technique. For more information

see [30].

Resource augmentation. Another alternative that has proven especially useful in the context of online
scheduling is resource augmentation. The recent popularity of resource augmentation analysis of scheduling
problems emanates from a paper by Kalyanasundaram and Pruhs [67]. The term resource augmentation, and
the associated terminology we use, was introduced by Phillips, Stein, Torng and Wein [83]. In this model,
we augment the online algorithm with extra resources in the form of faster processors or extra processors.
For now, we focus on faster processors as most resource augmentation results utilize faster processors. Let
A; denote an algorithm that works with processors of speed s where s > 1. We say that an online algorithm
A is an s-speed c-competitive algorithm if f(A,,I) < c¢- f(OPTy,I) for all input instances I.

Research with resource augmentation has focused on two primary goals. The first focuses on minimizing
the speed subject to the constraint that the competitive ratio is O(1). To understand this goal, we first need
to understand how client-server systems typically behave. Figure 1(a) depicts “typical” average performance
curves for client-server systems. That is, the average performance at loads below capacity is good, and the
average performance above capacity is intolerable. So, in some sense, one can specify the performance of
such a system by simply giving the value of the capacity of the system. Note that formally defining load
(or capacity) is not easy, but load generally reflects the size of jobs and their rate of arrival over time. We
next need to understand what it means to have s-speed processors. An alternative interpretation is that
the jobs created have processing time p;/s. That is, we can interpret the load as shrinking by a factor of
s. This means that an s-speed c-competitive algorithm A performs at most ¢ times worse than the optimal
performance on inputs with s times higher load. Assuming that the optimal performance does correspond
to the curves in Figure 1(a) and is either good or intolerable, a modest ¢ times either good or intolerable
still gives you quite good or intolerable. So an s-speed c-competitive algorithm should perform reasonably
well up to load 1/s of the capacity of the system as long as ¢ is of modest size. Thus an ideal resource
augmentation result would be to prove an algorithm is (1 + ¢)-speed O(1)-competitive.

We call a (1 4 €)-speed O(1)-competitive algorithm almost fully scalable since it should perform well up
to almost the peak capacity of the system. For many scheduling problems, there are almost fully scalable
algorithms even though there are no O(1)-competitive algorithms. The intuition behind this is that if a
system’s load is near its capacity, then the scheduler has no time to recover from even small mistakes. Note
many of the strong lower bounds for online scheduling problems utilize input instances where the load is

essentially the capacity of the system.

Average
Performance Performance

Optimal

i
'
'
'
'
L}
'l
Average :
'
Online
'
'
1
'
'
'
'

1

.
-

Load Load

(a) (b)

Figure 1: (a) Standard performance curve, and (b) The worst possible performance curve of an s-speed

c-competitive online algorithm.

The second goal is to find s-speed 1-competitive algorithms for these problems for as small a value of s
as possible. The intuition behind these results is that s represents the tradeoff between extra resources and
the partial knowledge that the online algorithm faces. That is, with s times faster processors, the online
algorithm is able to overcome its lack of knowledge of the input instance and produce a schedule that is at
least as good as the one produced by the optimal offline algorithm.

Semi-online algorithms. One reason for a relatively poor performance of online algorithms is a possibly
arbitrarily large variance of job parameters. For example, many greedy algorithms perform badly if they
have to handle many jobs of similar size and a few very large jobs. Such inputs may be rare in applications,
and we may want to avoid them in the analysis by giving the algorithm some additional knowledge. A
semi-online algorithm may know in advance the value of the optimum, the size of the largest job, or the
jobs may be required to arrive sorted. Such algorithms are often studied in the online-list environment;
we shall mention a few examples in that section. While such algorithms may not be implementable in an
online environment, the hope is that they will reveal some interesting aspects of the problem not revealed by
other analysis. Also, a semi-online algorithm with known optimal makespan can be used to create an online
algorithm using the so-called doubling strategy, see Section 3.4. Another related possibility is to make the
algorithm general, but study the dependence of the competitive ratio on the variance of some parameter (for
example, the ratio of the largest and the smallest processing times).

Average-Case Analysis. Average-case analysis of algorithms is desirable if we have a reasonable approxi-
mation of what the input distribution should be. For some client server systems, this is known. For example,
traffic for a web server is often modeled using a Poisson distribution for job arrivals and independent identical
Zipf distributions for job lengths [31].

While there are many alternative analysis options, we note that worst-case analysis of online algorithms
is of fundamental importance. In addition to the standard arguments in its favor (guarantee under any
circumstances, etc.), in many online systems, positive feedback appears and thus bad situations may happen
more often than one would expect. For example, in many embedded scheduling systems, a request not

serviced sufficiently quickly may be reissued.

1.4 History

Many natural heuristics for scheduling are in fact online algorithms; thus some of the early scheduling
literature prove bounds on the performance of online algorithms, in current terminology.

The first proof of competitiveness of an online algorithm for a scheduling problem, and perhaps for any
problem, was given by Graham in 1966 [62]. Tt is quite remarkable that this happened at about the same time
as Edmonds discovered his famous polynomial time algorithm for matching in graphs, long before notions
like polynomial time and NP-hard problems were standard.

Graham [62] studied a simple deterministic greedy algorithm, now commonly called List Scheduling, for
P||Chax- Each job is scheduled to a machine with currently the smallest load (total size of jobs assigned
to it). Graham proved that the job arrival order can change the resulting makespan by a factor of at
most 2 — 1/m and that this bound is the best possible. Since this algorithm and a slightly refined analysis
works in all three online environments we consider, even with release times and precedence constraints
if jobs arrive over time, we get a (2 — 1/m)-competitive online algorithm for Pm|online-list, 7;|Cmax and
Pm|online-time-nclv, prec, ;| Cmax.

Graham [62] even considered the case when the number of machines changes, again giving tight bounds for
this algorithm. Today we may view this as a result on resource augmentation. In the follow-up paper [63],
Graham shows that the factor of 2 — 1/m decreases to 4/3 — 1/(3m) if we require the jobs to arrive in
a sequence sorted according to non-increasing processing times. Thus this is a semi-online algorithm for
Pm]online-list|Cyyax.

Two other early papers that contain results about online scheduling algorithms are [87, 39]. The first one
gives an optimal (1-competitive) algorithm for Plonline-time, pmtn|Cpnax and explicitly mentions that the
algorithm is online. (Actually, the algorithm is not quite online, since it assumes that at any time, the next
release time of a job is known. This additional assumption was later removed in [64].) The second paper
is, to our best knowledge, the first one that states explicitly a lower bound on the performance ratio of any
online algorithm for some scheduling problem, namely the bound of €(y/m) for @m|online-time-nclv|Cyax;
the paper even suggests that restarts may be helpful, a conjecture later proven to be correct [98].

Around 1990 new results were discovered concerning many variants of online scheduling, both old and
new. The development over the last 15 years is the main topic of this chapter.

1.5 Organization of the Chapter

In Section 2, we focus on the problem of scheduling jobs that arrive over time, both clairvoyantly and
nonclairvoyantly. We focus our efforts primarily on minimizing total flow time and related objective functions,
but we also briefly discuss related results on other objective functions. In Section 3, we focus on the problem
of scheduling jobs one by one. As nonclairvoyance does not really make sense in this model, we cover only
clairvoyant algorithms. Most research in this area has focused on minimizing the makespan.

1.6 Related Areas

As we stated earlier, we do not provide a complete overview of all research in online scheduling. We admit
that our choices are necessarily idiosyncratic.

One particularly interesting and important class of problems that we do not cover is that of real-time
scheduling where jobs have deadlines. This topic is covered in Chapter 33 of this book.

We do not cover any of results for minimizing total completion time or total weighted completion time.
Some discussion of offline algorithms for these problems can be found in Chapter 13 of this book. Note
several of the techniques used for offline algorithms can be adapted to construct online algorithms.

There seem to be only a limited amount of results concerning online shop scheduling, we refer to the
survey [34] for some references.

We also do not cover any average-case analysis results in this chapter. More information can be found
in part V of this book and in particular in Chapter 38.

2 Jobs that Arrive Over Time

In this section we discuss online scheduling problems in the job model online-time.

2.1 Standard Algorithms

Most results in the literature end up analyzing one of a handful of standard algorithms. We now intro-
duce these algorithms, along with their standard abbreviations and some brief comments. The standard
clairvoyant algorithms are:

SRPT The algorithm Shortest Remaining Processing Time always runs the job with the least remaining
work. It is well known that SRPT is optimal for average flow time on 1 processor.

FIFO The algorithm First In First Out always runs the job with the earliest release time. It is well known
that FIFO is optimal for maximum flow time on 1 processor. FIFO is also called First Come First
Served in the literature.

SJF The algorithm Shortest Job First always runs the job with the least initial work. For resource aug-
mentation analysis results, SJF is often easier to analyze than SRPT.

HDF The algorithm Highest Density First always runs the job with the highest density, which is the weight
of the job divided by the initial work of the job.

The standard nonclairvoyant algorithms are:

RR The algorithm Round Robin devotes an equal amount of processing resources to all jobs. An under-
standing of RR is important because it is the underlying scheduling algorithm for many technologies.
For example, the congestion control protocol within the ubiquitous TCP Internet protocol can be
viewed as scheduling connections through a single bottleneck using RR. This algorithm is also called
Processor Sharing, or Equi-Partition.

SETF The algorithm Shortest Elapsed Time First devotes all the resources to the job that has been pro-
cessed the least. In the case of ties, this amounts to RR on the jobs that have been processed the
least. While RR perhaps most intuitively captures the notion of fairness, SETF can be seen as fair in
an affirmative action sense of fairness.

MLF The algorithm Multi-Level Feedback algorithm can be viewed as mimicking SETF, while keeping the
number of preemptions per job to be logarithmic. In most real systems, preemptions take a nontrivial
amount of time. In MLF, there are a collection Qg, @1, . .. of queues. There is a target processing time
T; associated with each queue. Typically, 7; = 2/t1, but some results require more slowly growing
targets, e.g. T; = (1 + e)“’l. Each job J; gets processed for T; — T;_; units of time while in queue @);
before being promoted to the next queue, Q;11. MLF maintains the invariant that it is always running
the job in the front of the lowest nonempty queue.

It is of natural interest to ask about the scheduling algorithms used by current server technology. Un-
fortunately, because of the messiness of real software, it is often debatable what the best abstraction of the
implemented algorithm is. Let us give a couple of examples. Currently the most commonly used web server
software is Apache. The underlying scheduler for the Apache is usually described to be FIFO. But it would
probably be more accurate to say that threads are allocated to pending requests on a FIFO basis, and then
threads are scheduled using another algorithm. Often it is reported that the underlying process scheduling
algorithm for the Unix and Windows NT operating systems is MLF. But in Unix and NT there are only
a fixed number of queues, where the lowest priority queue may be scheduled using RR. Thus whether the
underlying scheduler is best viewed as MLF or RR depends on the relationship between the job sizes and
the largest job quantum.

2.2 Objective Functions

Perhaps the most intuitive measure of Quality of Service (QoS) received by an individual job .J; is the flow
time F; = C; — r;. The terminology is not standard, and flow time is also called response time, wait time,
latency etc. Another intuitive QoS measure for a job J; is the stretch S; = (Cy — r;)/p;. If a job has stretch
s, then it appears to the client that it received dedicated service from a speed 1/s processor. One motivation

for considering stretch is that a human user may have some feeling for the work of a job. For example, in
the setting of a web server, the user may have some knowledge about the size of the requested document
(for example the user may know that video documents are generally larger than text documents) and may
be willing to tolerate a larger response time for larger documents.

In order to get a QoS measure for a collection of jobs, one needs to combine the QoS measures for the
individual jobs in some way. Almost all the literature uses an I, norm for some 1 < p < oco. For example,

the [, norm of the flow times is (3., Fl»p)l/p.

By far the most commonly used QoS measure in the computer systems literature is average flow time,
that is, the [y norm of flow times. Schedules with good average QoS may still provide very bad QoS to some
small number of jobs. In the computer systems literature these jobs are said to be starved. Some scheduling
systems such as process scheduling in Unix have mechanisms to try to prevent starvation. To measure how
well a schedule avoids starvation, one may use the /., norm. However, an optimal schedule under the /.,
norm may provide relatively lousy service to the majority of jobs. A common compromise in many settings
is the [, norm, for something like p = 2 or p = 3. The I, 1 < p < oo, objective function still considers the
average in the sense that it takes into account all values, but because zF is strictly a convex function of z,
the [, norm more severely penalizes outliers than the standard /; norm.

2.3 Notation and Analysis Techniques

If A is an algorithm and T is an input instance, then A(J) will refer to the schedule that A outputs on I.
If F is an objective function and S is a schedule, then F(S) is the value of the objective function on that
schedule. OPT generally refers to the optimal schedule.

A common difficulty in presenting scheduling results is keeping the notational complexity manageable.
One technique to achieve this, which we will adopt, is to drop notation when it is understood. For example,
A may refer to the schedule that algorithm A produces on some understood input, as well the value of some
understood objective function on that schedule.

The majority of analyses in this area use local competitiveness. Let A(¢) be the rate at which the
objective function is increasing at time ¢ for the scheduling algorithm A. Generally, A(¢) has a nice physical
interpretation. For example, if the objective function is total flow time, then A(t) is the number of unfinished
jobs at time ¢.

A local competitiveness argument has the following form. The argument starts by fixing an arbitrary
time t. The argument then shows that A(t) < ¢-OPT(t), where OPT(t) is the schedule that minimizes the
rate of the increase of the objective function for the specific time ¢ under consideration. So if the objective
function was average flow time, OPT(t) would be the schedule that minimizes the number of unfinished
jobs at time t. Note that this gives the adversary some advantage since she is not constrained to have any
consistency between the schedules OPT(t) and OPT(¢') for two different times. But the compensation for
the human prover is that the structure of the schedules O PT () are often simpler to deal with than globally
optimal schedules. It then immediately follows that A is c-competitive in the global sense since

A:/ A(t)dtg/ c-OPT(t)dt < c-OPT
0 0

The condition that A(f) < ¢ - OPT(t), is called local c-competitiveness. Note that in any local ¢-
competitiveness argument, it must be the case that ¢ > 1. To see this consider an instance consisting
of just one job.

Sometimes a local competitiveness argument is not possible because no matter what the online algorithm
does, the adversary can get in the lead for at least a short period of time. In general, if a local competitiveness
argument is not possible, there is usually a relatively straightforward instance that formally demonstrates
this. Also in general, arguments that do not use local competitiveness are more complicated. We will
particularly emphasize the analyses in the literature that do not use local competitiveness.

Often our competitive ratios will depend on some parameter. Following standard convention we generally
use n to denote the number of jobs, and m to denote the number of processors. We use P4, to denote the
maximum processing time of any job, P, to denote the minimum processing time of any job, and use P
to denote Pae/Prin-

In the context of resource augmentation results, or other results where there are variable speed processors,
the processing time of a job is not fixed. So it no longer makes sense to call p; processing time. Instead, p;
is usually referred to as the work of a job. The time that a job is processed is then its work divided by the
average speed at which it is processed.

2.4 Clairvoyant Scheduling to Minimize Average/Maximum Flow/Stretch

In this subsection, we focus on the online-time model where the scheduling algorithms know the processing
requirements of jobs as soon as they are released. We first cover results for the total flow time and total
stretch objective functions that measure average response time for clients. We then discuss results for the max
flow and max stretch objective functions that measure server fairness to outlier jobs. In both subsections,
we first summarize the results and then highlight some of the key proofs behind these results. We assume
that the algorithms are preemptive except when considering maximum flow.

2.4.1 Total Flow Time and Total Stretch

For both single machine scheduling and parallel machine scheduling, SRPT has, within constant factors,
the best possible competitive ratio of any online algorithm for minimizing both total flow time and to-
tal stretch. On a single machine, SRPT is an optimal algorithm for minimizing total flow time, i.e.,
1|online-time, pmtn, ;| Y F;. On parallel machines, it is ©(min(log P, log n/m))-competitive for minimiz-
ing total flow time, i.e., P|online-time, pmtn,r;| > F}, and this is known to be optimal within constant
factors [76]. The lower bound applies to randomized as well as deterministic online algorithms. A simpler
analysis of SRPT’s performance for minimizing flow time is available in [74]. Applying resource augmentation
to Plonline-time, pmtn, r;| > F;, Phillips, Stein, Torng, and Wein showed that SRPT is a (2 — 1/m)-speed
1-competitive algorithm for minimizing total flow time [83]. McCullough and Torng improved this result
by showing that SRPT is an s-speed 1/s-competitive for minimizing total flow time for s > 2 — 1/m [78].
That is, SRPT “optimally” uses its faster processors. Meanwhile, SRPT is 2-competitive for minimizing
total stretch on a single machine, 1|online-time, pmtn,r;| > S;, it is 14-competitive for minimizing total
stretch on parallel machines, P|online-time, pmtn, r;| Y S;, and no 1-competitive online algorithm exists for
minimizing total stretch on a single machine or parallel machines [81].

While SRPT has essentially the best possible competitive ratio, it utilizes both preemptions and job
migrations to achieve its performance. Awerbuch, Azar, Leonardi, and Regev developed an algorithm without
job migration (each job is processed on only one machine) that is (O(min(log P, logn))-competitive with
respect to total flow time [7] and 37-competitive with respect to total stretch [24]. Chekuri, Khanna, and Zhu
developed a related algorithm without migration that is (O(min(log P, logn/m))-competitive with respect to
total flow time and 17.32-competitive with respect to total stretch [33]. If migration is allowed, a modified
algorithm is 9.82-competitive for minimizing total stretch [33]. While these algorithms never migrate jobs,
they do hold some jobs in a central pool after their release date. Avrahami and Azar developed an algorithm
without migration with immediate dispatch (each job is assigned to a machine upon its release) that is
O(min(log P, logn))-competitive for minimizing total flow time [5]. Chekuri, Khanna, and Kumar have
shown that Avrahami and Azar’s immediate dispatch algorithm is almost fully scalable for minimizing both
total flow time and total stretch [32].

The difference between one machine and parallel machines. We now examine why online algorithms
can do well for minimizing total flow time on a single machine but cannot do well for minimizing total flow
time on parallel machines. The key observation is that for any time ¢ on a single machine, SRPT has
completed as many jobs as any other algorithm.

The following notation will be used throughout this subsection. Let A(t) be both the set of unfinished
jobs for algorithm A applied to input instance I at time ¢ as well as the number of jobs in this set. The
specific meaning should be clear from context. Furthermore, let A;(t) be the jth smallest job in A(t) as well
as that job’s remaining processing time, and let A7(t) be the jth largest job in A(t) as well as that job’s
remaining processing time. Again, the specific meaning should be clear from context.

Algorithm Total Flow Time Total Stretch
Uniprocessor Parallel Machines Uniprocessor | Parallel Machines

Best Upper 1 ©(min(log P, log n/m)) 2 9.82

Bound

Best Lower 1 ©(min(log P, log n/m)) 1.036 1.093

Bound

SRPT 1 ©(min(log P, log n/m)) 2 14

Speed-s SRPT 1/s 1/s ? ?

s>2—1/m

No migration ©(min(log P, log n/m)) 17.32

Immediate dispatch ©(min(log P, logn)) ?

Speed-(1 + ¢) O(1+ 1/¢) O(1+ 1/¢)

immediate dispatch

Table 1: Summary of results for minimizing total flow time and total stretch for single processor and parallel
machines.

Lemma 2.1 Consider any input instance I, and schedule S, and any time t. When we consider a single
machine environment, SRPT(t) < 5(t).

To prove this, we typically prove a stronger result first.

Lemma 2.2 Consider any input instance I, any schedule S that never idles the machine unnecessarily,
any time t, and any inleger k > 0. When we consider a single machine environment, Z?:l SRPTI(t) >

Yo S (t)

Lemma 2.2 implies Lemma 2.1. Consider any schedule S for some input instance I at an arbitrary time
t. We first observe that fofT(t) SRPTI(t) = Zf(tf S7(t) since neither algorithm ever unnecessarily idles

the processor. Suppose S(t) < SRPT(t) and let y = S(¢). Then it must be the case that Zgzl Si(t) >
SRPTI(t). Since this contradicts Lemma 2.2, it follows that S(t) > SRPT(t).

Note that the number of unfinished jobs is the weight of the schedule at any time, and thus SRPT is
locally 1-competitive on a single machine. No comparable guarantee can be made in the parallel machine
environment, even for randomized algorithms. In particular, no online algorithm can be locally c-competitive
for any constant ¢ as demonstrated by the following proof from Leonardi and Raz [76].

Theorem 2.3 Any randomized online algorithm for Plonline-time, pmtn, v;| > F; is Q(log P)-competitive.
Likewise, any such algorithm is Q(log(n/m))-competitive.

Proof Sketch. We focus on deterministic algorithms but the argument is essentially unchanged for ran-
domized algorithms. The lower bound is obtained by considering a family of input instances composed of
repeating phases P; for ¢ > 0 followed eventually by a stream of short jobs. The first phase Py is organized
as follows. At time 0, release a collection of m/2 long jobs of size P. At times 0 through P/2 — 1, release a
collection of m short jobs of size 1. One algorithm A; finishes all the short jobs by time P/2 by devoting all
m machines to the short jobs from time 0 to time P/2. A second algorithm A, finishes all jobs by time P
by devoting m/2 of the machines to the long jobs and the other m/2 machines to the short jobs.

If an online algorithm A is not locally (log P)-competitive with A; at time P/2, we introduce m jobs of
size 1 for P? time units starting at time P/2. It can be easily seen that the competitive ratio of any such
algorithm A will be Q(log P). Since n = O(mP?), it follows that the algorithm will also be Q(log(n/m)).

Thus, we can focus our attention on algorithms that are locally (log P)-competitive with algorithm A;
at time P/2. Since A1(P/2) = m/2, this means that A must finish all but roughly mlog P short jobs by

time P/2. This means that at most mlog P time units can be devoted to the long jobs before time P/2. If
P is sufficiently larger than m, this means that the m/2 long jobs will still have remaining processing times
of essentially P/2 at time P.

Phase F; for ¢ > 1 has an initial release time of R; = 2P — P/Qi_1 and a “halfway” time of H; =
R; + P/2=2. The m/2 long jobs of length P/2! are released at time R; while the short jobs of length 1
are released at times R; through H; — 1. As before, there is an algorithm A; that finishes all the short
jobs of phase P; by time H; while another algorithm Ay finishes all the jobs of phase P; by R;;1. Similar
to the analysis of phase Py, any online algorithm that is not locally (log P)-competitive with algorithm A4
at time H; has a competitive ratio of Q(log P) and Q(log(n/m)). Thus, we restrict our attention to online
algorithms that are locally (log P)-competitive with the algorithm A; that finishes all short jobs of phase P;
by time H;. After phase Piogp_1, such an online algorithm will not have finished any of its long jobs from
any phase. Thus, the online algorithm will have m/2log P jobs left while O PT will have no jobs left. We
now introduce a stream of m jobs of length 1 for P? time units, and these algorithms also have competitive
ratios of Q(log P) and Q(log(n/m)), and the result follows. [

The structure of SRPT’s extra jobs. From the lower bound argument above, we see that unlike in the
single machine case, SRPT can idle some of the parallel machines unnecessarily leading to situations where
SRPT has many more unfinished jobs than some other schedule for the same input instance. However,
Leonardi and Raz were able to show that while SRPT can have arbitrarily more extra jobs, there is a
structure to these extra jobs. This leads to an upper bound on SRPT’s flow time. We present a brief
analysis of SRPT utilizing crucial ideas from [76] and [81].

The concept of volume [76] captures the total remaining work that needs to be completed at any time.
For any schedule S, any input instance I, any time ¢, let the volume vol(S,t) = Zj S;(t) be the sum of
remaining processing times of jobs in S(t). Let the volume difference V/(S,t) = vol(SRPT,t) — vol(S,t) be
the difference in volume between SRPT’s schedule and any other schedule S. We will be interested in focusing
on some restricted subsets of jobs when looking at volumes and volume differences. Let vol(9,t,) be the
sum of remaining processing times in S(¢) when restricted to jobs of size at most #, and let V/(S,¢,2) =
vol(SRPT,t,x) —vol(S,t, x).

The following proof from [81] provides a bound on V'(S,t, z).

Lemma 2.4 For any time t, any inpul instance I, any real x, and any schedule S, V'(S,t,) < mx.

Proof Sketch. Suppose there are at most m jobs with remaining processing times at most x in SRPT(t).
Then clearly vol(SRPT,t,z) < mx and the result follows. Thus assume there are more than m jobs with
remaining processing times at most « in SRPT(t).

Let t' be the last moment before time ¢ where fewer than m jobs of remaining processing time at most =
exist in SRPT’s schedule. To simplify the proof description, we also use ¢’ to denote the moment immediately
after ¢’ (i.e. the moment where there are now more than m jobs with remaining processing time at most
z in SRPT(t')). If no such time exists, ¢ = 0. Clearly, during the interval (#,¢], SRPT will devote all m
machines to jobs with remaining processing times at most x, so we can bound V'(S,t,z) by V/(S,t', z).

We now analyze V'(S,t,2). There were y < m jobs of size at most x at time ¢’. These contribute
at most yr work to vol(SRPT,t',x). New jobs with processing times at most « might arrive, but these
jobs will contribute to both vol(SRPT,t',x) and vol(S,t', z), so they do not affect V'(S,t’,). Finally, the
m — y machines not working on jobs with remaining processing times at most may create m — y jobs with
remaining processing times of x. No other jobs of size at most x can be created at time t' and the result
follows. [

Applying a result from [81], we derive the following characterization of the extra jobs in SRPT’s schedule.
We first consider the case where S has finished all jobs at time ¢.

Lemma 2.5 For any input instance I, for any schedule S, any time t where S(t) = 0, and any i <
SRPT(t) — 2m, SRPTy1i(t) > Prin(m/(m — 1))t fori > 0, and the sum of these 2m + i smallest jobs in
SRPT(t) is at least mPpin(m/(m — 1))%.

10

Proof Sketch. We prove this result by induction on . We first show the base case for i = 0. SRPT can
have at most m jobs with remaining processing time less than P,,;, as such a job will never be preempted
by a newly arriving job. The next m smallest jobs in SRPT’s schedule must have size at least P,,;, and the
base case follows. We now assume the result holds for some n and show that it applies for n + 1.

By the induction hypothesis, we know that the sum of the 2m + n smallest jobs in SRPT(t) >
M Prin(m/(m—1))". Let y denote the size of the (2m+n+ 1)st smallest job in SRPT(t). From Lemma 2.4,
we have that V'(S,¢,y) < my. Since vol(S,t) = 0, this means vol(SRPT,?,y) < my. However, we know
that vol(SRPT,t,y) > mPmin(m/(m — 1))” + y. Thus, we derive that my > mPon(m/(m —1))" + y
which means that y = SRPTymint1(t) > Pmin(m/(m — 1))"T! completing the first part of the induction.
Adding this lower bound on SRPT2m4n+1(t) with the lower bound on the sum of the 2m 4+ n smallest jobs
in SRPT(t) completes the second part of the induction and the result follows. [|

We can extend this result and eliminate the restriction that S(¢) = 0 as follows.

Lemma 2.6 For any input instance I, for any schedule S, any time t, and any i < SRPT(t) —2m — S(t),
SRBPTymtivst)(t) > Pnin(m/(m —1))".

Proof Sketch. The key observation is that an unfinished job j € S(¢) of size z cannot increase the number of
jobs in SRPT(t) by more than one, and this job must have size at least z. Consider for example the job S1 ()
of size z. Despite the existence of job Sy (t), vol(S,t,y) = 0 for all y < z, and thus vol(SRPT,t,y) < my.
The fact that vol(S,t, z) = z (assuming no other jobs of size z are in S(¢)) implies vol (SRPT,t,z) < mz+z
which allows the addition of one job of size at least z to SRPT(¢) in addition to the jobs generated by the
argument of Lemma 2.6. |

With this result, we can now derive the following bound on SRPT(t).
Theorem 2.7 For any input instance I, any schedule S, and any time t, SRPT(t) < S(t) + m(2 4+ In P).

Proof Sketch. Applying Corollary 2.6, we have that SRPT(t) < S(t) + 2m + log,,/(m—1) P- Now
(m/(m—1))™ = (14+1/(m —1))™ > e for m > 2. Thus, log,,/(,_1) P < mIn P and the result follows. =

To derive the upper bound on SRPT’s flow time, we first observe that the contribution of jobs in SRPT(¥)
that correspond to jobs in S(¢) to SRPT’s flow time is at most the total flow time incurred by S(I). We
now divide time into two categories: intervals where all m machines are busy and intervals where some
machines are idle. SRPT can only have extra jobs during busy times. If we focus only on the active jobs
during these busy times, their contribution to SRPT’s flow time is at most the sum of processing times
of jobs, and this is clearly a lower bound on the optimal flow time. Note there are m active jobs at any
time during these busy intervals. Thus, the at most O(mlog P) extra jobs in SRPT’s schedule during these
busy intervals is at most O(log P) more than the m active jobs, and it then follows that SRPT is O(log P)-
competitive for the problem of minimizing total flow time, P|online-time, pmtn, r;|>_ F;. To prove that
SRPT is O(log(n/m))-competitive requires more sophisticated arguments which we omit.

Eliminating migration and immediate dispatch. The key idea in algorithms that eliminate migration
is the idea of classifying jobs by size [7, 33, 5]. In [7], jobs are classified as follows: a job j whose remaining
processing time is in [2%, 2¥+1) is in class k for —oo < k < co. Note that jobs change classes as they execute.
This class definition reflects the structure of extra jobs in SRPT’s schedule first observed in [76].

The algorithm A uses the following data structures to organize the jobs. There is a central pool containing
jobs not yet assigned to any machine. With each machine, we associate a stack to hold jobs currently assigned
to that machine.

The algorithm A works as follows. Each machine processes the job at the top of its stack. When a new
job arrives, the algorithm looks for a machine that is idle or currently processing a job of a higher class
than the new job. If it finds one, the new job is pushed into that machine’s stack and its processing begins.
Otherwise, the job enters the central pool. Finally, if a job is completed on some machine, the algorithm
compares the job at the top of the stack of that machine with the minimum class of any job in the pool. If
the minimum in the pool is smaller than the class of the job on top of the stack, then any job in the pool
of that minimum class is then pushed onto that stack. Using ideas similar to those used in [76], they derive
the following result.

11

Lemma 2.8 For any input instance I, for any schedule S, and for any time t when all m machines are

busy, A(t) < 25(t) + mO(log P).

Again, this leads to the result that the algorithm is O(log P)-competitive. With more work, this algorithm
can be shown to be O(logn)-competitive, slightly worse than O(log(n/m))-competitive.

New algorithms proposed in [33] achieve the same bounds as SRPT within constant factors for minimizing
total flow time by modifying the class definition from [7]. A job is now assigned to class k if its original
processing time is in the range [2%,2¥%1). Thus, the class of a job does not change as it executes. This
simplifies the analysis of their algorithm, particularly when considering total stretch. Furthermore, their
simpler analysis allows the optimization of the constant used to define classes (the definitions above use
constant 2).

A new algorithm that dispenses with the central pool of unassigned jobs was proposed in [5]. That is, each
job is immediately assigned to a machine, and there is no migration of jobs. They show that this algorithm is
O(min(log P, log n))-competitive for minimizing total flow time on parallel machines. This algorithm uses the
class definition of [33]. When a job j of class k arrives, it is assigned to the machine that has been assigned
the minimum total processing time of jobs of class k so far. That is, Graham’s List Scheduling rule is used
to assign jobs to machines within each class of jobs. Note that this assignment rule ignores information such
as what is the current load on each machine or which jobs in the specified class have actually been processed
or completed at the current time. Each machine then implements the SRPT algorithm which is optimal for
scheduling jobs on a single machine to minimize flow time. However, to simplify the analysis, they analyze
a modified version of this algorithm that uses SJF on each machine instead.

Here are a few of the key observations in the analysis of this algorithm [5]. The first fact is that the
difference in total volume of jobs of any class k assigned to any two machines by any time ¢ is at most 28+,
the size of the largest job in class k, since they use greedy List Scheduling. This implies that difference in
the total volume of work processed by any time ¢ of jobs in class at most k on any two machines is at most
2F+2 Combining these two observations implies that the difference in unfinished work from jobs of class at
most k at any time ¢ on any two machines is at most 213, With these facts, [5] are able to apply many of
the arguments used in the analysis of other algorithms without migration to prove the flow time bound for
their algorithm.

Resource Augmentation Results. With sufficiently faster processors, [83] showed that SRPT will never
have extra jobs. Specifically, they extended Graham’s analysis of List Scheduling [62] to show that any s-
speed algorithm where s > 2 — 1/m that never idles a machine when jobs are available always completes as
much work by any time ¢ as any 1-speed algorithm on the same input instance. Adding to this the greedy
nature of SRPT, their analysis shows that speed-(2 — 1/m) SRPT is locally 1-competitive.

This result has recently been improved to show that SRPT is an s-speed 1/s-competitive algorithm for
s > 2 —1/m [78]. The analysis in [78] uses some new ideas to prove a competitiveness bound smaller than
1. First is the idea that s-speed processors can be approximated by multiplying release dates by a factor
of s. In [83, 78], the resulting input instance is called a stretched input instance. The key observation is
that an algorithm on a stretched input instance will incur a flow time exactly s times larger than the same
algorithm using s-speed processors on the original input instance. Thus, they need only show that SRPT
on an s-stretched input instance does as well as the optimal algorithm does on the original input instance
to prove the 1/s bound for s-speed SRPT. This introduces a complication as they need to compare SRPT
on a stretched input instance to the optimal algorithm on the original input instance, and thus jobs are
released at different times for the two algorithms. They overcome this difficulty by introducing a proxy
algorithm for the original input instance. This proxy algorithm will in some cases produce schedules that
are not legal. This is acceptable since the proxy algorithm is used for analysis purposes only. However, they
do need to introduce a charging scheme to handle cases when the schedule is not legal. They then show that
the proxy algorithm is locally 1-competitive and that the proxy algorithm incurs a flow time on the original
input instance that is at least as large as the flow time incurred by SRPT on the s-stretched input instance.
This argument does not use local competitiveness but rather a structural relationship between the the proxy
schedule and the SRPT schedule on the stretched input instance.

Chekuri, Khanna, and Kumar have shown that the immediate dispatch algorithm of Avrahami and Azar
is almost fully scalable for total flow time and total stretch [32]. This result also applies when the algorithm

12

is given extra machines instead of faster machines, and the result extends to show that the algorithm is
almost fully scalable for [, norms of flow and stretch for all p > 1. Their analysis builds upon Bansal and
Pruhs’ analysis of SJF and SRPT for minimizing /, norms of flow and stretch on a single machine [14]. These
results are discussed in more detail in Section 2.5.

A few open questions remain regarding resource augmentation and minimizing total flow time. While
we now know that there is an almost fully scalable algorithm for minimizing total flow time on parallel
machines, no such analysis is known for SRPT.

Open Problem 2.9 For the problem P|online-time, pmtm,r;|Y_ F;, is SRPT almost fully scalable?

Furthermore, from [83], we know that SRPT is at least as good as optimal when given speed-(2 — 1/m)
machines and that no speed-(22/21 — €) 1-competitive algorithm exists for minimizing total flow time on
parallel machines for m > 2 and ¢ > 0.

Open Problem 2.10 For the problem P|online-time, pmtm,r;| Y. F;, what is the minimum speed s such
that there exists an s-speed 1-competitive algorithm, and what is the corresponding algorithm?

Both of these questions can be extended to all I, norms of flow and stretch.

The difference between total stretch and total flow time. At first glance, it may seem surprising
that there exist algorithms with constant approximation factors for total stretch on parallel machines but
not total flow time. This discrepancy is explained by considering the structure of extra jobs for SRPT and
the fact that the total stretch objective function weights jobs by the inverse of their original processing
times. For example, while SRPT(t) — S(t) can be unbounded, there can only be a relatively few extra jobs
with small remaining processing times in SRPT’s schedule at any time. In particular, the large jobs add a
negligible amount to the total weight of jobs at any given moment. This property is exploited more explicitly
in the algorithms that use job classifications.

For example, consider the algorithm of [33] and consider the jobs on the stack of any machine of their
algorithm. Suppose the job that is currently executing is from class k. The original processing times of the
remaining jobs on the stack for that machine are at least 21, 25+2 2k+3 " “and their weights sum to at
most 1/2%. This is at most twice the weight of the job currently executing and thus the increase in total
stretch can be charged to this currently executing job. Handling jobs in the central pool is more complicated
and we ignore these details.

On the other hand, we observe that no online algorithm can be optimal for minimizing total stretch on a
single machine while there does exist an optimal online algorithm, namely SRPT, for minimizing total flow
time on a single machine. The lower bound example below shows that we can create a situation where it
is optimal to prioritize one job j; over a second job jy in some cases while in other cases, it is optimal to
prioritize job jy over job ji.

Lemma 2.11 No online algorithm can be better than 1.036-competitive for the problem of minimizing total
stretch on a single machine [81].

Proof Sketch. Consider an adversary strategy using at most 3 jobs of sizes ¢, m, and s where ¢ > m > s.
Under the first scenario, the job of size ¢ is released at time 0, and the job of size m is released at time ¢ — &
for some k < m, and the third job is never released. Under the second scenario, the third job of size s is
released at time ¢. The adversary makes its decision on which scenario to implement based on the online
algorithm’s decisions up to time g¢.

The optimal strategy for the first scenario is to run the second job as soon as it arrives. The optimal
strategy for the second scenario is to finish the first job first, run the third job as soon as it arrives, and then
finish the second job. Clearly no online algorithm can do both. Using a proper choice of ¢, m, s, and k, the

bound of 1.036 follows. [|

More detailed analysis of SRPT for total stretch [81]. The analysis of SRPT for total stretch on
a single machine utilizes a matching property between the jobs waiting in SRPT’s queue at any time ¢ and
the jobs in any other schedule S°s queue at time ¢.

13

Lemma 2.12 For any input instance I, for any schedule S, and any time t, and any k > 1, SRPTy(t) >
Sk_l(t).

Proof Sketch. Suppose this is not true at some time ¢. Let £ > 1 be the smallest integer such that the
relationship does not hold. Let &6 = SRPT}(t). It follows that the number of jobs in SRPT(t) of size at
most b is at least k, while the number of jobs in S(¢) of size at most b is at most & — 2. Furthermore, given
the definition of k, we have that SRPT;(t) > S;_1(t) for 1 < j < k. Thus, vol(SRPT,t,b) — vol(S,t,b) >
b+ SRPT(t) which means that V'(S,¢,b) > b. This is a contradiction since Lemma 2.4 implies that
V/(S,t,b) < b, and the result follows. [

With this matching property, [81] bound the amount that SRPT’s waiting jobs contribute to SRPT’s
total stretch by the total stretch incurred by any other algorithm. They then observe that the total stretch
incurred by SRPT’s active job over time is exactly n which is a lower bound on the optimal total stretch,
and the factor of 2 result follows.

In the parallel machine case, there is the extra complication that SRPT has extra jobs. However, given
the structural property observed earlier, [81] are able to derive a similar mapping of some of SRPT’s waiting
jobs to at least as small unfinished jobs for schedule S. The unmapped jobs for SRPT then obey the structure
observed earlier and their total contribution to total stretch can be bounded by a constant times the optimal
total stretch.

2.4.2 Maximum Flow Time and Maximum Stretch

While SRPT and the related algorithms perform well for client jobs on average, these algorithms do have
the undesirable property of starving some jobs in order to service most jobs well. For example, consider an
input instance on a single machine where a job with processing time 2 is released at time 0 and jobs with
processing time 1 are released at unit intervals starting at time 0 and ending at time z. SRPT will always
process the jobs with processing time 1 delaying the job with processing time 2 until the end of the long
stream of jobs, so its flow time will be 4 3. An alternative algorithm would schedule the job with processing
time 2 first and then schedule the jobs with processing time 1 in order of their arrival. The flow time of
the job with processing time 2 will be 2 while the flow time of all jobs with processing time 1 will be 3. As
we can make x as large as we desire, this shows that for the Fiax or Spax objective functions on a single
machine, i.e., 1|online-time, pmtn, ;| Fmax and 1|online-time, pmtn, 7;|Smax, SRPT is Q(n)-competitive.

Different algorithms are needed to provide good guarantees for maximum flow and maximum stretch. The
best results known for these objective functions come from Bender, Chakrabarti, and Muthukrishnan [26]
and Bender, Muthukrishnan, and Rajaraman [27]. For maximum flow, [26] show that FIFO is (3 — 2/m)-
competitive for P|online-time, pmtn, rj|Fmax and provide a lower bound of 4/3 for any non-preemptive
algorithm for m > 2. (The paper claims a lower bound of 3/2, but the proof seems to work only for
a 4/3 lower bound.) The maximum stretch objective function turns out to be harder to minimize than
maximum flow. This stands as an interesting contrast to the case of total stretch and total flow time where,
in the parallel machine environment, there exist constant competitive algorithms for total stretch but no
constant competitive algorithms for total flow time, even with preemption. For maximum stretch on a
single machine, 1|online-time, pmtn, 7;|Smax, [26] provides an algorithm that is O(P/?)-competitive that is
based on the earliest deadline first (EDF) real-time scheduling algorithm, and they provide a lower bound of
Q(Pl/?’) on the competitive ratio of any online algorithm for maximum stretch. A simpler and more efficient
algorithm to achieve the O(P'/?) bound is given in [27]. No results are known for maximum stretch on
parallel machines, P|online-time, pmtn, 7;|Smax. These results are summarized in Table 2.

Maximum flow. The fact that FIFO, a non-preemptive algorithm, is constant competitive for minimizing
maximum flow shows how this problem is quite different than that of minimizing total flow time. We provide
below a proof that FIFO is optimal for the single machine environment.

Theorem 2.13 FIFO is an optimal algorithm for minimizing mazimum flow time on a single machine,
1|online-time, pmtn, 7;| Fmax [26].

Proof Sketch. Without loss of generality, we consider only input instances I such that there is no idle
time in FIFO(I). Consider any such input instance I and a job j such that F; is maximized in FIFO(I).

14

Algorithm Max Flow Time Max Stretch

Uniprocessor | Parallel Machines | Uniprocessor | Parallel Machines
Best Upper Bound 1 3—2/m O(P/?) ?
Non-preemptive Lower Bound 1 4/3 Q(P) Q(P)
Preemptive Lower Bound 1 ? Q(P/3) ?

Table 2: Summary of results for minimizing max flow time and max stretch for single processor and parallel
machines.

This means that from time r; to time C;, FIFO is working only on jobs that had release times at most r;.
Since FIFO is not idle prior to r;, it is not possible to finish all the jobs released prior to r; plus job j any
earlier than C;. Thus, in any schedule for input instance I, some job released at time no later than r; must
complete no earlier than C;, and the result follows. [|

When we consider parallel machines, it is no longer true that FIFO is not idle prior to the release time
of the job with maximum flow time in FIFO([I). Thus, FIFO is not optimal for the parallel machine
environment, but it is still constant competitive.

The only lower bound known for this problem is 4/3 for m = 2 [26] for non-preemptive algorithms. At
time 0, two jobs with processing time 3 are released. If the algorithm starts both jobs by time 1, a job with
processing time 6 is released at time 1; otherwise, no more jobs are released. In the first case, the optimal
Finax 18 6 while the online algorithm’s Fax 1s at least 8. In the second case, the optimal Fi,ax is 3 while the
online algorithm’s Flax is at least 4.

Maximum stretch.

Theorem 2.14 On a single machine, no preemptive online algorithm is P1/3/2-competitive for minimizing
mazimum stretch, 1|online-time, pmtn, r;|Smax [26].

Proof Sketch. Consider the following input instance. Two jobs with length P are released at time 0.
Meanwhile, jobs of size k = P2/3 — 1 are released at times 2P — k, 2P, ..., P43 — k. To simplify the proof,
we assume that y = P43 — 2P is an integral multiple of .

An optimal schedule for minimizing maximum stretch for this input is FIFO which results in a maximum
stretch of 2. Thus, for an online algorithm to be P1/3/2—c0mpetitive, the first two jobs must be completed
by time P*4/3 giving them a stretch of P'/3. This means one of the length k jobs cannot complete before
P34 k.

Now suppose that jobs of length 1 arrive every unit of time starting at time P%/3 and ending at time
2P4/3 _ | —1. Either one of the length 1 jobs finishes at essentially 2P*/2 or one of the length & jobs finishes
then. In the first case, the maximum stretch will then be at least £ + 1 = P2/3/2 while in the second case,
the maximum stretch will be essentially P4/3/k > P2/3/2. Meanwhile, the optimal algorithm schedules the
jobs of size 1 and size k as they arrive and finishes one of the jobs of size P at time 2P*3. The result then
follows. [

One algorithm for minimizing maximum stretch uses ideas from real-time scheduling. Suppose the online
algorithm somehow knew in advance what the maximum stretch S* for the input instance would be. It could
then treat each job j as if it had a deadline of r; 4+ 5*p; and use algorithms from real-time scheduling to
attempt to meet all deadlines. One such online algorithm is Earliest Deadline First (EDF) that prioritizes
available jobs by their deadlines breaking ties arbitrarily. EDF is known to legally complete all jobs by their
deadlines on a single machine if it is possible to do so. By the definition of maximum stretch, it clearly
is possible to schedule all jobs such that they end by r; + 5*p;. Thus, EDF armed with knowledge of the
maximum stretch of the input instance is an optimal online algorithm.

Unfortunately, the online algorithm cannot possibly know the maximum stretch ahead of time. Instead,
the best that any online algorithm can do is compute what the maximum stretch of an input instance would
be if no more jobs arrive. This algorithm, stretch-so-far [26] has a further refinement of overestimating the

15

maximum stretch computed so far by setting a job’s deadline to be r; + a5*p; where o > 1. Choosing an
appropriate value of « is critical to minimizing maximum stretch. Also note that the deadlines will change
as S* is refined. Stretch-so-far with o = 1 is P-competitive for this problem [26]. If « is instead chosen to be
O(P'/?), the algorithm is then O(P'/?)-competitive. Note that the P'/2 used here is based on the jobs seen
so far, so this is an online algorithm. Constant competitive algorithms exist if there are only two distinct
job lengths [26].

While stretch-so-far achieves a competitive ratio of O(PY2), it has the disadvantage of requiring Q(n?)
processing per job arrival. In particular, the optimal maximum stretch must be recalculated on each job
arrival requiring the algorithm to remember all jobs seen so far at any point in time during its execution. A
simpler greedy strategy that achieves the same competitive ratio is proposed in [27]. Suppose that P,;, = 1
and P = P4, is known to the online algorithm. Their algorithm computes a pseudostretch for each available
job at any time ¢ that is (t — rj)/Pl/2 itl <p; < PY% and is (t — r;)/P it Pz < p; < P. That is, they
replace the p; in the denominator by P12 if the job is small and P if the job is larger. This algorithm is
O(Pl/Z)—competitive. However, it assumes a priori knowledge of P,,;, and P,,4,. To make this more online,
they assume that the algorithm knows the minimum job size 1 in advance, and they use the largest job seen
so far as their estimate for P, recalculating as needed when new jobs arrive.

2.5 [, Norms of Flow and Stretch

In this section, we consider the problems of minimizing the !, norms of flow times and stretch. We discuss
both clairvoyant and nonclairvoyant algorithms. Recall that the motivation for considering the {,, 1 < p < oc,
norms of flow and stretch was that they represent some compromise between optimizing for the worst case
QoS and the average QoS. Although most of the results we give below also hold when p = 1 and when
p = oo. The these results generalize both the average and maximal flow and stretch, since the total flow
time or stretch is then the {; norm while maximum flow time or stretch is the /., norm.

Let us initially focus on one machine. The study of [, norms of flow and stretch was initiated by Bansal
and Pruhs [14]. Bansal and Pruhs [14] show that are no n°(Y)-competitive online clairvoyant scheduling
algorithms for any I, norm, 1 < p < oo of either flow or stretch. This is a bit surprising, at least for flow
time, as there are optimal online algorithms, SRPT and FIFO, for the /3 and /., norms of flow time.

Theorem 2.15 For the problems 1|online-time, pmtn, r;|(>° Ff)l/p and 1|online-time, pmtn, r;|(>_ S?)l/p,
1 < p < o0, the competitive ratio of any randomized algorithm A against an oblivious adversary is n®¥(1),
Proof Sketch. We only give lower bound proofs for flow norms, and only for deterministic algorithms. It is
easy to extend the lower bound to randomized algorithms using Yao’s technique. The input is parameterized
by integers L, o = (p+ 1)/(p— 1), and 3 = 2. A long job of size L arrives at time 0. From 0 to time until
time L* — 1 a job of size 1 arrives every unit of time.

In the case that A does not finish the long job by time L then this is the whole input. Then F?(A) is
at least the flow of the long job, which is at least LP. In this case the adversary could first process the long
job and then process the unit jobs. Hence, F¥(Opt) = O(LF + L* - L?) = O(L**?). The competitive ratio
is then Q(L*?~*~P), which is (L) by our choice of a.

Now consider the case that A finishes the long job by time L. In this case L*t? short jobs of length
1/LP arrive every 1/LP time units from time L until 2L% —1/L?. One strategy for the adversary is to finish
all jobs, except for the long job, when they are released. Then FP(Opt) = O(L® 17 4+ L7 . (1/LP)P 4 LoP).
It is obvious that the dominant term is L*?, and hence, F?(Opt) = O(L*?). Now consider the subcase
that A has at least L/2 unit jobs unfinished by time 3L%/2. Since these unfinished unit jobs must have
been delayed by at least L%/2, FP(A) = Q(L - L*?). Clearly in this subcase the competitive ratio is Q(L).
Alternatively, consider the subcase that A has finished at least L/2 unit jobs by time 3L%*/2. Then A has
at least Lot7/2 released, and unfinished, small jobs at time 3L%/2. By the convexity of F?, the optimal
strategy for A from time 3L%/2 onwards is to delay each small job by the same amount. Thus A delays
LetP /2 short jobs by at least L/2. Hence in this case, FF(A) = Q(L**#. LF). This gives a competitive ratio
of Q(Lo+P+rP=aP) which by the choice of 3 is Q(L). [

This negative result motivated Bansal and Pruhs [14] to fall back to resource augmentation analysis.
They showed that the standard clairvoyant algorithms SJF and SRPT are almost fully scalable for {, norms

16

of flow and stretch. They showed that SETF and MLF are almost fully scalable for flow objective functions,
but not for stretch objective functions. In contrast, RR is not almost fully scalable even for flow objective
functions. This is a bit surprising as starvation avoidance is an often cited reason for adopting RR.

While the analysis of SJF used a local competitive argument, the analysis of SRPT was not strictly a
local competitiveness argument as a newly released job .J; is not counted until time r; + ©(p;). The analysis
of SETF and MLF used the same method that Bansal et al. [13] used to analyze nonclairvoyant average
stretch. We shall sketch the analysis of SJF.

Theorem 2.16 For the problems 1|online-time, pmtn, r;|(>_ Ff)l/p, and 1|online-time, pmtn, r;|(>_ S?)l/p,
SJTF is (1 4 €)-speed O(1/€)-competitive.

Proof Sketch. The proof is by local competitiveness on the objective function > Ff. Let U(SJF,t) and
U(Opt,t) denote the unfinished jobs at time ¢ in SJF and Opt respectively, and D = U(SJF,t) —U(Opt, t).
Let Age”(X,t) denote the sum over all jobs J; € X of (t — ;)P ~!. Note that A(t), the rate of increase
of the objective function for algorithm A, is the sum over all J; € U(A,t) of Age’(U(A,t),t). That is,
FP(A) = pft AgeP (U(A,1),t)dt.

Thus to have a local competitiveness argument, it is sufficient to establish that
Age? (D, 1) < O(1/e") Age? (U(Opt, 1), 1)

This is established in the following manner. Let V(#,a) denote the aggregate unfinished work at time ¢
among those jobs J; that satisfy the conditions in the list o. Let 1,...,% denote the indices of jobs in D
such that p; < ps... < pg. Consider the jobs in D in the order in which they are indexed. Assume that we
are considering job J;. One can allocate to J; an ep; /4(1+¢€) amount of work from V (¢, {J; € U(Opt, t),r; <
t—e(t—r)/(4(1 +¢€)),p; < pi}) that was previously not allocated to a lower indexed job in D. This
establishes O(1/€?) local competitiveness for F? for the following reasons. The total unfinished work in
each J; € U(Opt,t) is assoclated with O(1/€) longer jobs in D. Since the jobs J; are Q(e) as old as J;, the
contribution to Age? (U(Opt,t),t) for J; is Q(e?~1) as large as the contribution of .J; to Age? (U(SJF,t),t).
Using the same reasoning, and the fact that p; < p;, one establishes local competitiveness for S?. [|

Chekuri, Khanna, and Kumar [32] show how to combine immediate dispatching algorithm of Avrahami
and Azar [5] with a scheduling policy such as SJF to obtain an almost fully scalable algorithm for {, norms
of flow and stretch on multiple machines. The analysis is essentially a local competitive argument similar to
Bansal and Pruhs’ [14] analysis of SJF and SRPT.

2.6 Weighted Flow Time

In the online weighted flow time problem, each job J; has an associated positive weight w; that is revealed
to the clairvoyant scheduler at the release time of J;. The objective function is Y w; F;. If all w; = 1 then
the objective function is total flow time, and if all w; = 1/p; then the objective function is total stretch.
Some systems, such as the Unix operating system, allows different processes to have different priorities. In
Unix, users can use the nice command to set the priority of their jobs. Weights provide a way that a system
might implement priorities. For the moment let us focus on one machine.

Becchetti, Leonardi, Marchetti-Spachemella, and Pruhs [22] show that besides being a sufficient condition,
local c-competitiveness is a necessary condition for an algorithm to be c-competitive.

Theorem 2.17 Every c-competitive deterministic algorithm A for 1|online-time, r;, pmtn| Y w; F; must be
locally c-competitive.

Proof Sketch. Suppose there is a time ¢ where A(¢) > cOPT(t). The adversary can punish the online
algorithm by bringing in a stream of dense short jobs with the following properties. The density of the
jobs in the stream is large enough so that the optimal strategy for all algorithms is to run each of these
jobs immediately. At the same time, the weight of the jobs in the stream can be made small enough so
the contribution of the stream jobs to the total weighted flow time is arbitrarily close to 0 when the stream
jobs are run immediately. The stream is made long enough so that the ratio of A’s total flow time when
compared to the adversary’s total flow time is arbitrarily close to A(t)/OPT(t).

17

At first glance, it may seem impossible for the stream of jobs to be dense enough to warrant running
immediately yet have low enough weight that they contribute almost nothing to the total weighted flow time.
This phenomenon becomes clearer when we consider the following example. Consider a job with weight z,
processing time 1, and thus density z released at some time ¢ and compare this to a stream of = jobs of
weight 1, processing time 1/, and thus density also x released at times ¢,t+ 1/x,...,t+ (x — 1)/z. If both
are processed immediately, the job of weight will contribute x to the total weighted flow time while the
stream of weight 1 jobs will contribute only 1 to the total weighted flow time. On the other hand, if both are
delayed by 1 time unit and then processed at time ¢ 4+ 1, then the increase in total weighted flow time due to
the delay for both cases will be exactly . What we see is that the stream of density « jobs incurs the same
delay cost as the one job with weight x, but the actual processing costs are vastly different. Finally observe
that we can push this to the extreme where the stream of density z jobs have arbitrarily small weight € > 0
and processing times ¢/z. If the stream jobs are processed immediately, they add only ¢ to the total weighted
flow time. If the stream jobs are delayed by 1 time unit and then processed at time ¢ + 1, the increase in
weighted flow time will still be exactly . [

The following instance shows that the obvious greedy algorithms have high competitive ratios. Consider
the following set of jobs, released at time 0: One job of weight k, length k2, and hence density 1/k, and k3
jobs of weight 1, length 1, and hence density 1. Two natural schedules are: (1) First run the low density job
followed by the k3 high density jobs, and (2) First run the k3 high density jobs followed by the low density
job. It is easy to see that the first algorithm is not constant locally competitive at time k3, and that the
second algorithm is not constant locally competitive at time &% 4+ k2 — 1. In fact, what the online algorithm
should do in this instance is to first run k3 — k of the high density jobs, then run the low density job, and
then finish with the remaining k& high density jobs. This instance demonstrates that the scheduler has to
balance between delaying low density jobs, and delaying low weight jobs.

Using this intuition, Chekuri, Khanna, and Zhu gave an O(log2 P)-competitive algorithm for a single
machine [33]. This algorithm is semi-online; it needs a priori knowledge of P. The algorithm partitions
jobs based on approximate weights and on approximate densities. It then considers the weight classes from
largest to smallest. Assume it is considering weight class w. It runs the densest job J; from weight class w if
and only if the total weight of jobs, with weight < w and density greater than the density of J;, is less than
w. Otherwise it is safe for the algorithm to proceed to lower weight and higher density jobs. The analysis is
a rather complicated local competitiveness argument.

If all jobs have the same weight, or if all jobs have the same processing time, or if all jobs have the same
density, then O(1)-competitiveness is easy. This leads to 3 obvious algorithms. The algorithm partitions
the jobs based on approximate weight or length, or density. Some job in the partition with maximum
total weight is run. All jobs within a partition are run using the O(1)-competitive algorithm for same
weight /length/density jobs. Intuitively, all of these algorithms should have competitive ratios that are linear
in the number of partitions, or equivalently, logarithmic in the range of possible weights/lengths/densities.
Bansal and Dhamdhere [12] proved this for the version of the algorithm where you partition based on the
weight. The analysis is a local competitiveness argument that is a variation on the local competitiveness
argument for SRPT.

Perhaps the most intellectually intriguing open question in online scheduling in the online-time model,
with a flow or stretch objective function, is:

Open Problem 2.18 For the problem 1|online-time, pmtn, v;| > w; F;, is there an O(1)-competitive clair-
voyant algorithm?

Several positive results have been developed for weighted flow time problems using resource augmentation.
Phillips, Stein, Torng, and Wein [83] showed that an algorithm they named Preemptively-Schedule-By-Halves
is 2-speed 1-competitive algorithm for minimizing total weighted flow time on a single machine. Becchetti,
Leonardi, Marchetti-Spachemella, and Pruhs [22] observed that the analysis of Phillips et al. [83] also applied
to HDF. Furthermore, using a more direct local competitiveness argument, Becchetti et al. [22] showed that
HDF is (1 4 €)-speed (1 + 1/¢)-competitive on a single machine.

Bansal and Pruhs then consider the problem of minimizing the weighted [, norms of flow time [15].
They show that HDF is almost fully scalable for the problem 1|online-time, pmtn, r;|(>_ ijf)l/p. They
then consider the obvious generalization, Weighted SETF (WSETF), of the nonclairvoyant algorithm SETF.

18

WSETF operates as follows. For a job J;, let #;(¢) denote the amount of work done on that job by time ¢.
Amongst jobs with the smallest x;(¢)/w;, WSETF splits the processor proportionally to weights of the jobs.
They show that WSETF is almost fully scalable for the problem 1|online-time-nclv, pmtn, 7;|(>° ijf)l/p.
The analysis of HDF and WSETF are similar to the analysis of SJF and SETF in [14].

For the parallel machine setting, only a few results are known. Chekuri, Khanna, and Zhu [33] give
a lower bound on the competitive ratio of any algorithm of Q(min(«/ﬁ, VW, (n/m)"*) for the problem
Plonline-time, pmtn, ;| > w; F; where W is the largest weight. Becchetti et al. [22] show that HDF is a
(2 + €)-speed O(1)-competitive algorithm for the same problem.

2.7 Semi-Clairvoyant Scheduling for Average Flow/Stretch

The concept of semi-clairvoyant scheduling was introduced by Bender, Muthukrishnan, and Rajaraman
[27]. A semi-clairvoyant algorithm only has approximate knowledge about processing times. A strong semi-
clairvoyant algorithm knows a constant approximation of the remaining processing time of a job, and a weak
semi-clairvoyant algorithm knows only a constant approximation of the original processing time of a job.
While there may be some practical application for these results, for example a web server serving dynamic
documents may only be able to estimate the size of resulting document as it dynamically constructs the
document, the main motivation seems to be that such results may then be used as subroutines in other
algorithms that round the processing times of jobs. Rounding processing times often seems to make the
development of an algorithm or analysis simpler.

For the parallel machine setting, both the strong and weak semi-clairvoyant models are not significantly
different than the clairvoyant setting when considering the total flow time and total stretch objective functions
because of the classification nature of the clairvoyant non-migratory algorithms developed earlier. For
example, the algorithm of Awerbuch et al. [7] that classifies jobs according to their remaining processing
times can be adapted to be a strong semi-clairvoyant algorithm for minimizing total flow time and total
stretch while the algorithms of Chekuri et al. [33] and Avrahami and Azar [5] that classify jobs according
to their initial processing times can be adapted to be weak semi-clairvoyant algorithms for minimizing total
flow time and/or stretch. Thus, we focus on the uniprocessor setting for the remainder of this subsection.

Let us first consider strong semi-clairvoyant algorithms on a single machine. The most obvious algorithm
is to run the job that appears to have the least remaining processing time. Bender et al. [27] show that this
algorithm is O(1)-competitive with respect to average stretch, but is only ©(log P)-competitive with respect
to average flow time. They then give modified algorithm that is O(1)-competitive with respect to average
flow time. The main idea behind this algorithm is that if there is a choice between two jobs with similar
remaining processing times, then the algorithm should favor the job whose initial processing time was less.

We now consider weak semi-clairvoyant algorithms. Bender et al. [27] show that the obvious generalization
of SJF is O(1)-competitive with respect to average stretch. Bender, Muthukrishnan, and Rajaraman [27] also
proposed an algorithm for average flow time. The basic idea of this algorithm is to run the apparent shortest
job first, except in one special case. This special case is that if the job J; with the apparent least original
processing time has not been run at all, and the job J; with the second least apparent original processing
time has been partially run, and there are no other jobs with comparable apparent original processing times,
then J; is run instead of .J;.

Becchetti, Leonardi, Marchetti-Spachemella, and Pruhs [23] showed that this algorithm is in fact O(1)-
competitive with respect to average flow time. A simpler analysis was developed by Nikhil Bansal. Bansal’s
analysis was a variation of the local competitiveness analysis of SRPT. At any time, order both the online
algorithms jobs and the adversary’s jobs by increasing remaining processing time. Then Bansal shows that
the following invariant always holds: The total work contained in the online algorithm’s jobs up to the kth
unexecuted job, is at least the total work in the adversary’s first & jobs. It is straightforward to observe that
this invariant implies O(1)-competitiveness.

Becchetti et al. [23] show that there is no weak semi-clairvoyant algorithm that can be simultaneously
O(1)-competitive with respect to average flow time and average stretch. This is in contrast to the clairvoyant
setting where SRPT is O(1)-competitive with respect to both objective functions.

19

2.8 Nonclairvoyant Scheduling to Minimize Average/Maximum Flow/Stretch

In the online-time-nclv model, the nonclairvoyant scheduler is given no information about the processing
time of a job. For example, the process scheduling component of an operating system is best viewed as being
nonclairvoyant in that the operating system in general does not know the execution times of the various
client processes.

2.8.1 Maximum and Average Flow Time on One Machine

If the objective function is minimizing maximum flow, then a nonclairvoyant scheduler can still be optimal
since FIFO does not require knowledge of the processing times of the jobs. The situation for average flow
looks more bleak. The optimal algorithm is SRPT. However, from the nonclairvoyant scheduler’s point of
view, any job might conceivably be the one with shortest remaining processing time. In the absence of
any information about remaining processing times, the most obvious nonclairvoyant algorithm is probably
RR. Motwani, Philips and Torng [80] show that RR is 2-competitive in the case that all jobs are released
at time 0. However, Matsumoto [77], and independently Motwani, Philips and Torng [80] showed that the
competitive ratio for RR is £2(n/logn) in the case of release dates. Kalyanasundaram and Pruhs [67] noted
that a variation of this lower bound instance shows that modest resource augmentation is not enough to
allow RR to be O(1)-competitive.

Theorem 2.19 For the problem 1|online-time-nclv, pmtn, 7;| > F;, the competitive ratio of RR is at least
Q(n/logn), and the competitive ratio of RR with speed s, 1 < s < 2 processor is at least Q(n?~*).

Proof Sketch. Let s =1+ e. We divide time into stages. Let the ith stage, ¢ > 0 start at time ¢;. We let
to = 0, and {1 = 1 + €. There are two jobs of length (1 + €) released at time ¢g, and one job is released at
each time ¢;, ¢ > 1, with length p(¢) that is exactly the same length as RR has left on each of the previous
jobs. In order to guarantee that the adversary can finish the job released at time ¢;_; by time ¢;, ¢ > 2, we
let t; = t;—1 + p(i — 1). Observe that during the interval [t;_1,%;], RR executes each of the i + 1 jobs for
p(i — 1)/(¢ 4+ 1) units of time. Since RR also uses a 1 + ¢ speed processor, the work done on a job during
that interval is (1 +¢€)p(¢ — 1)/(i + 1). Therefore, we get the recurrence

pli) = pli— 1) - LEIU=L (20 5y

i+1 i+ 1

The total flow time for the adversary is then ©(} ., 1/(i — €)'*¢), which is a convergent sum. The total
flow time for RR is then (31, i/(i — €)'*), which is ©(n'~¢). The result then follows.]

More generally, Motwani, Phillips and Torng [80] showed that the competitive ratio of every deterministic
nonclairvoyant algorithm for average flow is Q(nl/?’). Thus one can not get a strong positive result for
deterministic nonclairvoyant algorithms using standard competitive analysis. This construction is the basis
for most general lower bound proofs on average flow time.

Theorem 2.20 For the problem 1|online-time-nclv, pmtn, r;| Y F;, the competitive ratio of every determin-
istic algorithm is Q(n'/3).

Proof Sketch. We present an adversary strategy which works in two stages. In the first stage, the adversary
releases k jobs at time 0 and lets the algorithm A schedule them for &k time units. The adversary ensures
that the remaining processing time of each job at time k for A is 1/(k — 1) while OPT has 1 unfinished job
at time k. The second stage starts at time k, when the adversary releases a job of length 1/(k — 1) every
1/(k — 1) time units apart, until time k2. No matter what A does after time k, A has a total flow time of
Q(k3) while OPT has total flow time O(k?).]

This strong lower bound motivated Kalyanasundaram and Pruhs [67] to propose resource augmentation
analysis as a standard method of analysis. Notice that in this lower bound example the load after time % is 1.
Furthermore, if the nonclairvoyant scheduler had a slightly faster processor, then it would not be behind at
time k. Kalyanasundaram and Pruhs [67] showed that SETF is almost fully scalable. In [67] the algorithm
SETF was called Balance.

20

Theorem 2.21 For the problem 1|online-time-nclv, pmtn,r;|Y F;, SETF is (1 + €)-speed (1 + 1/¢)-
compelitive.

Proof Sketch. We give the intuition here using the borrow technique introduced in [67]. The proof is
a local competitiveness argument. That is, at any particular time ¢, SETF does not have too many more
unfinished jobs than the adversary. Let J; and J; be jobs such that SETF is running J; during the time
interval [a,b] C [r;, C;]. The adversary may then do (b — a) units of work on J; during time [a,b]. We
think of this as the adversary borrowing (b — a) units of work from J; to give to J;. Borrowing can also be
transitive; J; can borrow from .J; which can borrow from .J;, etc. This borrowing might be advantageous
to the adversary if J; is almost finished by SETF. Let w;(¢) be the remaining unfinished work on job J; for
SETF at time ¢. If the adversary is going to finish a job J;, then it must arrange for J; to borrow at least
ew (%) units of work since the adversary’s processor is € slower than the processor used by SETF. However,
the description of SETF ensures that this time can only come from jobs that SETF ran for less time than
SETF ran J;. Hence, we would expect that each job that the adversary borrows time from can only be used
to finish 1/e€ jobs that SETF has not finished. |

Berman and Coulston [29] improved this result for larger speeds. They showed that SETF is s-speed
2/s-competitive for total flow time for s > 2. They showed inductively that for each job that is added to a
schedule, the increased cost that SETF; pays is at most 2/s the cost that the adversary pays.

Turning to randomized algorithms, Motwani, Philips and Torng [80] showed that the competitive ratio for
total flow time of every randomized algorithm against an oblivious adversary is 2(log n). Kalyanasundaram
and Pruhs [68] noted that this argument can be modified to give a lower bound of Q(P). Recall that an
oblivious adversary must fix the input a priori.

Theorem 2.22 For the problem 1|online-time-nclv, pmtn, r;| >_ F;, The competitive ratio of every random-
ized algorithm against an oblivious adversary is 2(logn).

Proof Sketch. We use Yao’s technique and prove a lower bound on the competitive ratio of deterministic
algorithms on a particular input distribution.

The jobs are released in two phases. In the first phase, at time 0, £ jobs are released whose sizes
are independently drawn from the exponential distribution with mean 1. The scheduling algorithm is then
allowed to run until time k —2k3/4. Because the expected remaining work of an unfinished job is independent
of how long it has been executed, the state of the unfinished jobs for the nonclairvoyant algorithm at time
k—2k3/* is the same for all nonclairvoyant algorithms. Hence, at the end of the first stage, the nonclairvoyant
algorithm has remaining Q(k3/4) jobs with remaining work at least 1. With high probability, the adversary
scheduler can set aside k3/*/logk jobs of size at least (logk)/4, and finish all other jobs by the end of the
first phase.

The second phase consists of releasing a job of size 1 at each time unit, for a total of k% time units.
Clearly the nonclairvoyant algorithm should execute these jobs before the large jobs it has remaining from
the first phase, for a expected total flow time of Q(k?7°). The adversary executes the second phase jobs
as they arrive, and lastly schedules the set-aside jobs. The expected total waiting time of the adversary

algorithm is O (k% 7/ log k).]

It is not at all obvious what strategy a randomized algorithm should adopt in order to obtain a logarithmic
competitive ratio. One benefit of resource augmentation analysis of deterministic algorithms is that the
analysis can suggest a randomized strategy. This problem is an example of this phenomenon. Let us reflect
on Kalyanasundaram and Pruhs’ resource augmentation analysis of SETF [67] for a moment. One sees that
to argue that SETF is locally O(c - d)-competitive, it is sufficient to argue the following property holds:

For an at least 1/c¢ fraction of SETF’s unfinished jobs, it is the case that they have at least 1/d
of their original processing time left unfinished.

This suggests finding a randomized algorithm that favors newly released jobs (like SETF does) and that
guarantees the above property holds with high probability. This line of reasoning led Kalyanasundaram and
Pruhs [68] to propose the algorithm RMLF. RMLF is identical to MLF except that the target of each job in
queue Q; is 2°*! minus an exponentially distributed independent random variable.

21

We now give some intuition why this approach should give poly-logarithmic competitiveness. Assume
that at time 0 the adversary releases a collection of n jobs of length 2! + x. The adversary is hoping that at
the first time that all remaining unfinished jobs for RMLF are all in Q;41 that the following holds: it is the
case that RMLF will have w(1) jobs in @;41 and that these jobs are almost all almost finished. For example,
if RMLF uniformly at random selected the target between 2¢ and 2°*!, then by picking x = 2/\/n, the
adversary could expect that RMLF has 1/n jobs with at most a 1/4/n of their initial processing time left.
By bringing in a stream of small jobs, the adversary could then push the competitive ratio up to (n). So
RMLF wants that the number of targets set to X — 2//logn should be a constant fraction of the number of
targets set to X. By setting the targets randomly in this way, you expect that a constant fraction of the jobs
have 1/logn of their original processing time left. Two more points need to be made. First, this argument is
not valid if z is very small, that is if the jobs have very little processing time left on the job when it reaches
;. However, in this case, each job is finished in @; and does not reach @;41 with very high probability.
Second, in order to turn this into a formal proof, you need to have a high probability argument, which adds
another factor of logn to the calculated competitive ratio. This argument can be formalized to show that
RMLF is O(log2 n)-competitive for the problem 1|online-time-nclv, pmtn, r;| > F;.

This O(log2 n) analysis can be improved. Kalyanasundaram and Pruhs [68] showed that RMLF is
O(lognloglogn) against an adversary that at all times knows the outcome of all of the random events
internal to RMLF up until that time. This accounts for the possibility of inputs where future jobs may
depend on the past schedule. Becchetti and Leonardi [21] improved upon this analysis to obtain a tight
analysis of RMLF.

Theorem 2.23 For the problem 1|online-time-nclv, pmtn, 7;| > F;, RMLF is O(logn)-competitive against
an oblivious adversary.

Note that if the target for jobs in queue @Q; is ¢’, then MLF is c-speed O(1)-competitive. In particular,
if c =1+ ¢, MLF devolves into SETTF and is also almost fully scalable. These facts (SETF/MLF is almost
fully scalable, and RMLF is optimally competitive amongst randomized algorithms) provide strong support
for the adoption of MLF for process scheduling within an operating system.

Open Problem 2.24 Obtain a tight bound on the competitive ratio of deterministic algorithms for the
problem 1|online-time-nclv, pmtn, ;| > F;. On one hand, given that there is a high, Q(n'/3), lower bound
on the competitive ratio, this may seem to be only of academic interest. On the other hand, this is arguably
the most basic problem in nonclairvoyant scheduling, and it is quite unsatisfactory that a tighter bound is
not known.

2.8.2 Maximum and Average Stretch on One Machine

Kalyanasundaram and Pruhs [66] observed that the competitive ratio for maximum stretch is €(n) for
nonclairvoyant algorithms and also that resource augmentation is of minimal help. For average stretch, it
is easy to see that the competitive ratio for nonclairvoyant algorithms is Q(n) and Q(P). However, Bansal,
Dhamdhere, Konemann, and Sinha [13] show that a moderately positive result can be obtained using resource
augmentation.

Theorem 2.25 For the problem 1lonline-time-nclv, pmtn,r;|>°S;, MLF is an O(1)-speed O(log2 P)-
competitive algorithm.

Proof Sketch. Tt is easy to see that one cannot prove M LF(J) = O(OPT(J)) using local competitiveness
(even if MLF has O(1) faster processor). To see this consider the case of a single unit length job and a small
number of long jobs released at time 0. One can verify that every nonclairvoyant algorithm will be Q(P)
locally competitive at say time 2.

To show that MLF(J) = O(log2 P) - OPT(J), there are two main ideas in the proof. The first main
idea was to show that MLF(J) = O(SJF(L)), where J is the original input, and I is some other input
derived from J. In this modified instance L, each job J; in J is replaced by a collection of jobs with
geometrically increasing work, with aggregate work p;, and with release date r;. The idea is that at any

22

particular time, MLF has the original job J; in the jth queue if and only if SJF finished the j — 1 shortest
jobs in L corresponding to J;.

To show MLF(J) = O(SJF (L)), Bansal et al. [13] introduce an auxiliary objective function, called
inverse work, that can be used to show local competitiveness. Let w;(t) be the amount of work done on job

¢ by time ¢{. Then the inverse work for a job is ?j 1/w;(t) dt. Clearly the inverse work of a job is greater
r J g
7

than its stretch f?‘fj 1/p; dt. Hence, MLF(J) < MLF'(J), where M LF'(J) is total inverse work. Then the

authors show that by local competitiveness that M LF'(J) = O(SJF(L)). Applying Becchetti, Leonardi,
Marchetti-Spachemella, and Pruhs’ [22] analysis of HDF, they conclude that SJF (L) with a slightly faster
processor has total stretch O(OPT(L)).

To finish the proof, one needs to upper bound O PT(L) by O(log? P)-OPT(J). The second main idea was
the method used to relate OPT(L) and OPT(J). Given the schedule OPT(J), one can construct a schedule
for L (which is a union of geometrically scaled copies of J) in the following way. Take the schedule OPT(J)
and consider suitably scaled down copies of this schedule. These schedules are thought of running a scaled
down copy of J with some carefully chosen processor speed. Executing all these schedules simultaneously
can be thought of as a schedule for L. Bansal et al. [13] show that this scaling can be done in such a way
that the total additional speed required is O(1) and the total stretch for L is O(log® P) - OPT(J).]

For the problem 1|online-time-nclv, pmtn, r;| > S;, Bansal et al. [13] also shows that every O(1)-speed
algorithm has a competitive ratio of Q(log P). If all release dates are zero, Bansal et al. [13] gives an
O(log P)-competitive algorithm, and prove a general Q(logn) lower bound on the competitive ratio.

2.8.3 Average Flow Time on Parallel Machines

An immediate question that one has to ask when formalizing a scheduling problem on parallel machines is
whether a single job can simultaneously run on multiple machines. In some settings this may not be possible;
in other settings this may be possible but the speed-up that one obtains may vary. Thus one can get myriad
different scheduling problems on parallel machines depending on what one assumes. A very general model is
to assume that each job has a speed-up function that specifies how much the job is sped up when assigned
to multiple machines. More formally, a speed-up function T'(s) measures the rate at which work is finished
on the job if s processing resources (say s processors) are given to the job.

The simplest speed-up model is the fully parallelizable where T'(s) = s. Fully parallelizable work has
the property that if you devote twice as many resources to the work, it completes at twice the rate. The
normal assumption in the uniprocessor scheduling literature is that all work is fully parallelizable. In the
uniprocessor setting, this means that if you devote a fraction f of a single processor to a job, you will
complete work at rate f instead of rate 1. To simplify notation, we will often use the word parallel instead
of fully parallelizable when there is no possibility of ambiguity.

The normal multiprocessor setting can be modeled by the speed-up function I'(s) = s for s < 1 and
I'(s) = 1 for s > 1. That is, a job is fully parallelizable on one processor, but assigning the job to multiple
processors does not help.

In any real application, speed-up functions will be sublinear and non-decreasing. A speed-up function
is sublinear if doubling the number of processors at most doubles the rate at which work is completed on
the job. A speed-up function is non-decreasing if increasing the number of processors does not decrease
the rate at which work is completed on the job. One can also generalize this so that jobs are made of
phases, each with their own speed-up function. We will use the notation sc; in the job field of the three-field
scheduling notation to denote parallel machines with job phases that have speed-up curves that are sublinear
and non-decreasing.

We typically assume that a nonclairvoyant scheduling algorithm does not know the speed-up function of
any job. Given how little knowledge a nonclairvoyant scheduler has in this setting, there are few natural
algorithms to consider. The obvious ones to analyze are SETF and RR. Edmonds showed that SETF is not
a good algorithm when jobs are not fully parallelizable [42].

Theorem 2.26 The deterministic and randomized versions of SETF are not s-speed O(1)-competitive if the
speed-up curves of jobs are not fully parallelizable no matter how large s is [42].

23

Furthermore, in a remarkable analysis, Edmonds showed that RR is (24 €)-speed O(1+ 1/€)-competitive for
jobs with phases that have speed-up functions that are sublinear and non-decreasing [42]. His result extends
with slightly weaker bounds to the case where RR is given extra machines instead of faster machines.

Theorem 2.27 For the problem Plonline-time-nclv, pmtn, 7;,sc;| Y F;, RR is (2 + €)-speed O(1 + 1/¢)-
compelitive.

One obvious difficulty in constructing an O(1)-speed O(1)-competitiveness analysis for RR is that, as the
example lower bound instance in Theorem 2.19 shows, one can not use a local competitiveness argument.
One of Edmonds’ insights was the identification of an appropriate potential function so that one could
prove local competitiveness in an amortized sense. Arguably another insight was that analysis of RR for
1|online-time-nclv, pmtn, r;| 3 F;, seems to require the introduction of speed-up curves. It is at least of
academic interest whether there is an analysis of RR for 1|online-time-nclv, pmtn, ;| F; that does not
require the generalization to speed-up curves. Edmonds’ analysis is too involved to give in its entirety here.
We shall instead focus on the intuition that the proof gives about why RR performs reasonably well.

A key step in the proof is the introduction of the constant speed-up curve where I'(s) = ¢ for all s > 0
and some constant ¢ > 0. Devoting additional processing resources to constant jobs does not result in any
faster processing of these jobs. In fact constant jobs complete at the same rate even if they are not run.
The motivation for defining the constant speed-up curve is its utility for analytic purposes, not as a model
of real job behavior. Note, Edmonds uses the term sequential instead of constant in [42].

With this definition of constant jobs, Edmonds transforms each possible input into a canonical input
that is streamlined. An input is streamlined if: (1) every phase is either fully parallelizable or constant, and
(2) the adversary is able to execute each job at its maximum possible speed. This implies that at any one
time, the adversary has only one parallel job phase to which it is allocating all of its resources. The idea of
this transformation is that if RR is devoting more resources to some work than the adversary, it is to the
adversary’s advantage to make this work be constant work that completes at the rate that the adversary was
originally processing that work. In contrast, if the adversary is devoting more resources to a job than is RR,
and the adversary has no other unfinished jobs, then it is to the adversary’s advantage to make this work to
be fully parallelizable. If the adversary has several unfinished jobs, then the transformation is only slightly
more involved; each bit of work is replaced by a constant phase, followed by a parallel phase, followed by
a constant phase. As a consequence of this transformation, you get that the adversary is never behind RR
on any job. Given that the input is streamlined, we can for simplicity assume that RR has one processor of
speed s = 2 4+ € and OPT has one processor of speed 1.

We now turn to the potential function ®, which is defined to be the work that has not been completed
by RR but that has been completed by the adversary. Then ®(¢) is the rate of change of ® at time ¢.
Edmonds then proves local competitiveness using this potential function. That is, he shows that at all times
t, RR;(1) < O(1 4+ 1/e)OPT(t) + ®(1).

We now give the intuition behind the Edmonds’ proof from [42]. Let l; be the number of constant jobs
at time t. Note that /; is the same for all schedules. RR devotes at most s/({; + 1) of its speed to the unique
fully parallelizable job that the adversary is working on at time ¢. To ensure that RR falls further behind
on this job, [; must be at least s or else RR may complete as much work on the parallel job as OPT does at
time ¢. On the other hand, the adversary does not want I; to be too large as the adversary must also pay
this cost.

The key observation is that as the fully parallelizable work on which RR is behind builds up, RR self-
adjusts by devoting more resources to this parallel work. Let m; be the number jobs with parallel work for
RR at time ¢. Note that m; can be larger than 1 since RR is behind the adversary in some jobs. RR devotes
s/(lt +my) of its s speed to each of the I +my jobs it sees. Hence, RR completes fully parallelizable work at
a rate of s - my/(l; + m;). Since the adversary works at unit rate on the fully parallelizable work, RR falls
behind on this work at a rate of at most 1 — s - my;/(ls + m;). The steady state is when this rate is 0, that
is, when my =1, /(s — 1).

In this steady state, the competitive ratio is then at most (I, +{:/(s—1))/(l: +1) < s/(s—1). Intuitively,
RR tries to move to this steady state. To see this consider that RR is either above or below this steady
state. If my < l/(s — 1) then more fully parallelizable work is being released than RR is completing, and
hence RR is falling further behind and the potential function increases. The potential function increase is

24

compensated by the fact that RR’s flow time is increasing at a slower rate than it is at steady state. On
the other hand, if m; > [;/(s — 1) then RR must be catching up to the adversary in terms of uncompleted
parallel work. In this case, the decrease in the potential function must pay the additional increase in flow
time that RR has to pay for being behind.

Note that the speed s has to be at least 2 + ¢ in order for the potential function to decrease quickly
enough. A simple instance that shows that speed 2 is required is n jobs, with equal processing time, that all
arrive at time 0. In this case RR needs speed at least 2 so that it is always O(1)-competitive in terms of the
number of unfinished jobs.

The obvious and interesting open question is then:

Open Problem 2.28 Is there an almost fully scalable algorithm in the case of sublinear and non-decreasing
speed-up functions when the objective function is total flow time?

Edmonds, Datta, and Dymond [43] extend Edmonds’ analysis of RR to Internet TCP protocol. Becchetti
and Leonardi [21] extend their analysis of RMLF to show that it is O(logn log(n/m))-competitive on m
machines under the assumption that jobs may not be simultaneously run on multiple machines.

2.9 Multicast Pull Scheduling for Average Flow

In a multicast /broadcast system, when the server sends a requested page/item, all outstanding client requests
to this page are satisfied by this multicast. The system may use broadcast because the underlying physical
network provides broadcast as the basic form of communication (e.g. if the network is wireless or the
whole system is on a LAN). Multicast may also arise in a wired network as a method to provide scalable
data dissemination. One commercial example of a multicast-pull client-server system is Hughes’ DirecPC
system. In the DirecPC system the clients request documents via a low bandwidth dial-up connection, and
the documents are broadcast via high bandwidth satellite to all clients. In this section we will restrict our
attention to the case that the objective function is total flow time. We use the notation B in the machine
field of the 3-field scheduling notation to denote broadcast, or more precisely, multicast pull.

While this problem is interesting in its own right, it is also interesting because of its connection to weighted
flow time and its surprising connection to scheduling jobs with speed-up functions. We first explain why this
problem generalizes weighted flow time. If one restricts the instances in multicast pull scheduling such that
for each page, all requests for that page arrive at the same time, then the multicast pull scheduling problem
and the weighted flow scheduling problem are identical. Here the number of requests that arrive for the page
is the weight.

At first glance, it seems that the only difficulty the scheduler faces is how to favor both shorter pages
as well as more popular pages. However, the situation is more complicated than this. Consider the case
where all pages have the same size. The obvious algorithm to consider is Most Requests First (MRF) that
broadcasts the page with the most outstanding requests thus generalizing the HDF weighted scheduling
algorithm. At first, one might even be tempted to think that MRF is optimal. Kalyanasundaram, Pruhs,
and Velauthapillai [69] showed that MRF is not O(1)-speed O(1)-competitive.

Lemma 2.29 For the problem B|online-time, pmtn, v;, p; = 1| F;, the algorithm MRF is not O(1)-speed
O(1)-competitive.

Proof Sketch. Assume that MRF has an s = O(1) speed processor. Let k = n%. At time 0, the adversary
requests pages Pq,---, P,_; once each, and requests pages Pn_;41, -+, P, twice each. At each time ¢,
1 <t <k, the adversary requests pages Py _s41,- -+, P, twice each.

For all times ¢ € [1, k], MRF will broadcast pages P,_sy1,--, P,. Only after time & will MRF finally
broadcast pages Py,---, P,_s. Since the initial requests to pages Py,..., P,_s are not satisfied by MRF
during the first k time units, the total flow time for MRF is Q(nk), which is Q(n?) since k = n?.

On the other hand, for time 1 < ¢ < n — s, the adversary broadcasts page P;. (From this time on,
the adversary broadcasts pages P,_s41,-+, P, in a round robin fashion from time (n — s) + 1 to time k.
Each of the O(ns) requests made before time n — s is satisfied within n time units, and each of the O(ks)
requests made after time n — s is satisfied within s time units. Hence, the total flow time for the adversary

25

is O(sn? + ks?), which is O(n?) since k = n? and s = O(1). Therefore, the competitive ratio for MRF is
Q(n). [

The lower bound instance in Lemma 2.29 shows that the online scheduler has to be concerned with
how to best aggregate jobs. Without knowledge of the future or resource augmentation, this turns out to
be impossible. Kalyanasundaram, Pruhs, and Velauthapillai [69] show that no O(1)-competitive algorithm
exists even in the case of unit pages if preemption is not allowed. Edmonds and Pruhs [44] extend the lower
bound to the case that preemption is allowed.

Lemma 2.30 For the problem Blonline-time, pmtn, r;, p; = 1| > F;, the competitive ratio of every random-
ized online algorithm A against an oblivious adversary is (n) where n is the number of different pages.

Proof Sketch. We give only the deterministic lower bound proof. This can be generalized to a lower
bound for randomized algorithms using Yao’s technique. At time 0, every page is requested once. Then no
pages are requested until time n/2. From time 1 until time n/2, the adversary broadcasts the n/2 pages not
broadcasted by A by time n/2. At time n/2, the adversary requests all of the pages previously broadcasted
by A. Note that there are at most n/2 such pages and they were not previously broadcasted by the adversary.
No more pages are requested until time n. After the broadcast at time n, the adversary has satisfied all of
the requests to date, while A has at least n/2 unsatisfied requests. At each time ¢, for ¢ from n to k = n?,
the adversary requests the page broadcasted by A at time ¢ — 1. Hence, at each time in [n, k], A has n/2+4 1
unsatisfied requests. At each time ¢ € [n + 1,k + 1], the adversary can satisfy the request at time ¢ — 1.
Hence, the adversary has at most 1 unsatisfied request at each time ¢ € [n+ 1, k]. Hence, the total flow time
for the adversary is O(n? + k), and the total flow time for A is Q(nk). [

Before considering upper bounds, we need to note that several reasonable models are possible depending
on what one assumes about the capabilities of the server and the clients to send and receive segments of the
pages out of order. For example, it is not clear whether a client that requests a large page, in the middle of
the broadcast, will need the whole page rebroadcast, or only the first half. For example, in a protocol, like the
http protocol, where the content is identified only in the header, rebroadcast would be required. Pruhs and
Uthaisombut [84] compare the optimal schedules, under various objective functions, in the different models.
They show that allowing the server to send segments out of order is of no real benefit. On the other hand,
they show that the ability of the clients to receive data out of order can drastically improve the average flow
time, but not the maximum flow time. Further they show that a speed 2 server can compensate for clients
not be able to receive pages out of order.

The general lower bound in Lemma 2.30 actually contains the key insight that ties multicast pull schedul-
ing to scheduling with speed-up curves and thus suggests a possible algorithm. After the online algorithm
has performed a significant amount of work on a page that was requested by a single client, the adversary
can again direct another client to request that page. The online algorithm must service this second request
as well. In contrast, the optimal schedule knows not to initially give any resources to the first request be-
cause the broadcast for the second request simultaneously services the first. Thus, even though the online
algorithm devotes a lot of resources to the first request and the optimal algorithm devotes no resources to the
first request, it completes under both at about the same time. In this regard, the work associated with the
first request can be thought of as “constant”. This suggests that the real difficulty of broadcast scheduling
is that the adversary can force some of the work to have a constant speed-up curve.

Formalizing this intuition, Edmonds and Pruhs [44] give a method to convert any nonclairvoyant unicast
scheduling algorithm A to a multicast scheduling algorithm B under the assumption that the clients must
receive all pages in order. A unicast algorithm can only answer one request at a time. All the standard
algorithms listed in section 2.1 are unicast algorithms. Edmonds and Pruhs [44] show that if A works well
when jobs can have parallel and constant phases, then B works well if it is given twice the resources. The
basic idea is that B simulates A, creating a separate job for each request, and then the amount of time that
B broadcasts a page is equal to the amount of time that A runs the corresponding jobs. More formally, if A
is an s-speed c-competitive unicast algorithm, then its counterpart, algorithm B, is a 2s-speed c-competitive
multicast algorithm. In the reduction, each request in the multicast pull problem is replaced by a job whose
work is constant up until the time that either the adversary starts working on the job or the online algorithm
finishes the job. After that time, the work of the replacement job is parallel. The amount of parallel work
is such that A will complete a request exactly when B completes the corresponding job.

26

Using RR for algorithm A, one obtains an algorithm, called BEQUI in [44], that broadcasts each page
at a rate proportional to the number of outstanding requests. Using Edmonds’ analysis of RR for jobs with
speed-up functions, one gets the following result.

Theorem 2.31 For the problem Blonline-time-nclv, pmtn, r;| > F;, under the assumption that all pages
must be received in order, BEQUI is (4 + €)-speed O(1 + 1/¢€)-competitive.

Note that BEQUT preempts even unit sized jobs. Edmonds and Pruhs also give a (4 + €)-speed O(1 +
1/€)-competitive algorithm BEQUI-EDF for the problem B|online-time, r;,p; = 1|Y_ F;. The idea of the
algorithm is to simulate BEQUI to give a deadline for each request of the release time of that job plus
some constant times the flow time of the job in BEQUI’s schedule. BEQUI-EDF then runs the job with the
Earliest Deadline First.

For the problem B|online-time,r;, p; = 1|3 F;, the most popular algorithm in the computer systems
literature is Longest Wait First (LWF). LWF always services the page for which the aggregate waiting times
of the outstanding requests for that page is maximized. In the natural setting where for each page, the request
arrival times have a Poisson distribution, LWF broadcasts each page with frequency roughly proportional to
the square root of the page’s arrival rate, which is essentially optimal. Edmonds and Pruhs [45] provide an
analysis of LWF. They show that LWF is 6-speed O(1)-competitive, but is not almost fully scalable. Tt is
not too difficult to see that there is no possibility of proving such a result using local competitiveness. The
rather complicated analysis given by Edmonds and Pruhs [45] compares the total cost of LWF to the total
cost of the adversary.

The obvious interesting open question is then:

Open Problem 2.32 For the problems B|online-time, pmtn, v;| Y F;, Blonline-time-nclv, pmtn, r;| > F;,
Blonline-time, r;, p; = 1|3 F;, is there an almost fully scalable algorithm? For the problems
Blonline-time, pmtn, r;| > F;, Blonline-time-nclv, pmtn, r;| > F; one should consider both the version where
the client has to receive the page in order, and the version where the client can receive the page out of order.

Bartal and Muthukrishnan [20] stated that FIFO is 2-competitive when the objective is minimizing
maximum flow time under the assumption clients may receive documents out of order.

2.10 Nonclairvoyant Scheduling to Minimize Makespan

A general reduction theorem from [98] shows that in any variant of scheduling in online-time-nclv envi-
ronment with makespan objective, any batch-style o-competitive algorithm can be converted into a 2o-
competitive algorithm in a corresponding variant which in addition allows release times. In [54] it is proved
that for a certain class of algorithms the competitive ratio is increased only by additive 1, instead of the fac-
tor of 2 in the previous reduction; this class of algorithms includes all algorithms that use a greedy approach
similar to List Scheduling. The intuition beyond these reductions is that if the release times are fixed, the
optimal algorithm cannot do much before the last release time. In fact, if the online algorithm would know
which job is the last one, it could wait until its release, then use the batch-style algorithm once, and achieve
the competitive ratio of o + 1 easily. These reductions are completely satisfactory if we are interested only
in the asymptotic behavior of the competitive ratio. However, if the competitive ratio is a constant, we may
be interested in a tighter result.

In the basic model where the only characteristic of a job is the running time, there is not much we can do
if we do not know it. For the basic problem P|online-time-nclv|Ciyax, no deterministic algorithm is better
than 2 — 1/m, i.e., better than List Scheduling, and randomization does not help much, as the lower bound
s (2—0O(1/4/m)) [98]. In Section 1.4 we mentioned that List Scheduling is (2 — 1/m)-competitive even
for Plonline-time-nclv, prec, 7;|Cmax. (Hence we do not lose anything in the competitive ratio for allowing
release times, unlike in the general reductions above.)

2.10.1 Different Speeds

Here we consider both uniformly related machines and unrelated machines. In the case of related machines,
the speed of each machine is the same for all jobs and given in advance. For unrelated machines, the speeds

27

are different for each job, and we assume that the speed for each job on each machine is known when the job
is released. Only the running time is not known (i.e., for each job we know the relative speeds of machines).

If no preemptions are allowed, even for uniformly related machines, @m|online-time-nclv|Cyax, a simple
example shows that no algorithm is better than £2(y/m)-competitive [39]. A matching, O(y/m)-competitive,
algorithm is known even for unrelated machines, Rm|online-time-nclv|Cpayx, see [39]. This is not very
satisfactory, as a trivial greedy algorithm is m-competitive even for Rm|online-time-nclv, prec, r;|Cmax,
see [46].

However, for related machines, allowing preemptions or even only restarts helps significantly. In this
case we can use a variant of a doubling method to convert an arbitrary offline algorithm into an on-
line algorithm. Since we do not know the running times, we guess that all jobs have some chosen run-
ning time, then run the appropriate schedule. If any job is not finished in the guessed time, we stop
it, double its estimate, and repeat the procedure for all such jobs. This method, together with addi-
tional improvements, yields an O(log m)-competitive algorithm for uniformly related machines with restarts,
()m|online-time-nclv, pmtn-restart, 7;|Cmax [98]. A matching lower bound shows that this is optimal even
for Qm|online-time-nclv, pmtn|Cpayx [98].

2.10.2 Parallel Jobs

In this variant, each job is characterized by its running time and the number of identical machines (processors)
it requests. This is denoted by size; in the middle field of the three-field notation. While the running times
are unknown, the number of machines a job requests is known as soon as the job becomes available. We
consider two variants according to how strict the request is. In the first, the jobs are non-malleable, which
means that they have to be scheduled on the requested number of machines. On the other hand, malleable
jobs may be scheduled on fewer machines, at the cost of increasing the processing time. Most of the time we
consider ideally malleable jobs. Using the terminology of speed-up curves, such jobs are fully parallelizable
up to the requested number of machines. That is, scheduling on ¢’ < ¢ machines takes time pg/q’ instead of
the original processing time p.

Consider the simplest greedy approach for batch-style algorithms: whenever there are sufficiently many
machines idle, we schedule some job on as many machines as it requests. This leads to (2—1/m)-competitive
algorithm, regardless of the rule by which we choose the job to be scheduled (note that here we have a
meaningful choice, as we know how many machines each job requests), even with release times, i.e., for
Plonline-time-nclv, size;, 7;|Cmax [82]. This is optimal, as the basic model corresponds to the special case
when each job requests only one machine. Moreover, this algorithm works even for non-malleable jobs.

If we allow precedence constraints, P|online-time-nclv, size;, prec|Cmax, 1o reasonable online algorithm
exists for non-malleable parallel jobs. For deterministic algorithms there is a lower bound of m on the
competitive ratio (a trivial greedy algorithm matches this) [53], and for randomized algorithms there is a
lower bound of m/2 [94].

In contrast, with ideally malleable jobs, P|online-time-nclv, size;, prec|Cmax allows a constant competitive
ratio. The optimal competitive ratio for deterministic algorithms for P|online-time-nclv, size;, prec|Cmax is
1+ ¢ ~ 2.6180 [53]. The optimal strategy is again greedy, with the following rules for using malleability of
the jobs: (i) If there is an available job requesting ¢ machines and ¢ machines are idle, schedule this job on
g machines. (ii) Otherwise, if less than m/¢ machines are busy and some job is available (requesting more
machines), schedule it on all available machines. Note that this algorithm uses malleability only for large
jobs. Accordingly, if there is an upper bound on the number of machines a job can use, we can get better
algorithms and also algorithms for non-malleable jobs. The tight tradeoffs are given in [53].

In practice, it is perhaps not realistic to assume that any subset of machines can be used for a parallel
job. A model which takes into account a particular network topology of the parallel machine was considered
in [55, 53, 95] (without precedence constraints, with precedence constraints, and randomized algorithms,
respectively). In this model, if the underlying network is, for example, a mesh (two-dimensional array),
each job requests a rectangular subset of processors with given dimensions. Perhaps the most interesting
results in this area concern the power of randomization. For Pm|online-time-nclv, size;|Crmax with the mesh
restriction, no deterministic algorithm has a constant competitive ratio, the tight bound is ©(y/loglogm);
on the other hand, there exists a randomized O(1)-competitive algorithm. This randomized algorithm is
based on random sampling, and it is one of the first results showing the power of randomization in the area

28

of online algorithms. In contrast, if we allow precedence constraints, there are lower bounds showing that
randomization does not change the competitive ratio significantly. For a more complete survey of results for
various topologies (linear array, hypercube, mesh), see [97].

3 Scheduling Jobs One by One

This paradigm corresponds most closely to the standard model of request sequences in competitive analysis.
It can be formulated in the language of online load balancing as the case where the jobs are permanent and
the load is their only parameter corresponding to our processing time. Consequently, there are many results
on load balancing that extend the basic results on online scheduling in a different direction. As a reference
in this area, we recommend the survey [8].

In this paradigm, we do not allow release times and precedence constraints, as these restrictions appear
to be unnatural with scheduling jobs one by one. In most of the variants, it is also sufficient to assign each
job to some machine(s) for some length of time, but it is not necessary to specify the actual time slot(s). In
other words, it is not necessary or useful to introduce idle time on any machine. An exception is the area of
preemptive scheduling on related machines where introducing idle times seems to be very useful.

We first give the results considering minimizing the makespan; only in Sections 3.8 and 3.9 do we briefly
mention results for other objective functions, namely minimizing the [, norm and the total completion time.

3.1 The Basic Model

We start by studying the basic parallel machine scheduling problem P|online-list|C\hax. This is probably the
most extensively studied online scheduling problem, yet many questions remain open. In this section, we are
interested in deterministic algorithms.

We have m machines and a sequence of jobs characterized by their processing times. The jobs are
presented one by one, and we have to schedule each job to a single machine before we see the next one.
There are no additional constraints, preemption is not allowed, all the machines have the same speed, and
the objective function is the makespan.

The greedy List Scheduling algorithm schedules each arriving job on a least loaded machine. From
Graham’s analysis [62], it follows that the competitive ratio of List Scheduling is 2 — 1/m. This is provably
the best possible for m = 2 and m = 3 [52], but for larger m it is possible to develop better algorithms.

From the analysis of List Scheduling, it is clear what is the main issue in designing algorithms better
than List Scheduling. If all machines have equal loads and a job with long processing time is presented, we
may create a schedule which is almost twice as long as the optimal one. This is a problem if the scheduled
jobs are sufficiently small, and the optimal schedule can distribute them evenly on m — 1 machines in parallel
with the last long job on the remaining machine. Thus, to achieve better results, we have to create some
imbalance and keep some machines lightly loaded in preparation for large jobs that have not yet arrived.

To design a good algorithm, current results use two different approaches. One is to schedule each job on
one of the two currently least loaded machines [60, 36]. This gives better results than List Scheduling for any
m > 4, and achieves the currently best upper bounds for small m. However, for large m, the competitive
ratio still approaches 2. The difficulty is that this approach only ensures that there is one lightly loaded
machine. Thus, after many small jobs and two long jobs, we get a long schedule and the competitive ratio
is at least 2 — 2/m.

To keep the competitive ratio bounded away from 2 even for large m, it is necessary to keep some constant
fraction of machines lightly loaded. Such an algorithm was first developed in [17]. Later better algorithms
based on this idea were designed in [72, 1, 58] to give the currently best upper bounds for large m. The
analysis of all these algorithms is relatively complicated. However, at a basic level, all of these algorithms
use the following three lower bounds on the optimal makespan: (i) the total processing time of all jobs
divided by m, (ii) the largest processing time of any job, and (iii) the sum of the mth largest and m + 1st
largest processing times. It has recently been shown that we cannot prove any deterministic algorithm has a
better competitive ratio than 1.919 using only these lower bounds on the optimal makespan [2]. Tt has been
conjectured that an improved algorithm and an improved analysis might by using additional lower bounds
on the optimal makespan that include the size of the 2m 4+ 1st largest processing time, or in general the

29

km 4 1st processing time for k > 2. However, we still cannot prove any deterministic algorithm has a better
competitive ratio than 1.917 using these additional lower bounds on the optimal makespan [2].

The lower bounds for this problem are typically proven by explicitly giving a hard sequence of jobs. The
observation that List Scheduling is optimal for m = 2,3 is due to [62]. For m = 4, the lower bound is
V3 &2 1.7321, see [85, 86]. The other lower bounds for small m are from [36]. The lower bounds for large m
were gradually improved in [18, 1, 85].

The current state of our knowledge is summarized in Table 3. For comparison we include also the
competitive ratio of List Scheduling. (See Section 3.2 for a discussion of results for randomized algorithms
and Section 3.3 for preemptive scheduling.)

deterministic randomized preemptive
m LS upper bound | lower bound | upper bound | lower bound | upper and lower bound
2 1.5000 1.5000 1.5000 1.3333 1.3333 1.3333
3 1.6666 1.6666 1.6666 1.5373 > 1.4210 1.4210
4 1.7500 1.7333 1.7321 1.6567 1.4628 1.4628
5 1.8000 1.7708 1.7462 1.7338 1.4873 1.4873
6 1.8333 1.8000 1.7730 1.7829 1.5035 1.5035
7 1.8571 1.8229 1.7910 1.8168 1.5149 1.5149
o) 2.0000 1.9230 1.8800 1.9160 1.5819 1.5819

Table 3: Current bounds for Pm|online-list|Cax and Pm|online-list, pmtn|Ciax-

3.2 Randomized Algorithms

Much less is known about randomized algorithms for the basic model P|online-list|Ciyax studied in Sec-
tion 3.1. We only have a known optimal randomized algorithm for the case m = 2. A 4/3-competitive
randomized algorithm and a matching lower bound for two machines, P2|online-list|Ciax, was presented
in [17].

First we show that this is best possible. Consider a sequence of three jobs with processing times 1,
1, and 2. After the first two jobs, the optimal makespan is 1, so the expected makespan of the online
algorithm has to be at most 4/3. This means that after the first two jobs, the expected load of the less
loaded machine is at least 2/3, and after the third job, even if it is always scheduled on the smaller machine,
the expected makespan is at least 2/3 + 2 = 8/3. Since the optimum is 2, the algorithm cannot be better
that 4/3-competitive.

In the proof, we can replace the first two jobs by an arbitrary sequence of jobs with total processing time
2. Hence the proof actually shows that in any 4/3-competitive algorithm, the expected load of the more
loaded machine has to be at least twice as much as the expected load of the other machine at all times. This
has to be tight whenever we can partition the jobs into two sets with exactly the same sum of processing
times. The most natural way to design an algorithm with this in mind is to keep the desired ratio of expected
loads at all times. It turns out this works, with some additional considerations for large jobs [17, 97].

The idea of the lower bound for two machines can be extended to an arbitrary number of machines [35, 96].
This leads to a lower bound of 1/(1 — (1 — 1/m)™), which approaches ¢/(e — 1) &~ 1.5819 for large m and
increases with increasing m. This lower bound shows that for m machines, the expected loads should be
in geometric sequence with the ratio m : (m — 1), if the machines are always ordered so that their loads
are non-decreasing. (For example, for m = 3, the ratio of loads is 4 : 6 : 9.) An algorithm based on this
invariant would be a natural generalization of the optimal algorithm for two machines from [17]; it would
also follow the suggestion from [37] (see Section 3.3). However, it is impossible to always maintain this ratio
of expected loads. For three machines, P3|online-list|Cax, we know that this lower bound of 27/19 is not
tight [100]. More precisely, we know that for some ¢ > 0, there is no (27/19 + €)-competitive algorithm, but
the value of ¢ is very small and not explicit in [100].

30

New randomized algorithms for small m were developed in [92, 88]. They are provably better than
any deterministic algorithm for m = 3,4,5 and better than the currently best deterministic algorithm for
m = 6,7. They always assign the new job on one of the two least loaded machines, similar to the deterministic
algorithms for small m from [60, 36]. Consequently, the competitive ratio approaches two as m grows.

Another observation is that any randomized algorithm that never assigns jobs to the most loaded machine
is at best 1.5-competitive. Consider a sequence of 2 jobs with processing time 1 and m—1 jobs with processing
time 2. The first two jobs are assigned to two distinct machines due to the restriction of the algorithm. After
the remaining jobs, the makespan is at least 3, while the optimum is 2.

Recently a new 1.916-competitive randomized algorithm for any number of machines, P|online-list|C\yax,
was given in [2]. Tt is interesting that this algorithm as well as the algorithms for small m from [88] are barely
random, i.e., need only a finite number of random bits (or different schedules) independent of the number
of jobs. In contrast to this, the optimal algorithm for m = 2 from [17] needs to maintain an increasing
collection of schedules; their number is linear in the number of jobs. Note also that 1.916 is better than
the best possible deterministic competitive ratio provable using “standard” lower bounds on the optimal
makespan.

To summarize, we have the optimal randomized algorithm for m = 2, a significant improvement over the
deterministic algorithms for small m and a tiny improvement over the deterministic algorithms for large m.

See Table 3.

3.3 Preemptive Scheduling

Next we consider the preemptive version of the problem, P|online-list, pmtn|Cp,ax. Each job may be assigned
to one or more machines and time slots (the time slots have to be disjoint, of course), and this assignment
has to be determined completely as soon as the job is presented. In this model the offline case is easily solved,
and the optimal makespan is the maximum of the maximal processing time and the sum of the processing
times divided by m (i.e., the average load of a machine), see Chapter 3.

It is easy to see that the lower bounds from Section 3.2 hold in this model, too, as they only use the
arguments about expected load (with the exception of the improved bound for 3 machines). This again
leads to a lower bound of 1/(1 — (1 — 1/m)™), which approaches e/(e — 1) & 1.5819 for large m, valid even
for randomized algorithms [37]. As it turns out, there exists a deterministic algorithm matching this lower
bound. It essentially tries to preserve the invariant that the expected loads are in geometric sequence with
the ratio m : (m — 1) with some special considerations for large jobs [37].

Thus, in this model, both deterministic and randomized cases are completely solved, giving the same
bounds as the randomized lower bounds in Table 3. Moreover, we know that randomization does not help.
This agrees with the intuition. In the basic model, randomization can serve us to spread the load of a job
among more machines, but we still have the problem that the individual configurations cannot look exactly
as we would like. With preemption, we can maintain the ideal configuration by spreading the loads as we
wish among the m machines. Thus, preemption is more powerful than randomization.

3.4 Semi-Online Algorithms with Known Optimum and Doubling Strategies

Assuming that the algorithm knows the optimum value of the objective function is perhaps not realistic from
a practical viewpoint. However, as the following theorem shows, such a semi-online algorithm can be used
as a building block for an online algorithm for the same problem. Instead of a known optimal makespan, we
use an estimate and double it whenever it turns out that the estimate was too small.

Theorem 3.1 Suppose that for some scheduling problem in the online-list environment with the objective
to minimize makespan there exists an R-competitive semi-online algorithm if the optimum is known. Then
for the same problem there exists both a deterministic online algorithm with competitive ratio 4R and a
randomized online algorithm with competitive ratio eR < 2.7183- R.

Proof Sketch. Let Gy be the value of the optimal schedule considering only the first job of the sequence
and let OPT be the optimal makespan on the whole instance. Let Ag denote the semi-online algorithm
provided with the information that G is the optimal makespan. First note that if G > OPT, then Ag always

31

produces a schedule with makespan at most RG: the sequence can be appended with jobs that increase the
makespan to exactly G and on this appended sequence the algorithm guarantees not to schedule any job
after time RG.

The deterministic online algorithm computes GGy and sets G := (g upon the arrival of the first job. Then
it runs the algorithm Ag modified so that the jobs are scheduled in time interval [RG, 2R(G) instead of
[0, RG). If Ag fails to schedule the next job, the online algorithm sets GG := 2G and starts the algorithm
Ag with the new value of (. The intervals in which the algorithm A¢g schedules for different values of G
are disjoint and thus the algorithm is well defined. The value of GG can be increased only when G' < OPT,
by the property of the semi-online algorithm mentioned above. Thus at the end of the algorithm we have
G < 2-0PT and the final makespan is at most 2RG < 4R - OPT and the algorithm is 4R-competitive.

The randomized online algorithm computes G and sets G := Gy - €°, where z is a random variable
uniformly distributed in [0,1) and e is the base of natural logarithms. Then it runs the algorithm Ag
modified so that the jobs are scheduled in the time interval [RG-1/(e — 1), RG -e/(e — 1)) instead of [0, RG).
If Ag fails to schedule the next job, the online algorithm sets G' := eG and starts the algorithm Ag with the
new value of G'. Again, the intervals in which the algorithm A schedules for different values of G are disjoint
and the value of G can be increased only when G < OPT. Thus at the end of the algorithm G is at most
G' = Go-e**7 where k is the smallest integer such that this value is at least OPT. This is equivalent to saying
that # = In(G’/OPT) is the fractional part of y = In(Go/OPT) + k + z. Since z is uniform in [0, 1), k is an
integer and In(Go/OPT) is a constant, # is also uniformly distributed in [0, 1). The expected value of the final
makespan is at most Exp[RG’-e/(e—1)] = Exp[Re”-OPT-e/(e—1)] = Exp[e”]-R-OPT-e/(e—1) = eR-OPT

and the algorithm is e R-competitive. |

A doubling strategy similar to this theorem is a very common tool in computer science. In the area
of online algorithms, it leads to optimal algorithms for search on a line (also known as cow-path problem)
and its generalizations, both for deterministic and randomized algorithms, see [11, 71, 70]. In the context
of online scheduling, it was used the first time in [98, 3], see Sections 2.10.1 and 3.5. In some cases, to
get currently best results, this method may need some refinements, however, the basic idea of multiplying
the estimate by a fixed constant as well as type of distribution used for the initial guess of a randomized
algorithm is always the same.

If the optimum is known, the problem P|online-list|Ciyax is also studied as so-called online bin-stretching.
We know that the jobs fit into some number of bins of some height, and we ask how much we need to “stretch”
the bins to fit the jobs online. For two machines, there exists a 4/3-competitive algorithm and this is tight.
For more machines a 1.625-competitive algorithm is presented in [10]. Of course, in this case, doubling
algorithms are not useful as other algorithms perform better.

For uniformly related machines non-preemptive scheduling, Q|online-list|Ciax, scheduling a job on the
slowest machine that completes the job by the time equal to twice the optimal makespan is a 2-competitive
semi-online algorithm [3]. For preemptive scheduling on related machines, Q|online-list, pmtn|Cp,ax, we can
even produce an optimal schedule if the optimal makespan is known; a 1-competitive semi-online algorithm
is given in [47] for two machines and in [41] for any number of machines.

3.5 Different Speeds

For uniformly related machines, most results are based on the doubling strategy from Section 3.4 or its
variants. For non-preemptive scheduling, Q|online-list|Ciyax, a simple doubling strategy leads to a con-
stant competitive ratio [3]. The competitive ratio can be improved by using more sophisticated analysis of
doubling strategies. The current best algorithms are 3 + /8 & 5.828-competitive deterministic and 4.311-
competitive randomized [28]. For an alternative very nice presentation see [16]. The lower bounds are 2.438
for deterministic algorithms [28] and 2 for randomized algorithms [51].

For uniformly related machines preemptive scheduling, @|online-list, pmtn|Cyax, we already mentioned
that it is possible to design an optimal (1-competitive) semi-online algorithm if the optimal makespan is
known in advance. Thus, by Theorem 3.1, this yields 4-competitive deterministic and 2.7183-competitive
randomized algorithms [41]. The lower bound is 2 both for deterministic and randomized algorithms [51].

For unrelated machines, R|online-list|Cax, it is possible to obtain O(log m)-competitive deterministic al-
gorithm [3, 75]. A matching lower bound of Q(logm) holds both for deterministic and randomized algorithms

32

deterministic randomized
preemption m LS upper bound | lower bound | upper bound | lower bound
non-preemptive 2 1.618 1.618 1.618 1.528 1.500
) O(logm) 5.828 2.438 4.311 2.000
preemptive 2 1.500 1.333 1.333 1.333 1.333
) O(logm) 4.000 2.000 2.718 2.000

Table 4: Current bounds for @m|online-list|Ciax and Qm|online-list, pmtn|Ciyax.

even in the special case of the so-called restricted assignment, where each job specifies a set of machines on
which it may be processed (it is processed infinitely slowly on the others) and besides this restriction all the
machines have the same speed [9]. The lower bound also works for R|online-list, pmtn|Cpax.

It is interesting that both for related and unrelated machines, the optimal algorithms are asymptotically
better than List Scheduling. Here List Scheduling is modified so that the next job is always scheduled so
that it will finish as early as possible (for the case of identical speed this is clearly equivalent to the more
usual formulation that the next job is scheduled on the machine with the smallest load). For unrelated
machines, R|online-list|Cinax, the competitive ratio of List Scheduling is exactly m [3]. For related machines,
Q|online-list|Cinax and @|online-list, pmtn|Cihax, the competitive ratio of List Scheduling is asymptotically
O(logm) [38, 3, 41] (the lower bound, the upper bound, and the preemptive case, respectively). The exact
competitive ratio for m = 2 is ¢ and for 3 < m < 6 it is equal to 1 + 4/(m — 1)/2 [38]; moreover for m = 2,3
it can be checked easily that there is no better deterministic algorithm.

For two machines, Q2|online-list|Cinax and Q2|online-list, pmtn|Ciyayx, we are able to analyze the situation
further, depending on the speeds [50]. We first consider the non-preemptive problem. Suppose that the speeds
of the two machines are 1 and s > 1. It is easy to see that List Scheduling is the best deterministic online
algorithm for any choice of s. For s < ¢ the competitive ratio is 1 +s/(s+ 1), increasing from 3/2 to ¢. For
s > ¢ the competitive ratio is 1 + 1/s, decreasing from ¢ to 1; this is the same as for the algorithm which
puts all the jobs on the faster machine. It turns out that this is also the best possible randomized algorithm
for s > 2. On the other hand, for any s < 2, randomized algorithms are better than deterministic ones, and
the overall upper bound is 1.5278. The competitive ratio of the optimal deterministic preemptive algorithm
is better than the competitive ratio of the optimal non-preemptive randomized algorithm for any s > 1.
Furthermore, the worst-case is the identical machine case when s = 1. In contrast, without preemption, the
worst competitive ratio (both deterministic and randomized) is achieved for some s > 1 [50, 101].

The current bounds for scheduling on uniformly related machines are summarized in Table 4.

3.6 Semi-Online Algorithms

In addition to algorithms that know the optimum which we discussed in Section 3.4, the most commonly
studied semi-online variant is the one where the jobs arrive sorted according to their processing times. In
case of the makespan objective, the jobs are sorted largest first, i.e., by non-increasing processing time, to
improve the performance.

When the jobs are sorted, the greedy online algorithm List Scheduling becomes the so-called LPT (Largest
Processing Time first) semi-online algorithm. We already mentioned that for P|online-list|Cpax, the com-
petitive ratio of LPT is 4/3 — 1/(3m), see [63]. For related machines the competitive ratio of LPT is a small
constant, unlike List Scheduling which is only ©(log m)-competitive. For Q|online-list|Cpax, the competitive
ratio of LPT is between 1.52 and 1.66 [59]; a better upper bound of 1.58 is claimed in [40], but the proof
appears to be incomplete. For Q2|online-list|Cax, the complete analysis of the dependence of the compet-
itive ratio on the speed ratio was given in [79]. For Q|online-list, pmtn|Ciax, the competitive ratio of LPT
is 2, see [41].

The semi-online case of Plonline-list|Cyax and Plonline-list, pmtn|Cryax was further studied in [89]. Tt
turns out that for P2|online-list|Ciyax, LPT is an optimal deterministic algorithm. For randomized algo-
rithms a better competitive ratio of 8/7 is possible and optimal. For P|online-list, pmtn|C\,ax, the optimal

33

competitive ratio is (1 + \/g)/Q /s 1.336; this is surprisingly higher than the performance of LPT in the non-
preemptive case. The semi-online case of Q2|online-list|Cimax and @Q2|online-list, pmtn|Cpyax was completely
analyzed in [48, 49].

3.7 Scheduling with Rejections

In this version, jobs may be rejected at a certain penalty. Each job is characterized by the processing time
and the penalty. A job can either be rejected, in which case its penalty is paid, or scheduled on one of the
machines, in which case its processing time contributes to the completion time of that machine (as usual).
The objective is to minimize the makespan of the schedule for accepted jobs plus the sum of the penalties
of all rejected jobs. Again, there are no additional constraints and all the machines have the same speed.

The main goal of an online algorithm is to choose the correct balance between the penalties of the rejected
jobs and the increase in the makespan for the accepted jobs. At the beginning, it might have to reject some
jobs if the penalty for their rejection is small compared to their processing time. However, at some point, it
would have been better to schedule some of the previously rejected jobs since the increase in the makespan
due to scheduling those jobs in parallel is less than the total penalty incurred.

We first look at deterministic algorithms in the case when preemption is not allowed [19]. At first it would
seem that a good algorithm has to do well both in deciding which jobs to accept, and on which machines
to schedule the accepted jobs. However, it turns out that after the right decision is made about rejections,
it is sufficient to schedule the accepted jobs using List Scheduling. This is certainly surprising, as we know
that without rejections, List Scheduling is not optimal. Thus, it is natural to expect that any algorithm for
scheduling with rejections would benefit from using a better algorithm for scheduling the accepted jobs.

We can solve this problem optimally for m = 2 and for unbounded m; the competitive ratios are ¢ and
1 4 ¢, respectively. However, the best competitive ratio for fixed m > 3 is not known. It certainly tends to
1+ ¢, which is the optimum for unbounded m, but the rate of convergence is not clear. While the upper
bound is 1 + ¢ — 1/m (i.e., the same rate of convergence as for List Scheduling), the lower bound is only
14+ ¢ —1/0(logm).

The lower bounds for small m from [19] work also for preemptive deterministic algorithms, but for large m
yield only a lower bound of 2. An improved algorithm for deterministic preemptive scheduling was designed
in [93]. Tt achieves competitive ratio 2.3875 for all m. An interesting question is whether a better than
2-competitive algorithm can be found for m = 3: we know several different 2-competitive algorithms even
without preemption, but the lower bound does not match this barrier.

Randomized algorithms for this problem, both with and without preemption, were designed in [91, 90, 93].
No algorithms better than the deterministic ones are known for large m. The lower bounds for randomized
scheduling without rejection (Table 3) clearly apply here (set the penalties infinitely large), and no better
lower bounds are known.

The results are summarized in Table 5. The deterministic lower bounds apply both for algorithms with
and without preemption, with the exception of arbitrary m where the lower bound is only 2 with preemption.

deterministic deterministic upper bounds randomized upper bounds
m | lower bounds | non-preemptive | preemptive | non-preemptive | preemptive
2 ¢~ 1.6180 0] ¢ 1.5000 1.5000
3 1.8392 2.0000 2.0000 1.8358 1.7774
4 1.9276 2.1514 2.0995 2.0544 2.0227
5 1.9660 2.2434 2.1581 2.1521 2.0941
o | 1+ ¢r2.6180 1+¢ 2.387H - -

Table 5: Current bounds for algorithms scheduling jobs one by one with possible rejection.

34

3.8 Minimizing the /, Norm

Here we minimize the I, norm of the vector of the loads of machines, instead of the makespan, which is
equivalent to the [, norm. Of special interest is the Euclidean l; norm, the square root of the sum of
squares of loads, which has a natural interpretation in load balancing [8, 6]. For identical machines, a
convexity argument implies that if all the machine loads are equal, the schedule is optimal. Thus, similar to
measuring makespan, this performance measure quantifies how well we can approximate this ideal schedule;
however note that a single overloaded machine has a much smaller effect on the [, objective.

Minimizing the /3 norm on identical machines was studied in [4]. List Scheduling is \/4/_3—competitive,
and this is optimal. The performance of List Scheduling is not monotone in the number of machines. It is
equal to \/4/_3 only for m divisible by 3; otherwise it is strictly better. More surprisingly, there exists an
algorithm which is for sufficiently large m better than \/47 — ¢ for some d > 0. Since the lower bound of
v/4/3 holds for m = 3, this means that the optimal competitive ratio is also not monotone in m. This is
perhaps a most interesting feature of these results: for the basic problem Pm||Cpax we often expect, based
on the current results, that the competitive ratio will increase with the number of machines m; this intuition
thus fails at least for a slightly different objective function. For a general p, the same approach leads also to
an algorithm better than List Scheduling for large m.

For unrelated machines, [6] gives a simple greedy algorithm with a competitive ratio 1 + /2 for the [y
norm and O(p) for a general [, norm. In contrast to makespan, the competitive ratio is a constant that does
not depend on the number of machines or jobs.

3.9 Minimizing the Total Completion Time

In this variant it is necessary to use idle times, as we have to finish the jobs with short processing times first
to minimize the total completion time. Even on a single machine, 1|online-list| > C}, it is hard to design a
good algorithm and the competitive ratio depends on the number of jobs logarithmically. More precisely,
there exists a deterministic (logn)!T¢-competitive algorithm on a single machine without preemptions, but
no log n-competitive algorithm exists even if preemption is allowed [57].

3.10 Open problems

Randomized algorithms. We still understand very little about the power of randomization in this online
paradigm, despite some recent progress. In particular, for the basic problem P|online-list|Ciax, the lower
bound is 1.581 while the best algorithm is 1.916-competitive; this gap is quite large compared to the case of
deterministic algorithms. It is reasonable to expect that improvements of the algorithm are more likely, but
the lower bound of [100] for P3|online-list|Cpax indicates some possibility of improving the lower bound as
well.

Preemptive scheduling on related machines. In the offline case, Q|pmtn|Ciax we understand pre-
emptive scheduling very well. The optimum is easy to calculate and the structure of optimal schedules is
well understood [65, 61]. In the online identical machine case, P|online-list, pmtn|Cryax Wwe have a similar
complete understanding of the optimal online algorithm. Despite some effort, the case of online scheduling
on uniformly related machines, Q|online-list, pmtn|Cax remains open. Our intuition is that, similarly as for
P|online-list, pmtn|Ciax, randomization should not help and thus the deterministic 4-competitive algorithm
can be improved.

Acknowledgments

We are grateful to many colleagues for useful comments, pointers to the literature, and manuscripts. Without
them this survey could not possibly cover as many results as it does.

35

References

[1] S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29:459-473, 1999.

[2] S. Albers. On randomized online scheduling. In Proc. 34th Symp. Theory of Computing (STOC), pages
134-143. ACM, 2002.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications to
machine scheduling and virtual circuit routing. Journal of the ACM, 44:486-504, 1997.

[4] A. Avidor, Y. Azar, and J. Sgall. Ancient and new algorithms for load balancing in the [, norm. In
Proc. 9th Symp. on Discrete Algorithms (SODA), pages 426-435. ACM/STAM, 1998.

[6] N. Avrahami and Y. Azar. Minimizing total flow time and total completion time with immediate
dispatching. In Proc. 15th Symp. on Parallel Algorithms and Architectures (SPAA), pages 11-18.
ACM, 2003.

[6] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Load balancing in the
l, norm. In Proc. 36th Symp. Foundations of Computer Science (FOCS), pages 383-391. IEEE, 1995.

[7] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without migration. SIAM
Journal on Computing, 31:1370-1382, 2001.

[8] Y. Azar. On-line load balancing. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: The
State of the Art, pages 178-195. Springer, 1998.

[9] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. Journal of Algorithms,

18:221-237, 1995.
[10] Y. Azar and O. Regev. On-line bin stretching. Theoretical Computer Science, 268:17-41, 2001.

[11] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and Computation,
106:234-252, 1993.

[12] N. Bansal and K. Dhamdhere. Minimizing weighted flow time. In Proc. 14th Symp. on Discrele
Algorithms (SODA), pages 508-516. ACM/SIAM, 2003.

[13] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. Non-clairvoyant scheduling for mean slowdown.
In Proc. 20th Symp. on Theoretical Aspects of Computer Science (STACS), volume 2607 of Lecture
Notes in Computer Science, pages 260-270. Springer, 2003.

[14] N. Bansal and K. Pruhs. Server scheduling in the L, norm: A rising tide lifts all boats. In Proc. 35th
Symp. Theory of Computing (STOC), pages 242-250. ACM, 2003.

[15] N. Bansal and K. Pruhs. Server scheduling in the weighted /, norm. Manuscript, 2003.

[16] A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with temporary jobs.
Journal of Scheduling, 3:259-272, 2000.

[17] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling problem.
Journal Computer Systems Science, 51:359-366, 1995.

[18] Y. Bartal, H. Karloff, and Y. Rabani. A better lower bound for on-line scheduling. Information
Processing Letters, 50:113-116, 1994.

[19] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multiprocessor scheduling
with rejection. SIAM Journal on Discrete Mathematics, 13:64-78, 2000.

[20] Y. Bartal and S. Muthukrishnan. Minimizing maximum response time in scheduling broadcasts. In

Proc. 11th Symp. on Discrete Algorithms (SODA), pages 558-559. ACM/STAM, 2000.

36

[21] L. Becchetti and S. Leonardi. Non-clairvoyant scheduling to minimize the average flow time on single
and parallel machines. In Proc. 33rd Symp. Theory of Computing (STOC), pages 94-103. ACM, 2001.
To appear in JACM.

[22] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted flow time and
deadline scheduling. In RANDOM-APPROX, volume 2129 of Lecture Notes in Computer Science,
pages 36-47. Springer, 2001.

[23] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Semi-clairvoyant scheduling. In
Proc. 11th Furopean Symp. on Algorithms (ESA), volume 2832 of Lecture Notes in Computer Science.
Springer, 2003.

[24] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Scheduling to minimize average stretch without
migration. In Proc. 11th Symp. on Discrete Algorithms (SODA), pages 548-557. ACM/STAM, 2000.

[25] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Widgerson. On the power of randomization
in on-line algorithms. In Proc. 22nd Symp. Theory of Computing (STOC), pages 379-386. ACM, 1990.

[26] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling contin-
uous job streams. In Proc. 9th Symp. on Discrete Algorithms (SODA), pages 270-279. ACM/SIAM,
1998.

[27] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch scheduling. In
Proc. 13th Symp. on Discrete Algorithms (SODA), pages 762-771. ACM/STAM, 2002.

[28] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. Journal of
Algorithms, 35:108-121, 2000.

[29] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. Nordic Journal of Computing,

6(2):181-193, 1999.

[30] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University
Press, 1998.

[31] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web proxy caching: The devil is
in the details. In Proceedings of the ACM SIGMETRICS Workshop on Internet Server Performance,
1998.

[32] C. Chekuri, S. Khanna, and A. Kumar. Multi-processor scheduling to minimize {, norms of flow and
stretch. Manuscript, 2003.

[33] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weighted flow time. In Proc. 33rd Symp. Theory
of Computing (STOC), pages 84-93. ACM, 2001.

[34] B. Chen, C. N. Potts, and G. J. Woeginger. A review of machine scheduling: Complexity, algorithms
and approximability. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume 3, pages 21-169. Kluewer, 1998.

[35] B. Chen, A. van Vliet, and G. J. Woeginger. Lower bounds for randomized online scheduling. Infor-
mation Processing Letters, 51:219-222, 1994.

[36] B. Chen, A. van Vliet, and G. J. Woeginger. New lower and upper bounds for on-line scheduling.
Operations Research Letters, 16:221-230, 1994.

[37] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for preemptive on-line scheduling.
Operations Research Letters, 18:127-131, 1995.

[38] Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing,
9:91-103, 1980.

37

[39] E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated processors. Journal of the
ACM, 28:721-736, 1981.

[40] G. Dobson. Scheduling independent tasks on uniform processors. SIAM Journal on Computing,
13:705-716, 1984.

[41] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling on uniformly related machines.
Manuscript.

[42] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 235:109-141, 2000.

[43] J. Edmonds, S. Datta, and P. W. Dymond. Tcp is competitive against a limited adversary. In Proc.
15th Symp. on Parallel Algorithms and Architectures (SPAA), pages 174-183. ACM, 2003.

[44] J. Edmonds and K. Pruhs. Multicast pull scheduling: when fairness is fine. Algorithmica, 36:315-330,
2003.

[45] J. Edmonds and K. Pruhs. A maiden analysis of longest wait first. In Proc. 15th Symp. on Discrele
Algorithms (SODA). ACM/STAM, 2004.

[46] L. Epstein. A note on on-line scheduling with precedence constraints on identical machines. Information
Processing Letters, 76:149-153, 2000.

[47] L. Epstein. Bin stretching revisited. Acta Informatica, 39:97-117, 2003.

[48] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related ma-
chines. In Proc. 27th Symp. on Mathematical Foundations of Computer Science (MFCS), volume 2420
of Lecture Notes in Computer Science, pages 245-256. Springer, 2002.

[49] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online scheduling to minimize makespan on
two related machines. Operations Research Letters, 30:269-275, 2002.

[60] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized on-line scheduling for
two related machines. Journal of Scheduling, 4:71-92, 2001.

[61] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uniformly related machines. Operations

Research Letters, 26(1):17-22, 2000.

[62] U. Faigle, W. Kern, and G. Turan. On the performane of online algorithms for partition problems.
Acta Cybernetica, 9:107-119, 1989.

[63] A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal online scheduling of parallel jobs with
dependencies. Journal of Combinatorial Optimization, 1:393-411, 1998.

[64] A. Feldmann, B. Maggs, J. Sgall, D. Sleator, and A. Tomkins. Competitive analysis of call admission
algorithms that allow delay. Technical Report CMU-CS-95-102, Carnegie-Mellon University, 1995.

[65] A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines. Theoretical Computer
Science, 130:49-72, 1994.

[66] A. Fiat and G. J. Woeginger, editors. Online Algorithms: The State of the Art. Springer, 1998.

[67] A. Fiat and G. J. Woeginger. On-line scheduling on a single machine: Minimizing the total completion
time. Acta Informatica, 36:287-293, 1999.

[68] R. Fleischer and M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3:343-353, 2000.

[69] D. K. Friesen. Tighter bounds for LPT scheduling on uniform processors. STAM Journal on Computing,
16:554-560, 1987.

38

[60] G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worst case ratio than
Graham’s list scheduling. SIAM Journal on Computing, 22:349-355, 1993.

[61] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor systems. Journal of the

ACM, 25:92-101, 1978.

[62] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563—
1581, 1966.

[63] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics,
17:263-269, 1969.

[64] K. S. Hong and J. Y.-T. Leung. On-line scheduling of real-time tasks. IEEE Transactions on Com-
puting, 41:1326-1331, 1992.

[65] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive scheduling. Journal of the
ACM, 24:32-43, 1977.

[66] B. Kalyanasundaram and K. Pruhs. Fault-tolerant scheduling. In Proc. 26th Symp. Theory of Com-
puting (STOC), pages 115-124. ACM, 1994.

[67] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM,
47:214-221, 2000.

[68] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. Journal of the ACM,
50:551-567, 2003.

[69] B. Kalyanasundaram, K. R. Pruhs, and M. Velauthapillai. Scheduling broadcasts in wireless networks.
Journal of Scheduling, 4:339-354, 2001.

[70] M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algorithms. Journal of
Algorithms, 29:142-164, 1998.

[71] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized
algorithm for the cow-path problem. Information and Computation, 131:63-79, 1996.

[72] D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling problem.
Journal of Algorithms, 20:400-430, 1996.

[73] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy caching. Algorithmica,
3:79-119, 1988.

[74] S. Leonardi. A simpler proof of preemptive flow-time approximation. In Approzimation and On-line
Algorithms, Lecture Notes in Computer Science. Springer, 2003.

[75] S. Leonardi and A. Marchetti-Spaccamela. On-line resource management with applications to routing

and scheduling. Algorithmica, 24:29-49, 1999.

[76] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Proc. 29th Symp.
Theory of Computing (STOC), pages 110-119. ACM, 1997.

[77] T. Matsumoto. Competitive analysis of the Round Robin algorithm. In Proc. 3rd International Symp.
on Algorithms and Computation (ISAAC), volume 650 of Lecture Notes in Computer Science, pages
71-77. Springer, 1992.

[78] J. McCullough and E. Torng. SRPT optimally uses faster machines to minimize flow time. In Proc.
15th Symp. on Discrete Algorithms (SODA). ACM/STAM, 2004.

[79] P. Mireault, J. B. Orlin, and R. V. Vohra. A parametric worst case analysis of the LPT heuristic for
two uniform machines. Operations Research, 45:116-125, 1997.

39

[80] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. Theoretical Computer Science,
130:17-47, 1994.

[81] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Ounline scheduling to minimize
avarage strech. In Proc. 40th Symp. Foundations of Computer Science (FOCS), pages 433-443. IEEE,
1999.

[82] E. Naroska and U. Schwiegelshohn. On an on-line scheduling problem for parallel jobs. Information
Processing Letters, 81:297-304, 2002.

[83] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via resource augmenta-
tion. Algorithmica, pages 163-200, 2002.

[84] K. Pruhs and P. Uthaisombut. A comparison of multicast pull models. In Proc. 10th European Symp.
on Algorithms (ESA), volume 2461 of Lecture Notes in Computer Science, pages 808-819. Springer,
2002.

[85] J. F. Rudin III. Improved Bound for the Online Scheduling Problem. PhD thesis, The University of
Texas at Dallas, 2001.

[86] J. F. Rudin IIT and R. Chandrasekaran. Improved bound for the online scheduling problem. SIAM
Journal on Computing, 32:717-735, 2003.

[87] S. Sahni and Y. Cho. Nearly on line scheduling of a uniform processor system with release times.

SIAM Journal on Computing, 8:275-285, 1979.

[88] S. Seiden. Barely random algorithms for multiprocessor scheduling. Journal of Scheduling, 6:309-334,
2003.

[89] S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with decreasing job sizes. Operations
Research Letters, 27:215-221, 2000.

[90] S. S. Seiden. More multiprocessor scheduling with rejection. Technical Report Woe-16, TU-Graz, 1997.

[91] S. S. Seiden. Randomization in On-line Computation. PhD thesis, University of California, Irvine,
1997.

[92] S. S. Seiden. Randomized online multiprocessor scheduling. Algorithmica, 28:173-216, 2000.

[93] S. S. Seiden. Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science,

262:437-458, 2001.

[94] J. Sgall. On-line scheduling on parallel machines. PhD thesis, Technical Report CMU-CS-94-144,
Carnegie-Mellon University, Pittsburgh, PA, U.S.A., 1994.

[95] J. Sgall. Randomized on-line scheduling of parallel jobs. Journal of Algorithms, 21:149-175, 1996.

[96] J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information Processing

Letters, 63:51-55, 1997.

[97] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online Algorithms: The State
of the Art, pages 196-231. Springer, 1998.

[98] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line. SIAM Journal
on Computing, 24:1313-1331, 1995.

[99] D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of
the ACM, 28:202-208, 1985.

[100] T. Tichy. Randomized on-line scheduling on 3 processors. Operations Research Letters, 2003. To
appear.

40

[101] J. Wen and D. Du. Preemptive on-line scheduling for two uniform processors. Operations Research

Letters, 23:113-116, 1998.

41

