
28

Scalably Scheduling Processes with Arbitrary Speedup Curves

JEFF EDMONDS, York University
KIRK PRUHS, University of Pittsburgh

We give a scalable ((1+ε)-speed O(1)-competitive) nonclairvoyant algorithm for scheduling jobs with sublinear
nondecreasing speedup curves on multiple processors with the objective of average response time.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Sequencing and scheduling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Multiprocessor, scheduling

ACM Reference Format:
Edmonds, J. and Pruhs, K. 2012. Scalably scheduling processes with arbitrary speedup curves. ACM Trans.
Algor. 8, 3, Article 28 (July 2012), 10 pages.
DOI = 10.1145/2229163.2229172 http://doi.acm.org/10.1145/2229163.2229172

1. INTRODUCTION

Computer chip designers are agreed upon the fact that chips with hundreds to thou-
sands of processors will dominate the market in the next decade. The founder of
chip maker Tilera asserts that a corollary to Moore’s law will be that the number
of cores/processors will double every 18 months [Merritt 2008]. Intel’s director of mi-
croprocessor technology asserts that while processors will get increasingly simple,
software will need to evolve more quickly than in the past to catch up [Merritt 2008].
In fact, it is generally agreed that developing software to harness the power of multiple
processors is going to be a much more difficult technical challenge than the develop-
ment of the hardware. In this article, we consider one such software technical challenge:
developing operating system algorithms/policies for scheduling processes with varying
degrees of parallelism on a multiprocessor.

We will consider the setting where n processes/jobs arrive to the system of m proces-
sors over time. Job Ji arrives at time ri, and has a work requirement wi. At each point
of time, a scheduling algorithm specifies which job is run on each processor at that
time. An operating system scheduling algorithm generally needs to be nonclairvoyant,
that is, the algorithm does not require internal knowledge about jobs, say, for example,
the jobs’ work requirement, since such information is generally not available to the
operating systems. Job Ji completes after its wi units of work have been processed. If
a job Ji completes at time Ci, then its response time is Ci − ri. In this article we will
consider the schedule quality-of-service metric total response time, which for a schedule

Authors’ addresses: J. Edmonds, Department of Computer Science, York University, 4700 Keele St., Toronto,
Ont., Canada M3J 1P3; K. Pruhs (corresponding author), Department of Computer Science, University of
Pittsburgh, 210 South Bouquet St., Sennott Square Building, Room 6415, Pittsburgh, PA 15260; email:
kirk@cs.pitt.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1549-6325/2012/07-ART28 $15.00

DOI 10.1145/2229163.2229172 http://doi.acm.org/10.1145/2229163.2229172

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

28:2 J. Edmonds and K. Pruhs

S is defined to be F(S) = ∑n
i=1(Ci − ri). For a fixed number of jobs, total response time

is essentially equivalent to average response time. Average response time is by far the
mostly commonly used schedule quality-of-service metric. Before starting our discus-
sion of multiprocessor scheduling, let us first review resource augmentation analysis
and single processor scheduling.

Resource augmentation analysis compares an online scheduling algorithm against an
offline optimal scheduler with less powerful resources. An online scheduling algorithm
A is s-speed c-competitive if

max
I

F(As(I))
F(Opt1(I))

≤ c,

where As(I) is the schedule produced by algorithm A with speed s processors on input
I, and Opt1(I) is an optimal schedule for unit speed processors on input I, and F(S)
is the total response time for schedule S [Kalyanasundaram and Pruhs 2000; Phillips
et al. 2002]. An online scheduling algorithm A is s-processor c-competitive if

max
I

F(As(I))
F(Opt1(I))

≤ c,

where As(I) is the schedule produced by algorithm A with sm unit speed processors
on input I, and Opt1(I) is an optimal schedule for m unit speed processors on input
I [Kalyanasundaram and Pruhs 2000; Phillips et al. 2002]. Since in the context of
preemptive scheduling, a speed s processor is always at least as useful as s unit speed
processors, an s-processor c-competitive algorithm A can easily be converted into an
s-speed c-competitive algorithm. We call an algorithm A universally speed/processor
scalable if for every ε > 0, there is a constant cε such A is (1+ ε)-speed/processor
cε-competitive [Pruhs et al. 2004; Pruhs 2007]. We we call a family of algorithms Aε

existentially speed/processor scalable if for every ε > 0, there is a constant cε such
algorithm Aε is (1+ ε)-speed/processor cε-competitive. A scalable algorithm is O(1)-
competitive on inputs I where Opt1(I) is approximately Opt1+ε(I), which intuitively
are inputs that do not fully load the server. So as the load increases, the performance
of a scalable algorithm should be reasonably close to the performance of the optimal
algorithm up until the server is almost fully loaded. For a more detailed explanation,
see Pruhs et al. [2004] and Pruhs [2007].

The nonclairvoyant algorithm Shortest Elapsed Time First (SETF) is universally
speed scalable [Kalyanasundaram and Pruhs 2000] for scheduling jobs on a single
processor (or for scheduling jobs on a multiprocessor if all jobs are fully parallelizable)
for the objective of total response time. SETF shares the processor equally among all
processes that have been processed the least to date. Intuitively, SETF gives priority
to more recently arriving jobs, until they have been processed as much as older jobs,
at which point all jobs are given equal priority. The process scheduling algorithm used
by most standard operating systems, for example, Unix, essentially schedules jobs in
way that is consistent with this intuition. No nonclairvoyant scheduling algorithm can
be O(1)-competitive for total response time if compared against the optimal schedule
with the same speed [Motwani et al. 1994]. The intuition is that one can construct
adversarial instances where the load is essentially the capacity of the system, and there
is no time for the nonclairvoyant algorithm to recover from any scheduling mistakes.

One important issue that arises when scheduling jobs on a multiprocessor is that
jobs can have widely varying degrees of parallelism. That is, some jobs may be con-
siderably sped up when simultaneously run on to multiple processors, while some jobs
may not be sped up at all (this could be because the underlying algorithm is inherently
sequential in nature, or because the process was not coded in a way to make it easily
parallelizable). To investigate this issue, we adopt the following general model used in

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

Scalably Scheduling Processes with Arbitrary Speedup Curves 28:3

Edmonds [2000]. Each job consists of a sequence of phases. Each phase consists of a
positive real number that denotes the amount of work in that phase, and a speedup
function that specifies the rate at which work is processed in this phase as a function
of the number of processors executing the job. The speedup functions may be arbitrary,
other than we assume that they are nondecreasing (a job doesn’t run slower if it is given
more processors), and sublinear (a job satisfies Brent’s theorem, that is, increasing the
number of processors doesn’t increase the efficiency of computation).

The most obvious scheduling algorithm in the multiprocessor setting is Equi-
partition (Equi), which splits the processors evenly among all processes. Equi is analo-
gous to the Round Robin or Processor Sharing algorithm in the single processor setting.
In what is generally regarded as a quite complicated analysis, it is shown in Edmonds
[2000] that Equi is a (2+ε)-processor (2s

ε
)-competitive for total response time. It is also

known that, even in the case of a single processor, speed at least 2+ε is required in
order for Equi to be O(1)-competitive for total response time [Kalyanasundaram and
Pruhs 2000].

1.1. Our Results

In this article we introduce a family of nonclairvoyant algorithms, parameterized by a
real β ∈ (0, 1], which we call LAPS〈β,s〉. The subscript of s denotes that the algorithm is
using sm processors. Arguably the processor augmentation parameter s is not a prop-
erty of the algorithm, but we include it for convenience. We then show that LAPS〈β,s〉
is existentially processor scalable for scheduling jobs with sublinear nondecreasing
speedup curves with the objective of total response time.

LAPS〈β,s〉 (Latest Arrival Processor Sharing) Definition. Let nt be the number of jobs
alive at time t. The processors are equally partitioned among the �βnt� jobs with the
latest arrival times (breaking ties arbitrarily but consistently).

Note that LAPS〈β,s〉 is a generalization of Equi since LAPS〈1,s〉 identical to Equis.
But as β decreases, LAPS〈β,s〉, in a manner reminiscent of SETF, favors more recently
released jobs. The main result of this article, which we prove in Section 3, is then as
follows.

THEOREM 1.1. LAPS〈β,s〉, with s = (1+β +ε) times as many processors, is an
(

4s
βε

)
-

competitive algorithm for scheduling processes with sublinear nondecreasing speedup
curves for the objective of average response time. Trivially the same result holds LAPS〈β,s〉
is given processors that are s times as fast.

Essentially this shows, perhaps somewhat surprisingly, that a nonclairvoyant
scheduling algorithm can perform roughly as well in the setting of scheduling jobs
with arbitrary speedup curves on a multiprocessor as it can when scheduling jobs
on a single processor. Our proof of Theorem 1.1 uses a simple amortized local com-
petitiveness argument with a simple potential function. When β = 1, that is when
LAPS〈β,s〉 = Equis, we get as a corollary of Theorem 1.1 that Equi is (2+ε)-processor
(2s

ε
)-competitive, matching the bound given in Edmonds [2000], but with a much easier

proof.
Theorem 1.1 also improves the best known competitiveness result for broad-

cast/multicast pull scheduling. It is easiest to explain broadcast scheduling in context
of a Web server serving static content. In this setting, it is assumed that the Web server
is serving content on a broadcast channel. So if the Web server has multiple unsat-
isfied requests for the same file, it need only broadcast that file once, simultaneously
satisfying all the users who issued these requests. Edmonds and Pruhs [2003] showed
how to convert any s-speed c-competitive nonclairvoyant algorithm for scheduling jobs

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

28:4 J. Edmonds and K. Pruhs

with arbitrary speedup curves into a 2s-speed c-competitive algorithm for broadcast
scheduling. Using this result, and the analysis of Equi from Edmonds [2000], Edmonds
and Pruhs [2003] showed that a version of Equi (4+ε)-speed O(1)-competitive for broad-
cast scheduling with the objective of average response time. Using Theorem 1.1 we can
then deduce that a broadcast version of LAPS〈β,s〉 is (2+ε)-speed O(1)-competitive for
broadcast scheduling with the objective of average response time.

1.2. Related Results

For the objective of total response time on a single processor, the competitive ratio of
every deterministic nonclairvoyant algorithm is �(n1/3), and the competitive ratio of
every randomized nonclairvoyant algorithm against an oblivious adversary is �(log n)
[Motwani et al. 1994]. There is a randomized algorithm, Randomized Multi-Level Feed-
back Queues, that is O(log n)-competitive against an oblivious adversary [Kalyanasun-
daram and Pruhs 2003; Becchetti and Leonardi 2004]. The online clairvoyant algorithm
Shortest Remaining Processing time is optimal for total response time. The competi-
tive analysis of SETFs for single processor scheduling was improved for cases when the
speed augmentation is large [Berman and Coulston 1999].

Variations of Equipartition are built into many technologies. For example, the con-
gestion control protocol in the TCP Internet protocol essentially uses Equipartition
to balance bandwidth to TCP connections through a bottleneck router. Extensions of
the analysis of Equi in Edmonds [2000] to analyzing TCP can be found in Edmonds
et al. [2003] and Edmonds [2004]. Other extensions to the analysis of Equi in Edmonds
[2000] for related scheduling problems can found in Robert and Schabanel [2007b, 2008,
2007a]. In our results here, we essentially ignore the extra advantage that the online
algorithm gains from having faster processors instead of more processors. Edmonds
[2000] gives a better competitive ratio for Equi in the model with faster processors.

There are many related scheduling problems with other objectives, and/or other
assumptions about the processor and job environment. Surveys can be found in Pruhs
et al. [2004] and Pruhs [2007].

2. PRELIMINARIES

In this section, we review the formal definitions introduced in Edmonds [2000]. An
instance consists of a collection J = {J1, . . . , Jn} where job Ji has a release/arrival time
ri and a sequence of phases

〈
J1

i , J2
i , . . . , Jqi

i

〉
. Each phase is an ordered pair

〈
w

q
i , �

q
i

〉
,

where w
q
i is a positive real number that denotes the amount of work in the phase and

�
q
i is a function, called the speedup function, that maps a nonnegative real number to

a nonnegative real number. �
q
i (p) represents the rate at which work is processed for

phase q of job Ji when run on p processors running at speed 1. If these processors are
running at speed s, then work is processed at a rate of s�q

i (p).
A schedule specifies for each time, and for each job: (1) a nonnegative real number

specifying the number of processors assigned to that job, and (2) a nonnegative real
speed. The number of processors assigned at any time can be at most m, the number of
processors. Note that, formally, a schedule does not specify an assignment of copies of
jobs to processors.

A nonclairvoyant algorithm only knows when processes have been released and
finished in the past, and which processes have been run on each processor each time in
the past. In particular, a nonclairvoyant algorithm does not know w

q
i , nor the current

phase q, nor the speedup function �
q
i .

The completion time of a job Ji, denoted Ci, is the first point of time when all the
work of the job Ji has been processed. Note that in the language of scheduling, we
are assuming that preemption is allowed, that is, a job maybe be suspended and later

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

Scalably Scheduling Processes with Arbitrary Speedup Curves 28:5

restarted from the point of suspension. A job is said to be alive at time t, if it has been
released, but has not completed, that is, ri ≤ t ≤ Ci. The response/flow time of job Ji is
Ci − ri, which is the length of the time interval during which the job is active. Let nt be
the number of active jobs at time t. Another formulation of total flow time is

∫ ∞
0 ntdt.

A phase of a job is parallelizable if its speedup function is �(p) = p. Increasing
the number of processors allocated to a parallelizable phase by a factor of s increases
the rate of processing by a factor of s. A phase is sequential if its speedup function
is �(p) = 1, for all p ≥ 0. The rate that work is processed in a sequential phase
is independent of the number of processors, even if it is zero. A speedup function �
is nondecreasing if and only if �(p1) ≤ �(p2) whenever p1 ≤ p2. A speedup function � is
sublinear if and only if �(p1)/p1 ≥ �(p2)/p2 whenever p1 ≤ p2. We assume all speedup
functions � in the input instance are nondecreasing and sublinear.

Let A be an algorithm and J an instance. We denote the schedule output by A with
speed s processors on J as As(J). Let Opt(J) be the optimal schedule with unit speed
processors on input J. We let F(S) denote the total response time incurred in schedule
S.

3. ANALYSIS OF LATE ARRIVAL PROCESSOR SHARING

This section will be devoted to proving Theorem 1.1, that LAPS〈β,s〉 is scalable. We will
assume that the online algorithm has sm unit speed processors while the adversary
has m unit speed processors.

Following the lead of Edmonds [2000] and Robert and Schabanel [2008], the first step
in our proof is to prove that there is a worst-case instance that contains only sequential
and parallelizable phases.

LEMMA 3.1. Let A be a nonclairvoyant scheduler. Let J be an instance of jobs with
sublinear nondecreasing speedup functions. Then there is a job set J′ that with only
sequential and parallelizable phases such that F(A(J′)) = F(A(J)) and F(Opt(J′)) ≤
F(Opt(J)).

PROOF. We explain how to modify J to obtain J′. We perform the following modifica-
tion for each time t and each job Ji that A runs during the infinitesimal time [t, t + dt].
Let dw be the infinitesimal amount of work processed by A during this time, and � the
speedup function for the phase containing dw. Let pa denote the number of processors
allocated by A to dw at time t. So the amount of work in dw is �(pa)dt. Let po denote the
number of processors allocated by Opt to dw. It is important to note that Opt may not
process dw at time t. If p0 ≤ pa, we then modify J by replacing this dw amount of work
with a sequential phase with work dw′ = dt. If po > pa, we then modify J by replacing
this dw amount of work with parallelizable phase with work dw′ = padt. Note that by
construction, A will not be able to distinguish between the instances J and J′ during
the time period [t, t + dt]. Hence, since A is nonclairvoyant A(J′) = A(J). We are now
left to argue that F(Opt(J′)) ≤ F(Opt(J)). We will accomplish this by giving a schedule
X for J′ that has total response time at most F(Opt(J)).

First consider the case that po ≤ pa. Because the speedup function � of the phase
containing the work dw is nondecreasing, it took Opt(J) more than time dt to finish
the work dw. The schedule X will start working on the work dw′ with po processors
when Opt(J) started working on the work dw, and then after X completes dw′, X can
let these p0 processors idle until Opt(J) completes dw.

Now consider that case that po ≥ pa. Again the schedule X will start working on dw′
when Opt(J) started working on dw. We now want to argue that X can complete dw′
with po processors in less time than it took Opt(J) to complete dw with po processors.
It took time padt

po
time for X to complete dw′ since the padt work in dw′ is parallelizable.

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

28:6 J. Edmonds and K. Pruhs

It took Opt(J) time �(pa)dt
�(po) to complete the �(pa)dt work in dw. The fact X completes dw′

before Opt(J) completes dw follows since pa
po

≤ �(pa)
�(po) since po ≥ pa and � is sublinear.

By Lemma 3.1, it is sufficient to consider instances that contain only sequential and
parallelizable phases. So for the rest of the proof we fix such an instance. Our goal is to
bound the number Nt of jobs alive under Opt at time t in terms of what is happening
under LAPS〈β,s〉 at this same time. This requires the introduction of a fair amount of
notation. Let nt denote number of jobs alive under LAPS〈β,s〉 at time t. Let mt denote the
number of these that are within a parallelizable phase at this time and let �t denote the
same except for sequential phases. Let Nt, Mt, and Lt denote the same numbers except
under Opt. Let N̂t denote the number jobs at time t that LAPS〈β,s〉 has not completed,
but for which LAPS〈β,s〉 is ahead of Opt. Let �̂t denote the number jobs that LAPS〈β,s〉
has not completed at time t, and either LAPS〈β,s〉 is ahead of Opt on this job at this
time, or LAPS〈β,s〉 is executing a sequential phase on this job at this time.

We note some relationships between these job counts. Clearly N̂t ≤ Nt since Opt has
not completed these N̂t jobs.

∫ ∞
0 Ltdt = ∫ ∞

0 �tdt since each integral is simply the sum of
the work of all sequential phases of all jobs. Finally note that �̂t ≤ N̂t + �t since each of
the �̂t jobs is either in a sequential phase or is included in the count N̂t. Thus we can
conclude that the total cost to Opt is bounded as follows.

F
(
Opt(J)

) =
∫ ∞

0
Ntdt

= 1
2

∫ ∞

0
(Nt + (Mt + Lt))dt

≥ 1
2

∫ ∞

0
(N̂t + 0 + �t)dt

≥
∫ ∞

0

�̂t

2
dt

To prove c-competitiveness using an amortized local competitiveness argument we
need to define a potential function �t such that the following conditions hold:

Boundary. � is initially and finally 0, that is, �0 = �∞ = 0.
Arrival. �t does not increase when a new job arrives.
Completion. �t does not increase when either the online algorithm or the adversary

complete a job.
Running. For all times t when no job arrives or is completed,

nt + d�t

dt
≤ c�̂t

2
. (1)

By integrating the running condition over time, and using the boundary, arrival, and
completion conditions, one can conclude that

F(LAPS〈β,s〉) =
∫ ∞

0
ntdt

=
∫ ∞

0
ntdt + [�∞ − �0]

≤
∫ ∞

0

(
nt + d�t

dt

)
dt

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

Scalably Scheduling Processes with Arbitrary Speedup Curves 28:7

≤
∫ ∞

0

(
c�̂t

2

)
dt

≤ c · F(Opt).

For more information on amortized local competitiveness arguments, see Edmonds
[2000], Pruhs [2007], and Pruhs et al. [2004].

We define the potential function �t as follows. Let Ji denote the ith of the nt jobs
currently alive under LAPS〈β,s〉 at time t, sorted by their arrival times ri (breaking
ties arbitrarily but consistently). So J1 is the earliest arriving job, and Jnt is the latest
arriving job, among the jobs alive for LAPS〈β,s〉 at time t. Let xi denote the amount of
parallelizable work of Ji that has been completed by Opt before time t, but that was
not completed by LAPS〈β,s〉 before time t. Let γ = 2

εm. The potential function is then

�t = γ

nt∑
i=1

i · max(xi, 0). (2)

The boundary conditions for �t are trivially satisfied. If a new job Jj arrives, then the
value of the potential function does not increase because LAPS〈β,s〉 will not be behind
on that job (i.e., xj = 0). If LAPS〈β,s〉 completes job Jj , then j max(xj, 0) = 0 since xj = 0,
and removing job Jj from the summation will not increase the coefficient i of any other
job. Opt completing a job Jj has no effect on the potential function at all.

To establish inequality (1), consider an infinitesimal period of time [t, t + dt] during
which no jobs arrive or are completed by either Equi or Opt. Consider how much �t
can increase due Opt’s processing during this period. Without loss of generality, Opt
processes only parallelizable work. Opt processes this parallelizable work at rate at
most m. This increases the sum of the xi ’s for these jobs by a total of at most m dt. Opt
can increase �t the most by working only on the most recently arrived job because its
coefficient is maximal. Since the most recently arrived job has coefficient nt in �t, the
rate of increase in �t due to Opt’s processing is at most γ mnt.

We now need to bound how much �t must decrease due to LAPS〈β,s〉’s processing
during the same infinitesimal period of time [t, t+dt]. The algorithm LAPS〈β,s〉 works
on the ft = �βnt� jobs with the latest arrival times. Ideally, for these jobs, the term
max(xi, 0) in the potential function decreases at a rate of sm

ft
. However, there are two

possible reasons that this desired decrease will not occur. The first possible reason is
that LAPS〈β,s〉 has processed one of these jobs more than Opt has at this time. For such
jobs, xi ≤ 0 and hence max(xi, 0) is already 0. The second possible reason is that the
job is in a sequential phase under LAPS〈β,s〉 at this time. Because xi measures only
the work in parallelizable phases, any processing that LAPS〈β,s〉 does on a sequential
phase does not decrease max(xi, 0). Recall that we defined �̂t to be the number jobs
that have at least one of these properties. In the worst case, these �̂t jobs are those
that arrive the most recently. Let us for the moment assume that �̂t ≤ ft. In this case,
LAPS〈β,s〉 effectively decreases the term max(xi, 0) only for the jobs with coefficients in
the range [nt − ft+1, nt − �̂t]. The value of max(xi, 0) decreases for these jobs at a rate
of sm

ft
. Hence, the decrease in �t due to LAPS〈β,s〉’s processing is at least

γ

nt−�̂t∑
i=nt− ft+1

i · dxi

dt

= γ

nt−�̂t∑
i=nt− ft+1

i ·
(

−sm
ft

)

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

28:8 J. Edmonds and K. Pruhs

= −smγ

2 ft
((nt − �̂t)(nt − �̂t + 1) − (nt − ft)(nt − ft + 1))

= smγ

2 ft
(2nt�̂t − �̂2

t + �̂t − 2nt ft + f 2
t − ft)

≤ smγ

2 ft
(2nt�̂t − 2nt ft + f 2

t − ft)

≤ smγ nt�̂t

ft
− smγ nt + smγ ft

2
− smγ

2

= smγ nt�̂t

�βnt� − smγ nt + smγ �βnt�
2

− smγ

2

≤ smγ nt�̂t

βnt
− smγ nt + smγ (βnt + 1)

2
− smγ

2

= smγ �̂t

β
− smγ nt + smγβnt

2
.

Substituting back our bounds on the decrease in �t due to LAPS〈β,s〉’s processing, and
the increase in �t due to Opt’s processing, back into (1), we get

nt + d�t

dt
≤ nt +

(
(γ mnt) +

(
smγ �̂t

β
− smγ nt + smγβnt

2

))

=
(

1 + γ m− smγ + smγβ

2

)
nt + smγ �̂t

β

≤ smγ �̂t

β

= 2s�̂t

βε

= c · �̂t

2
.

The last inequality follows since by substituting in γ = 2
εm and s = 1+β+ε

1 + γ − sγ + sγβ

2
= 1 + 2

εm
− 2

1+β+ε

εm
+ (1+β+ε)β

εm

which one can verify is not positive by multiplying through by ε, and collecting like
terms.

Now consider that case in which �̂t ≥ ft. In this case all of the ft = �βnt� jobs
being processed LAPS〈β,s〉 might be in sequential phases or have max(xi, 0) = 0 and
hence LAPS〈β,s〉’s processing might not decrease �t. Evaluating inequality (1), we find
that

nt + d�t

dt
≤ nt + γ mnt

=
(

1 + 2
ε

)
nt

≤ 2(1+β+ε)
εβ

�βnt�

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

Scalably Scheduling Processes with Arbitrary Speedup Curves 28:9

= 2s
βε

· ft

≤ c · �̂t

2
.

4. CONCLUSION

The LAPS algorithm that we introduced in this article, has found application in several
subsequent papers. In was used in Chan et al. [2009a] as the job selection algorithm in
a O(1)-competitive speed scaling algorithm on a single processor with the objective of
minimizing a linear combination of response time and energy. LAPS was used instead
of the more obvious choice of SETF because the analysis of speed scaling algorithms
generally requires amortized local competitiveness arguments, and it is not clear what
potential function one should use with SETF. The potential function used in Chan et al.
[2009a] is a modification of the potential function that we used here. A modification
of LAPS was used in Chan et al. [2009b] as the job selection algorithm in a O(log m)-
competitive speed scaling algorithm on a multiprocessor processor with the objective
of minimizing a linear combination of response time and energy. Finally Bansal et al.
[2009] showed that the broadcast version of LAPS is scalable for broadcast scheduling,
answering a decade old open question of whether such an algorithm exists. A scalable
algorithm for broadcasting scheduling of unit work pages was given in Im and Moseley
[2010].

Contemporaneously and subsequent to this research, other existentially scalable
algorithms were discovered for broadcast scheduling [Im and Moseley 2010; Bansal
et al. 2009; Chekuri et al. 2009; Chekuri and Moseley 2009]. It is a very interesting open
question whether there is a universally scalable algorithm for the problem considered
in this article, and for broadcast scheduling. We conjecture, at least for the problem
considered in this article, that a universally scalable algorithm does not exist, although
it is not at all clear how to prove this.

ACKNOWLEDGMENT

We thank Nicolas Schabanel and Julien Robert for helpful discussions.

REFERENCES

BANSAL, N., KRISHNASWAMY, R., AND NAGARAJAN, V. 2009. Better scalable algorithms for broadcast scheduling. In
Proceedings of the 37th International Colloquium Conference on Automata, Languages and Programming
(ICALP’09).

BECCHETTI, L. AND LEONARDI, S. 2004. Nonclairvoyant scheduling to minimize the total flow time on single and
parallel machines. J. ACM 51, 4, 517–539.

BERMAN, P. AND COULSTON, C. 1999. Speed is more powerful than clairvoyance. Nordic J. Comput. 6, 2, 181–193.
CHAN, H.-L., EDMONDS, J., LAM, T. W., LEE, L.-K., MARCHETTI-SPACCAMELA, A., AND PRUHS, K. 2009a. Nonclair-

voyant speed scaling for flow and energy. In Proceedings of the Symposium on Theoretical Aspects of
Computer Science. 255–264.

CHAN, H.-L., EDMONDS, J., AND PRUHS, K. 2009b. Speed scaling of processes with arbitrary speedup curves on
a multiprocessor. In Proceedings of the Symposium on Parallel Algorithms and Architectures. 1–10.

CHEKURI, C., IM, S., AND MOSELEY, B. 2009. Minimizing maximum response time and delay factor in broadcast
scheduling. In Proceedings of the European Symposium on Algorithms.

CHEKURI, C. AND MOSELEY, B. 2009. Online scheduling to minimize the maximum delay factor. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms. 1116–1125.

EDMONDS, J. 2000. Scheduling in the dark. Theor. Comput. Sci. 235, 109–141.
EDMONDS, J. 2004. On the competitiveness of AIMD-TCP within a general network. In Proceedings of the

Latin American Symposium on Theoretical Informatics. 567–576.

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

28:10 J. Edmonds and K. Pruhs

EDMONDS, J., DATTA, S., AND DYMOND, P. 2003. TCP is competitive against a limited adversary. In Proceedings
of the ACM Symposium on Parallel Algorithms and Architectures. 174–183.

EDMONDS, J. AND PRUHS, K. 2003. Multicast pull scheduling: When fairness is fine. Algorithmica 36, 3, 315–330.
IM, S. AND MOSELEY, B. 2010. An online scalable algorithm for average flowtime in broadcast scheduling. In

Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
KALYANASUNDARAM, B. AND PRUHS, K. 2000. Speed is as powerful as clairvoyance. J. ACM 47, 4, 617–643.
KALYANASUNDARAM, B. AND PRUHS, K. 2003. Minimizing flow time nonclairvoyantly. J. ACM 50, 4, 551–567.
MERRITT, R. 2008. CPU designers debate multi-core future. EE Times.
MOTWANI, R., PHILLIPS, S., AND TORNG, E. 1994. Non-Clairvoyant scheduling. Theor. Comput. Sci. 130, 17–47.
PHILLIPS, C., STEIN, C., TORNG, E., AND WEIN, J. 2002. Optimal time-critical scheduling via resource augmenta-

tion. Algorithmica 32, 2, 163–200.
PRUHS, K. 2007. Competitive online scheduling for server systems. SIGMETRICS Perform. Eval. Rev. 34, 4,

52–58.
PRUHS, K., SGALL, J., AND TORNG, E. 2004. Online scheduling. In Handbook on Scheduling, CRC Press.
ROBERT, J. AND SCHABANEL, N. 2007a. Non-Clairvoyant batch sets scheduling: Fairness is fair enough. In

Proceedings of the European Symposium on Algorithms. 741–753.
ROBERT, J. AND SCHABANEL, N. 2007b. Pull-based data broadcast with dependencies: be fair to users, not to

items. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
ROBERT, J. AND SCHABANEL, N. 2008. Non-clairvoyant scheduling with precedence constraints. In Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms. 491–500.

Received September 2009; revised May 2010; accepted October 2011

ACM Transactions on Algorithms, Vol. 8, No. 3, Article 28, Publication date: July 2012.

