
Speed Scaling of Processes with Arbitrary Speedup

Curves on a Multiprocessor

Ho-Leung Chan∗ Jeff Edmonds† Kirk Pruhs‡

Abstract

We consider the setting of a multiprocessor where the speeds of the m proces-

sors can be individually scaled. Jobs arrive over time and have varying degrees of
parallelizability. A nonclairvoyant scheduler must assign the processes to processors,

and scale the speeds of the processors. We consider the objective of energy plus flow
time. We assume that a processor running at speed s uses power sα for some constant

α > 1. For processes that may have side effects or that are not checkpointable, we
show an Ω(m(α−1)/α2

) bound on the competitive ratio of any randomized algorithm.

For checkpointable processes without side effects, we give an O(logm)-competitive al-
gorithm. Thus for processes that may have side effects or that are not checkpointable,

the achievable competitive ratio grows quickly with the number of processors, but for
checkpointable processes without side effects, the achievable competitive ratio grows
slowly with the number of processors. We then show a lower bound of Ω(log1/α

m)

on the competitive ratio of any randomized algorithm for checkpointable processes
without side effects.

1 Introduction

Due to the power related issues of energy and temperature, major chip manufacturers, such
as Intel, AMD and IBM, now produce chips with multiple cores/processors, and with dy-
namically scalable speeds, and produce associated software, such as Intel’s SpeedStep and
AMD’s PowerNow, that enables an operating system to manage power by scaling processor
speed. Currently most multiprocessor chips have only a handful of processors, but chip de-
signers are agreed upon the fact that chips with hundreds to thousands of processors will
dominate the market in the next decade. The founder of chip maker Tilera asserted that a
corollary to Moore’s law will be that the number of cores/processors will double every 18
months [13].

According to the well known cube-root rule, a CMOS-based processor running at speed
s will have a dynamic power P of approximately s3. In the algorithmic literature, this is

∗The University of Hong Kong. hlchan@cs.hku.hk.
†York University. jeff@cs.yorku.ca. Supported in part by NSERC Canada.
‡University of Pittsburgh. kirk@cs.pitt.edu. Supported in part by an IBM faculty award, and by NSF

grants CNS-0325353, CCF-0514058, IIS-0534531, and CCF-0830558.

1



usually generalized to P = sα. Thus in principle, p processors running at speed s/p could
do the work of one processor running at speed s but at 1/pα−1 of the power. But in spite
of this, chip makers waited until the power costs became prohibitive before switching to
multiprocessor chips because of the technical difficulties in getting p speed s/p processors to
come close to doing the work of one speed s processor. This is particularly true when one has
many processors, and few processes, where these processes have widely varying degrees of
parallelizability. That is, some processes may be considerably sped up when simultaneously
run on multiple processors, while some processes may not be sped up at all (this could be
because the underlying algorithm is inherently sequential in nature, or because the process
was not coded in a way to make it easily parallelizable). To investigate this issue, we adopt
the following general model of parallelizability used in [8, 9, 18, 19]. Each process consists
of a sequence of phases. Each phase consists of a positive real number that denotes the
amount of work in that phase, and a speedup function that specifies the rate at which work
is processed in this phase as a function of the number of processors executing the process.
The speedup functions may be arbitrary, other than we assume that they are nondecreasing
(a process doesn’t run slower if it is given more processors), and sublinear (a process satisfies
Brent’s theorem, that is, increasing the number of processors doesn’t increase the efficiency
of computation).

The operating system needs a process assignment policy for determining at each time,
which processors (if any) a particular process is assigned to. We assume that a process may
be assigned to multiple processors. In tandem with this, the operating system will also need
a speed scaling policy for setting the speed of each processor. In order to be implementable
in a real system, the speed scaling and process assignment policies must be online since
the system will not in general know about processes arriving in the future. Further, to be
implementable in a generic operating system, these policies must be nonclairvoyant, since in
general the operating system does not know the size/work of each process when the process
is released to the operating system, nor the degree to which that process is parallelizable.
So a nonclairvoyant algorithm only knows when processes have been released and finished
in the past, and which processes have been run on each processor at each time in the past.

The operating system has competing dual objectives, as it both wants to optimize some
schedule quality of service objective, as well as some power related objective. In this pa-
per, we will consider the formal objective of minimizing a linear combination of total re-
sponse/flow time (the schedule objective) and total energy used (the power objective). (In
the conclusion, we will discuss the relationship between this energy objective and a temper-
ature objective). This objective of flow plus energy has a natural interpretation. Suppose
that the user specifies how much improvement in flow, call this amount ρ, is necessary to
justify spending one unit of energy. For example, the user might specify that he is willing to
spend 1 erg of energy from the battery for a decrease of 6 micro-seconds in flow. Then the
optimal schedule, from this user’s perspective, is the schedule that optimizes ρ = 6 times
the energy used plus the total flow. By changing the units of either energy or time, one may
assume without loss of generality that ρ = 1.

So the problem we want to address here is how to design a nonclairvoyant process as-
signment policy and a speed scaling policy that will be competitive for the objective of flow
plus energy.

The case of a single processor was considered in [7]. In the single processor case, the

2



parallelizability of the processes is not an issue. If all the processes arrive at time 0, then
in the optimal schedule, the power at time t is Θ(nt), where nt is the number of active

processes at time t. The algorithm considered in [7] runs at a speed of (1 + δ)n
1/α
t for

some constant δ ≥ 0. The process assignment algorithm considered in [7] is Latest Arrival
Processor Sharing (LAPS). LAPS was proposed in [9] in the context of running processes
with arbitrary speedup functions on fixed speed processors, and it was shown to be scalable,
i.e., (1+ ǫ)-speed O(1)-competitive, for the objective of total flow time in this setting. LAPS
is parameterized by a constant β ∈ (0, 1], and shares the processing power evenly among
the ⌈βnt⌉ most recently arriving processes. Note that the speed scaling policy and LAPS
are both nonclairvoyant. [7] showed that, by picking δ and β appropriately, the resulting
algorithm is 4α3(1 + (1 + 3

α
)α)-competitive for the objective of flow plus energy on a single

speed scalable processor.

1.1 Our Results

Here we consider extending the results in [7] to the setting of a multiprocessor with m
processors. It is straight-forward to note that if all of the work is parallelizable, then the
multiprocessor setting is essentially equivalent to the uniprocessor setting. To gain some
intuition of the difficulty that varying speedup functions pose, let us first consider an instance
of one process that may either be sequential or parallelizable. If an algorithm runs this
process on few of the processors, then the algorithm’s competitive ratio will be bad if the
process is parallelizable, and the optimal schedule runs the process on all of the processors.
Note that if the algorithm wanted to be competitive on flow time, it would have to run too
fast to be competitive on energy. If an algorithm runs this process on many of the processors,
then the algorithm’s competitive ratio will be bad if the process is sequential, and the optimal
schedule runs the process on few processors. If the algorithm wanted to be competitive on
energy, it would have to run too slow to be competitive on flow time. Formalizing this
argument, we show in Section 2 a lower bound of Ω(m(α−1)/α2

) on the competitive ratio of
any randomized nonclairvoyant algorithm against an oblivious adversary (with an additional
assumption that we will now discuss).

At first glance, such a strong lower bound for such an easy instance might lead one to
conclude that there is no way that the scheduler can be expected to guarantee reasonably
competitive schedules. But on further reflection, one realizes that an underlying assumption
in this lower bound is that only one copy of a process can be run. If a process does not have
side effects, that is if the process doesn’t change/effect anything external to itself, then this
assumption is not generally valid. One could run multiple copies of a process simultaneously,
with each copy being run on a different number of processors, and halt computation when
the first copy finishes. For example, in the instance in the previous paragraph, one could
be O(1)-competitive if the process didn’t have side effects by running one copy on a single
processor, and running one copy on the rest of the processors. Generalizing this approach,
one can obtain a O(log m)-competitive algorithm for instances consisting of processes that
have no side effects, and where the speed-up function doesn’t change. Unfortunately, we show
in Section 2 that such a result can not be obtained if processes can have multiple phases
with different speed-up functions. We accomplish this by showing that the competitive ratio
of any randomized nonclairvoyant algorithm, that runs multiple independent copies of a

3



process, against an oblivious adversary, is Ω(mΩ(1/α)).
Contemplating this second lower bound, it suggests that to be reasonably competitive,

the algorithm must be able to process work on all copies of a job at the maximum rate of work
processing on any copy. If a processes had small state, so that the overhead of checkpointing
isn’t prohibitive, one might reasonably approximate this by checkpointing (saving the state
of) each copy periodically, and then restarting each copy from the point of execution of the
copy that made the most progress. In Section 3, we formalize this intuition. We give a
process assignment algorithm MultiLAPS, which is a modification of LAPS. We show that,
by combining MultiLAPS with the natural speed scaling algorithm, one obtains an O(log m)
competitive algorithm if all copies process work at the rate of the fastest copy. There are
two steps in the analysis of MultiLAPS. The first step is to show that there is a worst-case
instance where every speedup function is parallel up to some number of processors, and then
is constant. This shows that the worst-case speedup functions for speed scalable processors
are more varied than for fixed speed processors, where it is sufficient to restrict attention
to only parallelizable and sequential speedup functions [8, 9, 18, 19]. The second step in the
analysis of MultiLAPS is a reduction to essentially the analysis of LAPS in a uniprocessor
setting. Technically, we need to analyze LAPS when some work is sequential, that is, it
has the special property that it is processed at unit rate independent of the speed of the
processor. We then discuss how to generalize the analysis of LAPS in [7] to allow sequential
work, using techniques from [8, 9].

In Section 4 we then show a lower bound of Ω(log1/α m) on the competitive ratio of
any nonclairvoyant randomized algorithm against an oblivious adversary, for checkpointable
processes without side effects.

Thus in summary, for processes that may have side effects, or that are not checkpointable,
the achievable competitive ratio grows quickly with the number of processors. But for check-
pointable processes without side effects, the achievable competitive ratio grows slowly with
the number of processors. This shows the importance of being able to efficiently checkpoint
multiple copies of a process, in a setting of processes with varying degrees of parallelizability
and individually speed scalable multiprocessors.

1.2 Related results

We start with some results in the literature about scheduling with the objective of total
flow time on a single fixed speed processor. It is well known that the online clairvoyant
algorithm Shortest Remaining Processing Time (SRPT) is optimal. The competitive ratio
of any deterministic nonclairvoyant algorithm is Ω(n1/3), and the competitive ratio of every
randomized algorithm against an oblivious adversary is Ω(log n) [14]. A randomized version
of the Multi-Level Feedback Queue algorithm is O(log n)-competitive [5, 11]. The nonclair-
voyant algorithm Shortest Elapsed Time First (SETF) is scalable, that is, it is (1 + ǫ)-speed
O(1)-competitive for any arbitrarily small but fixed ǫ > 0. [10] SETF shares the processor
equally among all processes that have been run the least.

We now consider scheduling processes with arbitrary speedup functions on fixed speed
processors for the objective of total flow time. The algorithm Round Robin RR (also called
Equipartition and Processor Sharing) that shares the processors equally among all processes
is (2 + ǫ)-speed O(1)-competitive [8]. As mentioned before, LAPS is scalable [9].

4



We now consider speed scaling algorithms on a single processor for the objective of
flow plus energy. [1, 17] give efficient offline algorithms. We now describe the results for
online clairvoyant algorithms. This setting was studied in a sequence of papers [1–4, 12],
which culminated in the following result [3]. The scheduling algorithm, that uses Shortest
Remaining Processing Time (SRPT) for process assignment and power equal to one more
than the number of active processes for speed scaling, is (3+ ǫ)-competitive for the objective
of total flow plus energy on arbitrary-work unit-weight processes, even if the power function
is arbitrary. So clairvoyant algorithms can be O(1)-competitive independent of the power
function. [7] showed that nonclairvoyant algorithms can not be O(1)-competitive if the
power function is growing too quickly. The case of weighted flow time has also been studied.
The scheduling algorithm, that uses Highest Density First (HDF) for process assignment
and power equal to the fractional weight of the active processes for speed scaling, is (2 +
ǫ)-competitive for the objective of fractional weighted flow plus energy on arbitrary-work
arbitrary-weight processes. An O(1)-competitive algorithm for weighted flow plus energy
can then be obtained using the known resource augmentation analysis of HDF [6]. [2, 12]
extend some of the results for the unbounded speed model to a model where there is an
upper bound on the speed of a processor.

There are many related scheduling problems with other objectives, and/or other assump-
tions about the processors and instance. Surveys can be found in [15, 16].

1.3 Formal Problem Definition and Notations

An instance consists of a collection J = {J1, . . . , Jn} where job Ji has a release/arrival time
ri and a sequence of phases 〈J1

i , J2
i , . . . , J qi

i 〉. Each phase is an ordered pair 〈wq
i , Γ

q
i 〉, where

wq
i is a positive real number that denotes the amount of work in the phase and Γq

i is a
function, called the speedup function, that maps a nonnegative real number to a nonnegative
real number. Γq

i (p) represents the rate at which work is processed for phase q of job i when
one copy of the job is run on p processors running at speed 1. If these processors are running
at speed s, then work is processed at a rate of sΓq

i (p).
A schedule specifies for each time, and for each copy of a job, (1) a nonnegative real

number specifying the number of processors assigned to the copy of the job, and (2) a
nonnegative real speed. We thus assume that if several processors are working on the same
instance/copy of a job, then they must all run at the same speed. But different copies can
run at different speeds. The number of processors assigned at any time can be at most m,
the number of processors. Note that, formally, a schedule does not specify an assignment of
copies of jobs to processors.

A nonclairvoyant algorithm only knows when processes have been released and finished
in the past, and which processes have been run on each processor each time in the past. In
particular, a nonclairvoyant algorithm does not know wq

i , nor the current phase q, nor the
speedup function Γq

i .
In this paper we consider several different models depending on how the processing on

different copies interact. Assume multiple copies of job i are run, with the speed and number
of processors assigned to the k-th copy being sk and pk. In the independent processing model
if copy k is running in a phase with speedup function Γ, then work is processed on this copy
at rate skΓ(pk) (independent of the rate of processing on the other copies). In the maximum

5



processing model, if each copy of job Ji is in a phase with speedup function Γ, then each
copy processes work at a rate of maxk skΓ(pk). Thus in the maximum processing model each
copy of each job is always at the same point in its execution.

The completion time of a job Ji, denoted Ci, is the first point of time when all the work
on some copy of the job has been processed. Note that in the language of scheduling, we are
assuming that preemption is allowed, that is, a job maybe be suspended and later restarted
from the point of suspension. A job is said to be active at time t, if it has been released, but
has not completed, i.e., ri ≤ t ≤ Ci. The response/flow time of job Ji is Ci − ri, which is the
length of the time interval during which the job is active. Let nt be the number of active
jobs at time t. Another formulation of total flow time is

∫∞

0
ntdt.

When running at speed s, a processor consumes P (s) = sα units of energy per unit time,
where α > 1 is some fixed constant. We call P (s) the power function.

A phase of a job is parallelizable if its speedup function is Γ(p) = p. Increasing the
number of processors allocated to a parallelizable phase by a factor of s increases the rate of
processing by a factor of s. A phase of a job is parallel up to q processors if Γ(p) = p for p ≤ q,
and Γ(p) = q for p > q. A speedup function Γ is nondecreasing if and only if Γ(p1) ≤ Γ(p2)
whenever p1 ≤ p2. A speedup function Γ is sublinear if and only if Γ(p1)/p1 ≥ Γ(p2)/p2

whenever p1 ≤ p2. We assume all speedup functions Γ in the input instance are nondecreasing
and sublinear. We further assume that all speedup functions satisfy Γ(p) = p for p ≤ 1. This
natural assumption means that when a job Ji is assigned to a single processor, and shares
this processor with other jobs, the rate that Ji is processed is the fraction of the processor
that Ji receives times the speed of the processor.

Let A be an algorithm and J an instance. We denote the schedule output by A on J as
A(J). We let FA(J) and EA(J) denote the total flow time and energy incurred in A(J), let
costA(J) = FA(J) + EA(J) denote the cost. We will use M as a short-hand for MultiLAPS.
Let Opt be the optimal algorithm that always minimizes total flow time plus energy. A
randomized algorithm A is c-competitive, or has competitive ratio c, if for all instances J ,
E[costA(J)] ≤ c · costOpt(J).

2 Lower Bounds for Single Copy and Non-Checkpointing

Algorithms

In this section we show that the competitive ratio must grow quickly with the number of
processors if only one copy of each job can be running (Lemma 3), or if multiple copies
are allowed, but no checkpointing is allowed (Lemma 4). We first start with a couple basic
lemmas about optimal schedules that will be useful throughout the paper.

Lemma 1. Consider a job with work w and with a single phase with a speedup function that
is parallelizable up to q processors. Assume that the job is run on p ≤ q processors, then
the optimal speed is 1

((α−1)p)1/α , for a cost of Θ( w
p1−1/α ). Assume that the job is run on p ≥ q

processors, then the optimal speed is 1
((α−1)p)1/α , for a cost of Θ(wp1/α

q
).

Proof. First consider that case that p ≤ q. Let s be the speed of the processors. The flow
plus energy is then w

ps
+ psα w

ps
= w( 1

ps
+ sα−1). This is minimized by setting s = 1

((α−1)p)1/α ,

6



for a cost of Θ
(

w
p1−1/α

)

.

Now consider the case that p ≥ q. Let s be the speed of the processors. The flow plus
energy is then w

qs
+ psα w

qs
. This is minimized by setting s = 1

((α−1)p)1/α , giving a cost of

Θ(wp1/α/q).

Lemma 2. Consider a job with work w with a single phase with a speedup function that is
parallelizable up to q processors. The optimal schedule uses p = q processors, run at speed

1
((α−1)q)1/α , for a cost of Θ( w

q1−1/α ).

Proof. From the proof of Lemma 1 we know that if the algorithm allocates p ≤ q speed s

processors to this job, the cost is minimized by when s = 1
((α−1)p)1/α , for a cost of Θ

(

w
p1−1/α

)

.

This is minimized by making p as big as possible, namely p = q. From the proof of Lemma 1
we know that if the algorithm allocates p ≥ q speed s processors to this job, the cost is
minimized when s = 1

((α−1)p)1/α , giving a cost of Θ(wp1/α/q). This is minimized by making p

as small as possible, namely p = q. Thus in either case, the optimal scheduling policy uses
p = q processors, run at speed 1

((α−1)q)1/α , for a cost of Θ( w
q1−1/α ).

Lemma 3. Any randomized nonclairvoyant algorithm, that only runs one copy of each job,
must be Ω(m(α−1)/α2

)-competitive against an oblivious adversary that must specify the input
a priori.

Proof. Applying Yao’s technique, we give a probability distribution over the input, and show
that every deterministic algorithm A will have an expected competitive ratio of Ω(m(α−1)/α2

).
The instance will be selected uniformly at random from two possibilities. The first possible
instance consists of one job with m1−1/α units of parallelizable work. The second possible
instance will consist of job with one unit of work that is parallel up to one processor. By
plugging these parameters into Lemma 2, one can see that the optimal cost is Θ(1) for both
instances.

Let p denote the number of processors used by the algorithm A. By Lemma 1, the cost
for the algorithm A is either Ω((m

p
)1−1/α) or Ω(p1/α) depending on the instance. Both the

maximum and the average of these two costs is minimized by balancing these two costs,
which is accomplished by setting p = m1−1/α. This shows that the competitive ratio is
Ω(m(α−1)/α2

).

Lemma 4. In the independent processing model, any randomized nonclairvoyant algorithm
must be Ω(m(α−1)/α2

)-competitive against an oblivious adversary that must specify the input
a priori.

Proof. Applying Yao’s technique, we give a probability distribution over the inputs with
the property that every deterministic algorithm A will have expected competitive ratio
Ω(m(α−1)/α2

). The random instance consists of a single job with many phases. Each phase
will be randomly chosen to be one of the two job instances given in Lemma 3, that is, each
phase will either be parallelizable or parallel up to one processor, and the optimal cost for
each phase will be Θ(1).

Consider a particular copy of the job run by A. Because each phase is so small, we can
assume that the algorithm A allocates a fixed number of processors p running at a fixed speed

7



s for the duration of the phase. By the proof of Lemma 3, no matter what the algorithm
does, the probability is at least a half that it incurs a cost of Ω(m(α−1)/α2

) during this phase.
One can think of the phases as Bernoulli trials with outcomes being cost Ω(m(α−1)/α2

) with
probability at least a half, and smaller cost with probability at most a half. Applying a
Chernoff bound, with high probability the algorithm has cost Ω(m(α−1)/α2

) on nearly half of
the stages. While the optimal cost on each stage is 1.

By a union bound, the probability that any copy has average cost per phase much less
than Ω(m(α−1)/α2

) is small.

3 Analysis of MultiLAPS

In this section, we assume that multiple copies of a job may be run simultaneously. Each copy
of a job may be assigned a different number of processors, but each processor running this
copy must be run at the same speed. We assume that at each moment in time, the rate that
work is processed on each copy of a job is the maximum of the rates of the different copies
(so all copies of a job are always at the same point of execution). We give a nonclairvoyant
algorithm MultiLAPS for this setting, and show that it is O(log m)-competitive for flow time
plus energy.

We now describe the algorithm LAPS from [9], and the algorithm MultiLAPS that we
introduce here. We then give some underlying motivation for the design of MultiLAPS.

Algorithm LAPS: Let δ ≥ 0 and β > 0 be real constants. At any time t, the processor
speed is (1 + δ)(na)

1/α, where na is the number of active jobs at time t. The processor
processes the ⌈βna⌉ active jobs with the latest release times by splitting the processing
equally among these jobs. For our purposes in this paper, we will take δ = 0. The

intuition behind the definition of LAPS builds on the fact that the algorithm SETF, which
prioritizes jobs that have been processed the least (which are generally the most recently
arrived jobs) is scalable if all the work is fully parallelizable [10]. LAPS favors most recently
arrived jobs, but spreads the processing out over a linear number out of caution that the
most recently arriving jobs might be in sequential phases.

Algorithm MultiLAPS: Let 0 < β < 1 be a real number that parametrizes MultiLAPS.
Let µ = 1/3. Consider any time t. Let na be the number of active jobs at t. Each of the
⌈βna⌉ active jobs with the latest release times will be run at this point in time. Call these
jobs the late jobs. For each late job Ji, a primary copy of Ji is run on a group of pa = µ m

⌈βna⌉

processors, where each processor in this group is run at speed sa = 1
µ
(na

m
)1/α. Note that the

primary copies of the late jobs are equally sharing a µ fraction of the processors. Furthermore
for each late job Ji, there are ⌊log pa⌋ secondary copies of Ji run. The jth, j ∈ [1, ⌊log pa⌋],
secondary copy of Ji is run on a group of 2i processors, where each processor in this group
is run at speed 2( 1

2i )
1/α.

Intuition behind the design of MultiLAPS: Let us give a bit of intuition behind the
design of MultiLAPS. If µ was 1, and no secondary copies were run, then MultiLAPS
would essentially be adopting the strategy of LAPS of sharing the processing power evenly
among the latest arriving β fraction of the jobs. LAPS is O(1)-competitive when all work is

8



parallelizable up to the number of available processors [7]. However, if a primary copy of a
job is run on many processors, the online algorithm may be wasting a lot of energy if this
work is not highly parallelizable. To account for this possibility, MultiLAPS runs the primary
copy a little faster, freeing up some processors to run secondary copies of the job on fewer
processors and at a faster speed. The number of processors running the secondary copies
are geometrically decreasing by a factor of 2, while the speeds are increasing by a factor of
21/α. Thus each copy of a job is using approximately the same power. Intuitively, one of
the copies is running the late job on the “right” number of processors. Thus MultiLAPS
uses a factor of O(log m) more energy than optimal because of the log m different equi-power
copies of the job. Setting µ ≤ 1

3
guarantees that that MultiLAPS doesn’t use more than m

processors.
The rest of this section is devoted to proving the following theorem.

Theorem 5. In the maximum processing model, MultiLAPS is O(log m)-competitive for
total flow time plus energy.

Overview of the proof of Theorem 5: We now give an overview of the structure of
our proof of Theorem 5. In Lemma 6 we show how to reduce the analysis of MultiLAPS
on arbitrary instances to the analysis of MultiLAPS on canonical instances. We define an
instance to be canonical if the speedup function for each job phase is parallel up to the
number po of processors that Opt uses on that phase (and is constant there after). The
value of po may be different for each phase. More specifically, we show how to construct a
canonical instance J from an arbitrary instance K such that the cost of MultiLAPS on K is
identical to the cost of MultiLAPS on J , and the optimal cost for J is at most the optimal
cost for K.

We then define a variation of the uniprocessor setting, that we call the Sequential Set-
ting. In the Sequential Setting, a job can have sequential phases, which are phases that are
processed at a unit rate independent of the computational resources assigned to the job.

We then show how to reduce the analysis of MultiLAPS on canonical instances to the
analysis of LAPS in the Sequential Setting. More precisely, from an arbitrary canonical
instance J , we show how to create an instance J ′ for the Sequential Setting. We show in
Lemma 7 that the flow time for MultiLAPS on J is identical to the flow time of LAPS on
J ′, and the energy used by MultiLAPS on J is at most O(log m) times the energy used by
LAPS on J ′.

We then need to relate the optimal schedule for J to the optimal schedule for J ′. To
accomplish this we classify each phase of a job in J as either saturated or unsaturated depend-
ing on the relationship between the speedup function and how many processors MultiLAPS
uses for this phase. We consider two instances derived from J , an instance Jsat consisting
of only the saturated phases in J , and an instance Juns consisting of only the unsaturated
phases in J . We then consider two instances derived from the instance J ′, an instance J ′

par

consisting of parallel phases in J ′, and an instance J ′
seq consisting of sequential phases in J ′.

The transformation of J to J ′ transforms phases in Jsat to phases in J ′
par and transforms

phases in Juns to phases in J ′
seq. It will be clear that the optimal cost for J is at least the

optimal cost for Jsat plus the optimal cost for Juns. We then show in Lemma 8 that the
optimal cost for Jsat is at least the optimal cost for J ′

par, and in Lemma 9 that the optimal
cost for Juns is at least the optimal cost for J ′

seq. We then discuss how to generalize the

9



analysis of LAPS in [7], using techniques from [8, 9], to show that the cost of LAPS is at
most a constant factor larger than the optimal cost for J ′

par plus the optimal cost for J ′
seq .

This line of reasoning allows us to prove our Theorem 5 as follows:

costM(K) = costM (J)

= O(log m) · costLAPS(J
′)

= O(log m) · (costOpt(J
′
par) + costOpt(J

′
seq))

= O(log m) · (costOpt(Jsat) + costOpt(Juns))

= O(log m) · costOpt(J)

= O(log m) · costOpt(K)

The first and final equalities follow from Lemma 6. The second equality follows from Lemma
7. The third equality follows from the analysis of LAPS in the sequential setting. The
fourth equality follows from Lemma 8 and Lemma 9. The fifth equality will be an obvious
consequence of the definitions of Jsat and Juns.

We now execute the proof strategy that we have just outlined. We first show that there
is a worst-case instance for MultiLAPS that is canonical.

Lemma 6. Let K be any input instance. There is a canonical instance J such that FM(J) =
FM(K), EM (J) = EM (K), and costOpt(J) ≤ costOpt(K).

Proof. We construct J by modifying each job in K as follows. Consider an infinitesimally
small phase of a job in K with work w and speedup function Γ. Let po be the number of
processors that Opt allocates to this phase when scheduling K.

We modify this phase so that the new speedup function is Γ′(p) = p
po

Γ(po) for p ≤ po and

Γ′(p) = Γ(po) for p ≥ po.
Note that MultiLAPS may process this phase in several copies of this job. Assume that

the i-th copy is processed by pi processors of speed si. Due to the modification of speedup
function, the rate of processing for the i-th copy changes from Γ(pi)si to Γ′(pi)si. If pi ≥ po,
then the rate of processing on the i-th copy does not increase since Γ is nondecreasing. Now
consider a copy where pi < po. By the definition of Γ′, the rate of processing Γ′(pi)si =
piΓ(po)

po
si. Since pi < po and since Γ is sublinear, Γ(po)

po
≤ Γ(pi)

pi
. Plugging this back in, we get

that the rate of processing for copy is at most siΓ(pi). So MultiLAPS doesn’t finish this
phase in the modified instance before it can finish the phase in K. We then decrease the
work of this phase so that the time when this phase is first completed (among all of the
copies) is identical to when it completes in MultiLAPS(K). Note that by construction the
schedule of MultiLAPS on this modified instance is identical to MultiLAPS(K), while Opt
may get better performance due to the reduction of work.

Finally, we create J by multiplying both the work of this phase and the speedup function
by the same factor of po

Γ′(po)
to make the final speed up function for this phase parallel up to

po processors. This change does not effect the schedules of either MultiLAPS and Opt.

Definition of the Sequential Setting: Everything is defined identically as in Subsection
1.3, with the following two exceptions. Firstly, there is only a single processor. Secondly, job

10



phases can be sequential, which in the context of this paper means that work in this phase
is processed at a rate of 1 independent of the fraction of the processor assigned to the job,
and the speed of the processor. So sequential work is processed at rate 1, even if it is run at
a speed much greater than 1, or is not even run at all. Sequential work doesn’t correspond
to any realistic situation, but is merely mathematical construct required for the proof.

Definition of the Transformation of a Canonical Instance J into the instance

J
′ in the Sequential Setting: We transform each job in J into a job in J ′ by modifying

each phase of the original job. At each point in time, consider a phase and the copy in
MultiLAPS with the highest processing rate on this phase. Let Γpo be the speedup function
of the phase, which is parallel up to po processors. We say the phase is currently “saturated”
if µ m

⌈βna⌉
≤ po, and “unsaturated” otherwise. Note that µ m

⌈βna⌉
is the number of processors

assigned to the primary copy in MultiLAPS. Thus, a phase is saturated if all copies in
MultiLAPS are processing in the parallel range of Γpo , and unsaturated otherwise.

Consider the case that the phase is saturated. The copy with the highest processing rate
in MultiLAPS is the one with pa = µ m

⌈βna⌉
processors of speed sa = 1

µ
(na

m
)1/α, giving a rate

of m
⌈βna⌉

(na

m
)1/α = m1−1/α · (na)1/α

⌈βna⌉
. We modify this phase to be fully parallelizable, and scale

down the work by a factor of m1−1/α. Note that the processing rate of LAPS is (na)1/α

⌈βna⌉
, so it

will complete the phase using the same time.
Consider the case that the phase is unsaturated. Let r be the fastest rate that any copy

in MultiLAPS is processing work in this phase. We modify this phase to be sequential, and
scale down the work by a factor of r. By the definition of sequential, the processing rate of
LAPS on this phase is 1, so it will complete the phase using the same time as MultiLAPS.

We now show that the cost of MultiLAPS on J is at most a log factor more than the
cost of LAPS on J ′ in the Sequential Setting.

Lemma 7. costM(J) = FLAPS(J
′) + O(log m)ELAPS(J

′). From this we can conclude that
costM (J) = O(log m)costLAPS(J

′).

Proof. By construction, the flow time for MultiLAPS(J) is identical to the flow time for
LAPS(J ′). We now show that the energy used by MultiLAPS(J) is at most a log factor
more than the energy used by LAPS(J ′).

The power in MultiLAPS(J) is the sum of the powers in the m processors. Note that
for each of the ⌈βna⌉ late jobs, MultiLAPS allocates pa processors of speed sa to a primary
copy of this job. Recall that pa = µ m

⌈βna⌉
and sa = 1

µ
(na

m
)1/α. MultiLAPS also runs log pa

secondary copies, where the i-th copy is run on 2i processors of speed 2( 1
2i )

1/α. Hence, the
total power for MultiLAPS(J) is:

⌈βna⌉



µ
m

⌈βna⌉
· (

1

µ
(
na

m
)1/α)α +

⌊log pa⌋
∑

i=1

2i(2(
1

2i
)1/α))α





≤ (
1

µ
)α−1na + 2α⌈βna⌉ log pa

LAPS(J ′) runs at speed n
1/α
a , and hence power na. Since pa ≤ m, we conclude that EM (J) =

O(log m)ELAPS(J
′).

11



We now want to show a lower bound for Opt(J). To state this lower bound, we need
to introduce some notation. Define Jsat to be the instance obtained from J by removing
all unsaturated phases in each job and directly concatenating the saturated phases. Define
Juns to be the instance obtained from J by removing all saturated phases, and directly
concatenating the unsaturated phases. Define J ′

par to be the instance obtained from J ′ by
removing all sequential phases in each job and directly concatenating the parallel phases.
Define J ′

seq to be the instance obtained from J ′ by removing all parallel phases in each job
and directly concatenating the sequential phases. Note that the transformation from J to
J ′ transforms a phase in Jsat to a phase in J ′

par, and transforms a phase in Juns to a phase
in J ′

seq . Obviously, Opt can only gain by scheduling Jsat and Juns separately. That is,

costOpt(J) ≥ costOpt(Jsat) + costOpt(Juns)

We now want to show that costOpt(J
′
par) = O(costOpt(Jsat)) and costOpt(J

′
seq) = O(costOpt(Juns)).

Lemma 8. costOpt(J
′
par) = O(costOpt(Jsat)).

Proof. We construct a schedule Opt(J ′
par) from the schedule Opt(Jsat) phase by phase. Each

phase in Opt(J ′
par) will end no later than the corresponding phase in Opt(Jsat), and the

schedule for Opt(J ′
par) will use less energy than the schedule Opt(Jsat).

Consider a infinitesimal saturated phase in Jsat. Let po and so be the number of processors
and speed allocated by Opt(Jsat) to this phase. By the definition of canonical, the phase
is parallelizable up to po processors. Thus Opt(Jsat) is processing at a rate of poso. Define
Opt(J ′

par) so that it runs at speed s′o = ( 1
m

)1−1/αposo on this phase. Since the transformation

scales down the work by a factor of m1−1/α, Opt(J ′
par) will complete the phase at the same

time as Opt(Jsat).
Now we need to argue that at any point of time, the power for Opt(Jsat) will be at least

the power for Opt(J ′
par). The power at this time in Opt(Jsat) is P =

∑

j po,j(so,j)
α, where

the sum is over all jobs j it is processing and po,j and so,j are the number and speed of the
processors allocated to j. Keeping R =

∑

j po,j so,j fixed, P is minimized by having all the
so,j to be the same fixed value so. This gives R =

∑

j po,jso = som and

P ≥
∑

j

po,j so
α = so

αm =

(

R

m

)α

m =

(

1

m

)α−1

Rα

By our definition of Opt(J ′
par), the power P ′ in Opt(J ′

par) can be bounded as follows:

P ′ =

(

∑

j

(

1

m

)1−1/α

po,j so,j

)α

=

(

(

1

m

)1−1/α

R

)α

=

(

1

m

)α−1

Rα

≤ P

12



Lemma 9. costOpt(J
′
seq) = O(costOpt(Juns)).

Proof. Consider a unsaturated phase in Juns that is parallel up to po processors. We gra-
ciously allow Opt(Juns) to schedule each phase in Juns in isolation of the other phases. This
only improves Opt(Juns). Consider a particular phase in Juns with a speedup function that
is parallel up to po processors, and that has work w. By Lemma 1, the total flow time plus

energy incurred for Opt(Juns) is Θ
(

w
(po)1−1/α

)

. Opt(J ′
seq) will allocate zero processors to the

corresponding phase, and process the phase at rate 1 since the work in J ′
seq is sequential.

Hence Opt(J ′
seq) incurs no energy cost for this phase.

So to finish the proof we will show that the flow time for this phase in Opt(J ′
seq) is at most

the cost of this phase in Opt(Juns), namely Θ
(

w
(po)1−1/α

)

. Recall that in the transformation

from J to J ′, this work is scaled down by the fastest rate that this phase is processed by any
copy in MultiLAPS. Consider the copy in MultiLAPS that is processing in the parallel range
with the most number of processors, i.e., the copy with 2i processors such that 2i is maximized
and at most po. Since the phase is unsaturated 2 · 2i > po. By the definition of MultiLAPS,
the processing rate of this copy is at least 2i · 2( 1

2i )
1/α = 2(2i)1−1/α ≥ 2(po

2
)1−1/α ≥ p

1−1/α
o .

Thus the work in this phase in J ′
seq, and the flow time for this phase in Opt(J ′

seq), is at most
w

p
1−1/α
o

.

One can extend the analysis for LAPS in the uniprocessor setting, to the Sequential
Setting, using the techniques used in [8, 9]. We refer the reader to [9] for full details, and
just give the underlying intuition here. The analysis uses amortized local competitiveness.
That is, it is shown that at every time,

PLAPS + nLAPS + dΦ/dt ≤ c · POpt + nOpt

where P denotes power, n denotes the number of active jobs, Φ is the potential function,
and c is the desired competitive ratio. So when PLAPS + nLAPS is large, the processing of
LAPS lowers the potential function Φ enough to make the equation true. Now consider
the sequential setting. The difficulty that arises is that the processing that LAPS does on
sequential jobs may not lower the potential function. However, if the number of sequential
phases that LAPS is processing is very small, then raising the speed of LAPS by a small
amount will be enough so that the potential function decreases sufficiently quickly due to
the processing on the non-sequential jobs. If the number of sequential phases is large at a
particular time, then the increase in flow time that LAPS is experiencing on these jobs is also
experienced by the adversary at some point in time. This increase in flow time experienced
by the adversary pays for the increase in flow time for LAPS at this point of time. Note that
by definition of LAPS, the power used by LAPS is comparable to the increase in flow time
experienced by LAPS. We can thus derive the following theorem.

Theorem 10. costLAPS(J) = O(costOpt(J
′
par) + costOpt(J

′
seq)).

4 Lower Bound for Checkpointable Multiple Copies

We show here that in the maximum processing model, every randomized algorithm has a
competitive ratio at least poly-log.

13



Theorem 11. In the maximum processing model, the competitive ratio for every randomized

nonclairvoyant algorithm, is Ω
(

log1/α m
)

against an oblivious adversary that must specify

the input a priori.

Proof. Applying Yao’s technique, we give a probability distribution over the input, and show

that every deterministic algorithm A will have an expected competitive ratio of Ω
(

log1/α m
)

.

There are Θ(log m) possible instances, each selected with equal probability. For each j ∈
[0, log(m)], instance Jj will consist of one job with work wj = 2(1−1/α)j and speedup function
Γ2j(p), where Γq(p) is the speed up function that is parallelizable up to q processors. By
applying Lemma 2, Opt(Jj) allocates pj = 2j processors, each of speed sj = (2j)−1/α,
resulting in a cost of Θ(1).

Now consider any deterministic nonclairvoyant algorithm A. Rounding the number of
processors a copy is run on to a factor of two doesn’t change the objective by more than
a constant factor, and there is no significant benefit from running two copies on an equal
number of processors. Since the algorithm is nonclairvoyant, it will gain no information
about the identity of Jj until some copy finishes. Since the power function is convex, it is
best for the algorithm to run each copy at constant speed. Thus we can assume that the
algorithm runs log m copies of the job, with copy i run on 2i processors at at some constant
speed si. Note that the algorithm can set si = 0 if it doesn’t want to run a copy on that
many processors. The power of copy i is P ′

i = pisi
α = 2isi

α and the total power for A is
P ′ =

∑

i P
′
i .

Let R〈i,j〉 = Γ2j(2i)si denote the rate that the copy i is processing work on job Jj. Because
we are assuming that the work completed on a job is the maximum of that completed by
the groups working on it, we have that Rj = maxi R〈i,j〉 is the rate that A completes work
on job Jj and we have that Tj =

wj

Rj
is the time until the job is completed. The adversary

chooses j to maximize this time. We bound this maximum, denoted by T , as follows

1

T
= min

j

1

Tj

=
O(1)

log m

∑

j

1

Tj

≤
O(1)

log m

∑

j

∑

i R〈i,j〉

wj

=
O(1)

log m

∑

i

∑

j

Γ2j(2i)si

wj

=
O(1)

log m

∑

i

si





∑

j∈[0,i]

Γ2j (2i)

wj
+

∑

j∈[i+1,logm]

Γ2j (2i)

wj





=
O(1)

log m

∑

i

si





∑

j∈[0,i]

2j

2(1− 1

α
)j

+
∑

j∈[i+1,logm]

2i

2(1− 1

α
)j





14



=
O(1)

log m

∑

i

si





∑

j∈[0,i]

2
1

α
j + 2i ·

∑

j∈[i+1,logm]

1

2(1− 1

α
)j





=
O(1)

log m

∑

i

si

[

2
1

α
i + 2i ·

1

2(1− 1

α
)i

]

=
O(1)

log m

∑

i

P ′
i
1/α

Subject to P ′ =
∑

i P
′
i , the sum

∑

i P
′
i
1/α is maximized by setting each P ′

i to P ′

log m
giving

1

T
=

O(1)

log m

∑

i

(

P ′

log m

)1/α

= O

(

P ′

log m

)1/α

The total cost for A is

FA + EA = T + P ′T

= (1 + P ′)T

= Ω

(

(1 + P ′)

(

log m

P ′

)1/α
)

= Ω
(

log1/α m
)

Recalling that the optimal cost is O(1), the result follows.

5 Conclusion

In summary, we have shown that for jobs that may have side effects or that are not check-
pointable, the achievable competitive ratio grows quickly with the number of processors. And
for checkpointable jobs without side effects, the achievable competitive ratio grows slowly
with the number of processors.

It is relatively straight-forward to observe that the techniques in this paper give an
O(1)-competitive algorithm in the case that all speed up functions are parallel up to some
number of processors and then sequential, and the online algorithm knows this degree of
parallelizability.

Acknowledgments: We thank Nikhil Bansal, Tak Wah Lam, Lap Kei Lee, and Alberto
Marchetti-Spaccamela for helpful discussions.

References

[1] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time mini-
mization. ACM Transactions on Algorithms, 3(4), 2007.

15



[2] Nikhil Bansal, Ho-Leung Chan, Tak-Wah Lam, and Lap-Kei Lee. Scheduling for
bounded speed processors. In International Colloquium on Automata, Languages and
Programming, pages 409 – 420, 2008.

[3] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power
function. In ACM-SIAM Symposium on Discrete Algorithms, pages 693–701, 2009.

[4] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. Speed scaling for weighted flow time. In
ACM-SIAM Symposium on Discrete Algorithms, pages 805–813, 2007.

[5] Luca Becchetti and Stefano Leonardi. Nonclairvoyant scheduling to minimize the total
flow time on single and parallel machines. Journal of the ACM, 51(4):517–539, 2004.

[6] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Kirk Pruhs.
Online weighted flow time and deadline scheduling. Journal of Discrete Algorithms,
4(3):339–352, 2006.

[7] Ho-Leung Chan, Jeff Edmonds, Tak-Wah Lam, Lap-Kei Lee, Alberto Marcheti-
Spaccamela, and Kirk Pruhs. Nonclairvoyant speed scaling for flow and energy. In
International Symposium on Theoretical Aspects of Computer Science, pages 255–264,
2009.

[8] Jeff Edmonds. Scheduling in the dark. Theoretical Computer Science, 235(1):109–141,
2000.

[9] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup
curves. In ACM-SIAM Symposium on Discrete Algorithms, pages 685–692, 2009.

[10] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal
of the ACM, 47(4):617–643, 2000.

[11] Bala Kalyanasundaram and Kirk Pruhs. Minimizing flow time nonclairvoyantly. Journal
of the ACM, 50(4):551–567, 2003.

[12] Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong. Speed scaling functions for
flow time scheduling based on active job count. In European Symposium on Algorithms,
pages 647–659, 2008.

[13] Rick Merritt. CPU designers debate multi-core future. EE Times, June 2008.

[14] Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. Theor-
ertical Computer Science, 130(1):17–47, 1994.

[15] Kirk Pruhs. Competitive online scheduling for server systems. SIGMETRICS Perfor-
mance Evaluation Review, 34(4):52–58, 2007.

[16] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online scheduling. In Handbook on Scheduling.
CRC Press, 2004.

16



[17] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard J. Woeginger. Getting the best
response for your erg. ACM Transactions on Algorithms, 4(3), 2008.

[18] Julien Robert and Nicolas Schabanel. Non-clairvoyant batch sets scheduling: Fairness
is fair enough. In European Symposium on Algorithms, pages 741–753, 2007.

[19] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence con-
straints. In ACM-SIAM Symposium on Discrete Algorithms, pages 491–500, 2008.

17


