
Nonclairvoyant Speed Scaling for Flow and Energy

Ho-Leung Chan∗ Jeff Edmonds† Tak-Wah Lam∗ Lap-Kei Lee‡

Alberto Marchetti-Spaccamela§ Kirk Pruhs¶

Abstract

We give three results related to online nonclairvoyant speed scaling to minimize
total flow time plus energy. We give a nonclairvoyant algorithm LAPS, and show
that for every power function of the form P (s) = sα, LAPS is O(1)-competitive; more

precisely, the competitive ratio is 8 for α = 2, 13 for α = 3, and 2α2

lnα for α > 3. We
then show that there is no constant c, and no deterministic nonclairvoyant algorithm
A, such that A is c-competitive for every power function of the form P (s) = sα. So
necessarily the achievable competitive ratio increases as the steepness of the power
function increases. Finally we show that there is a fixed, very steep, power function
for which no nonclairvoyant algorithm can be O(1)-competitive.

1 Introduction

Energy consumption has become a key issue in the design of microprocessors. Major chip
manufacturers, such as Intel, AMD and IBM, now produce chips with dynamically scalable
speeds, and produce associated software, such as Intel’s SpeedStep and AMD’s PowerNow,
that enables an operating system to manage power by scaling processor speed. Thus the
operating system should have a speed scaling policy for setting the speed of the processor,
that ideally should work in tandem with a job selection policy for determining which job
to run. The operating system has dual competing objectives, as it both wants to optimize
some schedule quality of service objective, as well as some power related objective.

In this paper, we will consider the objective of minimizing a linear combination of total
flow and total energy used. For a formal definition of the problem that we consider, see
subsection 1.2. This objective of flow plus energy has a natural interpretation: suppose that
the user specifies how much improvement in flow, call this amount ρ, is necessary to justify
spending one unit of energy. For example, the user might specify that he is willing to spend

∗The University of Hong Kong. {hlchan,twlam}@cs.hku.hk. This work of H.L. Chan was done when
he was a postdoc in University of Pittsburgh. T.W. Lam is partially supported by HKU Grant 7176104.

†York University. jeff@cs.yorku.ca. Supported in part by NSERC Canada.
‡Max-Planck-Institut für Informatik. lklee@mpi-inf.mpg.de.
§Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma. alberto@dis.uniroma1.it.

Supported in part by MIUR FIRB grant RBIN047MH9 and by EU ICT-FET grant 215270 FRONTS.
¶University of Pittsburgh. kirk@cs.pitt.edu. Supported in part by an IBM faculty award, and by NSF

grants CNS-0325353, CCF-0514058, IIS-0534531, and CCF-0830558.

1

1 erg of energy from the battery for a decrease of 5 micro-seconds in flow. Then the optimal
schedule, from this user’s perspective, is the schedule that optimizes ρ = 5 times the energy
used plus the total flow. By changing the unit of either energy or time, one may assume
without loss of generality that ρ = 1.

In order to be implementable in a real system, the speed scaling and job selection poli-
cies must be online since the system will not in general know about jobs arriving in the
future. Further, to be implementable in a generic operating system, these policies must be
nonclairvoyant, since in general the operating system does not know the size/work of each
process when the process is released to the operating system. All of the previous speed
scaling literature on this objective has considered either offline or online clairvoyant policies.
In subsection 1.1, we survey the literature on nonclairvoyant scheduling policies for flow
objectives on fixed speed processors, and the speed scaling literature for flow plus energy
objectives.

Our goal in this paper is to study nonclairvoyant speed scaling policies using competitive
analysis.

We first analyze the nonclairvoyant algorithm whose job selection policy is Latest Arrival
Processor Sharing (LAPS) and whose speed scaling policy is to run at the speed such that
the power equals the number of active jobs. LAPS shares the processor equally among the
latest arriving constant fraction of the jobs. We adopt the traditional model that the power
function, which gives the power as a function of the speed of the processor, is P (s) = sα,
where α > 1 is some constant. Of particular interest is the case α = 3 since, according to the
well known cube-root rule, the dynamic power in CMOS based processors is approximately
the cube of the speed. Using an amortized local competitiveness argument, we show in
Section 2 that this algorithm is O(1)-competitive for each power function of the form P (s) =
sα. More precisely, the competitive ratio is 8 for α = 2, 13 for α = 3, and 2α2

lnα
for α > 3. The

potential function that we use is an amalgamation of the potential function used in [9] for
the fixed speed analysis of LAPS, and the potential functions used for analyzing clairvoyant
speed scaling policies. This result shows that it is possible for a nonclairvoyant policy to be
O(1)-competitive if the cube-root rule holds.

It is known that for essentially every power function, there is a 2-competitive clairvoyant
speed scaling policy [2, 4]. In contrast, we show in Section 3 that the competitiveness achiev-
able by nonclairvoyant policies must depend on the steepness of the power function. We
show that there is no constant c, and no deterministic nonclairvoyant algorithm A, such that
A is c-competitive for every power function of the form P (s) = sα. And we show that there
is a fixed, very steep, power function for which no nonclairvoyant algorithm can be O(1)-
competitive. The adversarial strategies for these lower bounds are based on the adversarial
strategies in [13] for fixed speed processors. Perhaps these lower bound results are not so
surprising given the fact that it is known that without speed scaling, resource augmentation
is required to achieve O(1)-competitiveness for a nonclairvoyant policy [10, 13]. Still a priori
it wasn’t completely clear that the lower bounds in [13] would carry over. The reason is that
in these lower bound instances, the adversary forced the online algorithm into a situation in
which the online algorithm had a lot of jobs with a small amount of remaining work, while
the adversary had one job left with a lot of remaining work. In the fixed speed setting, the
online algorithm, without resource augmentation, can never get a chance to get rid of this
backlog in the face of a steady stream of jobs. However, in a speed scaling setting, one might

2

imagine an online algorithm that speeds up enough to remove the backlog, but not enough
to make its energy usage more than a constant times optimal. Our lower bound shows that
it is not possible for the online algorithm to accomplish this.

1.1 Related results

We start with some results in the literature about scheduling with the objective of total flow
time on a fixed speed processor. It is well known that the online clairvoyant algorithm Short-
est Remaining Processing Time (SRPT) is optimal. The competitive ratio of deterministic
nonclairvoyant algorithm is Ω(n1/3), and the competitive ratio of every randomized algorithm
against an oblivious adversary is Ω(log n) [13]. A randomized version of the Multi-Level
Feedback Queue algorithm is O(log n)-competitive [6, 11]. The non-clairvoyant algorithm
Shortest Elapsed Time First (SETF) is scalable, that is, (1+ ϵ)-speed O(1)-competitive [10].
SETF shares the processor equally among all jobs that have been run the least. The algo-
rithm Round Robin RR (also called Equipartition and Processor Sharing) that shares the
processor equally among all jobs is (2 + ϵ)-speed O(1)-competitive [8].

Let us first consider the traditional model where the power function is P (s) = sα. Most
of the literature assumes the unbounded speed model, in which a processor can be run at any
real speed in the range [0,∞). In this model [15] gave an efficient offline algorithm to find
the schedule that minimizes average flow subject to a constraint on the amount of energy
used, in the case that jobs have unit work. Culminating a line of several papers [1, 5, 12] on
online algorithms for arbitrary work jobs, [4] showed that the speed scaling algorithm that
uses Shortest Remaining Processing Time (SRPT) for job selection and power equal to one
more than the number of unfinished jobs for speed scaling, is 3-competitive for the objective
of total flow plus energy on arbitrary-work unit-weight jobs for essentially arbitrary power
functions. This analysis was improved to show that this algorithm is 2-competitive in [2].

[4] further showed that the scheduling algorithm, that uses Highest Density First (HDF)
for job selection and power equal to the fractional weight of the unfinished jobs for speed
scaling, is (2 + ϵ)-competitive for the objective of fractional weighted flow plus energy on
arbitrary-work arbitrary-weight jobs. [5] then showed how to modify this algorithm to obtain
an algorithm that is O(1)-competitive for (integral) weighted flow plus energy for power
functions of the form P (s) = sα, using the known resource augmentation analysis of HDF [7].

[3] extended the result of [5] for the unbounded speed model to the bounded speed model,
which was later improved by [12].

1.2 Formal Problem Definition and Notations

We study online scheduling on a single processor. Jobs arrive over time and we have no infor-
mation about a job until it arrives. For each job j, its release time and work requirement (or
size) are denoted as r(j) and p(j), respectively. We consider the nonclairvoyant model, i.e.,
when a job j arrives, p(j) is not given and it is known only when j is completed. Preemption
is allowed and has no cost; a preempted job can resume at the point of preemption. The
processor can vary its speed dynamically to any value in [0,∞). When running at speed s,
the processor processes s units of work per unit time and consumes P (s) = sα units of energy
per unit time, where α > 1 is some fixed constant. We call P (s) the power function.

3

Consider any job sequence I and a certain schedule A of I. For any job j in I, the flow
time of j, denoted FA(j), is the amount of time elapsed since it arrives until it is completed.
The total flow time of the schedule is FA =

∑
j∈I FA(j). We can also interpret FA as follows.

Let nA(t) be the number of jobs released by time t but not yet completed by time t. Then
FA =

∫∞
0

nA(t)dt. Let sA(t) be the speed of the processor at time t in the schedule. Then
the total energy usage of the schedule is EA =

∫∞
0
(sA(t))

αdt. The objective is to minimize
the sum of total flow time and energy usage, i.e., FA + EA.

For any job sequence I, a scheduling algorithm ALG needs to specify at any time the
speed of the processor and the jobs being processed. We denote ALG(I) as the schedule
produced for I by ALG. Let Opt be the optimal offline algorithm such that for any job
sequence I, FOpt(I) + EOpt(I) is minimized among all schedules of I. An algorithm ALG is
said to be c-competitive, for any c ≥ 1, if for all job sequence I,

FALG(I) + EALG(I) ≤ c · (FOpt(I) + EOpt(I)) .

2 An O(α2

logα)-competitive Algorithm

In this section, we give an online nonclairvoyant algorithm and show that it is O(α2

logα
)-

competitive for total flow time plus energy. We say a job j is active at time t if j is released
by time t but has not yet completed by time t. Our algorithm is defined as follows.

Algorithm LAPS(β). Let 0 < β < 1 be any real. At any time t, let na(t) be the
number of active jobs remaining in LAPS. Then LAPS runs at speed (na(t))

1/α,
and it processes the ⌈βna(t)⌉ active jobs with the latest release times (ties broken
by job identity) by splitting the processor speed equally among these jobs.

Our main result is the following.

Theorem 1. For any 0 < β < 1, LAPS(β) is c-competitive for total flow time plus energy,
where c = max{ 2

(1−β)α
, 2α

β
}.

The proof of Theorem 1 is based to a large extent on the techniques from [9]. We start
with some definitions and notations. Recall that na(t) is the number of active jobs under
LAPS at time t. Let sa(t) = (na(t))

1/α which is the speed of LAPS at time t. Let

Ga(t) = Fa(t) + Ea(t) =

∫ t

0

na(x)dx+

∫ t

0

(sa(x))
αdx

be the total flow time plus energy incurred up to time t by LAPS. Note that dGa(t)
dt

=
na(t) + (sa(t))

α is its instantaneous cost at time t. Similarly, define no(t), so(t), and Go(t)
for that of Opt. Since LAPS uses the common technique of balancing its flow and energy
costs (e.g., as in [5, 12]), we have that

Ga(t) =

∫ t

0

na(x)dx+

∫ t

0

P (sa(x))
αdx =

∫ t

0

2na(x)dx .

4

It follows that dGa(t)
dt

= 2na(t). Opt may choose to set its speed differently.
We use an amortized local competitiveness argument (see for example [14]). To show that

LAPS is c-competitive, it suffices to give a potential function Φ(t) such that the following
four conditions hold.

• Boundary condition: Φ = 0 before any job is released and after all jobs are completed.

• Job arrival: When a job is released, Φ does not increase.

• Job completion: When a job is completed by LAPS or Opt, Φ does not increase.

• Running condition: At any other time, the rate of change of Ga plus the rate of change
of Φ is no more than c times the rate of change of Go, i.e.,

dGa(t)
dt

+ dΦ(t)
dt

≤ c · dGo(t)
dt

,
during any period of time without job arrival or completion.

We define our potential function as follows.

Potential function Φ(t). Consider any time t. For any job j, let qa(j, t) and
qo(j, t) be the remaining work of j at time t in LAPS and Opt, respectively. Let
{j1, . . . , jna(t)} be the set of active jobs in LAPS, ordered by their release times
such that r(j1) ≤ r(j2) ≤ · · · ≤ r(jna(t)). Then,

Φ(t) = γ

na(t)∑
i=1

(
i1−1/α ·max{0, qa(ji, t)− qo(ji, t)}

)
where γ > 0 is some constant that we will set later. We call i1−1/α the coefficient
of ji.

We first check the boundary, job arrival and job completion conditions. Before any
job is released or after all jobs are completed, there is no active job in both LAPS and
Opt, so Φ = 0 and the boundary condition holds. When a new job j arrives at time t,
qa(j, t) − qo(j, t) = 0 and the coefficients of all other jobs remain the same, so Φ does not
change. If LAPS completes a job j, the term for j in Φ is removed. The coefficient of any
other job either stays the same or decreases, so Φ does not increase. If Opt completes a job,
Φ does not change.

Hence, it remains to check the running condition. In the following, we focus on a certain
time t without job arrival or completion. We omit the parameter t from the notations as t
refers only to this certain time. For example, we denote na(t) and qa(j, t) as na and qa(j),
respectively.

For any job j, j is a lagging job at time t if LAPS has processed less than Opt on j up to
time t, i.e., qa(j)− qo(j) > 0. Let ℓ be the number of lagging jobs that LAPS is processing
at time t. We start by evaluating dΦ

dt
.

Lemma 2. At time t,

dΦ

dt
≤ γ

1

α(1− β)α−1
sαo + γ

(1− β)

β
no − γ

1

α
(1− β)na

5

Proof. First consider the easier case when na = 0 at time t. Then the claim of the lemma
becomes that dΦ

dt
≤ γ 1

α(1−β)α−1 s
α
o + γ (1−β)

β
no. Note that the right hand side is non-negative,

and dΦ
dt

= 0 when na = 0. Hence the lemma is true when na = 0. The rest of the proof
considers the case when na > 0.

We consider dΦ
dt

as the combined effect due to the processing of LAPS and Opt. Let dΦ1

dt

and dΦ2

dt
be the rates of change in Φ due to Opt and LAPS, respectively. Then dΦ

dt
= dΦ1

dt
+ dΦ2

dt
.

For any job j, qo(j) is decreasing or remains the same. Hence, dΦ1

dt
is non-negative. Similarly,

dΦ2

dt
is non-positive.

We first bound dΦ1

dt
. The worst case is that Opt is processing the job with the largest

coefficient, i.e., n
1−1/α
a . Hence dΦ1

dt
is at most γn

1−1/α
a (−dqo(jna)

dt
) = γn

1−1/α
a so. We apply

Young’s Inequality, which is formally stated in Lemma 3, by setting f(x) = (x
1−β

)α−1,

f−1(y) = (1− β)y1/(α−1), g = so and h = n
1−1/α
a . Then, we have

γson
1−1/α
a ≤ γ

(∫ so

0

(
x

1− β
)α−1dx+

∫ n
1−1/α
a

0

(1− β)y1/(α−1)dy

)
= γ

1

α(1− β)α−1
sαo + γ(1− 1

α
)(1− β)na .

We then bound dΦ2

dt
. LAPS works on the ⌈βna⌉ jobs with the latest arrival times. Ideally,

for each of these jobs j, the term max{0, qa(j) − qo(j)} in the potential function decreases
at a rate equal to the speed sa

⌈βna⌉ . Then dΦ2

dt
would be minimized. However, LAPS may

be ahead of Opt on some jobs j, that is, qa(j) − qo(j) ≤ 0. For these non-lagging jobs,
max{0, qa(j)− qo(j)} is zero and will not decrease. To address this issue, recall that ℓ is the
number of lagging jobs LAPS is processing at time t. Let j be one of these lagging jobs.
Then j is among the ⌈βna⌉ active jobs with the latest release times and its coefficient is at
least (na − ⌈βna⌉+ 1)1−1/α. Also, j is being processed at speed sa

⌈βna⌉ , so qa(j) is decreasing

at this rate. It follows that dΦ2

dt
is at most

γℓ(na − ⌈βna⌉+ 1)1−1/α

(
−sa
⌈βna⌉

)
≤ γℓ(na − βna)

1−1/α

(
−sa
⌈βna⌉

)
(since −⌈βna⌉+ 1 > −βna)

≤ γℓ(1− β)
−na

⌈βna⌉
(since sa = n

1/α
a and (1− β)1−1/α > 1− β)

Summing up dΦ1

dt
and dΦ2

dt
, we obtain that

dΦ

dt
≤ γ

1

α(1− β)α−1
sαo + γ(1− 1

α
)(1− β)na + γℓ(1− β)

−na

⌈βna⌉

= γ
1

α(1− β)α−1
sαo + γ

(1− β)na

⌈βna⌉
(⌈βna⌉ − ℓ)− γ

1

α
(1− β)na

We observe that na

⌈βna⌉ ≤ na

βna
= 1

β
and that the number of non-lagging jobs being processed

6

by LAPS, ⌈βna⌉ − ℓ, is at most the number of jobs no unfinished by Opt. Thus, we have

dΦ

dt
≤ γ

1

α(1− β)α−1
sαo + γ

(1− β)

β
no − γ

1

α
(1− β)na .

Below is the formal statement of Young’s Inequality, which is used in the proof of
Lemma 2.

Lemma 3 (Young’s Inequality). Let f be any real-valued, continuous and strictly increasing

function such that f(0) = 0. Then, for all g, h ≥ 0,
∫ g

0
f(x)dx +

∫ h

0
f−1(y)dy ≥ gh, where

f−1 is the inverse function of f .

We are now ready to show the following lemma about the running condition.

Lemma 4. Let γ = 2α
1−β

and c = max{ 2
(1−β)α

, 2α
β
}. Then at time t, dGa

dt
+ dΦ

dt
≤ c · dGo

dt
.

Proof. Plugging γ = 2α
1−β

into Lemma 2, we obtain that

dGa

dt
+

dΦ

dt
≤ 2na +

2

(1− β)α
sαo +

2α

β
no − 2na ≤ c · dGo

dt
.

Combining Lemma 4 with the discussion on the boundary, job arrival and job completion
conditions, Theorem 1 follows. Below we choose appropriate β to optimize the competitive
ratio c for different values of α; in particular, for large α, c grows as Θ(α2

logα
).

Corollary 5. If α = 2, then LAPS(0.5) is 8-competitive. If α = 3, then LAPS(0.46) is
13-competitive. If α > 3 and β = lnα

α
, then LAPS(β) is 2α2

lnα
-competitive.

Proof. If α = 2 and β = 0.5, then c evaluates to 8. If α = 3 and β = 0.46, then c evaluates
to 13. We now show that if we pick β = lnα

α
, then for α > 3, we have

c = max{ 2

(1− β)α
,
2α

β
} ≤ 2α2

lnα
.

Since β = lnα
α
, we have that 2α

β
= 2α2

lnα
. It remains to show that

2

(1− lnα
α
)α

≤ 2α2

lnα
, or equivalently, lnα ≤ α2(1− lnα

α
)α .

Observe that the function α
lnα

is increasing with α and the function (1 − 1
x
)x is increasing

with x. Hence, for α > 3, we have

(1− lnα

α
)α = (1− 1

α
lnα

)
α

lnα
·lnα ≥ (1− 1

3
ln 3

)
3

ln 3
·lnα = 0.28lnα

We take a loose bound that 0.28 > e−1.5, so 0.28lnα > α−1.5. Hence, α2(1 − lnα
α
)α > α0.5.

Finally, we can check easily (by differentiation) that α0.5 > lnα for α > 3, and the corollary
follows.

7

3 Lower Bounds

In this section, we show that necessarily the competitive ratio achievable by a deterministic
nonclairvoyant algorithm grows with α, and there is a sufficiently steep power function such
that no deterministic nonclairvoyant algorithm can be O(1)-competitive.

Lemma 6. Let P (s) be any non-negative, continuous and super-linear power function. Let
k, v ≥ 1 be any real such that P (v) ≥ 1. Then every deterministic nonclairvoyant algorithm
is Ω(min{k, P (v + 1

16(kP (v))3
)/P (v)})-competitive.

Proof. Let ALG be any algorithm and Opt be the offline adversary. We start with an intuitive
roadmap of the proof, which is similar to the lower bound in [13] on the competitive ratio
for nonclairvoyant algorithms on a fixed speed processor. Initially ALG is given n jobs at
time 0. If ALG runs these jobs too fast, unnecessarily wasting too much energy, then this is
the final instance that establishes the lower bound. Otherwise, at some later point in time,
ALG intuitively learns that it has one unit of work left unprocessed on each job, while the
adversary has n units of work left on one job. Further at this time, a stream of unit work
job arises. After this time, the adversary can go at unit speed incurring a cost of Θ(1) per
unit time. If ALG goes at an average speed of 1 or less, then ALG incurs a cost of Θ(n) per
unit time for flow time. If ALG averages faster than speed 1, then by the steepness of the
power function, it uses much more energy than optimal.

We now make this intuition more formal. Let n = ⌈kP (v)⌉. We release n jobs j1, j2, . . . , jn
at time 0. Let T be the first time that some job in ALG is processed for at least n units of
work. Let G(T) be the total flow time plus energy incurred by ALG up to T . We consider
two cases depending on G(T) ≥ kn3 or G(T) < kn3. If G(T) ≥ kn3, Opt reveals that all
jobs are of size n. By running at speed 1, Opt completes all jobs by time n2. The total flow
time plus energy of Opt is at most n3 + n2P (1) ≤ 2n3, so ALG is Ω(k)-competitive.

The rest of the proof assumes G(T) < kn3. Let q1, q2, . . . , qn be the amount of work ALG
has processed for each of the n jobs. Without loss of generality, we assume qn = n. Opt
reveals that the size of each job ji is pi = qi + 1. Thus, at time T , ALG has n remaining
jobs, each with remaining processing time equal to 1. For Opt, it runs at the same speed as
ALG during [0, T] and processes exactly the same job as ALG except on jn. By distributing
the n units of work processed on jn to all the n jobs, Opt can complete j1, . . . , jn−1 by time
T and the remaining size of jn is n. As Opt is simulating ALG on all jobs except jn, the
total flow plus energy incurred by Opt up to T is at most G(T).

During [T, T + n4], Opt releases a stream of small jobs. Specifically, let ϵ < 1
n5v2

be any

real. For i = 1, . . . , n
4

ϵ
, a small job j′i is released at T + (i− 1)ϵ with size ϵv. Opt can run at

speed v and complete each small job before the next one is released. Thus, Opt has at most
two jobs (one small job and jn) remaining at any time during [T, T + n4]. The flow time
plus energy incurred during this period is 2n4 + n4P (v). Opt can complete jn by running at
speed 1 during [T + n4, T + n4 + n], incurring a cost of n + nP (1). Since G(T) < kn3 then
the total flow time plus energy of Opt for the whole job sequence is at most

kn3 + 2n4 + n4P (v) + n+ nP (1) = O(n4P (v)) .

For ALG, we first show that its total work done on the small jobs during [T, T + n4] is
at least n4v− 1. Otherwise, there are at least 1

ϵv
> n5v small jobs not completed by T + n4.

8

The best case is when these jobs are released during [T +n4− 1
v
, T +n4] and their total flow

time incurred is Ω(n5). It means that ALG is Ω(k)-competitive as n = ⌈kP (v)⌉.
We call j1, . . . , jn big jobs. If ALG completes less that 1

2
n + 1 big jobs by time T + n4,

then ALG has at least 1
2
n− 1 big jobs remaining at any time during [T, T + n4]. The total

flow time of ALG is at least Ω(n5), meaning that ALG is Ω(k)-competitive.
If ALG completes at least 1

2
n+ 1 big jobs by time T + n4, the total work done by ALG

during [T, T + n4] is at least n4v − 1 + 1
2
n+ 1. The total energy used by ALG is at least

P (
n4v + 1

2
n

n4
)× n4 = P (v +

1

2n3
)× n4 ≥ P (v +

1

16(kP (v))3
)× n4 .

The last inequality comes from the fact that n = ⌈kP (v)⌉ ≤ 2kP (v). Hence, ALG is at least
Ω(P (v + 1

16(kP (v))3
)/P (v))-competitive.

We can apply Lemma 6 to obtain the lower bound for the power function P (s) = sα.

Theorem 7. For every deterministic nonclairvoyant algorithm, and every constant c, this
algorithm is not c-competitive for every power function of the form P (s) = sα.

Proof. We look at the competitive ratio of an arbitrary nonclairvoyant algorithm as α grows.
We show that the competitive ratio is Ω(α1/3−ϵ), for every 0 < ϵ < 1/3. We apply Lemma 6
by putting k = α1/3−ϵ and v = 1. Then, P (v) = 1 and

P (v +
1

16(kP (v))3
)/P (v) =

(
1 +

1

16(α1/3−ϵ)3

)α

=

(
1 +

1

16α1−3ϵ

)(α1−3ϵ)×α3ϵ

.

Since (1+ 1
16x

)x is increasing with x and α1−3ϵ ≥ 1, the last term above is at least (1+ 1
16
)α

3ϵ
.

Thus, min{k, P (v + 1
16(kP (v))3

)/P (v)} ≥ min{α1/3−ϵ, (17
16
)α

3ϵ} = Ω(α1/3−ϵ).

Theorem 8. There exists some power function P such that every nonclairvoyant determin-
istic algorithm is ω(1)-competitive.

Proof. We want to find a power function P such that for any k ≥ 1, there exists a speed v
such that P (v+ 1

16(kP (v))3
)/P (v) ≥ k. Then by setting k and v correspondingly to Lemma 6,

any algorithm is at least k-competitive for any k ≥ 1. It implies that any algorithm is
ω(1)-competitive. For example, consider the power function

P (s) =
1

(4(2− s))1/4
, 0 ≤ s < 2

Let P ′ be the derivative of P . We can verify that P ′(s) = (P (s))5 for all 0 ≤ s < 2. For
any k, let v ≥ 1 be a speed such that P (v) ≥ 16k4. Then,

P (v +
1

16(kP (v))3
) ≥ P (v) + P ′(v)

1

16(kP (v))3
≥ (P (v))5

1

16(kP (v))3
≥ kP (v)

Thus, P (v + 1
16(kP (v))3

)/P (v) ≥ k and the theorem follows.

9

4 Conclusion

We show that nonclairvoyant policies can beO(1)-competitive in the traditional power model.
However, we showed that in contrast to the case for clairvoyant algorithms, there are power
functions that are sufficiently quickly growing that nonclairvoyant algorithms cannot be
O(1)-competitive.

The standard and the best nonclairvoyant job selection policy for a fixed speed processor
is Shortest Elapsed Time First (SETF). The most obvious candidate speed scaling policy
would be to use SETF for job selection, and to run at power equal to the number of active
jobs (or perhaps a bit faster). The difficulty with analyzing this speed scaling algorithm
is that it is hard to find potential functions that interact well with SETF. It would be
interesting to provide an analysis of this algorithm.

References

[1] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time mini-
mization. ACM Transactions on Algorithms, 3(4), 2007.

[2] Lachlan L.H. Andrew, Adam Wierman, and Ao Tang. Optimal speed scaling under
arbitrary power functions. SIGMETRICS Performance Evaluation Review, 37(2):39–
41, 2009.

[3] Nikhil Bansal, Ho-Leung Chan, Tak-Wah Lam, and Lap-Kei Lee. Scheduling for
bounded speed processors. In International Colloquium on Automata, Languages and
Programming, pages 409 – 420, 2008.

[4] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power
function. In ACM-SIAM Syposium on Discrete Algorithms, pages 693–701, 2009.

[5] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. Speed scaling for weighted flow time. In
ACM-SIAM Symposium on Discrete Algorithms, pages 805–813, 2007.

[6] Luca Becchetti and Stefano Leonardi. Nonclairvoyant scheduling to minimize the total
flow time on single and parallel machines. Journal of the ACM, 51(4):517–539, 2004.

[7] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Kirk Pruhs.
Online weighted flow time and deadline scheduling. Journal of Discrete Algorithms,
4(3):339–352, 2006.

[8] Jeff Edmonds. Scheduling in the dark. Theoretical Computer Science, 235(1):109–141,
2000.

[9] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup
curves. In ACM-SIAM Symposium on Discrete Algorithms, pages 685–692, 2009.

[10] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. Journal
of the ACM, 47(4):617–643, 2000.

10

[11] Bala Kalyanasundaram and Kirk Pruhs. Minimizing flow time nonclairvoyantly. Journal
of the ACM, 50(4):551–567, 2003.

[12] Tak-Wah Lam, Lap-Kei Lee, Isaac K. K. To, and Prudence W. H. Wong. Speed scaling
functions for flow time scheduling based on active job count. In European Symposium
on Algorithms, pages 647–659, 2008.

[13] Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. Theoret-
ical Computer Science, 130(1):17–47, 1994.

[14] Kirk Pruhs. Competitive online scheduling for server systems. SIGMETRICS Perfor-
mance Evaluation Review, 34(4):52–58, 2007.

[15] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard J. Woeginger. Getting the best
response for your erg. ACM Transactions on Algorithms, 4(3), 2008.

11

