Non-clairvoyant Multiprocessor Scheduling of Jobs
with Changing Execution Characteristics

Jeff Edmonds® Donald D. Chinn* Tim Brecht* Xiaotie Deng*
Department of Computer Science
York University
North York, ONT M3J 1P3

Abstract

A multiprocessor system is unlikely to have access to information about the execution char-
acteristics of the jobs it is to schedule. In this work, we are interested in scheduling algorithms
for batch jobs that require no such knowledge (such algorithms are called non-clairvoyant).

Preemptive scheduling (i.e., redistribution of processors) is important to reduce mean re-
sponse time in multiprocessor systems, especially in the widely available network of worksta-
tions. Preemption is a method to adapt to the uncertain and changing nature of jobs and
workloads. Unfortunately, preemption incurs overheads that can adversely affect application
performance if applied frequently. To provide flexibility in modeling these costs, we classify
scheduling algorithms by the number of preemptions they are allowed, ranging from none to an
infinite number.

The Equi-partition algorithm [?], which partitions the processors evenly between the un-
finished jobs, is an example of a simple scheduler that is non-clairvoyant and preempts only
when jobs complete. Motwani et al. [?] show that the mean response time of jobs is within
two of optimal for fully parallelizable jobs. Since parallel programs can have a wide variety of
execution characteristics in practice, we consider a number of classifications of jobs according
to how well they are able to utilize processors. Moreover a job may have both sequential and
parallel phases in its computation. Hence, we allow jobs to have multiple phases, each of which
may have different execution characteristics.

For each of these preemptive models and for each of these job classifications, we provide
asymptotically tight bounds on the mean response time of non-clairvoyant scheduling algorithms.
For example, we consider a large class of jobs, characterized by multiple phases of arbitrary
nondecreasing and sublinear speedup functions. For this class of jobs we show that in the worst
case, the mean job response time obtained with Equi-partition is 2 4+ v/3 ~ 3.74 times that
obtained with an optimal algorithm (which may preempt processors any number of times and
may use knowledge of job characteristics to make its scheduling decisions). Also, for this class of
jobs, we provide a tradeoff between performance and the number of preemptions allowed, where
the number of preemptions is any bounded number.

“{jeff, dci, brecht, deng}@cs.yorku.ca. Edmonds, Brecht, and Deng are supported by NSERC Canada.
Chinn was supported in part by NSERC as a Postdoctoral Fellow at York University. Chinn’s current address:
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052; dchinn@microsoft.com. Deng can also be reached
at: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.



1 Introduction

The study of parallel and distributed computer system performance is generally more difficult than
that of uniprocessor systems. One important property of general purpose computer systems is
the unknown nature of job execution. For uniprocessor systems, preemptive scheduling strategies
such as Round Robin and Equi-partition use no information about job characteristics. The cost of
preemption can be amortized by giving jobs remaining in the system a quantum of processor time
proportional to how long they have been in the system [?]. In multiprocessor systems a similar
preemptive algorithm, dynamic Equi-partition (DEQ), can be used to achieve similar performance
when preemption costs are not prohibitively large [?, ?]. However, overheads incurred due to
preemptive scheduling algorithmms may be much larger in parallel and distributed systems, and
especially in the networks of workstations model. When the overhead is prohibitive, then results
from theoretical studies on non-preemptive execution of parallel jobs may be more relevant [?, 7, 7],
but these results require complete information about jobs in the system.

In this work, we counsider the scheduling problem on a p processor system where n jobs all
arrive at time 0 and no other jobs arrive thereafter. We present a new job model that applies to a
large class of parallel jobs, including those job models discussed in Turek et al. [?]. Our metric of
performance is the mean response time of the jobs. To provide flexibility in modeling these costs, we
classify scheduling algorithms by the number of preemptions they are allowed, ranging from none
to an infinite number. We also explore job classes, categorized by their execution characteristics.
We examine how well a scheduler can perform if it is presented with jobs from a particular class of
jobs. Another way to view these job classes is that if a system administrator knows what kind of
jobs are scheduled on the system, he or she can choose a non-clairvoyant algorithm based on this
information. Our goal is to find practical algorithms that have good analytic properties.

We study the simple Equi-partition algorithm, for which an equal number of processors is
assigned to every job. The approach of Equi-partition was first introduced to parallel scheduling
by Tucker and Gupta as a process control policy [?], and later modified by Zahorjan and McCann
[?] to dynamically adjust processor allocations as job requirements for processors change. This
algorithm is known as dynamic equi-partition (DEQ).

We show that the Equi-partition algorithm (which performs at most n preemptions) achieves
a performance within 2 4+ /3 times the optimum schedule (which may preempt processors any
number of times and may use knowledge of job characteristics to make its scheduling decisions)
when the jobs are from a fairly large class. The number of preemptions in Equi-partition can be
further reduced to log;, n with an extra constant multiplicative factor of k loss in performance.

This result is perhaps most interesting when compared with the existing bound (4 times optimal)
[?] for the dynamic Equi-partition algorithm (DEQ). Our new bound for Equi-partition is tighter
than the previous bound for DEQ, even though Equi-partition uses significantly fewer preemptions
and does not use any job execution characteristics, whereas DEQ does. That is, for the job class for
which the result holds, there is little advantage in preempting an arbitrarily large number of times.
A possible interpretation of this result is that it provides theoretical evidence that algorithms that
do not use information about job execution characteristics to frequently reallocate processors may
not have to pay excessively large performance penalties (in terms of mean job response times).

The network of workstations model is an extreme case of parallel systems, for which frequent
preemptions of executing jobs and reassignments of processors are costly. Our results show that for
a large class of parallel jobs, provably near-optimal mean response time can be achieved with few



reassignments of processors. Of course, much more research is required to make this theoretical
understanding useful in a practical setting. In fact, performance in such systems has been already
studied using simulation, experimental, and queuing theoretical approaches [?, 7,7, 7,7 7 ?]. In
this perspective, our research constitutes a theoretical confirmation of these efforts.

1.1 Modeling Job Execution

In our model, all jobs arrive at time zero. That is, we adopt a batch job processing model. It would
be more general to allow jobs to arrive at arbitrary times. However, this makes the scheduling
problem much more difficult and is left as an open problem.

Before a scheduler can attempt to find the best schedule, a measure of the success of a schedule
needs to be defined. The two measures used most frequently are the final completion time of all
the jobs (makespan) and the mean response time of the jobs (average completion time). Other
measures take into account the level of fairness given to each individual job. We use the mean
response time in this paper since it is most often the measure of interest to users of such systems.

The parallelism profile of a job, defined as the number of processors an application is capable
of using at any point in time during its execution, was introduced by Kumar [?]. More generally,
a speedup function, I', specifies the rate at which work is completed as a function of the number
of processors allocated to it. Since parallel programs can have a wide variety of execution charac-
teristics in practice, we consider a number of different classifications of jobs according to how well
they are able to utilize processors, some of which include: sequential, fully parallelizable, sublinear,
superlinear and nondecreasing. To be more general, we allow jobs to have multiple phases, each of
which is defined by an amount of remaining work and a speedup function.

Most scheduling results depend heavily on the scheduler knowing the characteristics of the jobs
being scheduled. Hence, to various degrees of success, compilers and run-time systems attempt
to give hints to the scheduler. We, however, consider non-clairvoyant schedulers that have no
information about the jobs other than the number of unfinished jobs in the system. Our results
show that even without such compiler or run-time hints and without many preemptions, schedulers
can perform well.

The scheduling algorithms used in some previous work are computationally intensive. Depend-
ing on the scheduling problem, finding the optimal schedule may be NP-complete. (For example,
see Turek et al. [?] for a sample of such results.) Even if the algorithm is polynomial-time, it
may not be practical in a real-time situation. For example, the scheduler may need to find a
perfect matching. With the goal of practicality in mind, we consider only computationally simple
algorithms.

A competitive ratio is a formal way of evaluating algorithms that are limited in some way, (e.g.,
limited information, computational power, or number of preemptions). This measure was first
introduced in the study of a system memory management problem [?, ?, ?]. In our situation, the
competitive ratio considers the best scheduling algorithm among those being considered (i.e., non-
clairvoyant, reasonable computation time, and a limited number of preemptions). Then it considers
the worst case set of jobs for that scheduler being considered (i.e., batch, multiple phases, and some
class of speedup function). How well this scheduler performs on this set of jobs is then compared
with how well the optimal scheduler performs on this same set of jobs. Note that the optimal
scheduler is fully clairvoyant, has unbounded computational power, and is allowed an unbounded
number of preemptions. The ratio of these mean response times is known as the competitive ratio



of the class of schedulers on the class of jobs.

1.2 Related Results

Motwani et al. [?] show that for any uniprocessor system, any non-clairvoyant algorithm has a
competitive ratio of at least 2 — RLH This lower bound extends to multiprocessor systems where
the jobs are fully parallelizable. A job is fully parallelizable if for any p, its execution time when
given p processors is 1/p times its execution time with one processor. Motwani et al. also give
some upper and lower bounds on the tradeoff between preemptions and competitive ratio. These,

however, apply only to the single processor model.

A worst case set of jobs for Equi-partition consists of n jobs each with work W; = p. In Equi-
partition, each job is allocated p/n processors and hence completes at time ¢; = n. The flow is
F(EQUI) = ¥, ¢; = n?. The optimal schedule, on the other hand, executes the job with least
work first. The completion time of job J; is ¢; = i and the flow is F(OPT) = ;i = n(n + 1)/2.

2

Hence, the competitive ratio is at least 2 — %7.

Deng and Koutsoupias [?] discuss how well a job is able to utilize processors, using a DAG
model to represent the data-dependency within the job. Their lower bounds for the DAG model
are not applicable to the phase job model here.

Deng et al. [?] show that DEQ, an algorithm similar to Equi-partition, achieves the same

competitive ratio 2 — —2— for parallel jobs with a single phase, and is 4 — niﬂ—competitive in a job

n+1
model that allows jobs to have multiple phases. In this job model, each phase ¢ of job ¢ is fully
parallelizable for any allocation of processors up to some number P, but achieves a speedup of P}

for any allocation greater than PY. DEQ uses these values P! to make its scheduling decisions.

Turek et al. [?] consider a general job model where jobs consist of a single phase and have
speedup functions that are nondecreasing and sublinear. Without using preemptions they achieve
the impressive competitive ratio of two. However, the algorithm requires complete knowledge of the
jobs” workload and speedup functions and a perhaps excessive computation time of O(n(n? + p)).

In contrast, we show that the simple Equi-partition algorithm achieves a competitive ratio of
2-++/3 where jobs have multiple phases of different nondecreasing sublinear speedup functions. This
scheduler does require up to n preemptions, but is non-clairvoyant and computationally simple. We
also prove a lower bound of e = 2.71 for Equi-partition when the jobs have nondecreasing sublinear
speedup functions, thus separating this class of jobs from fully parallelizable jobs with respect to
Equi-partition.

Prior to our result, Kalyanasundaram and Pruhs [?] consider the model in which jobs can arrive
at arbitrary times. In this model, it is more difficult to find good schedulers. In fact, Motwani et al.
[?] prove that no non-clairvoyant scheduler can achieve a competitive ratio better than Q(n/logn)
even when all the jobs are fully parallelizable. On the other hand, Kalyanasundaram and Pruhs
achieve a competitive ratio of 1 + % by giving their BALANCE scheduler (1 + €)p processors and
only giving the optimal scheduler p processors. In contrast, while their results only work for fully
parallelizable jobs, ours work for a wide range of classes of speedup functions while not giving the
scheduler extra processors.

The remainder of this paper is organized as follows. In Section 2, we formally introduce our
job model and provide a summary of our results. Section 3 provides a summary of our results. In
Section 4, we present bounds for the case when jobs are nondecreasing and sublinear in each phase



and the scheduler is allowed at least n preemptions. In Section 5, we show how we can reduce the
number of preemptions Equi-partition makes to logn, at a cost of a constant factor increase in the
competitive ratio. In Section 6, we consider the case when the scheduler is allowed no preemptions.
In Section 7, we allow speedup functions to be either nondecreasing and sublinear, or superlinear.
In Section 8, we consider a class of jobs whose speedup functions are almost sublinear. In Sections 9
through 11, we consider nondecreasing, gradual, and integer domain speedup functions, respectively.
In Section 12, we consider difficult speedup functions and schedulers that are not allowed to preempt
often. In Section 13, we conclude our paper with a brief description of open problems.

Unless otherwise explicitly stated, all logarithms in this paper are in base 2.

2 Scheduler and Job Classes

In this section we define sets of jobs, schedulers, flow time, and competitive ratios. We then define
a number of classes of schedulers and job sets. Finally, we summarize bounds on the competitive
ratio for these classes.

2.1 Sets of Jobs and Schedulers

We counsider a set of n jobs, all of which arrive at time zero, that are to be executed on p processors.
A set of jobs J is defined to be {Ji, ..., J,,} where job J; has a sequence of g; phases (J!, JZ, ..., J)
and each phase is an ordered pair (W, I'?). The quantity W/ is a nonnegative real number, called
the remaining work, and I'! is a function, called the speedup function, that maps a nonnegative
real number to a nonnegative real number. I'/ () represents the rate at which work is executed for
phase ¢ of job 7 when given 3 processors.

A schedule S allocates the p processors for each point in time to the jobs in the given job set
J in a way such that all the work completes. More formally, a schedule for a given job set J, Sy,
with n jobs on p processors is a function from {1,...,n} x [0,00) to [0, p] such that:

1. For all times ¢, > ;*; Ss(i,t) < p, and

q
2. For all i, there exist 0 = ¢ < ¢} <... < ¢! such that forall 1 < ¢ < g, fccqi,l L(Ss(i,t)) dt =

WH I Y cl,. ..l are the smallest such values that satisfy this condition, then the comple-
tion time of phase q of job i under S is ¢, for all 1 < g < g;.

Condition 1 above ensures that at most p processors are allocated at any given time. Condition
2 ensures that before a phase of a job begins, all of the previous phases of the job must have
completed. Note that we allow a job to be allocated a non-integral number of processors. The
completion time of a job i, denoted c¢;, is the completion time of the last phase of job i (that is,
phase g of job 7).

Throughout this paper, we refer to an algorithm for producing schedules as a scheduler, and
we identify a scheduler with the schedule it produces. The goal of the scheduler is to minimize
the average completion time, % > icj Ci, of all the jobs it must schedule. This goal is equivalent to
minimizing the flow time of J under scheduler S, denoted F(S;), which is ;. ;¢;. We use the



competitive ratio of a scheduler to categorize it. The competitive ratio of a schedule over a class of
schedules is
MingesMaxjes F'(S5)/F(OPTy),

where S is the class of schedulers being considered, J is the class of job sets being considered, and
OPTy is an optimal (unrestricted) scheduler for the job set J. This paper proves relatively tight
upper and lower bounds on this competitive ratio for several classes of schedulers & and jobs sets J .
(See Figure 2.) For the upper bounds, we present a scheduler S € S that performs within the stated
ratio of the optimal for every job set J € J considered. For the lower bounds, we construct for
each possible scheduler, a job set J on which the scheduler performs poorly. We classify a scheduler
by the number of preemptions it makes (which is a measure of its simplicity or practicality), and
we classify a job set by the amount of knowledge the scheduler has about the speedup functions in
the job set (which varies in practice).

For most of this paper, we assume a given job set J. We omit the subscript J from the names
of all schedules, except where the subscripts avoid confusion.

2.2 Classes of Schedulers

All schedulers considered in this paper are computationally simple and most preempt a bounded
number of times. They are non-clairvoyant, meaning that they have no knowledge of the work W
or the speedup functions I'! of the jobs in the set J. Initially, their only knowledge is the number
of jobs n and the number of processors p. They are also able to detect when a job completes. They
are not able to detect when a particular phase of a job completes.

In contrast to the schedulers S € S, the optimal scheduler OPT has unlimited computation
power, is allowed an unbounded number of preemptions, and has complete knowledge (i.e., work
and speedup function) of all the phases of each job.

A preemption occurs when a job that is currently being executed with some nonzero number
of processors is allocated either more processors or fewer processors. In practice, preemptions are
costly. To provide flexibility in modeling this cost, we consider the number of preemptions allowed
to be a parameter m and for every number of preemptions, ranging from none to an infinite number.

A useful time to preempt is when a job completes, so that the processors allocated to it can be
reallocated. Ideally m > n, allowing at least one preemption per job. When m < n preemptions are
allowed, we prove asymptotically tight upper and lower bounds on the competitive ratio. For some
types of jobs, these bounds show that every additional preemption allowed decreases the competitive
ratio. Within this range, we focus on schedulers that allow zero or logyn preemptions. Allowing
more than n but still a bounded number of preemptions does not seem to help. We prove this
by giving asymptotically matching bounds where the upper bound allows n preemptions and the
lower bound allows any bounded number of preemptions (e.g., n, 101" or even Ackermann(n,n)).
Finally, for other types of jobs, it is helpful for the scheduler to preempt continuously. We consider
such schedulers as well.

We now describe these classes of schedulers in more detail. The following is the most restricted
class of schedulers S considered in this paper.

Scheduler Class: Allows Zero Preemptions. Such a scheduler allocates some number of pro-
cessors (e.g., p/n or p) to some of the jobs. Once a job starts executing, the number of
processors allocated to it must not change. However, when a job completes, the processors



that had been allocated to it can be allocated to any job that has not yet been allocated
Processors.

A difficult job set for this class of scheduler is one in which all jobs have a perfect speedup function
['(8) = B, one job has a large amount of remaining work (say W; = p), and the remaining jobs have
essentially no work (say W; = €). The optimal scheduler will first execute the jobs with e work.
Because these jobs complete quickly, the remaining (large) job does not have to wait long before
executing. When allocated all p processors, it completes in one time unit. Hence, its completion
time is ¢; & 1 and the total flow time is F(OPT) =~ 1. The non-clairvoyant scheduler does not
know the work of the jobs. One possible scheduling strategy is to allocate all p processors to each
of the jobs in turn. However, even if the jobs were executed in a random order, one would expect
that half of the small jobs must wait for the large job. This gives a flow time of (n) and hence
a competitive ratio of ©(n). Another possible strategy is to allocate p/n processors to each of the
job. However, then the job with work W; = p will take time n, again giving a flow time and a
competitive ratio of (n).

This paper proposes a scheduler that strikes a balance between these two extremes. We refer
to it as the p/y/n-scheduler. It partitions the processors into \/n groups of p/+/n processors each.
Each group is allocated to a different job. When a job completes, the group is allocated to another
job (one with no processors allocated to it), until all the jobs have been completed. On the above
job set, it has a competitive ratio of \/n.

If on the completion of a job the processors previously allocated to the job could be partitioned
among the remaining jobs, then there is a non-clairvoyant scheduler that performs well for the job
set described above. The following is a less restricted class of schedulers S that allows this.

Scheduler Class: Allows n Preemptions. In the upper bound, n preemptions are allowed. In
the lower bound, any bounded number of preemptions is allowed (e.g., n, 109", or even
Ackermann(n,n)). However, the scheduler is not allowed to preempt continuously.

An example of such a scheduler that is often used in practice is called Equi-partition. We define
EQU1j; to be the schedule that allocates an equal number of processors to each unfinished job in
J. That is, for all ¢ and ¢, if job J; is unfinished at time ¢, then EQUI;(i,t) = p/n:, where n; is the
number of unfinished jobs at time ¢, and EQUI;(i,t) = 0 otherwise. When a job completes, the
processors allocated to it need to be redistributed among the remaining jobs. Hence, the number
of preemptions required can be as much as n, one per job. Note that EQU I requires no knowledge
of the jobs other than how many jobs are unfinished.

A class of schedulers of an intermediate level proposed in this paper is the following.
Scheduler Class: Allows log, n Preemptions.

The parameter m bounds the number of preemptions allowed. For m < n, set m = log, n and
solve for k. Define EQUI' to be the scheduler that is the same as FQUI except it reallocates the
processors when the number of unfinished jobs n; reaches n/ Etforalll <i< log;, n.

Finally, we have the least restricted class of schedulers of this paper.

Scheduler Class: Allows Continuous Preemptions. The scheduler is allowed to change the
processor allocation continuously.



An example of such a scheduler used in practice is Round Robin. The jobs take turns being allocated
all p processors for some small slice of time. We also consider schedulers, hybrids of Equi-partition
and Round Robin, that allocate different numbers of processors to jobs during different slices of
time. Such non-clairvoyant schedulers are useful when the speedup functions of the jobs favors the
job being allocated some number of processors but that number is unknown to the non-clairvoyant
scheduler.

2.3 Classes of Speedup Functions

We now describe the different classes of job sets J € J that we consider. The work of each job phase
is never restricted, and hence we only consider different numbers of phases and different classes
of speedup functions. Each class is a proper subclass of the next. Before presenting the formal
definition of each class, we provide motivation for defining that class. See Figure 1 for examples of
these speedup functions.

b

a: Fully Paral- . : ¢ Constant d: Typical . e: Worst Cz‘xse
. b: Sequential . Nondecreasing-  Nondecreasing-
lelizable Sequential . .
Sublinear Sublinear

f: Typical g: Worst Case h: Typical i: Worst Case

Superlinear Superlinear Nondecreasing Nondecreasing

j: Typical k: Worst Case }: XOJSt Case m: Worst Case

Gradual Gradual N g.r Arbitrary

Domain

Figure 1: Examples of speedup functions

The class of jobs J that is most frequently studied in the literature is that of fully parallelizable
or perfectly efficient jobs.

Job Class: Fully Parallelizable. Every job phase has the speedup function I'(8) = 3. (See
Figure 1:a.)



Another common class of job sets consist of jobs that are either fully parallelizable or are
sequential. One way to model a sequential job is with the speedup function for which I'(3) = § for
B <1, but I'(B) =1 for B > 1. (See Figure 1:b.) That is, additional processors beyond one do not
increase the rate at which work completes. However, for convenience we define a different class of
jobs. A job is said to be constant sequential, if I'(5) = 1 for all 5 > 0. (See Figure 1:c.) Such jobs
complete work at the same rate no matter how many processors are allocated to it. A scheduler
that uses no knowledge of the speedup functions of jobs will allocate some processors to such a
job, whereas an optimal schedule will assign an infinitesimal number of processors to such jobs. To
simplify the discussion, we assume that I'(0) = 0 for all speedup functions. Hence, a schedule must
allocate a nonzero number of processors to make progress on a job.

Job Class: Single Phase, Fully Parallelizable or Constant Sequential. Each job has a
single phase that is either fully parallelizable (I'(3) = , for all ) or constant sequential
(I'(B) =1, for all g > 0).

A speedup function I' is nondecreasing if I'($;) < I'(82) whenever 81 < (5. A job phase
with a nondecreasing speedup function executes no slower if it is allocated more processors. (See
Figure 1:a-i.) This is a reasonable assumption if in practice a job can determine whether it can use
additional processors to speed its execution and can refuse to use some of the processors allocated
to it (in the case that it cannot use additional processors). Nguyen, Vaswani, and Zahorjan [?]
provide experimental evidence that this might be possible.

The rate at which job J; completes work, I'/(8), is a useful concept when considering the
time until that job completes. However, when considering the completion times of all the jobs
simultaneously, a more useful concept is I'!(3)/3, which is the work completed by the job per time
unit per processor. One way of viewing this concept is to consider the processor area consumed by
a job. This is measured in processor-time units. For example, if a job is allocated 3 processors for
t time units, then the processor area consumed is Gt. If § processors are allocated for the duration
of Ji, then W/ /T'7(j3) is its execution time for phase ¢ of job ¢ and (8/I'!(53)) - W/ is the processor
area consumed.

A speedup function T is sublinear if 5,/I'(81) < P2/I'(B2) whenever 5 < (2. A sublinear
speedup function is one in which the processor area consumed per unit of work completed does
not decrease when more processors are allocated to the associated job. (See Figure 1:d.) If
processors can simulate the execution of By processors in a factor of at most 35/, more time, then
the speedup function is sublinear. The following is a way of visualizing the concept of sublinear.
Draw a line from the origin to the point (81,I'(81)) and from there to (52,I'(52)). If the slope of
the second line is less than or equal to the slope of the first line for every choice of 5, < (2, then
[ is sublinear. For example, note that I'(5) = 100 - § is sublinear and I'(3) = 2- § — 1 is not.

The results from Sections 4 and 5 provide a complete tradeoff between the competitive ratio of
a scheduler and the number of preemptions it is allowed, where the number of preemptions is any
bounded number.

Job Class: Nondecreasing Sublinear. Every speedup function is nondecreasing and sublinear.
When proving both upper and lower bounds on the competitive ratio for a class of speedup

functions J, it is useful to consider the worst case function for the class. Suppose all we know
about a speedup function is that OPT achieves a rate of I'(8) by allocating some number of



processors, (3, during the phase. Given this, consider the function that has the minimal value of
['(8') for every ' such that the function is nondecreasing and sublinear. The resulting function is
the worst case nondecreasing sublinear speedup function (Figure 1:e).

In practice, job phases can have superlinear speedup functions (i.e., 81 /I'(81) > f2/I'(52) when-
ever 31 < (32). (See Figure 1:f.) Such speedup functions occur in parallel programs with a strong
time-space tradeoff. For example, suppose we have a job that with one processor takes time 7'/S
when given space S. If the job is fully parallelizable, then with § processors and space S, the
required time is 7'/(Sf). Suppose also that when given 8 processors, the job has S = ¢f space,
where ¢ is the amount of space in one processor. Then the time required would be T'/c/3?. Thus,
the speedup function for the job is I'(3) = 2.

Though in practice the speedup functions might be superlinear, they are not likely be extremely
superlinear. For example, we might want to allow the speedup function I'(3) = 8¢ to be included
for some small 0 < € < 1. Note that this is almost linear. To capture this idea, we define almost
sublinear to mean that Bi7¢/T(B1) < B3+¢/T'(B2) whenever B < B,. Note this is less restrictive
than sublinear.

Job Class: Nondecreasing Almost Sublinear. Every speedup function is nondecreasing and
almost sublinear.

On the other hand, to be less restrictive, we might want to allow any speedup function that
is superlinear. (The worst case function is shown in Figure 1:g.) Hence, we consider the class of
job sets J in which some phases of a job may be nondecreasing and sublinear whereas others may
be superlinear. However, every phase of a job is either strictly one or strictly the other, not a
combination of both.

Job Class: Each Phase either Nondecreasing Sublinear or Superlinear. Every speedup
function either is nondecreasing and sublinear or is superlinear.

In contrast to the above restriction, we might consider speedup functions such that for some
ranges of processor allocation the function is nondecreasing and sublinear, and for other ranges it
is superlinear. (See Figure 1:h for a typical function and 1:i for a worst case function.) To include
such functions, we consider the class J of jobs with nondecreasing speedup functions.

Job Class: Nondecreasing. Every speedup function is nondecreasing.

We argued above that in practice speedup functions are nondecreasing because if a job is
assigned more processors than it can use, then the job can simply refuse to use the extra processors.
However, in some circumstances the programmer of a parallel application does not know whether
more processors will speed up or slow down the computation. The only way of knowing may be
to do an impractical amount of testing (i.e., running every phase of the job with every number of
Processors).

We want to include in our consideration jobs whose rate of computation both increase and
decrease with the number of processors allocated to them. It is unreasonable, however, to consider
completely arbitrary speedup functions. The following is a reasonable minimal requirement that is
general enough to include all but the last two examples in Figure 1. We refer to this class of job
sets as gradual.

10



Job Class: Gradual. Every speedup function is gradual. A speedup function is gradual (with
respect to some constant ¢ > 1) if for every number of processors § and for every value
a € [1..2] either I'(aB/2) > iI'(B) or '(aB) > iI(B). In addition, we require that for a
gradual speedup function, I'(3) = 0 for all 5 < 1.

(See Figure 1:j for a typical example and 1:k for a worst case example.) The motivation for the
definition is as follows. The speedup function may have some crucial values of 4 at which I' changes
suddenly. For example, suppose there is a sudden increase in I' at 3, processors and then a sudden
decrease at 2 processors. For a scheduler to perform well, it must schedule the job with a number of
processors between (1 and (2. A non-clairvoyant scheduler does not know which value to allocate.
The definition of gradual ensures that the interval [31, B2] is not too narrow. In particular, it ensures
that this interval contains a number of processors that is a power of two. We believe that this is a
reasonable assumption in practice. Suppose that a job phase has a good rate I'(3) when allocated
some number of processors S. Then it is reasonable to assume that if the number of processors
allocated to the phase was halved or doubled, then the rate of computation may decrease by a factor
of two, or four, maybe even eight, but it will not decrease by non-constant factor. (The reason for
requiring the optimal schedule to allocate at least one processor is because otherwise it would be
able to take unfair advantage of a speedup function like that in Figure 1:k with § infinitesimally
small.)

An even less restricted requirement is referred to as integer domain. It requires that the interval
[B1, B2] has width at least one.

Job Class: Integer Domain. For every speedup, function I'(|3]) > %F(ﬁ), for all S.

This ensures that the rate of computation with an integer number of processors is within a constant
of that with nearby real numbers of processors. (See Figure 1:1.)

To be complete, the most general class of job sets J is completely unrestricted. (See Figure 1:m
for the worst case function.)

Job Class: Arbitrary. No restrictions at all.

To have have meaningful units of work and rate, we can assume without loss of generality that
one processor completes work at a rate of one work unit per time unit (that is, I'(1) = 1). In
Figure 1, the scale on the rate has been adjusted to emphasize the relevant feature of that class.
Similarly, the actual number of processors p has no effect on any of the results (except for those
with gradual or integer domain speedup functions). There is a one-to-one reduction from scheduling
problems with p processors and with p’ processors. This reduction is done by scaling each speedup
function appropriately. This is possible because we allow the scheduler to allocate non-integral
numbers of processors.

3 Summary of Results

This paper provides matching asymptotic upper and lower bounds on the competitive ratios for all
the classes of schedulers and jobs defined in Section 2. Recall that the competitive ratio is

MingesMax, e F(S;)/F(OPTy),

11



where § is the class of schedulers being considered, J is the class of job sets being considered,
F(S;) = Y iesci is the flow time of job set J under scheduler S, and OPT} is an optimal (clair-
voyant) scheduler for the job set J. Figure 2 summarizes the results of this paper. The rest of this
section highlights some of these results.

J\S Zero logn n Continuous
Fully Parallelizable [4,4], S5 (2,2], S4
Fully Parallelizable or Const. Sequential | ©(y/n), S6
Nondecreasing Sublinear [4.69,7.48], S5 | [2.71,3.74], S4 (2,3.74]
Nondecreasing Almost Sublinear ] (nlge), S8 O(n*), S8 [2,7.48], ST
Nondec. Sublinear or Superlinear ©(n), S12
Nondecreasing ©(logn), S9
Gradual O(logp), S10
Integer Domain 00, S12 O(p), S11
Arbitrary 00, 511

Figure 2: The columns in the table are for the classes of schedulers § that are non-clairvoyant and
allow zero, logn, n, and continuous preemptions, respectively. Each row represents a different class
J of job sets. Motwani et al. [?] provide the lower bound of 2 for the fully parallelizable job class.
For each entry, the lower and the upper bound on the competitive ratio is given, along with the
section of the paper in which it is proved. Entries with the same bounds are grouped together. For
each grouping, only one lower and one upper bound needs to be proved.

For the class of fully parallelizable jobs, Motwani et al. [?] show that Equi-partition has a
competitive ratio of 2 — nL_H A worst case set of jobs for Equi-partition consists of n jobs each
with work W; = p. In Equi-partition, each job is allocated p/n processors and hence completes
at time ¢; = n. The flow is F(EQUI) = ¥, ¢; = n?. The optimal schedule, on the other hand,
executes the job with least work first. The completion time of job J; is ¢; = ¢ and the flow is
F(OPT) = ;i = n(n+ 1)/2. Hence, the competitive ratio is 2 — nil. Motwani et al. [?] also

prove that no non-clairvoyant scheduler has a better competitive ratio.

If we allow some of the job phases to be fully parallelizable (i.e., I'(8) = 3, for all 5) and some
to be constant sequential (i.e., I'(8) = 1, for all 5 > 0), then we would expect the competitive
ratio to be unbounded, because a non-clairvoyant scheduler is unable to distinguish between these
two types of phases and the processors allocated to the constant sequential jobs essentially are
wasted. However, the optimal schedule allocates an infinitesimally small number of processors to the
constant sequential jobs and all p processors to the fully parallelizable jobs (each job in turn, where
a job with smallest work has highest priority). Since EQU I potentially wastes many processors, it is
reasonable to believe that the flow time of EQU I could be unboundedly large compared to the flow
time of OPT. However, this is not the case. We will prove that with nondecreasing and sublinear
speedup functions, F(EQUI;)/F(OPT;) < 2 + /3 ~ 3.74 (Theorem 4.1). It is also interesting
that the lower bound is not 2, but is at least e =~ 2.71 (Theorem 4.3), separating this class from

12



fully parallelizable jobs. On the other hand, the intuition given above suggests that a worst case
set of jobs is one for which each of its jobs has a single phase that is either fully parallelizable or
constant sequential. However, restricted to such jobs we prove that the competitive ratio is still 2
(Theorem 4.2). The set of jobs used in the lower bound of e consists of jobs with two phases each,
the first phase is constant sequential and the second phase is fully parallelizable.

Recall that EQUI', defined in Section 2.2, is defined to be the scheduler that is the same
as FQUI except that it reallocates the processors only when the number of unfinished jobs ng
reaches n/2° for some integer 4, and hence preempts only logn times. Under EQUI', at each
point in time, each job has at least half the number of processors as it has under EQUI. Hence,
the flow time (when the speedup functions are sublinear) increases by at most a factor of two
(Theorem 5.1). When no preemptions are allowed, a surprising result is that the p//n-scheduler
achieves a competitive ratio of \/n for all nondecreasing sublinear speedup functions (Theorems 6.1
and 6.2).

When each job phase is allowed to be either nondecreasing-sublinear or superlinear, the sched-
uler will want to execute the nondecreasing-sublinear phases using an Equi-partition algorithm and
will want to execute the superlinear jobs with an allocation of p processors using a Round Robin
algorithm. By continuously switching between the two approaches, a scheduler is able to achieve
a competitive ratio that is only twice the value 2 + /3 (Theorem 7.1). The competitive ratio of
2 + /3 is achieved when the speedup functions are all nondecreasing and sublinear. On the other
hand, if only n preemptions are allowed, the competitive ratio is ©(n) (Theorems 12.1 and 8.1).
Even if the speedup functions must be almost sublinear, then the competitive ratio still is ©(n®)
(Theorems 8.2 and 8.1).

Now consider job phases whose speedup functions are neither strictly sublinear nor strictly
superlinear, but are only restricted to being nondecreasing. See Figure 1:i for the worst case
function, which is constant except for a sudden increase in the computation rate of the phase at
some number of processors 3. This value is known to the optimal scheduler OPT, but not to the
non-clairvoyant scheduler S. In such a case, one would expect the competitive ratio of S to be
large. If the scheduler S allocates fewer than 3 processors to the job, then the phase makes little
progress while “wasting” the processors allocated. If it allocates many more than 3 processors,
then those beyond [ are wasted. However, we show that a non-clairvoyant scheduler can achieve
a competitive ratio of ©(logn) (Theorems 9.1 and 9.2). For each number of processors that is a
power of two between p/n and p, the scheduler runs each of the jobs with that number of processors
for a small slice of time in a Round Robin fashion. It follows that for each phase for at least a
1/ log n fraction of the time, the job is either allocated within a factor of two of the optimal number
of processors or is allocated more than enough processors while doing Equi-Partition. Similarly, if
speedup functions are allowed whose only restriction is that they are gradual, then the scheduler
can allocate every number of processors that is a power of two between 1 and p for a competitive
ratio of ©(logp) (Theorems 10.1 and 10.2). If the speedup functions can change drastically for
every integer, then the scheduler must allocate every integer number of processors for a ratio of
©(p) (Theorems 11.1 and 11.2). Finally, if the speedup functions can change drastically for every
real number, then the scheduler has no chance of allocating a correct number of processors. Hence,
the competitive ratio is unbounded (Theorem 11.3).

The above upper bounds require the scheduler to preempt continuously. Again let us consider
the situation in which the number of preemptions is restricted. As long as the jobs have nonde-
creasing speedup functions, a scheduler can achieve a competitive ratio of ©(n) (Theorem 12.1).
Theorem 8.1 provides the matching lower bound. On the other hand, if the jobs are allowed to

13



have gradual speedup functions, then every non-clairvoyant scheduler that is not allowed to preempt
continuously can have an arbitrarily large competitive ratio.

The results are proved in the order mentioned in this section. The reader may wish to refer to
Figure 2 as each result is presented.

4 Nondecreasing Sublinear Speedup Functions

This section first proves a lower bound on the flow time for the optimal scheduler OPT'. Then for
the class of jobs with nondecreasing sublinear speedup functions, an upper bound on its flow time
is proved. This provides the upper bound of 2 + v/3 on the competitive ratio. The final subsection
of the section proves a lower bound of e =~ 2.71 for the Equi-partition algorithm.

4.1 A Lower Bound for OPT

We give two lower bounds for the flow time for OPT. These bounds are based on the amount of
processor area, O PT uses in completing jobs and the amount of time O PT" spends in completing jobs.
Formally, the processor area used by OPT to execute job 7, denoted s;, is fOPT(i,t)>0 OPT(i,t) dt.

The time OPT spends to execute job i, denoted h;, is fOPT( 1 dt.

1,t)>0

Lemma 4.1 For any job set J, let w(i) be the permutation of jobs sorted in reverse order by s;.
(If job i has the largest s;, then 7(i) = 1.)

1. F(OPT) > %Z?:1 w(i)si, and

2. F(OPT) > ", .

The two bounds are known in the literature (see Turek et al. [?]) as the squashed area bound and
the height bound, respectively.

Proof of Lemma 4.1: For the squashed area bound, we change OPT into OPT" so that:

1. The total processor area consumed for each job is the same. That is, s; = s/

2. If ¢; and ¢} are the last times processors are assigned to job J; under OPT and under OPT",
respectively, then F(OPT) = Y1 ¢ > Y ¢

OPT" might not be a legal schedule for the set of jobs J. However, from this the bound
FOPT)=>}1¢> ,—1,2?:1 w(i)s; follows.

The change from OPT to OPT" is done in two steps. We first change OPT to OPT" so that at
any given time, the function OPT" allocates all p processors to exactly one job. That is, for all ¢,
OPT'(i,t) = p for some i, and OPT'(j,t) = 0 for all j # i. Assume with out loss of generality that
the jobs are sorted by completion time (that is, ¢; < ¢;41 for all ). Let a;; denote the processor

area consumed by J; during the time interval [¢;, ¢;1], for each 7 € [1..p — 1] and j € [i 4 1,n]. For
each interval [¢;, c;+1] we squash the processor area used by each job within that interval. More

14



formally, define OPT"(i + 1,t) to be p for the first a; ;41 /p time units in the time interval [¢;, ¢i1],
define OPT"(i + 2,t) to be p for the next a;;y2/p time units, and so on until we finally define
OPT'(n,t) to be p for the last a;,/p time units in the interval. (These are the last time units
in the interval because 3 cji1,)@i,j/P = ciy1 — ¢;i.) This new function OPT' might not be a
legal schedule. If the speedup function is not fully parallelizable, then the extra processors will
not be utilized as efficiently and the required work will not get completed. Let ¢} be the last time
processors are assigned to job J; in OPT". This time will still be within the time interval [¢; 1, ¢;].
Hence, >; ¢; > Y, ¢i. Also, the processor area s; for each job has not changed.

We now have a function OPT" such that at any time, exactly one job is allocated all p processors.
This situation is analogous both to that when there is a single processor and to that where the jobs
execute with perfect speedup functions.

It is well-known that the way to minimize the sum of the completion times in this problem is to
use the Least Work First schedule. (See Sevcik [?, page 124] for a complete proof.) The intuition
is that it does not decrease the flow time (average completion time) to have more than one job
partially completed, since all unfinished jobs must wait while a job is being completed. Thus, it is
optimal to complete the jobs one at a time and in order of shortest completion time.

Let OPT" be the schedule where the blocks of time that each job is executing are moved into one
continuous time interval and then the jobs are completed in this order. The intuition is that the flow
time can only improve by this change, i.e., >, ¢ > >, ¢//. The length of time that job J; executes
in OPT" is s;/p, because its processor area has been squashed across all p processors. Hence, m,
which is the permutation of jobs sorted in reverse order by s;, is the reverse order of the jobs being
executed and the completion time for job J; is ¢ = 37, (j)>r si/p and ;¢ = %ij(j)sj.
Therefore OPT" has the three properties stated and the proof for the squashed area bound is
complete.

For the second lower bound, we observe that the completion time ¢; of a job is at least the time
h; that OPT spends executing the job. Hence, F(OPT) =Y ,¢; > > ;h;. B

Lemma 4.1 implies that the flow time of OPT is at least any weighted average of these two quan-
tities. That is,

Corollary 4.2 For any 0 <b<1, F(OPT)>b- 1—1) pam(i)si+ (L —=0)- 2% hy.

For our result in Theorem 4.1, we will fix b = %

4.2 Equi-partition Does Well

We now present the result that Equi-partition has a competitive ratio of at most 2 + /3 ~ 3.74
when all job phases have nondecreasing and sublinear speedup functions.

Theorem 4.1 For any job set J with nondecreasing and sublinear speedup functions, F(EQUI;) <
(2+V3) - F(OPTy).

Proof of Theorem 4.1: Observe that the flow time of EQUI is simply the integral over all ¢ of
n¢, the number of unfinished jobs at time ¢. That is, F(EQUI) = [;° n; dt. We now compare the
flow time of EQUI to OPT using the lower bound of Corollary 4.2. The first step is to prove a

15



lower bound on the total time h; and processor area s; that OPT spends on a job in terms of what
is happening in EQUI. This is done separately for each job J;.

Consider a job J;. We first arbitrarily partition the time FQUI spends on J; (i.e., when
EQUI(i,t) > 0) into infinitesimal blocks [¢t,t + At]. Then we partition the time OPT spends on
Ji, (i.e., when OPT(i,t") > 0) into infinitesimal blocks [/, ¢ + At'] in such a way that there is a
bijection between the blocks [¢,¢ + At] under EQUI and the blocks [t',t' + At'] under OPT. The
correspondence is that the same block of work of the job J; is completed during corresponding
blocks in the two different schedules. This correspondence is a bijection because both schedules
complete all the work for job J;. For each block of time, we bound separately the total time h; and
processor area s; that OPT spends on J; during this time.

More formally, consider one of the time blocks [t,¢ + At] under EQUI. Suppose that at time
t, phases Jil, cee J;F1 are complete and W < W/ work is completed under EQUI. Let t' be the
latest time in which the same work has been completed for J; under OPT. Note that ¢’ depends on
which job J; is being considered. Let At’' be time duration that OPT spends completing the same
work that FQUI completes in this block of time. Even though the same work of J; is completed
during corresponding blocks of time [t, ¢+ At] and [/, ' + At'], the lengths of these time blocks will

be different because the work is being completed at different rates. (See Figure 3.)

EQUI OPT
t t
Time Time
—/—
vl BE=T
=1
t . " .  —
p/ng =5 Bh =10
s
Processors (p = 20) Processors (p = 20)

Figure 3: At time ¢ under EQU I there are four unfinished jobs (i.e., n; = 4), hence with p = 20
processors each job is allocated 5 processors. The work completed in EQU I for each of these jobs
is completed under OPT at different times and with different numbers of processors. The time ¢’
is indicated for job 1.

By definition, EQUI allocates p/n; processors to job J; at time ¢, where n; is the number of
jobs unfinished at this time. Denote by 3! the number OPT(i,t') of processors OPT allocates to
J; at time /. If we allow At and At’ to become infinitesimal, then we can assume without loss of
generality that these schedules assign this fixed number of processors during the duration of the
respective intervals [t,t + At] and [t',t' + At']. Hence we can conclude that during the interval
[t,t 4+ At], the amount of work completed for J; under EQUI is Aw = I'!(p/n;) - At and the time

q
required to complete the same amount of work under OPT is At' = FQE}’?) = Flig%?)t )AL,

Recall that h; denotes the total time that OPT spends on job J;. This is, of course, the sum of
the durations of the blocks [/, ¢ + At]. We use our correspondence between the blocks [t',t' + At']

16



under OPT and the blocks [t,t + At] under EQU I to express h; in terms of the schedule EQUI:

Fg(P/ )

h = / 1 dt' = / dt.
#:0PT(i,t)>0 #:8QUIiH)>0 Li(AY)

The total processor area consumed by OPT on job J; is denoted by s;. This is equal to the
sum of the processor areas consumed by OPT during each of the blocks of time [/, ¢ + At'], which
is OPT(i,t') - dt' = 8¢ - dt'. We again use our correspondence between the blocks to express s; in
terms of the schedule EQUI:

q
s = / OPT(i,t') dt’:/ ptli®/ne) 4,
#:0PT(i,t')>0 tEQUIGL>0 — Lj(6))

Substituting the definitions of s; and h; into the lower bound of Corollary 4.2, we get

n e
rorr) = b : > (i) </t:EQUI(i,t)>O b fg’%?)t) dt)

I (p/ne)
+(1=b)) </t:EQUI(i,t)>0 RGN dt) |

Define S; to be the set of all unfinished jobs in EQUI at time ¢ such that p/n; < 8. Define S|
to be the set of all unfinished jobs in EQUI at time ¢ such that p/n, > (! Intuitively, S; is the
set of jobs that receive fewer processors under FQUI than under OPT for the work executed at
time ¢ under EQU I and so these jobs are at least as work efficient under £EQU I, since all speedup
functions are sublinear, whereas S} is the set of jobs that receive at least as many processors under
EQUI than under OPT and so execute no slower under FQU I, since all speedup functions are
nondecreasing. (In Figure 3, jobs 1 and 2 are in Sy, and jobs 3 and 4 are in S}.) By observing that
Sy U S} is the set of all jobs for which EQUI(i,t) > 0, we can interchange the summations with the
integrals. Then by including only some of these jobs in each sum, we get

F(OPT) > /0 (b S @thr(l_b)_zF?(P/nt)) QL

q(at q(nat
1€St p I (ﬁ) €S, Fi( l)

Suppose J; € S;. Then p/ny < B¢, and so EQUI allocates fewer processors than OPT does.
Since I'! is sublinear, the instantaneous rate at which processor area is consumed per unit of work
for a higher allocation of processors is at least that of a lower allocation of processors. That is,
BLITHBY) > (p/me)/Ti(p/nt), where ¢ is the phase of job i executing at time ¢ under EQUI.
BiLilp/ne) S 1

Rearranging this gives PN 2 e

17



Now suppose J; € S}. Then p/n; > (¢, and so EQUI allocates at least as many processors as
OPT. But since Fg is nondecreasing, the rate at which work of phase g of job ¢ is being completed

q
is at least as large for EQU I as for OPT'. That is, Ly (p/ne) > 1. This gives us

7(a)
F(OPT) > / (b S ri)— + (1-b)- 21) dt.
0 1€St €S

Let |S¢| = a¢-n¢. (And so |S;| = (1 —a¢) - ng.) The value a; is the fraction of unfinished jobs in
EQUT at time t that are in S;. Because 7 is a permutation, there is at most one ¢ € S; such that

m(i) = 1, one i € Sy such that 7(i) = 2, etc. Since there are only a; - ny jobs in Sy, it follows that
> ics, m(i) is at least Y} 0T 0 > (ay - ng)?/2. Thus,

F(OPT) > /Ooo <b %i +(1-b)(1— at)nt> dt

Tt

- /oont <b a—%—i-(l—b)(l—at)) dt.
0 2

We now choose b = % Since we do not know what a; is, we must consider the value of a; that

minimizes the right hand side of the equation. The minimum of —= ( 2/2) + (1 — \/g)(l — ay) over
all 0 < a; < 1is (2 — v/3), which implies that

F(OPT) > /0 - (2-v3) ar.

But F(EQUI) = [y°n; dt, giving F(OPT) > (2—+/3)-F(EQUI) = 1/(2+V/3)- F(EQUI). This
concludes the proof of Theorem 4.1. Il

4.3 A Special Case Where EQUI Does Well

As mentioned in Section 3, it is reasonable to believe that the worst case amongst jobs with
nondecreasing sublinear speedup functions occurs when all jobs are either fully parallelizable or
constant sequential, since EQU I wastes processors on the constant sequential jobs whereas OPT
does not. However, we can show that in such cases, the competitive ratio is at most 2, beating the
lower bound of e for nondecreasing sublinear speedup functions.

Theorem 4.2 If J is such that all jobs have one phase that is either fully parallelizable (I';(8) =
for all B) or constant sequential (I';(B) =1, for all > 0), then F(EQUI;)/F(OPTy) < 2.

Proof of Theorem 4.2: Let A be the set of fully parallelizable jobs, and let B be the set of
sequential jobs. We can apply the squashed area lower bound to jobs in A and the height lower
bound to jobs in B. The flow time of all the jobs together is at least the sum of the flow times of
each subset of jobs when considered separately. This gives

F(OPT) > 1Zw(z‘)si +> hj

icA jeB

18



where 7 sorts the jobs in A in decreasing order according to their processor area consumed s;.

The proof proceeds in a similar manner as in Theorem 4.1. Define A; to be the set of jobs
in A that are unfinished using FQU I at time t. Define By to be the set of jobs in B that are

unfinished using EQU I at time t. For i € Ay, B Lie/ng nit because I'!(3) = 3, and for j € By,

p (B
Yp/n
Fliglzgq;) = 1 because F?(ﬂ) = 1. Let |4¢ = a;-ny. (And so |By| = (1 — a¢) - ng.) As before,
I

Diea, w(E) > 25T > (ayg - nt)?/2. Hence,

F(OPT) > /0 (gﬁ ) T +j§t 7 ) dt

- /Ooo (Zw(z’)nitJer) dt

1€EAL JjEB

%) a2
> / ng | =+ +(1—ay) ) dt.
0 2

This quadratic equation is minimized when a; = 1 (i.e., the job set consists only of fully par-
allelizable jobs), and so (a?/2) + (1 — a;) > 1/2. As before, F(EQUI) = [;°n; dt, and so
FEQUI)/F(OPT)<2. 1

4.4 A Lower Bound of e

We now present a lower bound of e (the base of the natural logarithm) on the competitive ratio for
multi-phase jobs with nondecreasing and sublinear speedup functions. The bound applies for any
non-clairvoyant scheduler that is only allowed to preempt a bounded number of times. Here, the
number of preemptions could be n, 10'°", or even Ackermann(n,n). However, the scheduler is not
allowed to preempt continuously. It is our belief that the same bound of e holds in the continuous
case, but we have been unable to prove it. The lower bound presented is accomplished by presenting
an infinite sequence of job sets of increasing size such that in the limit, the competitive ratio of
EQUI is at least e.

Theorem 4.3 For the set of job sets with nondecreasing and sublinear speedup functions, the
competitive ratio is at least e for any non-clairvoyant scheduler that preempt a bounded number
of times.

Proof of Theorem 4.3: First consider a non-clairvoyant scheduler S that does not preempt at
least until some job completes. Suppose that when given n jobs, S initially allocates p; = ¢; - %
processors to job J;, where the average ¢; is %Zi ¢; = 1. Sort and rename the jobs so that
g < q2 < ... < gy Work will be allocated to the jobs so that all the jobs complete at the same

time. Hence, under S, they have the same processor allocation for their entire computation.

Counsider the following job set J. Each job in J consists of two phases. The first phase of the
jobs is a constant sequential phase. (That is, T'}(8) = 1, for all 8 and i.) The second phase is a
fully parallelizable phase. (That is, ['?(3) = (3, for all 3 and i.)

19



The work of these phases is defined by the sequences t; and s; below, and is illustrated in
Figure 4 for n = 8 and ¢; = 1 for all 4. The sequences are defined recursively as follows:
tl =0 , S1 = 1

ti=tici+si-1 , si=q(1—t/n) (1)

The quantity ¢; is the time required for the first phase of job ¢ when allocated any number of
processors, and s; is the time needed for the second phase of job ¢ when allocated p processors.
From t; and s;, we define the work of phases in J as follows:

W=t , foralll<i<n

)

szp-si , foralll <i<mn

|

T
|

ty Woy=p-s9 52

th W 5

=p. 1

l _v2_ 1=p-s1 oL
‘e proc. ‘ P Processors

Figure 4: Job set J under OPT, where n = 8 and ¢; = 1 for all . Each of the phases on the left
side of the figure are first phases of jobs and require no processors to complete. (The first phases
of jobs 2 and 4 are indicated.) The phases on the right side of the figure are the second phases of
jobs.

In the optimal schedule, only an infinitesimal number of processors are allocated to each job
whose first phases are unfinished, and p processors are allocated to the job whose first phase is
complete but whose second phase is not complete. One can easily prove by induction that job J;
completes in time ¢; + s;. For the basis step, the first phase of J; takes ¢; = 0 time and so the
second phase starts at time 0. This second phase requires s; time when allocated p processors.

The first phase of job J; completes work at a rate of 1 even though only an infinitesimal number
of processors are allocated to it because I‘Zl(e) = 1. Hence, this phase requires ¢; time. The work of
each phase is constructed so that ¢; = t;_1 + s;_1. Hence, the first phase of job ¢ completes exactly
when the second phase of job ¢+ — 1 completes, allowing the second phase of J; to be allocated all
p processors at that point. The second phase then completes in time s;, giving a total completion
time of ¢; + s;. Thus, the flow time of J under the optimal schedule is Y ;" (¢; + ;).

Under the schedule S, all n jobs are unfinished until time n. To see this, suppose to the contrary
that there were some job that completed before time n. Let J; be the first such job. Because the

20



scheduler S does not preempt at least until some job completes, we know that job J; is allocated
pi = qi - £ processors until it completes. Therefore it takes W' + W2 /p; = t; + (p- i) / (¢i - B) =

ti+q (1—t; /n) (%) = n, contradicting our original assumption. Therefore, the flow time for J

T

under S is n?. (See Figure 5.)

o~
[\V)

P Processors

Figure 5: Job set J under S, where n = 8 and ¢; = 1 for all <. Each of the first phases of jobs
complete at the same time as they did under OPT, but the second phases are allocated only p/n
processors.

What remains is to compute the optimal flow time Y7 ;(¢; + s;). Substituting the definition
of s; into the definition of ¢; (from Equation (1)) gives ¢; = (1 —%=%)#;_; 4 ¢;_1. Solving this
recurrence gives

- -y S Il (1-%)

i=1j=1 k=j+1 "

To begin, suppose that the scheduler S decides to allocate the same number of processors to each

n
job. This sets each ¢; to 1 and gives 3" | t; = n? (1 - %) < "—62 Then Y7 1 s; =Y (1—t;/n) <
n. (We ignore this amount from here on because it is lower order than F' = ;" ¢;.) The flow time

for J under the optimal schedule is >°7'; (t; + i) = ”; + O(n). Thus, as n approaches infinity, the
ratio F(EQUI)/F(OPT) approaches e.

It remains to be seen, however, that the best strategy for scheduler S is to give the same number
of processors to each job. The flow time for S is fixed at n?. S, however, has the freedom to change
the values of the ¢; in an attempt to increase the flow time F' for the optimal. This would decrease
the competitive ratio for S. On the other hand, if S assigns different numbers of processors to the
jobs, then the adversary has the power to rename the jobs, reordering the ¢; and hence make F
even smaller. Then only by making all the ¢; the same can S prevent the adversary from making
F smaller by rearranging the jobs.

When changing the values of the g;, there are two different effects, both of which indicate that
it is to the adversary’s advantage to sort the jobs so that ¢; < g2 < ... < g,. The first effect is

21



that in this scheme, the optimal scheduler finishes job J; first. Generally, to minimize its flow time,
the optimal scheduler should complete jobs with the smallest work first. Because we want all jobs
under S to finish at the same time, the job allocated the smallest number of processors under S will
be given the smallest amount of work. Hence, J; should be chosen to be the one that is allocated
the smallest number of processors. The second effect is that job J; has the shortest phase 1 and
the longest phase 2. Phase 1 does not need processors, while Phase 2 does need processors. Hence
J1 will be delayed the most by not having its share of processors.

We will now prove more formally that subject to ¢ < g2 < ... < ¢, and to %Zi q; = 1, the
scheduler S cannot increase F' beyond that given with each ¢; = 1. Let q1,...,qg, be values that
maximize F' subject to these conditions. By way of contradiction, assume that all the g; are not
1. Consider an index ! for which ¢; is strictly less then g;11. We will increase ¢; and decrease ¢
by 0. Note that this maintains the conditions that ¢ < g2 < ... < g, and that %Zl qg =1. We
will prove that this change increases F'. This contradicts the fact that the values are those that
maximize F. The first step is to rewrite F' in a way that emphasizes the ¢; and the ¢, factors.
Here each C, (for 1 <z < 6) in the expression for F' is a positive expression depending neither on
q; nor on q;+1. Then we take the derivative with respect to ¢; and ¢4 1, increasing g; and decreasing
qi+1 by 0.

= C1><0
= Cl><1
+ Oy x1
+ Caxq ?
+ C3x (-1
+ O3 X g1 3> (1)
q+1 —4q
Cux (1- (41—
b ixa(1-2) e o (i)
+ CX(_E)
+ C5X<1—ﬂ> > n
n
Q+1—Q 1)
C — .
ol (1-8) (152, oo (T (3
n n

Later we show that Cy =1, C3 = C4, and Cs = Cy x C5. This gives,
— 1 — 1
10 <Ql+1 Ql> o <_> Lo <Ql+1 m) % O <_>
n n n n
— 1
_ <1 - @M) x (1 - 05—> .
n n

Finally, we complete the proof that F’ > 0 by proving that the above two factors are positive. The
dot notation below is a indicates to what values ¢ and j in the expression for F' need to be fixed.
For example, -4 = [ + 1 refers to the terms in the expression for F' where ¢ =1 + 1.

Fl

-1
dk
Co = izig15= |] (1——> =1

k=11 n

22



n i—1 U
Cs = > o |] (1—ﬁ>

1=0+2 k=042

Cs is equal to

We now show that the first factor is positive, i.e., (1 — C4W) > 0. C4W < (n—l)qz% <
1
7 kel I < 1.

We now show that the second factor is positive, i.e., (1 — 05%) > 1.

-1 -1
Cs = iz a4 |1 (1—%>

j=1  k=j+1
-1
< Y g<n
=1
Now, we show that Cs = Cy x Cs.

Co = Zn:li% II (“%)

=l+2j5=1  ke[j+1..1-1,l42..i—1]

< (30002« (S0 0T (%)

i=l+2 k=142 J=1  k=j+1

= C4><C5

Finally, if we define C] to be all terms involving neither ¢; nor ¢4 1, then it is easy to verify
that the expression for F'is correct.

This completes the proof when the scheduler does not preempt at least until some job completes.
Consider now any non-clairvoyant scheduler S that is only allowed to preempt a bounded number
of times, for example n, 101" or even Ackermann(n,n). Run S an arbitrarily long length of time
without any job completing. Let ¢1,%o,t3,...,t, be the times that S preempts before the first jobs
completes. Note that this is a finite list because S preempts a bounded number of times. We now
have two ways to proceed. The first way is to scale down the set of jobs presented above so that
all the jobs under S complete before time ¢;. In this case, as above, S does not preempt until after
some job completes. The second way is to scale all the jobs up so that time ¢, is inconsequentially
small with respect to the running times of the job phases. Again, S effectively does not preempt
during the execution of the jobs. l

23



5 Reducing the Number of Preemptions to logn

As seen, it is useful to preempt when a job completes, so that the processors allocated to it can
be reallocated. Ideally m > n, allowing at least one preemption per job. We now consider the
situation when m < n preemptions are allowed. We prove asymptotically tight upper and lower
bounds on the competitive ratio. These show that every additional preemption allowed decreases
the competitive ratio. Because it leads to a natural scheduler, we focus on m = log, n.

5.1 Upper Bound: EQUI'

EQUI performs at most n preemptions if presented with n jobs. We now show how to modify the
EQUTI algorithm to one that performs only log, n preemptions. (The parameter m bounds the
number of preemptions allowed. For m < n, set m = log, n and solve for k.) We call this new
algorithm EQUI'. EQUI' behaves in the same way that EQU I does, but instead of allocating p/n;
processors to each of the n; unfinished jobs, EQUI" allocates p/n processors to each unfinished job
until there are n/k unfinished jobs. At this point, EQUI' allocates p/(n/k) processors to each of
the n/k unfinished jobs until there are n/k? unfinished jobs, and so on. That is, when the number
of unfinished jobs reaches n/k" for some integer i, EQUI" allocates p/(n/k') processors to each of
them until there are n/k'*! unfinished jobs. Clearly EQUI" performs at most log, n preemptions.
An important property of EQUI' is that if there are n; unfinished jobs, EQU I allocates at least
p/(k - ny) processors to each of those jobs. We now show that for any job set J, the flow time of
EQUT is within a factor of k of the flow time of EQUI.

Lemma 5.1 For any set of jobs with sublinear speedup functions, F(EQUI%) < k- F(EQUIy).

The intuition behind the proof of the lemma is that with the same number of jobs unfinished,
EQUTI' allocates at least 1/k as many processors to each job as EQUI. Because all speedup
functions are sublinear, work completes under EQU I’ on these jobs at a rate that is at least 1/k
of the rate under FQUI. Hence, the jobs require at most twice the time to complete. The only
complication is that the number of unfinished jobs may differ under the two algorithms. In fact,
the jobs may complete in a different order.

Proof of Lemma 5.1: Let ¢; be the completion time of job J; under EQU I, and sort the jobs
by increasing ¢;. We prove by induction on 7 that every job completes at least as much work after
time kc; under EQUI’ as it does after time ¢; under EQUI. In particular, job J;, which completes
at time ¢; under EQU I, completes at time at most k¢; under EQU I’. From this the lemma follows.

For convenience, we define job Jy to be a job of one phase with zero work, and so ¢y = 0.
Hence, the basis step (i = 0 and ¢y = 0) is trivial. For the induction step, suppose that for every
job, all work completed under EQUI by time ¢; is completed by time kc; under EQUI’. In order
to prove that all work completed under EQUI by time c;1; is completed by time kc;y; under
EQUT', it is sufficient to consider an arbitrary job J; and prove that the work it completes under
EQUI during the time interval [¢;, ¢;+1] could be completed under EQUI" during the time interval
[kci, kcit1]. (The only reason that it would not be completed during this interval is that it has
already completed before time kc;.)

By the definition of ¢; and ¢;41, there are exactly n — ¢ unfinished jobs running under EQU [
during the time interval [c;, ¢;+1], and hence each job is allocated p/(n —1i) processors under EQUI.

24



By the induction hypothesis, under EQUI' jobs Ji,...,J; have completed by time kc;. Hence,
there are at most n — 4 unfinished jobs running under EQU I’ at any point during the time interval
[kc;, kcip1]. Recall that if there are z unfinished jobs, EQUI" allocates at least p/kx processors to
each of those jobs. Thus, each job is allocated at least p/(k(n —1i)) processors under EQU I’ in this
time interval.

Cousider one of the phases J]'-I of job J; that is partially or fully completed under EQU I during
the time interval [c;, ¢;+1]. Since the speedup function F;I- is sublinear, the rate at which work is
completed with at least p/(k(n — 7)) processors is at least 1/k the rate with p/(n — %) processors.
However, the time interval [kc;, kc;y1] is twice as long as the interval [c;, ¢;41]. Hence, at least as
much work on this phase can be completed under EQU I’ in [k¢;, kcit1] as under EQUI during
[¢i, ci+1]. This completes the induction step and the proof of the lemma. Hl

From Theorem 4.1, Theorem 4.2, and Lemma 5.1, we have:

Theorem 5.1 EQUI' performs at most logn preemptions. It has a competitive ratio of at most
k-(2+v/3) when the speedup functions are nondecreasing and sublinear and has a competitive ratio
of at most 2k when all jobs have one phase that is either fully parallelizable or constant sequential.

5.2 Lower Bound for Fully Parallelizable Jobs and log, n Preemptions

The following lower bound proves that for fully parallelizable jobs, the above tradeoff between the
number of preemptions and the competitive ratio is tight.

Theorem 5.2 For any non-clairvoyant scheduler allowed to preempt at most log, n — O(1) times
on n fully parallelizable jobs, its competitive ratio is at least 2k.

Proof of Theorem 5.2: Fix k > 1. Let n = ¢ x k™2, where c is a sufficiently large constant
and m is the number of preemptions allowed. Also let € > 0 be some small value.

We prove by induction on m that the competitive ratio is at least 2k and that the completion
times for the jobs used in the lower bound are at least € under the scheduler in question. (This
last property is useful in the induction step of the proof.)

For m = 0, by definition no preemptions are allowed. Hence, Theorem 6.2 applies, giving a
lower bound of Q(y/n) = Q (\/c X km+2) > 2k, for appropriate constant c¢. From the proof of

Theorem 6.2, the set of jobs given can be such that all jobs complete in time at least 1 > 2™,

Assume by way of induction that the induction hypothesis holds for m > 0. Consider a scheduler
S that preempts at most m+1 times on n = ¢ x k(™+t1)+2 jobs. View each job as having phases. Set
t; = €?™*+2 and assign the first phase of each job the amount of work required so that it completes
at time ¢;. We will allocate enough work to the remaining phases so that this time ¢; = e?"+?
contributes insignificantly to the flow time of both this scheduler and of the optimal scheduler.

Consider the %n jobs that are allocated the most processors at time ¢;. Together they are
allocated at least %p processors. We will refer to these as the small jobs, because they will not
have a second phase and hence will complete under S at time ¢;. After these jobs complete, the
%p processors allocated to them idle until S preempts, rescheduling them to the remaining ¥
jobs.

25



Counsider what S does in the circumstances where the remaining jobs do not complete for an
arbitrarily long time. Based on no information other than the number of processors n and the
completion time ¢, S must do one of the following things: it can preempt immediately (ty = 0); it
can wait for some period of time t5 < 1 before preempting; or it can wait at least until time to = 1
to preempt, assuming none of the remaining jobs have completed by this time.

Suppose ty < €2™t1 That is, the scheduler preempts soon after time ;. After time t; + ¢, the
scheduler must schedule the remaining phases of the remaining n’ = 2 = ¢ x k™+2 jobs with at
most m preemptions. From the induction hypothesis, we know that the competitive ratio of this
part of the computation is at least 2k. Moreover, this competitive ratio is not affected significantly
by the initial time period of duration t; 4 ty < 2¢ - €™, because by the induction hypothesis, we
can find jobs with the required competitive ratio, whose completion times are at least ¢*™

Now suppose ta > €™+ This is large relative to ¢, = €-€?™1. Because no preemptions occur

during the time period [t1, 2], we know that at least %p processors idle during this time period.

The construction of the remaining phases of the remaining n' = 7 is similar to that of Motwani
et al. [?]. These jobs are assigned work so that they each complete at time t2. Motwani et al. show
that this competitive ratio is 2. Here, however, the n’ jobs have at most % processors available
to them. Hence, the competitive ratio is at least 2k. Again, this competitive ratio is not affected

significantly by the initial time period of length ¢; = € - €?™*! because ¢; is small relative to
to > e2mtl

5.3 Lower Bound for Nondecreasing Sublinear Jobs and log, n Preemptions

Using techniques from the proofs of Theorems 4.3 and 5.2, we can show a lower bound on the
competitive ratio when only log, n preemptions are allowed and jobs are allowed to have phases
that are nondecreasing and sublinear. We present the bound only in the case where k = 2 because
of the complexity of the expressions resulting from the recurrence relations. However, the same
proof technique works for any value of k.

Theorem 5.3 For any non-clairvoyant scheduler S allowed to preempt at most loge n—O(1) times
on n nondecreasing and sublinear jobs, its competitive ratio is at least 4.69.

Proof of Theorem 5.3: Let n = ¢ x 22, where c is a sufficiently large constant and m is the
number of preemptions allowed. We prove by induction on m that the competitive ratio is at least
4.69. The proof follows closely to that of Theorem 5.2. The only change is in the case (2 > 62’”“)
where the scheduler S does not preempt during the time period [t1,;] even though £ = kL, = 2p
of the processors idle and n' jobs have yet not completed. Instead of using fully parallelizable
jobs from the Motwani et al. result for the remaining phases of these n’ jobs to obtain a bound of
2 -k =4, we use n’ jobs with a constant sequential phase followed by a fully parallelizable phase,
modeled after those in Theorem 4.3 to obtain the bound of 4.69.

The change to the proof of Theorem 4.3 is minor. In the proof of Theorem 4.3, scheduler S
allocated p; = ¢; - & processors to job J;. We set the completion time W} + W2/p; under S to
n and solved for s;, giving s; = ¢; (1 —¢;/n). In our proof here, because S only has access to
half as many processors, it allocates only p; = éqi . T’L’,, giving s; = éql( —t;i/n'). The proof is
basically the same that the best the scheduler can do is to allocate all the jobs the same number
of processors, i.e., g = 1. Then, the optimal flow, instead of being > jr; ¢; +s; = = 4+ O(n), i

26



(2 X e"3 — 1) (n')% + O(n') = p&5(n')? + O(n'). Because the flow time of S is (n/)?, this gives a

competitive ratio of 4.69, as desired. H

6 No Preemptions and Nondecreasing Sublinear Speedup Func-
tions

We now consider the class of schedulers that are not allowed any preemptions. We present the result
that the p/y/n-scheduler achieves a competitive ratio of y/n for every job set with nondecreasing-
sublinear speedup functions. Recall that the p/y/n-scheduler partitions the processors into /n
groups of p/+/n processors each. Each group is allocated to a different job. When a job completes,
the group is allocated to another job, until all the jobs have been completed.

6.1 Upper Bound

Theorem 6.1 The p/\/n-scheduler S performs no preemptions and has a competitive ratio of
(34 V3) - /n for every job set with nondecreasing sublinear speedup functions.

Proof of Theorem 6.1: Denote by S the schedule resulting from the p/y/n-scheduler. Let ¢
be the last time under S during which all \/n groups of processors are executing a job and let ¢;
be the completion time of job J;. Then F(S) =3 ;¢; = n-c+ 3 ;..,s.(ci —c). Note that no job
starts executing after time c. Otherwise that job would have started at time ¢ with the idle group
of processors. Hence, if ¢; > ¢, then job J; is executing under S with p/\/n processors, during the
entire time period [c, ¢;]. Because the speedup functions are nondecreasing and sublinear, we know
that under the optimal schedule OPT, job J;, does not complete at a rate more than a factor of /n
times faster than that under S, even if given all p processors. Hence, the completion time of job J;
under OPT is at least (c;—c)/y/n. Thus, F'(S) = 3, ¢; = n-c+) ;.. 5.(ci—c) < n-c+y/nxF(OPT).
What remains to be proved is that F(OPT) > Q(y/n - ¢). From the proof of Theorem 4.1, we have
that

ﬂtF p/f) _p. 3 Lile/vn)
F(OPT) > /0 (b l;St p A +(1-0b) eq L3 (8)) )dt,

Here S; U S} is the set of \/n jobs executed at time ¢ under S, S; are those for which p/v/n < 3¢
and S} for which 8! < p/y/n. Let a; be such that |S;| = a; - v/n. (And so |S}| = (1 — at) - v/n.)
Continuing as in Section 4.2 gives

F(OPT) > / (b > 1 (1—0)- 21) dt
0 1E€St 1€S]
> /;GM%JFQ—Z))Q—%)\/E) dt
_ /C\/ﬁ<ba—%+(1—b)(1—at)> dt
0 2

27



v

/OC\/E(z—\/i) dt
= 2-V3)Vn-c

Since F(S) <n-c+ /n-F(OPT) and F(OPT) > (2 —v/3)y/n - ¢, then we have

F(S) < n-c++/n-F(OPT)
FOPT) F(OPT)

1
PEvALRA L

= (3+V3)vn.

IN

6.2 Lower Bound

Theorem 6.2 For every scheduler S that never preempts, there is a set of jobs J that are fully
parallelizable and for which F(S) > /n- F(OPT).

Proof of Theorem 6.2: Consider such a scheduler §. The initial allocation of the processors
may depend on the number of jobs n, but otherwise does not depend on the set of jobs J. Let
J' C J be the jobs to which S initially allocates processors. Suppose that S initially allocates fewer
than p/+/n processors to some job J; € J'. Let the set of jobs J be such that J; has work W; = p
and the remaining jobs have essentially no work. Under S, job J; is allocated this fixed number
of processors for the duration of its computation, hence its completion time is at least y/n and
F(S) > y/n. On the other hand, for this set of jobs .J, the optimal schedule initially completes the
jobs that require essentially no time and then allocates all p processors to job J;. This gives a flow
time of F(OPT) ~ 1 and a competitive ratio of y/n for S.

Now assume that S allocates at least p/+/n processors to every job in J'. Note |J'| < /n. For
job J; € J', let B; be the number of processors that S allocated to the job. The adversary sets the
work W; for the job to be I';(5;) = i, so that the job requires one time unit with this processor
allocation. Let the remaining jobs have essentially no work. Under S, each job J; € J' completes
in time ¢; = 1. The remaining jobs must wait one time unit for these jobs to complete and then
complete in essentially no time. This gives a flow time of F(S) =n x 1. A better, yet sub-optimal
scheduler OPT', first completes all the jobs not in J'. These complete in essentially no time. Then
OPT' completes the jobs in J' with the same processor distribution as under S. This gives a flow
time of F(OPT") =~ |J'| x 1 < y/n for a competitive ratio of at least /n. H

7 Nondecreasing Sublinear or Superlinear Speedup Functions

The previous assumption that all speedup functions are sublinear is not true when the jobs are
both highly parallel and have a strong time-space tradeoff. We now consider the class of such jobs.
To begin we consider schedulers that are able to preempt continuously.

28



Theorem 7.1 There is a non-clairvoyant algorithm HEQUI such that F(HEQUI;) < 2- (2 +
V3)-F(OPTy) for every job set J in which each phase of each job is either nondecreasing sublinear
or superlinear.

Proof of Theorem 7.1: The scheduler HEQUI (short for “Hybrid Equi-partition”) slices time
into units of size A. If there are n; unfinished jobs, then for A/2 time units, H EQU I allocates p/n;
processors to each job. For the remaining A /2 time units, each of the n; jobs in turn is allocated all

p processors for A/2n; time units. Notice that as A approaches zero, the number of preemptions
HEQUI approaches infinity.

HEQUI must perform well on jobs with both nondecreasing-sublinear and superlinear phases
without knowing which phase is currently being executed. It performs well with the nondecreasing-
sublinear phases because half of the time it behaves like EQU I and hence performs on these phases
within a factor of two, as proved in Theorem 4.1. Superlinear phases execute the most efficiently
when given all p processors. HEQU I performs well on these phases because half of the time it
behaves like Round-Robin.

The proof proceeds as in the proof of Theorem 4.1. Recall that in that proof, for each block
of work in each job, the rate ['!(3!) at which OPT executes this work is compared to the rate
I'Y(p/n:) at which EQUI executes the same work. We must now do what is done in Theorem 4.1
except we now compare the rate I'?(3¢) with the rate at which HEQU I executes the same work.
Let v/(p/n.) be the effective rate of HEQUI as A approaches 0. From the definition of HEQUI,

q
Y (p/ne) = 40 p/ne) + 552,
There are two places in which the proof of Theorem 4.1 compares I'?(3¢) and I'Y(p/n;). The
p/ne B plm <o B
Ti(p/ne) = T{(BF) {(p/ne) = = T7(8F)
Note that the statement is a factor of two weaker, resulting in the result here being a factor of two
weaker. Substituting the effective rate of HEQUI gives the required bound to be

first place requires that if p/n; < 3¢ then

. We replace this with 5

p/m <9. B 9
el pfn) + 2~ THAY “

2 ng

q: : p/ne B! t q: : p By
If I} is sublinear, then T (p/mr) < T7(60) because p/n; < B;. If I'] is superlinear, then ) < T7(80)

because p > (! In either case, Equation 2 is satisfied.

The second place in which the proof of Theorem 4.1 compares T'?(3¢) and I'!(p/n;) is that if
B < p/ny, then T'¥(BY) < T'¥(p/ni). The new requirement I'?(8¢) < 2-~¥(p/n;) holds because I'Y is
nondecreasing. Thus T'Y(8Y) < T¥(p/ni) < 2-~I(p/ne).

The remainder of the proof follows that of Theorem 4.1, except that a factor two is introduced
at each step. H

From Theorem 7.1, we know that it is possible to allow the job phases to be superlinear (not
just nondecreasing sublinear), but doing so increases the competitive ratio by a factor of two. The
following lower bound helps to show that this factor of two in inherent for HEQU I, even when
the jobs are not allowed to be arbitrarily super linear, but can only be “almost” sublinear. The
lower bound indicates that a scheduler needs treat the sublinear and almost sublinear job phases
differently.

29



Theorem 7.2 The competitive ratio of HEQUI is at least (2 — o(1)) x e = 5.42 for HEQUI with
nondecreasing and almost sublinear jobs.

Note this lower bound is specific to HEQU I. This is why this result is not mentioned in Table 2.
Adjusting the length of the Equi-partition and the Round Robin parts of HEQUI may lower this
constant slightly, but our conjecture, is that no non-clairvoyant scheduler can do much better.

Proof of Theorem 7.2: The technique we use is the same as that for the proof of Theorem 4.3.
However, the second phases of the jobs are almost sublinear instead of fully parallelizable. That is,
their speedup function is I' (8) = g€,

As before, we define t; = 0, sy = 1, t; = t;_1 + 8;_1, s; = 1 — t;/n, and W} = t;. However,
the work, Wf, of the second phase is changed from p - s; to p'T¢ - s; so that s; is still the time
to complete the phase when allocated p processors. It follows that the flow time of the optimal

algorithm is still >°7"; (£ + s4).

To prove that the competitive ratio here is twice that in Theorem 4.3, we need only show that
the flow time under H EQU I for this set of jobs is effectively twice that under EQU for the jobs
from Theorem 4.3. The key point is that under H EQU I, the first phases of the jobs computes
competitively only during the Equi-partition part of HEQU I, and that the second phases of jobs
do so only during the Round Robin part. Each of these scheduling parts last only for half the time
slices.

The first phase of job 7 makes progress at a rate of 1 whenever it is allocated a nonzero number
of processors. However, under H EQU I, the job is allocated nonzero processors only during %—F % %
fraction of time. Hence, the first phase takes 2 — o(1) - ¢; time to complete.

The second phase makes progress at a rate of I'(p/n) + oI (p) = %(p/n)l‘Ire + plte =

2 (1+1/n) p'*</n. Hence, the work W72 = p'T¢ . s; requires (2 — o(1)) - s; - n time to complete.

HEQUI takes 2t; + 2ns; time to finish job J;, while EQUI takes only t; + ns; time. This
doubles the flow time and the competitive ratio. Il

8 Almost Sublinear Speedup Functions with n or Zero Preemp-
tions

We have seen that non-clairvoyant schedulers can achieve a constant competitive ratio on jobs with
superlinear speedup functions by preempting continuously. We now show that if the scheduler is
only allowed to preempt a bounded number of times then it cannot perform well.

We have seen that EQU I performs competitively when the speedup functions are sublinear and
nondecreasing. In this section, we see that weakening the sublinear requirement only slightly, to
almost sublinear, has a significant effect on the competitive ratio. Recall that in order to include the
speedup function I'(3) = 8¢, we defined almost sublinear to mean that 5] ¢/T'(81) < B3¢ /T(32)
whenever 61 < (.

8.1 Lower Bound

30



Theorem 8.1 Let € > 0. Suppose that S is a scheduler that preempts only a bounded number
of times. Suppose as well that all the jobs have speedup functions T'(8) = B¢ (known by the
scheduler), but the scheduler does not know the work for each job. There is a set of jobs J for which
F(S;)/F(OPT;) > 2 -n ;17 when 0 < e <1 and F(S;)/F(OPT;) > n when e > 1.

Note that for e = 0, the jobs have speedup functions I'(#) =  and the competitive ratio is 2.

Proof of Theorem 8.1: As done in the proof of Theorem 4.3, first consider a non-clairvoyant
scheduler S that does not preempt at least until some job completes. To account for schedulers
that preempt n, 1019", or Ackermann(n,n) times, we use the same technique used there. We scale
down the work so all the jobs complete before the first preemption.

Suppose the scheduler initially allocates 3; processors to job J;, where ), 8; < p. The adversary
sets the work for job J; to be W; = T'(f;) = ﬂil"“ so that its completion time is ¢; = 1. (If 5; = 0,
then W; is set to an infinitesimally small value. Note that this job does not complete until a
preemption occurs.) Given these work levels, the flow time is F'(S) = >, ¢; = n. Note that no
preemption occurs until time 1, because no job completes until this time.

The optimal scheduler allocates all p processors to each job in shortest work first order. Without
loss of generality, assume that 5; > B;+1. Then the flow time is F(OPT) =Y ;i-W;/T'(p) = > ;-
(BT /ptte =3 i (g;) € where ¢; = B;/p and 3, ¢; = 1. When 0 < € < 1, Claim 1 below proves
that this is maximized when all ¢; have the same value. This gives F(OPT) < Y ;4-(1/n)!te < 2t
and a competitive ratio of 2- nfnL_H. Note that for 0 < e < 1, the competitive ratio of Equi-partition
is within a constant factor of this ratio.

When € > 1, Claim 1 proves that 3,7 - (g;)**¢ is maximized when ¢; = 1 and the other ¢; = 0.
This gives F(OPT) < 1 and a competitive ratio of n. ll

Claim 1 Subject to 3 e @ = 1 and to g > i1 > 0 for all i € [l.n — 1], the value of
F= Zie[l,,n]i'(Qi)He s mazimized for 0 < e < 1 when all the g; have the same value and fore > 1
when q1 = 1 and the other ¢; = 0.

Proof of Claim 1: Let qi,...,q, be values that maximize the objective function F' subject to
the constraints. The first step is to prove that this list of values ¢; does not have more than one
distinct non-zero value. By way of contradiction, assume that q and ¢’ are two non-zero values that
the ¢; have (and where ¢ < ¢'). We will find a contradiction by finding a way of changing the ¢;
values in a way that honors the constraints and increases the objective function F'.

Let A={i| ¢ =q} and B = {i | ¢ = ¢'} be the sets of indices with these values and a = |4]|
and b = |B| be the numbers of such values. We will change the values of ¢; for ¢ € A from ¢ to
g+ d/a and for i € B from ¢’ to ¢’ — §/b. Clearly the constraint 3,y ,)¢ = 1 is maintained. In
addition, because ¢ and ¢’ are both non-zero, these ¢; can be decreased without violating ¢; > 0.
Because all the ¢; with these values are being changed, they can be increased or decreased slightly
before violating the order constraint ¢; > ¢;11. Therefore, this change respects the constraints for
both positive and negative sufficiently small . Hence, F' (with this change) is maximized at § = 0
only if the second derivative of F' with respect to ¢ is negative. However, it is strictly positive.

o

5 = (L a(e)(1/a)? i3 (g+0/a) 7+ (L+e)(e)(=1/b) i3 (¢"+6/b) 7 >0.
€A €B

31



Because this list of values ¢; does not have more than one non-zero value, because the sequence
is sorted in decreasing order, and because } ;c; i = 1, it follows that there is some value b such
that g1 = ... = ¢ = 1/band qy41 = ... = ¢, = 0. This gives F' = 37,c(y 40~ (1/b)l+e = &EL1f
0 < € < 1, this is maximized with b = n. If € > 1, then is maximized with b = 1. Il

8.2 Upper Bound

For completion, we give a matching upper bound to the above lower bound.

Theorem 8.2 For any e > 0 and for any job set J with nondecreasing and almost sublinear speedup
functions, F(EQU1;)/F(OPTy) € O(nf).

Proof of Theorem 8.2: The proof is the same as that in Theorem 4.1 except for the relaxation
of the sublinear condition. In the proof of Theorem 4.1, when p/n; > £y, EQUI performs at
q

least as well as in the proof. When p/n; < 37, we had that p/ne_ o

F(p/me) = TT50)
q € q
ngzz/) T/L;t) < (p/;;'zt) . % However, this additional factor is at most n¢ because Bg <pandn; <n.
The rest of the proof is the same as the proof of Theorem 4.1, except with this additional factor

everywhere. Il

Now we have that

The reader may create his or her own definition of “almost” sublinear, which can be substituted
into this proof at the appropriate points.

8.3 Zero Preemptions

Now consider the situation in which the scheduler is allowed zero preemptions. Recall the upper
and lower bounds from Theorems 6.1 and 6.2 that prove that the competitive ratio is ©(y/n). These

can easily be modified to prove that the competitive ratio is © (n%) when the jobs have almost
sublinear nondecreasing speedup functions.

9 Nondecreasing Speedup Functions

In practice the assumption that all speedup functions are either nondecreasing and sublinear or are
superlinear is not always true. we require the speedup functions to be merely nondecreasing (i.e.,
if B < Bo, then I'(81) < I'(B2)). Again we must consider schedulers that are allowed to preempt
continuously.

9.1 Upper Bound

Theorem 9.1 There is a non-clairvoyant algorithm HEQUI' using continuous preemptions such
that F(HEQUI') < O(logn)-F(OPT) for every set of jobs J with nondecreasing speedup functions.

Proof of Theorem 9.1: Suppose that under HEQUI' there are n; unfinished jobs remaining
at time ¢. For every number of processors [ that is a power of two and between p/n; and p, the

32



scheduler HEQUI' executes each of the jobs for a slice of time while allocating it (3 processors.
When allocating [ processors per job, the scheduler is able to execute p/@ jobs in parallel and
hence requires ny(3/p stages to execute each of the n; jobs for a slice of time. Therefore, HEQUI'

executes each of the jobs with 8 processors for a time slice of length m.

We now continue as in Theorem 4.1. Our proof here changes that of Theorem 4.1 in
the same way as was done for Theorem 7.1. The effective rate of HEQUI' is v!(p/n:) =
> B=2klp/nep] log%nt) I'?(3). Recall that there are two statements that need to be proved.

ntﬁ )

: : : ¢ p/nt
The first required statement is that if p/n, < g}, then T (p/ne) < 2logn- Fq q ﬁt) Note the result

is a factor of 2logn weaker because this statement is a factor of 2logn weaker. Suppose that
p/ny < B¢ and let B be the smallest power of two that is at least 8'. HEQUI' executes job J; for a
slice of time With 3 processors because p/n; < 3¢ < 8. Therefore, the effective rate of HEQUI' is
Yi(p/ni) > =t -L'¥(3). Because the speedup functions are nondecreasing and ! < 3, we know

log(nt)ntﬂ )
that TY(8!) < T¥(B). Also, § is within a factor of two of 8f. Thus ~!(p/n:) > 21Ognntﬂtr‘q(ﬁt)

Rearranging this formula gives the first required statement.

The second required statement is that if 3¢ < p/ny, then 'Y (8Y) < 2logn-vi(p/ne). I BE < p/ny,
then let 5 be the smallest power of two that is at least p/n;. Note that when HEQUI' executes
the jobs with 8 processors, it can execute all n; of the jobs in at most two stages. The effective
rate of HEQUI' is vi(p/ny) > 1~ -2 (B) > I'Y(BY). The last inequality again uses the

K —.log(nt) ntﬁ ) !
fact that the speedup function is nondecreasing.

210gn i

The remainder of the proof follows that of Theorem 4.1, except that a factor of 2logn is
introduced at each step. H

9.2 Lower Bound

Theorem 9.2 For any non-clairvoyant scheduler S that is allowed continuous preemptions, there
is a set of jobs J all with nondecreasing speedup functions for which F(Sy)/F(OPTy) € Q(logn).

Proof of Theorem 9.2: For each integer k € [0..logn| define the speedup function I'y to be
Iy(8) =1 for B > 22F and effectively zero for 8 < E2%. (See Figure 1:i.) Every job in J will have
one such speedup function.

Consider the allocation of processors under scheduler S for the first time unit assuming that
during this time period no jobs have completed. Note that this allocation does not depend on the
job set J, because the scheduler gains no information about the job set until some job completes.
For each job J; and each integer j € [0..1og n], define ¢ to be the amount of this first unit of time
during which the number of processors S allocates to job J; is in the interval [%2j, %21 +1). Define

S; = Z;O:go" tg . %21 . This is a lower bound on the processor area consumed by job J;. Note that the
total processor area consumed during this first time unit is at most 1 -p. It follows that ), s; < p.

Consider job J;. To help the adversary choose which speedup function I'y, to give this job, define
si(k) = %2’“ -Z;Ozgk" t!. Later we will see that if 'y were to be chosen, then this would be the processor
area consumed by job J; under a scheduler OPT’ to complete the same work. Set k; such that
k € [0..logn] that minimizes sj(k). (For example, if it were the case that ¢ = s;/(227log n), then
si =205 t]- 227 and for all k, s}(k) = 225 5" s; /(22 logn) < Yisosi/ (2 logn) = 25/ logn.)
Claim 2 proves that in general there ex1sts a k for which s}(k;) < 2s;/logn. Therefore, for this

33



choice of k, the processor area consumed by job J; under OPT" is a factor of (logn) less than
that under S. The adversary sets the speedup function of job J; to be I'y, and its work to be
Wi = si(k;)/(22%) (plus some infinitesimal amount).

Counsider the work completed by job J; under S during this first time unit. For every point in
time in which it is allocated at least %Zki processors, work is executing at a rate of one. Otherwise,
the rate is effectively zero. Hence, the work that is accomplished is Z;CE,Z th = si(ky)/(B2k) =W
(minus the infinitesimal amount). Hence, job J; does not complete until after the end of this first
time unit. This gives a flow time of F(S) > n.

Now consider the following good but possibly suboptimal scheduler OPT’'. To each job .J;,
the scheduler assigns a group of %2’“ processors until J; completes. However, a processor may be
assigned to many jobs. Hence, a job J; is not allocated any processors until all the processors in its
group have completed all the jobs that have a higher priority than J; (according to a given priority
scheme). Define 7(i) (not a permutation) to be the number of jobs that have a lower priority than
job J; and that are assigned processors from job J;’s processor group. These are the jobs that must
wait for job J; to complete before starting their computation. Define h; to be the running time of
job J; once allocated processors. It follows that the flow time is F(OPT') = Y"1 | 7(i)h;.

Because job J; has the speedup function I'y; and because it is allocated %2’“ processors, work
executes at a rate of one. Hence, the running time h; of this job is W; = s(k;)/(22F) <
2s;/(E2Fi logn). Below we prove that m(i) < 2-2%. This gives a flow time of F(OPT') =
S m(i)hy < Py (2 2F) (25 /(B2%i logn)) = 1o§n% > si. Because Y7t s; < p, it follows that
F(OPT') € O(n/logn). Recall that F(S) > n. Hence, the competitive ratio is Q(logn).

What remains is to fill in the details of the schedule OPT" and to prove for each job J; that
7(i) < 2-2% . The jobs with speedup function [iogn (i-e., those requiring all p processors) are given
the highest priority and hence are executed first. Then those with I'jog,)—1. Finally, the jobs with
speedup function I'y (i.e., those requiring only p/n processors) are given the lowest priority and
hence are executed last. For each integer k € [0..log n], partition the processors into n/2¥ groups of
%2’“ processors each. (Without loss of generality, assume that p and n are both powers of two so that
these groups divide evenly.) Define ny to be the number of jobs J; for which the speedup function

is T'x. (Note that Z;OE[? ny =n.) Assign |2:2F| jobs with speedup function I'j, to each group in an
arbitrary priority order. (If %&2’“ is not an integer, then assign the remaining jobs, one per group, in
groups with evenly spaced indices.) Now consider 7 (%), the number of jobs that have a lower priority
than job J; and that are assigned processors from job J;’s processor group. For j < k;, there are
2ki /27 groups of %Zj processors that are subsets of J;’s processor group. There are about %Zj jobs
with speedup function I'; per group for a total of [(2%/27) - (5227)] < 22K 41 such jobs waiting
for J;. Hence, the total number of jobs waiting on J; is m(i) < ngki(%Zki +1) < 2ki 4k < 22K,
|

Claim 2 Let q; be such that 3% _q; = 1. There exists an integer k € [0,r] for which
Yok /2 <2/(r +2).

In our application, r = logn and ¢q; = tg . %Zj /si. The requirement that Z;Ozggb qj = 1 ensures that

si = Y841 . 227 Then we choose k to minimize s/(k) = 22% . 318" ¢ which is a factor of s;
7=0 "1 n ) n j=k "t
bigger than what is in the claim. The claim is only strengthened by allowing the g; to be negative.

Proof of Claim 2: Define s(k) to be 37 qj/27"*. Let the ¢; have values that maximize
Minys(k) subject to 3°7_¢g; = 1. The first thing to prove is that for such values of g;, the s(k)

34



has some fixed value s independent of the choice of k. Suppose by contradiction, there is a value
k' such that s(k') > s(k) for all k # k’. Then find values §; for j € [0..r] subject to the following
7+ 1 linear constraints. The first constraint is that 377 d; = 0. Then for each k # K', include
the constraint that 377, d; /2)=F = §. Tt is not hard to see that these constraints are linearly
independent and hence are satisfiable. Then we change the values of each ¢; by adding on d;. The
first constraint maintains the fact that 3°;¢; = 1. The kth constraint increases s(k) by 4. This
change will increase Mings(k) as long as the change does not decrease s(k') by too much. However,
if § is sufficiently small this will not happen. Then this contradicts the fact that the g; were chosen
to maximize this minimum.

Using the fact that s(k) = s for all k and that > 7_;¢; = 1, we can solve that ¢, = s, ¢; = s/2
forj#r,and s=2/(r+2). R

10 Gradual Speedup Functions

Even the assumption that all the speedup functions are nondecreasing may not be true in practice.
In this section, we only require the speedup functions to be gradual (i.e., there is a constant ¢ > 0
such that for every number of processors # and for every factor a € [1..2] either I'(a3/2) > 1I'(B)

or P(aB) > ;T(8)).

10.1 Upper Bound

Theorem 10.1 There is a non-clairvoyant algorithm HEQUI" such that F(HEQUI]) <
O(logp)- F(OPT) for every job set J, where each phase of each job has a gradual speedup function.

Proof of Theorem 10.1: The scheduler HEQUI" is the same as HEQUI' defined in the
proof of Theorem 9.1 except that it considers every number of processors 8 that is a power of
two between 1 and p, not just those between p/n; and p. Note that when 5 > p/ny, HEQUI"
cannot execute all the jobs at once, but must do them in n;3/p batches. On the other hand, if
B < p/n, then all the jobs can be executed at once. Hence the effective rate of HEQUI" is

vip/ni) = > B=2ke[1,p/ne] 1ngFZ (B) + X5 2k p/ne p] logp ntﬂ ; (ﬁ) As in the proof of Theorem 9.1,
there are two statements to be proved.

No matter how many processors 8¢ OPT uses at time ¢, there exists a factor a € [1..2] such
that both af!/2 and af! are powers of two (unless 5! < 1, but we do not allow the optimal to take
advantage of peaks in the rate for § < 1). Because the speedup functions are gradual, we know
that either I'(a!/2) > 1D(B!) or ['(aB!) > I0(B!). Let B be the value for which this is true. Note
that 3 is within a factor of two of 3.

If p/ng < B¢, then vi(p/ny) > logpntﬂff(ﬂ) > 2clogp ntﬂth(ﬂt) as is required in the first

statement. If 8! < p/ny, then vi(p/ng) > loépff(ﬂ) > clogp I'¥(Bl). The remainder of the proof

follows that of Theorem 4.1, except that a factor 2clog p is introduced at each step. H

10.2 Lower Bound

35



Theorem 10.2 Consider a non-clairvoyant scheduler S that is allowed continuous preemptions.
There is a set of jobs J all with gradual speedup functions for which F(S;)/F(OPTy) > Q(logp).

Proof of Theorem 10.2: Every nondecreasing speedup function is gradual. Hence, the lower
bound of Q(logn) on the competitive ratio from Theorem 9.2 applies here directly. If logn >
%logp, then the proof is complete. Otherwise, because logn + log(p/n) = logp, it follows that
log(p/n) > §logp. Therefore, it suffices to prove a lower bound of (log(p/n)) for the case when
logn < %log P.

For each integer k € [0..log(p/n)], define the speedup function I'y to be I'y(8) = 1 for § €
(2, 2k+1) and effectively zero elsewhere. (See Figure 1:k.) As in the proof of Theorem 9.2, consider
the allocation of processors under scheduler S for the first time unit assuming that during this
time period no jobs have completed. For each job J; and each k € [0..log(p/n)], define ¥ to be
the amount of this first unit of time during which the number of processors allocated to job J;
is in the interval [2%,2¥71). Let k; be the index k € [0,log(p/n)] for which t¥ is the smallest.
Because Y0 log(p/n)] T = 1, we know tf" < 1/log(p/n). The adversary sets the speedup function
of job J; to be I'y; and its work to be W; = tfi (plus an infinitesimal amount). Hence, job
J; does not complete under S until after the end of this first time unit, giving a flow time of
F(S;) > n. The optimal scheduler, on the other hand, allocates 2* processors to job .J;. Note
that all n jobs can be simultaneously allocated its respective number of processors, because no
job is allocated more than % processors. The completion time of job J; is tfi, the flow time is
F(OPT) = Y%, t < n/log(p/n), and the competitive ratio is at least log(p/n). W

11 Integer Domain and Arbitrary

If we are unable to assume that all the speedup functions are gradual, then we should hope that
they are in the integer domain job class (i.e., the speedup functions do not change by more than a
constant factor between integer numbers of processors, I'(|8]) > L1['(3)).

Theorem 11.1 There is a non-clairvoyant algorithm HEQUI" such that F(HEQUI'') < O(p) -
F(OPT) for every job set J where each phase of each job has an integer domain speedup function.

Proof of Theorem 11.1: The proof is the same as that of Theorem 10.1 except the scheduler
HEQUTI" considers every integer number of processors 1 and p, not just powers of two. ll

Theorem 11.2 (Consider a non-clairvoyant scheduler S that is allowed continuous preemptions.
There is a set of jobs J with all integer domain speedup functions for which F(Sy)/F(OPTy) >

Q(p).

Proof of Theorem 11.2: The proof is the same as that of Theorem 10.2 except a speedup
function is considered for each integer k € [1..p]. (See Figure 1:1.) H

Theorem 11.3 Consider a non-clairvoyant scheduler S that allows continuous preemptions. There
s a set of jobs J with arbitrary speedup functions for which the competitive ratio is arbitrarily bad.

36



Proof of Theorem 11.3: For the jobs considered, there need only be one real number of
processors (3 at which substantial progress is made. (See Figure 1:m.) A non-clairvoyant scheduler
has no hope of running the job for a non-infinitesimal amount of time at this exact number of
processors. Il

12 Jobs with Difficult Speedup Functions and Schedulers that
Cannot Preempt Continuously

Many of the previous upper bounds require the scheduler to preempt continuously. Again let
us consider the situation in which the number of preemptions is restricted. As long as the jobs
have nondecreasing speedup functions, a scheduler is able to achieve a competitive ratio of O(n)
(Theorem 12.1). The matching lower bound is from (Theorem 8.1). On the other hand, if the jobs
are allowed to have gradual speedup functions, then every non-clairvoyant scheduler that is not
allowed to preempt continually can have an arbitrarily bad competitive ratio.

Theorem 12.1 There is a simple scheduler that does no preemptions and has a competitive ratio
of at most n for every set of jobs with nondecreasing speedup functions.

Proof of Theorem 12.1: The scheduler S runs the n jobs one at a time with all p processors
starting the next job when the previous job completes. Let h; be the length of time that job J;
is run with all p processors under S. The flow time is F'(S) = ) ,ih;. Let ¢; be the completion
time of job J; under OPT. Because the speedup functions are nondecreasing, the jobs under S
(when executing) always execute at a rate that is at least as fast as that under OPT. Hence,
hi < ¢ and F(S) < >, ic;. Subject to the constraint that F(OPT) = >, ¢;, this is maximized
when ¢, = F(OPT) and ¢; = 0 for ¢ < n. This gives F(S) <n-F(OPT). R

13 Conclusions and Open Problems

In order to better understand the relationship between jobs of a particular class, preemption cost,
and scheduling algorithm performance, we have provided asymptotically tight bounds on the com-
petitive ratio of non-clairvoyant scheduling algorithms for a range of job classes and a range of
allowable number of preemptions. For nondecreasing sublinear jobs, we have provided a complete
tradeoff between the competitive ratio and the number of preemptions allowed, where the number
of preemptions is bounded. In particular, for nondecreasing sublinear jobs, Equi-partition performs
within a constant factor of optimal when it is allowed at least logn preemptions.

Besides tightening the bounds in Figure 2, open problems include:

e How much does clairvoyance help? For each entry in Figure 2, what is the competitive ratio
when the scheduler is given complete knowledge, but limited in the number of preemptions?

e How much does computation help? For each entry in Figure 2, what is the competitive ratio
of the best algorithm to an optimal one that is also limited in the number of preemptions?
That is, how much of an advantage does the optimal algorithm have over the online algorithm
because of its ability to preempt an unlimited number of times (and hence is able to recompute
a new distribution of processors to the jobs)?

37



Our work applies to the case when all jobs arrive at time 0. In many practical scheduling
environments, jobs arrive periodically and their arrival times are generally unpredictable. An open
problem is to provide results in this environment. Kalyanasundaram and Pruhs [?] provide some
results in this area.

38



