
Non-clairvoyant Multiprocessor Scheduling of Jobswith Changing Execution CharacteristicsJe� Edmonds� Donald D. Chinn� Tim Brecht� Xiaotie Deng�Department of Computer ScienceYork UniversityNorth York, ONT M3J 1P3AbstractA multiprocessor system is unlikely to have access to information about the execution char-acteristics of the jobs it is to schedule. In this work, we are interested in scheduling algorithmsfor batch jobs that require no such knowledge (such algorithms are called non-clairvoyant).Preemptive scheduling (i.e., redistribution of processors) is important to reduce mean re-sponse time in multiprocessor systems, especially in the widely available network of worksta-tions. Preemption is a method to adapt to the uncertain and changing nature of jobs andworkloads. Unfortunately, preemption incurs overheads that can adversely a�ect applicationperformance if applied frequently. To provide
exibility in modeling these costs, we classifyscheduling algorithms by the number of preemptions they are allowed, ranging from none to anin�nite number.The Equi-partition algorithm [?], which partitions the processors evenly between the un-�nished jobs, is an example of a simple scheduler that is non-clairvoyant and preempts onlywhen jobs complete. Motwani et al. [?] show that the mean response time of jobs is withintwo of optimal for fully parallelizable jobs. Since parallel programs can have a wide variety ofexecution characteristics in practice, we consider a number of classi�cations of jobs accordingto how well they are able to utilize processors. Moreover a job may have both sequential andparallel phases in its computation. Hence, we allow jobs to have multiple phases, each of whichmay have di�erent execution characteristics.For each of these preemptive models and for each of these job classi�cations, we provideasymptotically tight bounds on the mean response time of non-clairvoyant scheduling algorithms.For example, we consider a large class of jobs, characterized by multiple phases of arbitrarynondecreasing and sublinear speedup functions. For this class of jobs we show that in the worstcase, the mean job response time obtained with Equi-partition is 2 + p3 � 3:74 times thatobtained with an optimal algorithm (which may preempt processors any number of times andmay use knowledge of job characteristics to make its scheduling decisions). Also, for this class ofjobs, we provide a tradeo� between performance and the number of preemptions allowed, wherethe number of preemptions is any bounded number.�fjeff, dci, brecht, dengg@cs.yorku.ca. Edmonds, Brecht, and Deng are supported by NSERC Canada.Chinn was supported in part by NSERC as a Postdoctoral Fellow at York University. Chinn's current address:Microsoft Corporation, One Microsoft Way, Redmond, WA 98052; dchinn@microsoft.com. Deng can also be reachedat: Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
1

1 IntroductionThe study of parallel and distributed computer system performance is generally more di�cult thanthat of uniprocessor systems. One important property of general purpose computer systems isthe unknown nature of job execution. For uniprocessor systems, preemptive scheduling strategiessuch as Round Robin and Equi-partition use no information about job characteristics. The cost ofpreemption can be amortized by giving jobs remaining in the system a quantum of processor timeproportional to how long they have been in the system [?]. In multiprocessor systems a similarpreemptive algorithm, dynamic Equi-partition (DEQ), can be used to achieve similar performancewhen preemption costs are not prohibitively large [?, ?]. However, overheads incurred due topreemptive scheduling algorithms may be much larger in parallel and distributed systems, andespecially in the networks of workstations model. When the overhead is prohibitive, then resultsfrom theoretical studies on non-preemptive execution of parallel jobs may be more relevant [?, ?, ?],but these results require complete information about jobs in the system.In this work, we consider the scheduling problem on a p processor system where n jobs allarrive at time 0 and no other jobs arrive thereafter. We present a new job model that applies to alarge class of parallel jobs, including those job models discussed in Turek et al. [?]. Our metric ofperformance is the mean response time of the jobs. To provide
exibility in modeling these costs, weclassify scheduling algorithms by the number of preemptions they are allowed, ranging from noneto an in�nite number. We also explore job classes, categorized by their execution characteristics.We examine how well a scheduler can perform if it is presented with jobs from a particular class ofjobs. Another way to view these job classes is that if a system administrator knows what kind ofjobs are scheduled on the system, he or she can choose a non-clairvoyant algorithm based on thisinformation. Our goal is to �nd practical algorithms that have good analytic properties.We study the simple Equi-partition algorithm, for which an equal number of processors isassigned to every job. The approach of Equi-partition was �rst introduced to parallel schedulingby Tucker and Gupta as a process control policy [?], and later modi�ed by Zahorjan and McCann[?] to dynamically adjust processor allocations as job requirements for processors change. Thisalgorithm is known as dynamic equi-partition (DEQ).We show that the Equi-partition algorithm (which performs at most n preemptions) achievesa performance within 2 + p3 times the optimum schedule (which may preempt processors anynumber of times and may use knowledge of job characteristics to make its scheduling decisions)when the jobs are from a fairly large class. The number of preemptions in Equi-partition can befurther reduced to logk n with an extra constant multiplicative factor of k loss in performance.This result is perhaps most interesting when compared with the existing bound (4 times optimal)[?] for the dynamic Equi-partition algorithm (DEQ). Our new bound for Equi-partition is tighterthan the previous bound for DEQ, even though Equi-partition uses signi�cantly fewer preemptionsand does not use any job execution characteristics, whereas DEQ does. That is, for the job class forwhich the result holds, there is little advantage in preempting an arbitrarily large number of times.A possible interpretation of this result is that it provides theoretical evidence that algorithms thatdo not use information about job execution characteristics to frequently reallocate processors maynot have to pay excessively large performance penalties (in terms of mean job response times).The network of workstations model is an extreme case of parallel systems, for which frequentpreemptions of executing jobs and reassignments of processors are costly. Our results show that fora large class of parallel jobs, provably near-optimal mean response time can be achieved with few2

reassignments of processors. Of course, much more research is required to make this theoreticalunderstanding useful in a practical setting. In fact, performance in such systems has been alreadystudied using simulation, experimental, and queuing theoretical approaches [?, ?, ?, ?, ?, ?, ?]. Inthis perspective, our research constitutes a theoretical con�rmation of these e�orts.1.1 Modeling Job ExecutionIn our model, all jobs arrive at time zero. That is, we adopt a batch job processing model. It wouldbe more general to allow jobs to arrive at arbitrary times. However, this makes the schedulingproblem much more di�cult and is left as an open problem.Before a scheduler can attempt to �nd the best schedule, a measure of the success of a scheduleneeds to be de�ned. The two measures used most frequently are the �nal completion time of allthe jobs (makespan) and the mean response time of the jobs (average completion time). Othermeasures take into account the level of fairness given to each individual job. We use the meanresponse time in this paper since it is most often the measure of interest to users of such systems.The parallelism pro�le of a job, de�ned as the number of processors an application is capableof using at any point in time during its execution, was introduced by Kumar [?]. More generally,a speedup function, �, speci�es the rate at which work is completed as a function of the numberof processors allocated to it. Since parallel programs can have a wide variety of execution charac-teristics in practice, we consider a number of di�erent classi�cations of jobs according to how wellthey are able to utilize processors, some of which include: sequential, fully parallelizable, sublinear,superlinear and nondecreasing. To be more general, we allow jobs to have multiple phases, each ofwhich is de�ned by an amount of remaining work and a speedup function.Most scheduling results depend heavily on the scheduler knowing the characteristics of the jobsbeing scheduled. Hence, to various degrees of success, compilers and run-time systems attemptto give hints to the scheduler. We, however, consider non-clairvoyant schedulers that have noinformation about the jobs other than the number of un�nished jobs in the system. Our resultsshow that even without such compiler or run-time hints and without many preemptions, schedulerscan perform well.The scheduling algorithms used in some previous work are computationally intensive. Depend-ing on the scheduling problem, �nding the optimal schedule may be NP-complete. (For example,see Turek et al. [?] for a sample of such results.) Even if the algorithm is polynomial-time, itmay not be practical in a real-time situation. For example, the scheduler may need to �nd aperfect matching. With the goal of practicality in mind, we consider only computationally simplealgorithms.A competitive ratio is a formal way of evaluating algorithms that are limited in some way, (e.g.,limited information, computational power, or number of preemptions). This measure was �rstintroduced in the study of a system memory management problem [?, ?, ?]. In our situation, thecompetitive ratio considers the best scheduling algorithm among those being considered (i.e., non-clairvoyant, reasonable computation time, and a limited number of preemptions). Then it considersthe worst case set of jobs for that scheduler being considered (i.e., batch, multiple phases, and someclass of speedup function). How well this scheduler performs on this set of jobs is then comparedwith how well the optimal scheduler performs on this same set of jobs. Note that the optimalscheduler is fully clairvoyant, has unbounded computational power, and is allowed an unboundednumber of preemptions. The ratio of these mean response times is known as the competitive ratio3

of the class of schedulers on the class of jobs.1.2 Related ResultsMotwani et al. [?] show that for any uniprocessor system, any non-clairvoyant algorithm has acompetitive ratio of at least 2 � 2n+1 . This lower bound extends to multiprocessor systems wherethe jobs are fully parallelizable. A job is fully parallelizable if for any p, its execution time whengiven p processors is 1=p times its execution time with one processor. Motwani et al. also givesome upper and lower bounds on the tradeo� between preemptions and competitive ratio. These,however, apply only to the single processor model.A worst case set of jobs for Equi-partition consists of n jobs each with work Wi = p. In Equi-partition, each job is allocated p=n processors and hence completes at time ci = n. The
ow isF (EQUI) = Pi ci = n2. The optimal schedule, on the other hand, executes the job with leastwork �rst. The completion time of job Ji is ci = i and the
ow is F (OPT) = Pi i = n(n + 1)=2.Hence, the competitive ratio is at least 2� 2n+1 .Deng and Koutsoupias [?] discuss how well a job is able to utilize processors, using a DAGmodel to represent the data-dependency within the job. Their lower bounds for the DAG modelare not applicable to the phase job model here.Deng et al. [?] show that DEQ, an algorithm similar to Equi-partition, achieves the samecompetitive ratio 2� 2n+1 for parallel jobs with a single phase, and is 4� 4n+1 -competitive in a jobmodel that allows jobs to have multiple phases. In this job model, each phase q of job i is fullyparallelizable for any allocation of processors up to some number P qi , but achieves a speedup of P qifor any allocation greater than P qi . DEQ uses these values P qi to make its scheduling decisions.Turek et al. [?] consider a general job model where jobs consist of a single phase and havespeedup functions that are nondecreasing and sublinear. Without using preemptions they achievethe impressive competitive ratio of two. However, the algorithm requires complete knowledge of thejobs' workload and speedup functions and a perhaps excessive computation time of O(n(n2 + p)).In contrast, we show that the simple Equi-partition algorithm achieves a competitive ratio of2+p3 where jobs have multiple phases of di�erent nondecreasing sublinear speedup functions. Thisscheduler does require up to n preemptions, but is non-clairvoyant and computationally simple. Wealso prove a lower bound of e � 2:71 for Equi-partition when the jobs have nondecreasing sublinearspeedup functions, thus separating this class of jobs from fully parallelizable jobs with respect toEqui-partition.Prior to our result, Kalyanasundaram and Pruhs [?] consider the model in which jobs can arriveat arbitrary times. In this model, it is more di�cult to �nd good schedulers. In fact, Motwani et al.[?] prove that no non-clairvoyant scheduler can achieve a competitive ratio better than
(n= log n)even when all the jobs are fully parallelizable. On the other hand, Kalyanasundaram and Pruhsachieve a competitive ratio of 1 + 1� by giving their BALANCE scheduler (1 + �)p processors andonly giving the optimal scheduler p processors. In contrast, while their results only work for fullyparallelizable jobs, ours work for a wide range of classes of speedup functions while not giving thescheduler extra processors.The remainder of this paper is organized as follows. In Section 2, we formally introduce ourjob model and provide a summary of our results. Section 3 provides a summary of our results. InSection 4, we present bounds for the case when jobs are nondecreasing and sublinear in each phase4

and the scheduler is allowed at least n preemptions. In Section 5, we show how we can reduce thenumber of preemptions Equi-partition makes to logn, at a cost of a constant factor increase in thecompetitive ratio. In Section 6, we consider the case when the scheduler is allowed no preemptions.In Section 7, we allow speedup functions to be either nondecreasing and sublinear, or superlinear.In Section 8, we consider a class of jobs whose speedup functions are almost sublinear. In Sections 9through 11, we consider nondecreasing, gradual, and integer domain speedup functions, respectively.In Section 12, we consider di�cult speedup functions and schedulers that are not allowed to preemptoften. In Section 13, we conclude our paper with a brief description of open problems.Unless otherwise explicitly stated, all logarithms in this paper are in base 2.2 Scheduler and Job ClassesIn this section we de�ne sets of jobs, schedulers,
ow time, and competitive ratios. We then de�nea number of classes of schedulers and job sets. Finally, we summarize bounds on the competitiveratio for these classes.2.1 Sets of Jobs and SchedulersWe consider a set of n jobs, all of which arrive at time zero, that are to be executed on p processors.A set of jobs J is de�ned to be fJ1; : : : ; Jng where job Ji has a sequence of qi phases
J1i ; J2i ; : : : ; Jqii �and each phase is an ordered pair hW qi ;�qi i. The quantity W qi is a nonnegative real number, calledthe remaining work, and �qi is a function, called the speedup function, that maps a nonnegativereal number to a nonnegative real number. �qi (�) represents the rate at which work is executed forphase q of job i when given � processors.A schedule S allocates the p processors for each point in time to the jobs in the given job setJ in a way such that all the work completes. More formally, a schedule for a given job set J , SJ ,with n jobs on p processors is a function from f1; : : : ; ng � [0;1) to [0; p] such that:1. For all times t, Pni=1 SJ(i; t) � p, and2. For all i, there exist 0 = c0i < c1i < : : : < cqii such that for all 1 � q � qi, R cqicq�1i �qi (SJ(i; t)) dt =W qi . If c0i ; c1i ; : : : ; cqii are the smallest such values that satisfy this condition, then the comple-tion time of phase q of job i under S is cqi , for all 1 � q � qi.Condition 1 above ensures that at most p processors are allocated at any given time. Condition2 ensures that before a phase of a job begins, all of the previous phases of the job must havecompleted. Note that we allow a job to be allocated a non-integral number of processors. Thecompletion time of a job i, denoted ci, is the completion time of the last phase of job i (that is,phase qk of job i).Throughout this paper, we refer to an algorithm for producing schedules as a scheduler, andwe identify a scheduler with the schedule it produces. The goal of the scheduler is to minimizethe average completion time, 1nPi2J ci, of all the jobs it must schedule. This goal is equivalent tominimizing the
ow time of J under scheduler S, denoted F (SJ), which is Pi2J ci. We use the5

competitive ratio of a scheduler to categorize it. The competitive ratio of a schedule over a class ofschedules is MinS2SMaxJ2JF (SJ)=F (OPTJ);where S is the class of schedulers being considered, J is the class of job sets being considered, andOPTJ is an optimal (unrestricted) scheduler for the job set J . This paper proves relatively tightupper and lower bounds on this competitive ratio for several classes of schedulers S and jobs sets J .(See Figure 2.) For the upper bounds, we present a scheduler S 2 S that performs within the statedratio of the optimal for every job set J 2 J considered. For the lower bounds, we construct foreach possible scheduler, a job set J on which the scheduler performs poorly. We classify a schedulerby the number of preemptions it makes (which is a measure of its simplicity or practicality), andwe classify a job set by the amount of knowledge the scheduler has about the speedup functions inthe job set (which varies in practice).For most of this paper, we assume a given job set J . We omit the subscript J from the namesof all schedules, except where the subscripts avoid confusion.2.2 Classes of SchedulersAll schedulers considered in this paper are computationally simple and most preempt a boundednumber of times. They are non-clairvoyant, meaning that they have no knowledge of the work W qior the speedup functions �qi of the jobs in the set J . Initially, their only knowledge is the numberof jobs n and the number of processors p. They are also able to detect when a job completes. Theyare not able to detect when a particular phase of a job completes.In contrast to the schedulers S 2 S, the optimal scheduler OPT has unlimited computationpower, is allowed an unbounded number of preemptions, and has complete knowledge (i.e., workand speedup function) of all the phases of each job.A preemption occurs when a job that is currently being executed with some nonzero numberof processors is allocated either more processors or fewer processors. In practice, preemptions arecostly. To provide
exibility in modeling this cost, we consider the number of preemptions allowedto be a parameter m and for every number of preemptions, ranging from none to an in�nite number.A useful time to preempt is when a job completes, so that the processors allocated to it can bereallocated. Ideallym � n, allowing at least one preemption per job. When m < n preemptions areallowed, we prove asymptotically tight upper and lower bounds on the competitive ratio. For sometypes of jobs, these bounds show that every additional preemption allowed decreases the competitiveratio. Within this range, we focus on schedulers that allow zero or log2 n preemptions. Allowingmore than n but still a bounded number of preemptions does not seem to help. We prove thisby giving asymptotically matching bounds where the upper bound allows n preemptions and thelower bound allows any bounded number of preemptions (e.g., n, 1010n , or even Ackermann(n; n)).Finally, for other types of jobs, it is helpful for the scheduler to preempt continuously. We considersuch schedulers as well.We now describe these classes of schedulers in more detail. The following is the most restrictedclass of schedulers S considered in this paper.Scheduler Class: Allows Zero Preemptions. Such a scheduler allocates some number of pro-cessors (e.g., p=n or p) to some of the jobs. Once a job starts executing, the number ofprocessors allocated to it must not change. However, when a job completes, the processors6

that had been allocated to it can be allocated to any job that has not yet been allocatedprocessors.A di�cult job set for this class of scheduler is one in which all jobs have a perfect speedup function�(�) = �, one job has a large amount of remaining work (say Wi = p), and the remaining jobs haveessentially no work (say Wi = �). The optimal scheduler will �rst execute the jobs with � work.Because these jobs complete quickly, the remaining (large) job does not have to wait long beforeexecuting. When allocated all p processors, it completes in one time unit. Hence, its completiontime is ci � 1 and the total
ow time is F (OPT) � 1. The non-clairvoyant scheduler does notknow the work of the jobs. One possible scheduling strategy is to allocate all p processors to eachof the jobs in turn. However, even if the jobs were executed in a random order, one would expectthat half of the small jobs must wait for the large job. This gives a
ow time of
(n) and hencea competitive ratio of �(n). Another possible strategy is to allocate p=n processors to each of thejob. However, then the job with work Wi = p will take time n, again giving a
ow time and acompetitive ratio of
(n).This paper proposes a scheduler that strikes a balance between these two extremes. We referto it as the p=pn-scheduler. It partitions the processors into pn groups of p=pn processors each.Each group is allocated to a di�erent job. When a job completes, the group is allocated to anotherjob (one with no processors allocated to it), until all the jobs have been completed. On the abovejob set, it has a competitive ratio of pn.If on the completion of a job the processors previously allocated to the job could be partitionedamong the remaining jobs, then there is a non-clairvoyant scheduler that performs well for the jobset described above. The following is a less restricted class of schedulers S that allows this.Scheduler Class: Allows n Preemptions. In the upper bound, n preemptions are allowed. Inthe lower bound, any bounded number of preemptions is allowed (e.g., n, 1010n , or evenAckermann(n; n)). However, the scheduler is not allowed to preempt continuously.An example of such a scheduler that is often used in practice is called Equi-partition. We de�neEQUIJ to be the schedule that allocates an equal number of processors to each un�nished job inJ . That is, for all i and t, if job Ji is un�nished at time t, then EQUIJ(i; t) = p=nt, where nt is thenumber of un�nished jobs at time t, and EQUIJ(i; t) = 0 otherwise. When a job completes, theprocessors allocated to it need to be redistributed among the remaining jobs. Hence, the numberof preemptions required can be as much as n, one per job. Note that EQUI requires no knowledgeof the jobs other than how many jobs are un�nished.A class of schedulers of an intermediate level proposed in this paper is the following.Scheduler Class: Allows logk n Preemptions.The parameter m bounds the number of preemptions allowed. For m < n, set m = logk n andsolve for k. De�ne EQUI 0 to be the scheduler that is the same as EQUI except it reallocates theprocessors when the number of un�nished jobs nt reaches n=ki for all 1 � i � logk n.Finally, we have the least restricted class of schedulers of this paper.Scheduler Class: Allows Continuous Preemptions. The scheduler is allowed to change theprocessor allocation continuously. 7

An example of such a scheduler used in practice is Round Robin. The jobs take turns being allocatedall p processors for some small slice of time. We also consider schedulers, hybrids of Equi-partitionand Round Robin, that allocate di�erent numbers of processors to jobs during di�erent slices oftime. Such non-clairvoyant schedulers are useful when the speedup functions of the jobs favors thejob being allocated some number of processors but that number is unknown to the non-clairvoyantscheduler.2.3 Classes of Speedup FunctionsWe now describe the di�erent classes of job sets J 2 J that we consider. The work of each job phaseis never restricted, and hence we only consider di�erent numbers of phases and di�erent classesof speedup functions. Each class is a proper subclass of the next. Before presenting the formalde�nition of each class, we provide motivation for de�ning that class. See Figure 1 for examples ofthese speedup functions.
a: Fully Paral-lelizable b: Sequential c: ConstantSequential d: TypicalNondecreasing-Sublinear βe: Worst CaseNondecreasing-Sublinear

f: TypicalSuperlinear g: Worst CaseSuperlinear h: TypicalNondecreasing βi: Worst CaseNondecreasing
j: TypicalGradual β β 1.41β/1.41k: Worst CaseGradual β, β+1l: Worst CaseIntegerDomain βm: Worst CaseArbitraryFigure 1: Examples of speedup functionsThe class of jobs J that is most frequently studied in the literature is that of fully parallelizableor perfectly e�cient jobs.Job Class: Fully Parallelizable. Every job phase has the speedup function �(�) = �. (SeeFigure 1:a.) 8

Another common class of job sets consist of jobs that are either fully parallelizable or aresequential. One way to model a sequential job is with the speedup function for which �(�) = � for� < 1, but �(�) = 1 for � � 1. (See Figure 1:b.) That is, additional processors beyond one do notincrease the rate at which work completes. However, for convenience we de�ne a di�erent class ofjobs. A job is said to be constant sequential, if �(�) = 1 for all � > 0. (See Figure 1:c.) Such jobscomplete work at the same rate no matter how many processors are allocated to it. A schedulerthat uses no knowledge of the speedup functions of jobs will allocate some processors to such ajob, whereas an optimal schedule will assign an in�nitesimal number of processors to such jobs. Tosimplify the discussion, we assume that �(0) = 0 for all speedup functions. Hence, a schedule mustallocate a nonzero number of processors to make progress on a job.Job Class: Single Phase, Fully Parallelizable or Constant Sequential. Each job has asingle phase that is either fully parallelizable (�(�) = �, for all �) or constant sequential(�(�) = 1, for all � > 0).A speedup function � is nondecreasing if �(�1) � �(�2) whenever �1 � �2. A job phasewith a nondecreasing speedup function executes no slower if it is allocated more processors. (SeeFigure 1:a-i.) This is a reasonable assumption if in practice a job can determine whether it can useadditional processors to speed its execution and can refuse to use some of the processors allocatedto it (in the case that it cannot use additional processors). Nguyen, Vaswani, and Zahorjan [?]provide experimental evidence that this might be possible.The rate at which job Ji completes work, �qi (�), is a useful concept when considering thetime until that job completes. However, when considering the completion times of all the jobssimultaneously, a more useful concept is �qi (�)=�, which is the work completed by the job per timeunit per processor. One way of viewing this concept is to consider the processor area consumed bya job. This is measured in processor-time units. For example, if a job is allocated � processors fort time units, then the processor area consumed is �t. If � processors are allocated for the durationof Jqi , then W qi =�qi (�) is its execution time for phase q of job i and (�=�qi (�)) �W qi is the processorarea consumed.A speedup function � is sublinear if �1=�(�1) � �2=�(�2) whenever �1 � �2. A sublinearspeedup function is one in which the processor area consumed per unit of work completed doesnot decrease when more processors are allocated to the associated job. (See Figure 1:d.) If �1processors can simulate the execution of �2 processors in a factor of at most �2=�1 more time, thenthe speedup function is sublinear. The following is a way of visualizing the concept of sublinear.Draw a line from the origin to the point (�1;�(�1)) and from there to (�2;�(�2)). If the slope ofthe second line is less than or equal to the slope of the �rst line for every choice of �1 < �2, then� is sublinear. For example, note that �(�) = 100 � � is sublinear and �(�) = 2 � � � 1 is not.The results from Sections 4 and 5 provide a complete tradeo� between the competitive ratio ofa scheduler and the number of preemptions it is allowed, where the number of preemptions is anybounded number.Job Class: Nondecreasing Sublinear. Every speedup function is nondecreasing and sublinear.When proving both upper and lower bounds on the competitive ratio for a class of speedupfunctions J , it is useful to consider the worst case function for the class. Suppose all we knowabout a speedup function is that OPT achieves a rate of �(�) by allocating some number of9

processors, �, during the phase. Given this, consider the function that has the minimal value of�(�0) for every �0 such that the function is nondecreasing and sublinear. The resulting function isthe worst case nondecreasing sublinear speedup function (Figure 1:e).In practice, job phases can have superlinear speedup functions (i.e., �1=�(�1) � �2=�(�2) when-ever �1 � �2). (See Figure 1:f.) Such speedup functions occur in parallel programs with a strongtime-space tradeo�. For example, suppose we have a job that with one processor takes time T=Swhen given space S. If the job is fully parallelizable, then with � processors and space S, therequired time is T=(S�). Suppose also that when given � processors, the job has S = c� space,where c is the amount of space in one processor. Then the time required would be T=c�2. Thus,the speedup function for the job is �(�) = �2.Though in practice the speedup functions might be superlinear, they are not likely be extremelysuperlinear. For example, we might want to allow the speedup function �(�) = �1+� to be includedfor some small 0 < � � 1. Note that this is almost linear. To capture this idea, we de�ne almostsublinear to mean that �1+�1 =�(�1) � �1+�2 =�(�2) whenever �1 � �2. Note this is less restrictivethan sublinear.Job Class: Nondecreasing Almost Sublinear. Every speedup function is nondecreasing andalmost sublinear.On the other hand, to be less restrictive, we might want to allow any speedup function thatis superlinear. (The worst case function is shown in Figure 1:g.) Hence, we consider the class ofjob sets J in which some phases of a job may be nondecreasing and sublinear whereas others maybe superlinear. However, every phase of a job is either strictly one or strictly the other, not acombination of both.Job Class: Each Phase either Nondecreasing Sublinear or Superlinear. Every speedupfunction either is nondecreasing and sublinear or is superlinear.In contrast to the above restriction, we might consider speedup functions such that for someranges of processor allocation the function is nondecreasing and sublinear, and for other ranges itis superlinear. (See Figure 1:h for a typical function and 1:i for a worst case function.) To includesuch functions, we consider the class J of jobs with nondecreasing speedup functions.Job Class: Nondecreasing. Every speedup function is nondecreasing.We argued above that in practice speedup functions are nondecreasing because if a job isassigned more processors than it can use, then the job can simply refuse to use the extra processors.However, in some circumstances the programmer of a parallel application does not know whethermore processors will speed up or slow down the computation. The only way of knowing may beto do an impractical amount of testing (i.e., running every phase of the job with every number ofprocessors).We want to include in our consideration jobs whose rate of computation both increase anddecrease with the number of processors allocated to them. It is unreasonable, however, to considercompletely arbitrary speedup functions. The following is a reasonable minimal requirement that isgeneral enough to include all but the last two examples in Figure 1. We refer to this class of jobsets as gradual. 10

Job Class: Gradual. Every speedup function is gradual. A speedup function is gradual (withrespect to some constant c > 1) if for every number of processors � and for every valuea 2 [1::2] either �(a�=2) � 1c�(�) or �(a�) � 1c�(�). In addition, we require that for agradual speedup function, �(�) = 0 for all � < 1.(See Figure 1:j for a typical example and 1:k for a worst case example.) The motivation for thede�nition is as follows. The speedup function may have some crucial values of � at which � changessuddenly. For example, suppose there is a sudden increase in � at �1 processors and then a suddendecrease at �2 processors. For a scheduler to perform well, it must schedule the job with a number ofprocessors between �1 and �2. A non-clairvoyant scheduler does not know which value to allocate.The de�nition of gradual ensures that the interval [�1; �2] is not too narrow. In particular, it ensuresthat this interval contains a number of processors that is a power of two. We believe that this is areasonable assumption in practice. Suppose that a job phase has a good rate �(�) when allocatedsome number of processors �. Then it is reasonable to assume that if the number of processorsallocated to the phase was halved or doubled, then the rate of computation may decrease by a factorof two, or four, maybe even eight, but it will not decrease by non-constant factor. (The reason forrequiring the optimal schedule to allocate at least one processor is because otherwise it would beable to take unfair advantage of a speedup function like that in Figure 1:k with � in�nitesimallysmall.)An even less restricted requirement is referred to as integer domain. It requires that the interval[�1; �2] has width at least one.Job Class: Integer Domain. For every speedup, function �(b�c) � 1c�(�), for all �.This ensures that the rate of computation with an integer number of processors is within a constantof that with nearby real numbers of processors. (See Figure 1:l.)To be complete, the most general class of job sets J is completely unrestricted. (See Figure 1:mfor the worst case function.)Job Class: Arbitrary. No restrictions at all.To have have meaningful units of work and rate, we can assume without loss of generality thatone processor completes work at a rate of one work unit per time unit (that is, �(1) = 1). InFigure 1, the scale on the rate has been adjusted to emphasize the relevant feature of that class.Similarly, the actual number of processors p has no e�ect on any of the results (except for thosewith gradual or integer domain speedup functions). There is a one-to-one reduction from schedulingproblems with p processors and with p0 processors. This reduction is done by scaling each speedupfunction appropriately. This is possible because we allow the scheduler to allocate non-integralnumbers of processors.3 Summary of ResultsThis paper provides matching asymptotic upper and lower bounds on the competitive ratios for allthe classes of schedulers and jobs de�ned in Section 2. Recall that the competitive ratio isMinS2SMaxJ2JF (SJ)=F (OPTJ);11

where S is the class of schedulers being considered, J is the class of job sets being considered,F (SJ) = Pi2J ci is the
ow time of job set J under scheduler S, and OPTJ is an optimal (clair-voyant) scheduler for the job set J . Figure 2 summarizes the results of this paper. The rest of thissection highlights some of these results.J n S Zero log n n ContinuousFully Parallelizable [4; 4], S5 [2; 2], S4Fully Parallelizable or Const. Sequential �(pn), S6Nondecreasing Sublinear [4:69; 7:48], S5 [2:71; 3:74], S4 [2; 3:74]Nondecreasing Almost Sublinear � �n 1+�2 �, S8 �(n�), S8 [2; 7:48], S7Nondec. Sublinear or Superlinear �(n), S12Nondecreasing �(log n), S9Gradual �(log p), S10Integer Domain 1, S12 �(p), S11Arbitrary 1, S11Figure 2: The columns in the table are for the classes of schedulers S that are non-clairvoyant andallow zero, logn, n, and continuous preemptions, respectively. Each row represents a di�erent classJ of job sets. Motwani et al. [?] provide the lower bound of 2 for the fully parallelizable job class.For each entry, the lower and the upper bound on the competitive ratio is given, along with thesection of the paper in which it is proved. Entries with the same bounds are grouped together. Foreach grouping, only one lower and one upper bound needs to be proved.For the class of fully parallelizable jobs, Motwani et al. [?] show that Equi-partition has acompetitive ratio of 2 � 2n+1 . A worst case set of jobs for Equi-partition consists of n jobs eachwith work Wi = p. In Equi-partition, each job is allocated p=n processors and hence completesat time ci = n. The
ow is F (EQUI) = Pi ci = n2. The optimal schedule, on the other hand,executes the job with least work �rst. The completion time of job Ji is ci = i and the
ow isF (OPT) = Pi i = n(n + 1)=2. Hence, the competitive ratio is 2 � 2n+1 . Motwani et al. [?] alsoprove that no non-clairvoyant scheduler has a better competitive ratio.If we allow some of the job phases to be fully parallelizable (i.e., �(�) = �, for all �) and someto be constant sequential (i.e., �(�) = 1, for all � > 0), then we would expect the competitiveratio to be unbounded, because a non-clairvoyant scheduler is unable to distinguish between thesetwo types of phases and the processors allocated to the constant sequential jobs essentially arewasted. However, the optimal schedule allocates an in�nitesimally small number of processors to theconstant sequential jobs and all p processors to the fully parallelizable jobs (each job in turn, wherea job with smallest work has highest priority). Since EQUI potentially wastes many processors, it isreasonable to believe that the
ow time of EQUI could be unboundedly large compared to the
owtime of OPT . However, this is not the case. We will prove that with nondecreasing and sublinearspeedup functions, F (EQUIJ)=F (OPTJ) � 2 + p3 � 3:74 (Theorem 4.1). It is also interestingthat the lower bound is not 2, but is at least e � 2:71 (Theorem 4.3), separating this class from12

fully parallelizable jobs. On the other hand, the intuition given above suggests that a worst caseset of jobs is one for which each of its jobs has a single phase that is either fully parallelizable orconstant sequential. However, restricted to such jobs we prove that the competitive ratio is still 2(Theorem 4.2). The set of jobs used in the lower bound of e consists of jobs with two phases each,the �rst phase is constant sequential and the second phase is fully parallelizable.Recall that EQUI 0, de�ned in Section 2.2, is de�ned to be the scheduler that is the sameas EQUI except that it reallocates the processors only when the number of un�nished jobs ntreaches n=2i for some integer i, and hence preempts only log n times. Under EQUI 0, at eachpoint in time, each job has at least half the number of processors as it has under EQUI. Hence,the
ow time (when the speedup functions are sublinear) increases by at most a factor of two(Theorem 5.1). When no preemptions are allowed, a surprising result is that the p=pn-schedulerachieves a competitive ratio of pn for all nondecreasing sublinear speedup functions (Theorems 6.1and 6.2).When each job phase is allowed to be either nondecreasing-sublinear or superlinear, the sched-uler will want to execute the nondecreasing-sublinear phases using an Equi-partition algorithm andwill want to execute the superlinear jobs with an allocation of p processors using a Round Robinalgorithm. By continuously switching between the two approaches, a scheduler is able to achievea competitive ratio that is only twice the value 2 + p3 (Theorem 7.1). The competitive ratio of2 +p3 is achieved when the speedup functions are all nondecreasing and sublinear. On the otherhand, if only n preemptions are allowed, the competitive ratio is �(n) (Theorems 12.1 and 8.1).Even if the speedup functions must be almost sublinear, then the competitive ratio still is �(n�)(Theorems 8.2 and 8.1).Now consider job phases whose speedup functions are neither strictly sublinear nor strictlysuperlinear, but are only restricted to being nondecreasing. See Figure 1:i for the worst casefunction, which is constant except for a sudden increase in the computation rate of the phase atsome number of processors �. This value is known to the optimal scheduler OPT , but not to thenon-clairvoyant scheduler S. In such a case, one would expect the competitive ratio of S to belarge. If the scheduler S allocates fewer than � processors to the job, then the phase makes littleprogress while \wasting" the processors allocated. If it allocates many more than � processors,then those beyond � are wasted. However, we show that a non-clairvoyant scheduler can achievea competitive ratio of �(log n) (Theorems 9.1 and 9.2). For each number of processors that is apower of two between p=n and p, the scheduler runs each of the jobs with that number of processorsfor a small slice of time in a Round Robin fashion. It follows that for each phase for at least a1= log n fraction of the time, the job is either allocated within a factor of two of the optimal numberof processors or is allocated more than enough processors while doing Equi-Partition. Similarly, ifspeedup functions are allowed whose only restriction is that they are gradual, then the schedulercan allocate every number of processors that is a power of two between 1 and p for a competitiveratio of �(log p) (Theorems 10.1 and 10.2). If the speedup functions can change drastically forevery integer, then the scheduler must allocate every integer number of processors for a ratio of�(p) (Theorems 11.1 and 11.2). Finally, if the speedup functions can change drastically for everyreal number, then the scheduler has no chance of allocating a correct number of processors. Hence,the competitive ratio is unbounded (Theorem 11.3).The above upper bounds require the scheduler to preempt continuously. Again let us considerthe situation in which the number of preemptions is restricted. As long as the jobs have nonde-creasing speedup functions, a scheduler can achieve a competitive ratio of �(n) (Theorem 12.1).Theorem 8.1 provides the matching lower bound. On the other hand, if the jobs are allowed to13

have gradual speedup functions, then every non-clairvoyant scheduler that is not allowed to preemptcontinuously can have an arbitrarily large competitive ratio.The results are proved in the order mentioned in this section. The reader may wish to refer toFigure 2 as each result is presented.4 Nondecreasing Sublinear Speedup FunctionsThis section �rst proves a lower bound on the
ow time for the optimal scheduler OPT . Then forthe class of jobs with nondecreasing sublinear speedup functions, an upper bound on its
ow timeis proved. This provides the upper bound of 2 +p3 on the competitive ratio. The �nal subsectionof the section proves a lower bound of e � 2:71 for the Equi-partition algorithm.4.1 A Lower Bound for OPTWe give two lower bounds for the
ow time for OPT . These bounds are based on the amount ofprocessor area OPT uses in completing jobs and the amount of timeOPT spends in completing jobs.Formally, the processor area used by OPT to execute job i, denoted si, is ROPT (i;t)>0OPT (i; t) dt.The time OPT spends to execute job i, denoted hi, is ROPT (i;t)>0 1 dt.Lemma 4.1 For any job set J , let �(i) be the permutation of jobs sorted in reverse order by si.(If job i has the largest si, then �(i) = 1.)1. F (OPT) � 1pPni=1 �(i)si, and2. F (OPT) �Pni=1 hi.The two bounds are known in the literature (see Turek et al. [?]) as the squashed area bound andthe height bound, respectively.Proof of Lemma 4.1: For the squashed area bound, we change OPT into OPT 00 so that:1. The total processor area consumed for each job is the same. That is, si = s00i .2. If ci and c00i are the last times processors are assigned to job Ji under OPT and under OPT 00,respectively, then F (OPT) =Pni=1 ci �Pni=1 c00i .3. Pni=1 c00i = 1pPni=1 �(i)si.OPT 00 might not be a legal schedule for the set of jobs J . However, from this the boundF (OPT) =Pni=1 ci � 1pPni=1 �(i)si follows.The change from OPT to OPT 00 is done in two steps. We �rst change OPT to OPT 0 so that atany given time, the function OPT 0 allocates all p processors to exactly one job. That is, for all t,OPT 0(i; t) = p for some i, and OPT 0(j; t) = 0 for all j 6= i. Assume with out loss of generality thatthe jobs are sorted by completion time (that is, ci � ci+1 for all i). Let ai;j denote the processorarea consumed by Jj during the time interval [ci; ci+1], for each i 2 [1::p� 1] and j 2 [i+1; n]. Foreach interval [ci; ci+1] we squash the processor area used by each job within that interval. More14

formally, de�ne OPT 0(i+1; t) to be p for the �rst ai;i+1=p time units in the time interval [ci; ci+1],de�ne OPT 0(i + 2; t) to be p for the next ai;i+2=p time units, and so on until we �nally de�neOPT 0(n; t) to be p for the last ai;n=p time units in the interval. (These are the last time unitsin the interval because Pj2[i+1;n] ai;j=p = ci+1 � ci.) This new function OPT 0 might not be alegal schedule. If the speedup function is not fully parallelizable, then the extra processors willnot be utilized as e�ciently and the required work will not get completed. Let c0i be the last timeprocessors are assigned to job Ji in OPT 0. This time will still be within the time interval [ci�1; ci].Hence, Pi ci �Pi c0i. Also, the processor area si for each job has not changed.We now have a functionOPT 0 such that at any time, exactly one job is allocated all p processors.This situation is analogous both to that when there is a single processor and to that where the jobsexecute with perfect speedup functions.It is well-known that the way to minimize the sum of the completion times in this problem is touse the Least Work First schedule. (See Sevcik [?, page 124] for a complete proof.) The intuitionis that it does not decrease the
ow time (average completion time) to have more than one jobpartially completed, since all un�nished jobs must wait while a job is being completed. Thus, it isoptimal to complete the jobs one at a time and in order of shortest completion time.Let OPT 00 be the schedule where the blocks of time that each job is executing are moved into onecontinuous time interval and then the jobs are completed in this order. The intuition is that the
owtime can only improve by this change, i.e., Pi c0i �Pi c00i . The length of time that job Ji executesin OPT 00 is si=p, because its processor area has been squashed across all p processors. Hence, �,which is the permutation of jobs sorted in reverse order by si, is the reverse order of the jobs beingexecuted and the completion time for job Ji is c00i = Pj:�(j)��(i) si=p and Pi c00i = 1pPj �(j)sj .Therefore OPT 00 has the three properties stated and the proof for the squashed area bound iscomplete.For the second lower bound, we observe that the completion time ci of a job is at least the timehi that OPT spends executing the job. Hence, F (OPT) =Pi ci �Pi hi.Lemma 4.1 implies that the
ow time of OPT is at least any weighted average of these two quan-tities. That is,Corollary 4.2 For any 0 � b � 1, F (OPT) � b � 1pPni=1 �(i)si + (1� b) �Pni=1 hi.For our result in Theorem 4.1, we will �x b = 1p3 .4.2 Equi-partition Does WellWe now present the result that Equi-partition has a competitive ratio of at most 2 + p3 � 3:74when all job phases have nondecreasing and sublinear speedup functions.Theorem 4.1 For any job set J with nondecreasing and sublinear speedup functions, F (EQUIJ) �(2 +p3) � F (OPTJ).Proof of Theorem 4.1: Observe that the
ow time of EQUI is simply the integral over all t ofnt, the number of un�nished jobs at time t. That is, F (EQUI) = R10 nt dt. We now compare the
ow time of EQUI to OPT using the lower bound of Corollary 4.2. The �rst step is to prove a15

lower bound on the total time hi and processor area si that OPT spends on a job in terms of whatis happening in EQUI. This is done separately for each job Ji.Consider a job Ji. We �rst arbitrarily partition the time EQUI spends on Ji (i.e., whenEQUI(i; t) > 0) into in�nitesimal blocks [t; t +�t]. Then we partition the time OPT spends onJi, (i.e., when OPT (i; t0) > 0) into in�nitesimal blocks [t0; t0 + �t0] in such a way that there is abijection between the blocks [t; t+�t] under EQUI and the blocks [t0; t0 +�t0] under OPT . Thecorrespondence is that the same block of work of the job Ji is completed during correspondingblocks in the two di�erent schedules. This correspondence is a bijection because both schedulescomplete all the work for job Ji. For each block of time, we bound separately the total time hi andprocessor area si that OPT spends on Ji during this time.More formally, consider one of the time blocks [t; t +�t] under EQUI. Suppose that at timet, phases J1i ; : : : ; Jq�1i are complete and W < W qi work is completed under EQUI. Let t0 be thelatest time in which the same work has been completed for Ji under OPT . Note that t0 depends onwhich job Ji is being considered. Let �t0 be time duration that OPT spends completing the samework that EQUI completes in this block of time. Even though the same work of Ji is completedduring corresponding blocks of time [t; t+�t] and [t0; t0+�t0], the lengths of these time blocks willbe di�erent because the work is being completed at di�erent rates. (See Figure 3.)EQUI6Time
Processors (p = 20)

OPT6Time
Processors (p = 20)t t0p=nt = 5 �t1 = 4

�t2 = 3
�t3 = 7�t4 = 10

Figure 3: At time t under EQUI there are four un�nished jobs (i.e., nt = 4), hence with p = 20processors each job is allocated 5 processors. The work completed in EQUI for each of these jobsis completed under OPT at di�erent times and with di�erent numbers of processors. The time t0is indicated for job 1.By de�nition, EQUI allocates p=nt processors to job Ji at time t, where nt is the number ofjobs un�nished at this time. Denote by �ti the number OPT (i; t0) of processors OPT allocates toJi at time t0. If we allow �t and �t0 to become in�nitesimal, then we can assume without loss ofgenerality that these schedules assign this �xed number of processors during the duration of therespective intervals [t; t + �t] and [t0; t0 + �t0]. Hence we can conclude that during the interval[t; t+�t], the amount of work completed for Ji under EQUI is �w = �qi (p=nt) ��t and the timerequired to complete the same amount of work under OPT is �t0 = �w�qi (�ti) = �qi (p=nt)�qi (�ti) �t.Recall that hi denotes the total time that OPT spends on job Ji. This is, of course, the sum ofthe durations of the blocks [t0; t0+�t0]. We use our correspondence between the blocks [t0; t0+�t0]16

under OPT and the blocks [t; t+�t] under EQUI to express hi in terms of the schedule EQUI:hi = Zt0:OPT (i;t0)>0 1 dt0 = Zt:EQUI(i;t)>0 �qi (p=nt)�qi (�ti) dt:The total processor area consumed by OPT on job Ji is denoted by si. This is equal to thesum of the processor areas consumed by OPT during each of the blocks of time [t0; t0+�t0], whichis OPT (i; t0) � dt0 = �ti � dt0. We again use our correspondence between the blocks to express si interms of the schedule EQUI:si = Zt0:OPT (i;t0)>0OPT (i; t0) dt0 = Zt:EQUI(i;t)>0 �ti �qi (p=nt)�qi (�ti) dt:Substituting the de�nitions of si and hi into the lower bound of Corollary 4.2, we getF (OPT) � b � 1p nXi=1 �(i) Zt:EQUI(i;t)>0 �ti �qi (p=nt)�qi (�ti) dt!+ (1� b) nXi=1 Zt:EQUI(i;t)>0 �qi (p=nt)�qi (�ti) dt! :De�ne St to be the set of all un�nished jobs in EQUI at time t such that p=nt < �ti . De�ne S0tto be the set of all un�nished jobs in EQUI at time t such that p=nt � �ti . Intuitively, St is theset of jobs that receive fewer processors under EQUI than under OPT for the work executed attime t under EQUI and so these jobs are at least as work e�cient under EQUI, since all speedupfunctions are sublinear, whereas S0t is the set of jobs that receive at least as many processors underEQUI than under OPT and so execute no slower under EQUI, since all speedup functions arenondecreasing. (In Figure 3, jobs 1 and 2 are in St, and jobs 3 and 4 are in S0t.) By observing thatSt [S0t is the set of all jobs for which EQUI(i; t) > 0, we can interchange the summations with theintegrals. Then by including only some of these jobs in each sum, we getF (OPT) � Z 10 0@b � Xi2St �(i)�tip �qi (p=nt)�qi (�ti) + (1� b) � Xi2S0t �qi (p=nt)�qi (�ti) 1A dt:Suppose Ji 2 St. Then p=nt < �ti , and so EQUI allocates fewer processors than OPT does.Since �qi is sublinear, the instantaneous rate at which processor area is consumed per unit of workfor a higher allocation of processors is at least that of a lower allocation of processors. That is,�ti=�qi (�ti) � (p=nt)=�qi (p=nt), where q is the phase of job i executing at time t under EQUI.Rearranging this gives �tip �qi (p=nt)�qi (�qi) � 1nt . 17

Now suppose Ji 2 S0t. Then p=nt � �ti , and so EQUI allocates at least as many processors asOPT . But since �qi is nondecreasing, the rate at which work of phase q of job i is being completedis at least as large for EQUI as for OPT . That is, �qi (p=nt)�qi (�ti) � 1. This gives usF (OPT) � Z 10 0@b � Xi2St �(i) 1nt + (1� b) � Xi2S0t 11A dt:Let jStj = at � nt. (And so jS0tj = (1� at) � nt.) The value at is the fraction of un�nished jobs inEQUI at time t that are in St. Because � is a permutation, there is at most one i 2 St such that�(i) = 1, one i 2 St such that �(i) = 2, etc. Since there are only at � nt jobs in St, it follows thatPi2St �(i) is at least Pat�nti=1 i � (at � nt)2=2. Thus,F (OPT) � Z 10 b (atnt)22 1nt + (1� b)(1 � at)nt! dt= Z 10 nt b a2t2 + (1� b)(1 � at)! dt:We now choose b = 1p3 . Since we do not know what at is, we must consider the value of at thatminimizes the right hand side of the equation. The minimum of 1p3(a2t =2) + (1� 1p3)(1� at) overall 0 � at � 1 is (2�p3), which implies thatF (OPT) � Z 10 nt �2�p3� dt:But F (EQUI) = R10 nt dt, giving F (OPT) � (2�p3) �F (EQUI) = 1=(2 +p3) �F (EQUI). Thisconcludes the proof of Theorem 4.1.4.3 A Special Case Where EQUI Does WellAs mentioned in Section 3, it is reasonable to believe that the worst case amongst jobs withnondecreasing sublinear speedup functions occurs when all jobs are either fully parallelizable orconstant sequential, since EQUI wastes processors on the constant sequential jobs whereas OPTdoes not. However, we can show that in such cases, the competitive ratio is at most 2, beating thelower bound of e for nondecreasing sublinear speedup functions.Theorem 4.2 If J is such that all jobs have one phase that is either fully parallelizable (�i(�) = �,for all �) or constant sequential (�i(�) = 1, for all � > 0), then F (EQUIJ)=F (OPTJ) � 2.Proof of Theorem 4.2: Let A be the set of fully parallelizable jobs, and let B be the set ofsequential jobs. We can apply the squashed area lower bound to jobs in A and the height lowerbound to jobs in B. The
ow time of all the jobs together is at least the sum of the
ow times ofeach subset of jobs when considered separately. This givesF (OPT) � 1pXi2A�(i)si +Xj2B hj 18

where � sorts the jobs in A in decreasing order according to their processor area consumed si.The proof proceeds in a similar manner as in Theorem 4.1. De�ne At to be the set of jobsin A that are un�nished using EQUI at time t. De�ne Bt to be the set of jobs in B that areun�nished using EQUI at time t. For i 2 At, �tip �qi (p=nt)�qi (�ti) = 1nt because �qi (�) = �, and for j 2 Bt,�qj (p=nt)�qj (�tj) = 1 because �qj(�) = 1. Let jAtj = at � nt. (And so jBtj = (1 � at) � nt.) As before,Pi2At �(i) �Pat�nti=1 i � (at � nt)2=2. Hence,F (OPT) � Z 10 0@Xi2At �(i)�tip �qi (p=nt)�qi (�ti) + Xj2Bt �qj(p=nt)�qj(�tj) 1A dt= Z 10 0@Xi2At �(i) 1nt + Xj2Bt 11A dt� Z 10 nt a2t2 + (1� at)! dt:This quadratic equation is minimized when at = 1 (i.e., the job set consists only of fully par-allelizable jobs), and so (a2t =2) + (1 � at) � 1=2. As before, F (EQUI) = R10 nt dt, and soF (EQUI)=F (OPT) � 2.4.4 A Lower Bound of eWe now present a lower bound of e (the base of the natural logarithm) on the competitive ratio formulti-phase jobs with nondecreasing and sublinear speedup functions. The bound applies for anynon-clairvoyant scheduler that is only allowed to preempt a bounded number of times. Here, thenumber of preemptions could be n, 1010n , or even Ackermann(n; n). However, the scheduler is notallowed to preempt continuously. It is our belief that the same bound of e holds in the continuouscase, but we have been unable to prove it. The lower bound presented is accomplished by presentingan in�nite sequence of job sets of increasing size such that in the limit, the competitive ratio ofEQUI is at least e.Theorem 4.3 For the set of job sets with nondecreasing and sublinear speedup functions, thecompetitive ratio is at least e for any non-clairvoyant scheduler that preempt a bounded numberof times.Proof of Theorem 4.3: First consider a non-clairvoyant scheduler S that does not preempt atleast until some job completes. Suppose that when given n jobs, S initially allocates pi = qi � pnprocessors to job Ji, where the average qi is 1nPi qi = 1. Sort and rename the jobs so thatq1 � q2 � : : : � qn. Work will be allocated to the jobs so that all the jobs complete at the sametime. Hence, under S, they have the same processor allocation for their entire computation.Consider the following job set J . Each job in J consists of two phases. The �rst phase of thejobs is a constant sequential phase. (That is, �1i (�) = 1, for all � and i.) The second phase is afully parallelizable phase. (That is, �2i (�) = �, for all � and i.)19

The work of these phases is de�ned by the sequences ti and si below, and is illustrated inFigure 4 for n = 8 and qi = 1 for all i. The sequences are de�ned recursively as follows:t1 = 0 ; s1 = 1ti = ti�1 + si�1 ; si = qi (1� ti=n) (1)The quantity ti is the time required for the �rst phase of job i when allocated any number ofprocessors, and si is the time needed for the second phase of job i when allocated p processors.From ti and si, we de�ne the work of phases in J as follows:W 1i = ti ; for all 1 � i � nW 2i = p � si ; for all 1 � i � n6t
t2?6t4?6 s1s2s3.

..s8
� proc. p processorsW1 = p � s1W2 = p � s2

Figure 4: Job set J under OPT , where n = 8 and qi = 1 for all i. Each of the phases on the leftside of the �gure are �rst phases of jobs and require no processors to complete. (The �rst phasesof jobs 2 and 4 are indicated.) The phases on the right side of the �gure are the second phases ofjobs.In the optimal schedule, only an in�nitesimal number of processors are allocated to each jobwhose �rst phases are un�nished, and p processors are allocated to the job whose �rst phase iscomplete but whose second phase is not complete. One can easily prove by induction that job Jicompletes in time ti + si. For the basis step, the �rst phase of J1 takes t1 = 0 time and so thesecond phase starts at time 0. This second phase requires s1 time when allocated p processors.The �rst phase of job Ji completes work at a rate of 1 even though only an in�nitesimal numberof processors are allocated to it because �1i (�) = 1. Hence, this phase requires ti time. The work ofeach phase is constructed so that ti = ti�1+ si�1. Hence, the �rst phase of job i completes exactlywhen the second phase of job i � 1 completes, allowing the second phase of Ji to be allocated allp processors at that point. The second phase then completes in time si, giving a total completiontime of ti + si. Thus, the
ow time of J under the optimal schedule is Pni=1(ti + si).Under the schedule S, all n jobs are un�nished until time n. To see this, suppose to the contrarythat there were some job that completed before time n. Let Ji be the �rst such job. Because the20

scheduler S does not preempt at least until some job completes, we know that job Ji is allocatedpi = qi � pn processors until it completes. Therefore it takes W 1i +W 2i =pi = ti + (p � si) = �qi � pn� =ti + qi (1� ti=n) � nqi� = n, contradicting our original assumption. Therefore, the
ow time for Junder S is n2. (See Figure 5.) t 6
p processors

n
t2?6

Figure 5: Job set J under S, where n = 8 and qi = 1 for all i. Each of the �rst phases of jobscomplete at the same time as they did under OPT , but the second phases are allocated only p=nprocessors.What remains is to compute the optimal
ow time Pni=1(ti + si). Substituting the de�nitionof si into the de�nition of ti (from Equation (1)) gives ti = �1� qi�1n � ti�1 + qi�1. Solving thisrecurrence givesF = nXi=1 ti = nXi=1 i�1Xj=1 qj i�1Yk=j+1�1� qkn �To begin, suppose that the scheduler S decides to allocate the same number of processors to eachjob. This sets each qi to 1 and givesPni=1 ti = n2 �1� 1n�n � n2e . ThenPni=1 si =Pni=1(1� ti=n) �n. (We ignore this amount from here on because it is lower order than F =Pni=1 ti.) The
ow timefor J under the optimal schedule is Pni=1(ti + si) = n2e +O(n). Thus, as n approaches in�nity, theratio F (EQUI)=F (OPT) approaches e.It remains to be seen, however, that the best strategy for scheduler S is to give the same numberof processors to each job. The
ow time for S is �xed at n2. S, however, has the freedom to changethe values of the qi in an attempt to increase the
ow time F for the optimal. This would decreasethe competitive ratio for S. On the other hand, if S assigns di�erent numbers of processors to thejobs, then the adversary has the power to rename the jobs, reordering the qi and hence make Feven smaller. Then only by making all the qi the same can S prevent the adversary from makingF smaller by rearranging the jobs.When changing the values of the qi, there are two di�erent e�ects, both of which indicate thatit is to the adversary's advantage to sort the jobs so that q1 � q2 � : : : � qn. The �rst e�ect is21

that in this scheme, the optimal scheduler �nishes job J1 �rst. Generally, to minimize its
ow time,the optimal scheduler should complete jobs with the smallest work �rst. Because we want all jobsunder S to �nish at the same time, the job allocated the smallest number of processors under S willbe given the smallest amount of work. Hence, J1 should be chosen to be the one that is allocatedthe smallest number of processors. The second e�ect is that job J1 has the shortest phase 1 andthe longest phase 2. Phase 1 does not need processors, while Phase 2 does need processors. HenceJ1 will be delayed the most by not having its share of processors.We will now prove more formally that subject to q1 � q2 � : : : � qn and to 1nPi qi = 1, thescheduler S cannot increase F beyond that given with each qi = 1. Let q1; : : : ; qn be values thatmaximize F subject to these conditions. By way of contradiction, assume that all the qi are not1. Consider an index l for which ql is strictly less then ql+1. We will increase ql and decrease ql+1by �. Note that this maintains the conditions that q1 � q2 � : : : � qn and that 1nPi qi = 1. Wewill prove that this change increases F . This contradicts the fact that the values are those thatmaximize F . The �rst step is to rewrite F in a way that emphasizes the ql and the ql+1 factors.Here each Cx (for 1 � x � 6) in the expression for F is a positive expression depending neither onql nor on ql+1. Then we take the derivative with respect to ql and ql+1, increasing ql and decreasingql+1 by �.F = nXi=1 i�1Xj=1 qj i�1Yk=j+1�1� qkn �= C1 � 1+ C2 � ql+ C3 � ql+1+ C4 � ql �1� ql+1n �+ C5 � �1� qln�+ C6 � �1� qln�� �1� ql+1n � ;

F 0= C1 � 0+ C2 � 1+ C3 � (�1)+ C4 � �1� �ql+1 � qln ��+ C5 � �� 1n�+ C6 � �ql+1 � qln �� 1n� :Later we show that C2 = 1, C3 = C4, and C6 = C4 � C5. This gives,F 0 = 1� C4 �ql+1 � qln �� C5 � 1n�+ C4 �ql+1 � qln �� C5 � 1n�= �1� C4 ql+1 � qln �� �1� C5 1n� :Finally, we complete the proof that F 0 > 0 by proving that the above two factors are positive. Thedot notation below is a indicates to what values i and j in the expression for F need to be �xed.For example, �i = l + 1 refers to the terms in the expression for F where i = l + 1.C2 = :i=l+1:j=l l�1Yk=l+1�1� qkn � = 1 22

C3 = nXi=l+2 :j=l+1 i�1Yk=l+2�1� qkn �C3 is equal toC4 = nXi=l+2 :j=l i�1Yi=l+2�1� qkn � � (n� l)We now show that the �rst factor is positive, i.e., �1� C4 ql+1�qln � � 0. C4 ql+1�qln � (n�l) ql+1n �1nPk2[l+1::n] qk � 1.We now show that the second factor is positive, i.e., �1� C5 1n� � 1.C5 = :i=l+1 l�1Xj=1 qj l�1Yk=j+1�1� qkn �� l�1Xj=1 qj � nNow, we show that C6 = C4 � C5.C6 = nXi=l+2 l�1Xj=1 qj Yk2[j+1::l�1;l+2::i�1]�1� qkn �� 0@ nXi=l+2 iYk=l+2�1� qkn �1A�0@l�1Xj=1 qj l�1Yk=j+1�1� qkn �1A= C4 � C5Finally, if we de�ne C1 to be all terms involving neither ql nor ql+1, then it is easy to verifythat the expression for F is correct.This completes the proof when the scheduler does not preempt at least until some job completes.Consider now any non-clairvoyant scheduler S that is only allowed to preempt a bounded numberof times, for example n, 1010n , or even Ackermann(n; n). Run S an arbitrarily long length of timewithout any job completing. Let t1; t2; t3; : : : ; tr be the times that S preempts before the �rst jobscompletes. Note that this is a �nite list because S preempts a bounded number of times. We nowhave two ways to proceed. The �rst way is to scale down the set of jobs presented above so thatall the jobs under S complete before time t1. In this case, as above, S does not preempt until aftersome job completes. The second way is to scale all the jobs up so that time tr is inconsequentiallysmall with respect to the running times of the job phases. Again, S e�ectively does not preemptduring the execution of the jobs.
23

5 Reducing the Number of Preemptions to lognAs seen, it is useful to preempt when a job completes, so that the processors allocated to it canbe reallocated. Ideally m � n, allowing at least one preemption per job. We now consider thesituation when m < n preemptions are allowed. We prove asymptotically tight upper and lowerbounds on the competitive ratio. These show that every additional preemption allowed decreasesthe competitive ratio. Because it leads to a natural scheduler, we focus on m = log2 n.5.1 Upper Bound: EQUI 0EQUI performs at most n preemptions if presented with n jobs. We now show how to modify theEQUI algorithm to one that performs only logk n preemptions. (The parameter m bounds thenumber of preemptions allowed. For m < n, set m = logk n and solve for k.) We call this newalgorithm EQUI 0. EQUI 0 behaves in the same way that EQUI does, but instead of allocating p=ntprocessors to each of the nt un�nished jobs, EQUI 0 allocates p=n processors to each un�nished jobuntil there are n=k un�nished jobs. At this point, EQUI 0 allocates p=(n=k) processors to each ofthe n=k un�nished jobs until there are n=k2 un�nished jobs, and so on. That is, when the numberof un�nished jobs reaches n=ki for some integer i, EQUI 0 allocates p=(n=ki) processors to each ofthem until there are n=ki+1 un�nished jobs. Clearly EQUI 0 performs at most logk n preemptions.An important property of EQUI 0 is that if there are nt un�nished jobs, EQUI 0 allocates at leastp=(k � nt) processors to each of those jobs. We now show that for any job set J , the
ow time ofEQUI 0 is within a factor of k of the
ow time of EQUI.Lemma 5.1 For any set of jobs with sublinear speedup functions, F (EQUI 0J) � k � F (EQUIJ).The intuition behind the proof of the lemma is that with the same number of jobs un�nished,EQUI 0 allocates at least 1=k as many processors to each job as EQUI. Because all speedupfunctions are sublinear, work completes under EQUI 0 on these jobs at a rate that is at least 1=kof the rate under EQUI. Hence, the jobs require at most twice the time to complete. The onlycomplication is that the number of un�nished jobs may di�er under the two algorithms. In fact,the jobs may complete in a di�erent order.Proof of Lemma 5.1: Let ci be the completion time of job Ji under EQUI, and sort the jobsby increasing ci. We prove by induction on i that every job completes at least as much work aftertime kci under EQUI 0 as it does after time ci under EQUI. In particular, job Ji, which completesat time ci under EQUI, completes at time at most kci under EQUI 0. From this the lemma follows.For convenience, we de�ne job J0 to be a job of one phase with zero work, and so c0 = 0.Hence, the basis step (i = 0 and c0 = 0) is trivial. For the induction step, suppose that for everyjob, all work completed under EQUI by time ci is completed by time kci under EQUI 0. In orderto prove that all work completed under EQUI by time ci+1 is completed by time kci+1 underEQUI 0, it is su�cient to consider an arbitrary job Jj and prove that the work it completes underEQUI during the time interval [ci; ci+1] could be completed under EQUI 0 during the time interval[kci; kci+1]. (The only reason that it would not be completed during this interval is that it hasalready completed before time kci.)By the de�nition of ci and ci+1, there are exactly n � i un�nished jobs running under EQUIduring the time interval [ci; ci+1], and hence each job is allocated p=(n� i) processors under EQUI.24

By the induction hypothesis, under EQUI 0 jobs J1; : : : ; Ji have completed by time kci. Hence,there are at most n� i un�nished jobs running under EQUI 0 at any point during the time interval[kci; kci+1]. Recall that if there are x un�nished jobs, EQUI 0 allocates at least p=kx processors toeach of those jobs. Thus, each job is allocated at least p=(k(n� i)) processors under EQUI 0 in thistime interval.Consider one of the phases Jqj of job Jj that is partially or fully completed under EQUI duringthe time interval [ci; ci+1]. Since the speedup function �qj is sublinear, the rate at which work iscompleted with at least p=(k(n � i)) processors is at least 1=k the rate with p=(n � i) processors.However, the time interval [kci; kci+1] is twice as long as the interval [ci; ci+1]. Hence, at least asmuch work on this phase can be completed under EQUI 0 in [kci; kci+1] as under EQUI during[ci; ci+1]. This completes the induction step and the proof of the lemma.From Theorem 4.1, Theorem 4.2, and Lemma 5.1, we have:Theorem 5.1 EQUI 0 performs at most logn preemptions. It has a competitive ratio of at mostk � (2+p3) when the speedup functions are nondecreasing and sublinear and has a competitive ratioof at most 2k when all jobs have one phase that is either fully parallelizable or constant sequential.5.2 Lower Bound for Fully Parallelizable Jobs and logk n PreemptionsThe following lower bound proves that for fully parallelizable jobs, the above tradeo� between thenumber of preemptions and the competitive ratio is tight.Theorem 5.2 For any non-clairvoyant scheduler allowed to preempt at most logk n� O(1) timeson n fully parallelizable jobs, its competitive ratio is at least 2k.Proof of Theorem 5.2: Fix k > 1. Let n = c � km+2, where c is a su�ciently large constantand m is the number of preemptions allowed. Also let � > 0 be some small value.We prove by induction on m that the competitive ratio is at least 2k and that the completiontimes for the jobs used in the lower bound are at least �2m under the scheduler in question. (Thislast property is useful in the induction step of the proof.)For m = 0, by de�nition no preemptions are allowed. Hence, Theorem 6.2 applies, giving alower bound of
 (pn) =
 �pc� km+2� � 2k, for appropriate constant c. From the proof ofTheorem 6.2, the set of jobs given can be such that all jobs complete in time at least 1 > �2m.Assume by way of induction that the induction hypothesis holds form � 0. Consider a schedulerS that preempts at most m+1 times on n = c�k(m+1)+2 jobs. View each job as having phases. Sett1 = �2m+2 and assign the �rst phase of each job the amount of work required so that it completesat time t1. We will allocate enough work to the remaining phases so that this time t1 = �2m+2contributes insigni�cantly to the
ow time of both this scheduler and of the optimal scheduler.Consider the k�1k n jobs that are allocated the most processors at time t1. Together they areallocated at least k�1k p processors. We will refer to these as the small jobs, because they will nothave a second phase and hence will complete under S at time t1. After these jobs complete, thek�1k p processors allocated to them idle until S preempts, rescheduling them to the remaining nkjobs. 25

Consider what S does in the circumstances where the remaining jobs do not complete for anarbitrarily long time. Based on no information other than the number of processors n and thecompletion time t1, S must do one of the following things: it can preempt immediately (t2 = 0); itcan wait for some period of time t2 � 1 before preempting; or it can wait at least until time t2 = 1to preempt, assuming none of the remaining jobs have completed by this time.Suppose t2 � �2m+1. That is, the scheduler preempts soon after time t1. After time t1+ t2, thescheduler must schedule the remaining phases of the remaining n0 = nk = c � km+2 jobs with atmost m preemptions. From the induction hypothesis, we know that the competitive ratio of thispart of the computation is at least 2k. Moreover, this competitive ratio is not a�ected signi�cantlyby the initial time period of duration t1 + t2 � 2� � �2m, because by the induction hypothesis, wecan �nd jobs with the required competitive ratio, whose completion times are at least �2m.Now suppose t2 > �2m+1. This is large relative to t1 = � � �2m+1. Because no preemptions occurduring the time period [t1; t2], we know that at least k�1k p processors idle during this time period.The construction of the remaining phases of the remaining n0 = nk is similar to that of Motwaniet al. [?]. These jobs are assigned work so that they each complete at time t2. Motwani et al. showthat this competitive ratio is 2. Here, however, the n0 jobs have at most pk processors availableto them. Hence, the competitive ratio is at least 2k. Again, this competitive ratio is not a�ectedsigni�cantly by the initial time period of length t1 = � � �2m+1, because t1 is small relative tot2 � �2m+1.5.3 Lower Bound for Nondecreasing Sublinear Jobs and logk n PreemptionsUsing techniques from the proofs of Theorems 4.3 and 5.2, we can show a lower bound on thecompetitive ratio when only logk n preemptions are allowed and jobs are allowed to have phasesthat are nondecreasing and sublinear. We present the bound only in the case where k = 2 becauseof the complexity of the expressions resulting from the recurrence relations. However, the sameproof technique works for any value of k.Theorem 5.3 For any non-clairvoyant scheduler S allowed to preempt at most log2 n�O(1) timeson n nondecreasing and sublinear jobs, its competitive ratio is at least 4.69.Proof of Theorem 5.3: Let n = c� 2m+2, where c is a su�ciently large constant and m is thenumber of preemptions allowed. We prove by induction on m that the competitive ratio is at least4.69. The proof follows closely to that of Theorem 5.2. The only change is in the case (t2 > �2m+1)where the scheduler S does not preempt during the time period [t1; t2] even though k�1k p = 12pof the processors idle and n0 jobs have yet not completed. Instead of using fully parallelizablejobs from the Motwani et al. result for the remaining phases of these n0 jobs to obtain a bound of2 � k = 4, we use n0 jobs with a constant sequential phase followed by a fully parallelizable phase,modeled after those in Theorem 4.3 to obtain the bound of 4:69.The change to the proof of Theorem 4.3 is minor. In the proof of Theorem 4.3, scheduler Sallocated pi = qi � pn processors to job Ji. We set the completion time W 1i +W 2i =pi under S ton and solved for si, giving si = qi (1� ti=n). In our proof here, because S only has access tohalf as many processors, it allocates only pi = 12qi � pn0 , giving si = 12qi (1� ti=n0). The proof isbasically the same that the best the scheduler can do is to allocate all the jobs the same numberof processors, i.e., qi = 1. Then, the optimal
ow, instead of being Pni=1 ti + si = n2e + O(n), is26

�2� e� 12 � 1� (n0)2 + O(n0) = 14:69(n0)2 + O(n0). Because the
ow time of S is (n0)2, this gives acompetitive ratio of 4.69, as desired.6 No Preemptions and Nondecreasing Sublinear Speedup Func-tionsWe now consider the class of schedulers that are not allowed any preemptions. We present the resultthat the p=pn-scheduler achieves a competitive ratio of pn for every job set with nondecreasing-sublinear speedup functions. Recall that the p=pn-scheduler partitions the processors into pngroups of p=pn processors each. Each group is allocated to a di�erent job. When a job completes,the group is allocated to another job, until all the jobs have been completed.6.1 Upper BoundTheorem 6.1 The p=pn-scheduler S performs no preemptions and has a competitive ratio of(3 +p3) � pn for every job set with nondecreasing sublinear speedup functions.Proof of Theorem 6.1: Denote by S the schedule resulting from the p=pn-scheduler. Let cbe the last time under S during which all pn groups of processors are executing a job and let cibe the completion time of job Ji. Then F (S) = Pi ci = n � c +Pi:ci>c(ci � c). Note that no jobstarts executing after time c. Otherwise that job would have started at time c with the idle groupof processors. Hence, if ci > c, then job Ji is executing under S with p=pn processors, during theentire time period [c; ci]. Because the speedup functions are nondecreasing and sublinear, we knowthat under the optimal schedule OPT , job Ji, does not complete at a rate more than a factor of pntimes faster than that under S, even if given all p processors. Hence, the completion time of job JiunderOPT is at least (ci�c)=pn. Thus, F (S) =Pi ci = n�c+Pi:ci>c(ci�c) � n�c+pn�F (OPT).What remains to be proved is that F (OPT) �
(pn � c). From the proof of Theorem 4.1, we havethat F (OPT) � Z c0 0@b � Xi2St �(i)�tip �qi (p=pn)�qi (�ti) + (1� b) � Xi2S0t �qi (p=pn)�qi (�ti) 1A dt:Here St [S0t is the set of pn jobs executed at time t under S, St are those for which p=pn < �tiand S0t for which �ti � p=pn. Let at be such that jStj = at � pn. (And so jS0tj = (1 � at) � pn.)Continuing as in Section 4.2 givesF (OPT) � Z c0 0@b � Xi2St �(i) 1pn + (1� b) � Xi2S0t 11A dt� Z c0 b (atpn)22 1pn + (1� b)(1� at)pn! dt= Z c0 pn b a2t2 + (1� b)(1 � at)! dt27

� Z c0 pn �2�p3� dt= (2�p3)pn � c:Since F (S) � n � c+pn � F (OPT) and F (OPT) � (2�p3)pn � c, then we haveF (S)F (OPT) � n � c+pn � F (OPT)F (OPT)� 12�p3pn+pn= (3 +p3)pn:
6.2 Lower BoundTheorem 6.2 For every scheduler S that never preempts, there is a set of jobs J that are fullyparallelizable and for which F (S) � pn � F (OPT).Proof of Theorem 6.2: Consider such a scheduler S. The initial allocation of the processorsmay depend on the number of jobs n, but otherwise does not depend on the set of jobs J . LetJ 0 � J be the jobs to which S initially allocates processors. Suppose that S initially allocates fewerthan p=pn processors to some job Ji 2 J 0. Let the set of jobs J be such that Ji has work Wi = pand the remaining jobs have essentially no work. Under S, job Ji is allocated this �xed numberof processors for the duration of its computation, hence its completion time is at least pn andF (S) � pn. On the other hand, for this set of jobs J , the optimal schedule initially completes thejobs that require essentially no time and then allocates all p processors to job Ji. This gives a
owtime of F (OPT) � 1 and a competitive ratio of pn for S.Now assume that S allocates at least p=pn processors to every job in J 0. Note jJ 0j � pn. Forjob Ji 2 J 0, let �i be the number of processors that S allocated to the job. The adversary sets thework Wi for the job to be �i(�i) = �i, so that the job requires one time unit with this processorallocation. Let the remaining jobs have essentially no work. Under S, each job Ji 2 J 0 completesin time ci = 1. The remaining jobs must wait one time unit for these jobs to complete and thencomplete in essentially no time. This gives a
ow time of F (S) = n� 1. A better, yet sub-optimalscheduler OPT 0, �rst completes all the jobs not in J 0. These complete in essentially no time. ThenOPT 0 completes the jobs in J 0 with the same processor distribution as under S. This gives a
owtime of F (OPT 0) � jJ 0j � 1 � pn for a competitive ratio of at least pn.7 Nondecreasing Sublinear or Superlinear Speedup FunctionsThe previous assumption that all speedup functions are sublinear is not true when the jobs areboth highly parallel and have a strong time-space tradeo�. We now consider the class of such jobs.To begin we consider schedulers that are able to preempt continuously.28

Theorem 7.1 There is a non-clairvoyant algorithm HEQUI such that F (HEQUIJ) � 2 � (2 +p3) �F (OPTJ) for every job set J in which each phase of each job is either nondecreasing sublinearor superlinear.Proof of Theorem 7.1: The scheduler HEQUI (short for \Hybrid Equi-partition") slices timeinto units of size �. If there are nt un�nished jobs, then for �=2 time units, HEQUI allocates p=ntprocessors to each job. For the remaining �=2 time units, each of the nt jobs in turn is allocated allp processors for �=2nt time units. Notice that as � approaches zero, the number of preemptionsHEQUI approaches in�nity.HEQUI must perform well on jobs with both nondecreasing-sublinear and superlinear phaseswithout knowing which phase is currently being executed. It performs well with the nondecreasing-sublinear phases because half of the time it behaves like EQUI and hence performs on these phaseswithin a factor of two, as proved in Theorem 4.1. Superlinear phases execute the most e�cientlywhen given all p processors. HEQUI performs well on these phases because half of the time itbehaves like Round-Robin.The proof proceeds as in the proof of Theorem 4.1. Recall that in that proof, for each blockof work in each job, the rate �qi (�ti) at which OPT executes this work is compared to the rate�qi (p=nt) at which EQUI executes the same work. We must now do what is done in Theorem 4.1except we now compare the rate �qi (�ti) with the rate at which HEQUI executes the same work.Let
qi (p=nt) be the e�ective rate of HEQUI as � approaches 0. From the de�nition of HEQUI,
qi (p=nt) = 12�qi (p=nt) + 12 �qi (p)nt .There are two places in which the proof of Theorem 4.1 compares �qi (�ti) and �qi (p=nt). The�rst place requires that if p=nt < �ti then p=nt�qi (p=nt) � �ti�qi (�ti) . We replace this with p=nt
qi (p=nt) � 2 � �ti�qi (�ti) .Note that the statement is a factor of two weaker, resulting in the result here being a factor of twoweaker. Substituting the e�ective rate of HEQUI gives the required bound to bep=nt12�qi (p=nt) + 12 �qi (p)nt � 2 � �ti�qi (�ti) : (2)If �qi is sublinear, then p=nt�qi (p=nt) � �ti�qi (�ti) because p=nt < �ti . If �qi is superlinear, then p�qi (p) � �ti�qi (�ti)because p � �ti . In either case, Equation 2 is satis�ed.The second place in which the proof of Theorem 4.1 compares �qi (�ti) and �qi (p=nt) is that if�ti � p=nt, then �qi (�ti) � �qi (p=nt). The new requirement �qi (�ti) � 2 �
qi (p=nt) holds because �qi isnondecreasing. Thus �qi (�ti) � �qi (p=nt) � 2 �
qi (p=nt).The remainder of the proof follows that of Theorem 4.1, except that a factor two is introducedat each step.From Theorem 7.1, we know that it is possible to allow the job phases to be superlinear (notjust nondecreasing sublinear), but doing so increases the competitive ratio by a factor of two. Thefollowing lower bound helps to show that this factor of two in inherent for HEQUI, even whenthe jobs are not allowed to be arbitrarily super linear, but can only be \almost" sublinear. Thelower bound indicates that a scheduler needs treat the sublinear and almost sublinear job phasesdi�erently. 29

Theorem 7.2 The competitive ratio of HEQUI is at least (2� o(1))� e � 5:42 for HEQUI withnondecreasing and almost sublinear jobs.Note this lower bound is speci�c to HEQUI. This is why this result is not mentioned in Table 2.Adjusting the length of the Equi-partition and the Round Robin parts of HEQUI may lower thisconstant slightly, but our conjecture, is that no non-clairvoyant scheduler can do much better.Proof of Theorem 7.2: The technique we use is the same as that for the proof of Theorem 4.3.However, the second phases of the jobs are almost sublinear instead of fully parallelizable. That is,their speedup function is � (�) = �1+�.As before, we de�ne t1 = 0, s1 = 1, ti = ti�1 + si�1, si = 1 � ti=n, and W 1i = ti. However,the work, W 2i , of the second phase is changed from p � si to p1+� � si so that si is still the timeto complete the phase when allocated p processors. It follows that the
ow time of the optimalalgorithm is still Pni=1(ti + si).To prove that the competitive ratio here is twice that in Theorem 4.3, we need only show thatthe
ow time under HEQUI for this set of jobs is e�ectively twice that under EQUI for the jobsfrom Theorem 4.3. The key point is that under HEQUI, the �rst phases of the jobs computescompetitively only during the Equi-partition part of HEQUI, and that the second phases of jobsdo so only during the Round Robin part. Each of these scheduling parts last only for half the timeslices.The �rst phase of job i makes progress at a rate of 1 whenever it is allocated a nonzero numberof processors. However, under HEQUI, the job is allocated nonzero processors only during 12+ 12 � 1nfraction of time. Hence, the �rst phase takes 2� o(1) � ti time to complete.The second phase makes progress at a rate of 12� (p=n) + 12n� (p) = 12 (p=n)1+� + 12np1+� =12 (1 + 1=n�) p1+�=n. Hence, the work W 2i = p1+� � si requires (2� o(1)) � si � n time to complete.HEQUI takes 2ti + 2nsi time to �nish job Ji, while EQUI takes only ti + nsi time. Thisdoubles the
ow time and the competitive ratio.8 Almost Sublinear Speedup Functions with n or Zero Preemp-tionsWe have seen that non-clairvoyant schedulers can achieve a constant competitive ratio on jobs withsuperlinear speedup functions by preempting continuously. We now show that if the scheduler isonly allowed to preempt a bounded number of times then it cannot perform well.We have seen that EQUI performs competitively when the speedup functions are sublinear andnondecreasing. In this section, we see that weakening the sublinear requirement only slightly, toalmost sublinear, has a signi�cant e�ect on the competitive ratio. Recall that in order to include thespeedup function �(�) = �1+�, we de�ned almost sublinear to mean that �1+�1 =�(�1) � �1+�2 =�(�2)whenever �1 � �2.8.1 Lower Bound
30

Theorem 8.1 Let � � 0. Suppose that S is a scheduler that preempts only a bounded numberof times. Suppose as well that all the jobs have speedup functions �(�) = �1+� (known by thescheduler), but the scheduler does not know the work for each job. There is a set of jobs J for whichF (SJ)=F (OPTJ) � 2 � n� � nn+1 when 0 � � < 1 and F (SJ)=F (OPTJ) � n when � � 1.Note that for � = 0, the jobs have speedup functions �(�) = � and the competitive ratio is 2.Proof of Theorem 8.1: As done in the proof of Theorem 4.3, �rst consider a non-clairvoyantscheduler S that does not preempt at least until some job completes. To account for schedulersthat preempt n, 1010n , or Ackermann(n; n) times, we use the same technique used there. We scaledown the work so all the jobs complete before the �rst preemption.Suppose the scheduler initially allocates �i processors to job Ji, wherePi �i � p. The adversarysets the work for job Ji to be Wi = �(�i) = �1+�i so that its completion time is ci = 1. (If �i = 0,then Wi is set to an in�nitesimally small value. Note that this job does not complete until apreemption occurs.) Given these work levels, the
ow time is F (S) = Pi ci = n. Note that nopreemption occurs until time 1, because no job completes until this time.The optimal scheduler allocates all p processors to each job in shortest work �rst order. Withoutloss of generality, assume that �i � �i+1. Then the
ow time is F (OPT) =Pi i �Wi=�(p) =Pi i �(�i)1+�=p1+� =Pi i � (qi)1+� where qi = �i=p and Pi qi = 1. When 0 � � < 1, Claim 1 below provesthat this is maximized when all qi have the same value. This gives F (OPT) �Pi i �(1=n)1+� � n+12n�and a competitive ratio of 2 �n� nn+1 . Note that for 0 � � < 1, the competitive ratio of Equi-partitionis within a constant factor of this ratio.When � � 1, Claim 1 proves that Pi i � (qi)1+� is maximized when q1 = 1 and the other qi = 0.This gives F (OPT) � 1 and a competitive ratio of n.Claim 1 Subject to Pi2[1::n] qi = 1 and to qi � qi+1 � 0 for all i 2 [1::n � 1], the value ofF =Pi2[1::n] i � (qi)1+� is maximized for 0 � � < 1 when all the qi have the same value and for � � 1when q1 = 1 and the other qi = 0.Proof of Claim 1: Let q1; : : : ; qn be values that maximize the objective function F subject tothe constraints. The �rst step is to prove that this list of values qi does not have more than onedistinct non-zero value. By way of contradiction, assume that q and q0 are two non-zero values thatthe qi have (and where q < q0). We will �nd a contradiction by �nding a way of changing the qivalues in a way that honors the constraints and increases the objective function F .Let A = fi j qi = qg and B = fi j qi = q0g be the sets of indices with these values and a = jAjand b = jBj be the numbers of such values. We will change the values of qi for i 2 A from q toq + �=a and for i 2 B from q0 to q0 � �=b. Clearly the constraint Pi2[1::n] qi = 1 is maintained. Inaddition, because q and q0 are both non-zero, these qi can be decreased without violating qi � 0.Because all the qi with these values are being changed, they can be increased or decreased slightlybefore violating the order constraint qi � qi+1. Therefore, this change respects the constraints forboth positive and negative su�ciently small �. Hence, F (with this change) is maximized at � = 0only if the second derivative of F with respect to � is negative. However, it is strictly positive.d2Fd2� = (1 + �)(�)(1=a)2 � i �Xi2A(q + �=a)�1+� + (1 + �)(�)(�1=b)2 � i �Xi2B(q0 + �=b)�1+� > 0:31

Because this list of values qi does not have more than one non-zero value, because the sequenceis sorted in decreasing order, and because Pi2[1::n] qi = 1, it follows that there is some value b suchthat q1 = : : : = qb = 1=b and qb+1 = : : : = qn = 0. This gives F = Pi2[1::b] i � (1=b)1+� = b+12b� . If0 � � < 1, this is maximized with b = n. If � � 1, then is maximized with b = 1.8.2 Upper BoundFor completion, we give a matching upper bound to the above lower bound.Theorem 8.2 For any � � 0 and for any job set J with nondecreasing and almost sublinear speedupfunctions, F (EQUIJ)=F (OPTJ) 2 O(n�).Proof of Theorem 8.2: The proof is the same as that in Theorem 4.1 except for the relaxationof the sublinear condition. In the proof of Theorem 4.1, when p=nt � �t, EQUI performs atleast as well as in the proof. When p=nt < �qi , we had that p=nt�qi (p=nt) � �qi�qi (�qi) . Now we have thatp=nt�qi (p=nt) � � �qip=nt�� � �qi�qi (�qi) . However, this additional factor is at most n� because �qi � p and nt � n.The rest of the proof is the same as the proof of Theorem 4.1, except with this additional factoreverywhere.The reader may create his or her own de�nition of \almost" sublinear, which can be substitutedinto this proof at the appropriate points.8.3 Zero PreemptionsNow consider the situation in which the scheduler is allowed zero preemptions. Recall the upperand lower bounds from Theorems 6.1 and 6.2 that prove that the competitive ratio is �(pn). Thesecan easily be modi�ed to prove that the competitive ratio is ��n 1+�2 � when the jobs have almostsublinear nondecreasing speedup functions.9 Nondecreasing Speedup FunctionsIn practice the assumption that all speedup functions are either nondecreasing and sublinear or aresuperlinear is not always true. we require the speedup functions to be merely nondecreasing (i.e.,if �1 � �2, then �(�1) � �(�2)). Again we must consider schedulers that are allowed to preemptcontinuously.9.1 Upper BoundTheorem 9.1 There is a non-clairvoyant algorithm HEQUI 0 using continuous preemptions suchthat F (HEQUI 0J) � O(log n)�F (OPT) for every set of jobs J with nondecreasing speedup functions.Proof of Theorem 9.1: Suppose that under HEQUI 0 there are nt un�nished jobs remainingat time t. For every number of processors � that is a power of two and between p=nt and p, the32

scheduler HEQUI 0 executes each of the jobs for a slice of time while allocating it � processors.When allocating � processors per job, the scheduler is able to execute p=� jobs in parallel andhence requires nt�=p stages to execute each of the nt jobs for a slice of time. Therefore, HEQUI 0executes each of the jobs with � processors for a time slice of length �log(nt)nt�=p .We now continue as in Theorem 4.1. Our proof here changes that of Theorem 4.1 inthe same way as was done for Theorem 7.1. The e�ective rate of HEQUI 0 is
qi (p=nt) =P�=2k2[p=nt;p] 1log(nt) pnt��qi (�). Recall that there are two statements that need to be proved.The �rst required statement is that if p=nt < �ti , then p=nt
qi (p=nt) � 2 log n � �ti�qi (�ti) . Note the resultis a factor of 2 log n weaker because this statement is a factor of 2 log n weaker. Suppose thatp=nt < �ti and let � be the smallest power of two that is at least �ti . HEQUI 0 executes job Ji for aslice of time with � processors because p=nt < �ti � �. Therefore, the e�ective rate of HEQUI 0 is
qi (p=nt) � 1log(nt) pnt��qi (�). Because the speedup functions are nondecreasing and �ti � �, we knowthat �qi (�ti) � �qi (�). Also, � is within a factor of two of �ti . Thus
qi (p=nt) � 12 log n pnt�ti �qi (�ti).Rearranging this formula gives the �rst required statement.The second required statement is that if �ti � p=nt, then �qi (�ti) � 2 log n�
qi (p=nt). If �ti � p=nt,then let � be the smallest power of two that is at least p=nt. Note that when HEQUI 0 executesthe jobs with � processors, it can execute all nt of the jobs in at most two stages. The e�ectiverate of HEQUI 0 is
qi (p=nt) � 1log(nt) pnt��qi (�) � 12 log n�qi (�ti). The last inequality again uses thefact that the speedup function is nondecreasing.The remainder of the proof follows that of Theorem 4.1, except that a factor of 2 log n isintroduced at each step.9.2 Lower BoundTheorem 9.2 For any non-clairvoyant scheduler S that is allowed continuous preemptions, thereis a set of jobs J all with nondecreasing speedup functions for which F (SJ)=F (OPTJ) 2
(log n).Proof of Theorem 9.2: For each integer k 2 [0:: log n] de�ne the speedup function �k to be�k(�) = 1 for � � pn2k and e�ectively zero for � < pn2k. (See Figure 1:i.) Every job in J will haveone such speedup function.Consider the allocation of processors under scheduler S for the �rst time unit assuming thatduring this time period no jobs have completed. Note that this allocation does not depend on thejob set J , because the scheduler gains no information about the job set until some job completes.For each job Ji and each integer j 2 [0:: log n], de�ne tji to be the amount of this �rst unit of timeduring which the number of processors S allocates to job Ji is in the interval [pn2j ; pn2j+1). De�nesi =Plog nj=0 tji � pn2j . This is a lower bound on the processor area consumed by job Ji. Note that thetotal processor area consumed during this �rst time unit is at most 1 � p. It follows that Pi si � p.Consider job Ji. To help the adversary choose which speedup function �k to give this job, de�nes0i(k) = pn2k �Plog nj=k tji . Later we will see that if �k were to be chosen, then this would be the processorarea consumed by job Ji under a scheduler OPT 0 to complete the same work. Set ki such thatk 2 [0:: log n] that minimizes s0i(k). (For example, if it were the case that tji = si=(pn2j log n), thensi =Plog nj=0 tji � pn2j and for all k, s0i(k) = pn2k �Plog nj=k si=(pn2j logn) �Pl�0 si=(2l logn) = 2si= log n.)Claim 2 proves that in general there exists a ki for which s0i(ki) � 2si= log n. Therefore, for this33

choice of k, the processor area consumed by job Ji under OPT 0 is a factor of
(log n) less thanthat under S. The adversary sets the speedup function of job Ji to be �ki and its work to beWi = s0i(ki)=(pn2ki) (plus some in�nitesimal amount).Consider the work completed by job Ji under S during this �rst time unit. For every point intime in which it is allocated at least pn2ki processors, work is executing at a rate of one. Otherwise,the rate is e�ectively zero. Hence, the work that is accomplished is Plog nj=ki tji = s0i(ki)=(pn2ki) = Wi(minus the in�nitesimal amount). Hence, job Ji does not complete until after the end of this �rsttime unit. This gives a
ow time of F (S) � n.Now consider the following good but possibly suboptimal scheduler OPT 0. To each job Ji,the scheduler assigns a group of pn2ki processors until Ji completes. However, a processor may beassigned to many jobs. Hence, a job Ji is not allocated any processors until all the processors in itsgroup have completed all the jobs that have a higher priority than Ji (according to a given priorityscheme). De�ne �(i) (not a permutation) to be the number of jobs that have a lower priority thanjob Ji and that are assigned processors from job Ji's processor group. These are the jobs that mustwait for job Ji to complete before starting their computation. De�ne hi to be the running time ofjob Ji once allocated processors. It follows that the
ow time is F (OPT 0) =Pni=1 �(i)hi.Because job Ji has the speedup function �ki and because it is allocated pn2ki processors, workexecutes at a rate of one. Hence, the running time hi of this job is Wi = s0i(ki)=(pn2ki) �2si=(pn2ki logn). Below we prove that �(i) � 2 � 2ki . This gives a
ow time of F (OPT 0) =Pni=1 �(i)hi � Pni=1(2 � 2ki)(2si=(pn2ki logn)) = 4logn np Pi si. Because Pni=1 si � p, it follows thatF (OPT 0) 2 O(n= log n). Recall that F (S) � n. Hence, the competitive ratio is
(logn).What remains is to �ll in the details of the schedule OPT 0 and to prove for each job Ji that�(i) � 2 �2ki . The jobs with speedup function �log n (i.e., those requiring all p processors) are giventhe highest priority and hence are executed �rst. Then those with �(log n)�1. Finally, the jobs withspeedup function �0 (i.e., those requiring only p=n processors) are given the lowest priority andhence are executed last. For each integer k 2 [0:: log n], partition the processors into n=2k groups ofpn2k processors each. (Without loss of generality, assume that p and n are both powers of two so thatthese groups divide evenly.) De�ne nk to be the number of jobs Ji for which the speedup functionis �k. (Note that Plog nk=0 nk = n.) Assign bnkn 2kc jobs with speedup function �k to each group in anarbitrary priority order. (If nkn 2k is not an integer, then assign the remaining jobs, one per group, ingroups with evenly spaced indices.) Now consider �(i), the number of jobs that have a lower prioritythan job Ji and that are assigned processors from job Ji's processor group. For j � ki, there are2ki=2j groups of pn2j processors that are subsets of Ji's processor group. There are about njn 2j jobswith speedup function �j per group for a total of d(2ki=2j) � (njn 2j)e � njn 2ki + 1 such jobs waitingfor Ji. Hence, the total number of jobs waiting on Ji is �(i) �Pj�ki(njn 2ki +1) � 2ki +ki � 2 � 2ki .Claim 2 Let qj be such that Prj=0 qj = 1. There exists an integer k 2 [0; r] for whichPrj=k qj=2j�k � 2=(r + 2).In our application, r = log n and qj = tji � pn2j=si. The requirement that Plog nj=0 qj = 1 ensures thatsi = Plog nj=0 tji � pn2j . Then we choose k to minimize s0i(k) = pn2k �Plog nj=k tji which is a factor of sibigger than what is in the claim. The claim is only strengthened by allowing the qj to be negative.Proof of Claim 2: De�ne s(k) to be Prj=k qj=2j�k. Let the qj have values that maximizeMinks(k) subject to Prj=0 qj = 1. The �rst thing to prove is that for such values of qj, the s(k)34

has some �xed value s independent of the choice of k. Suppose by contradiction, there is a valuek0 such that s(k0) > s(k) for all k 6= k0. Then �nd values �j for j 2 [0::r] subject to the followingr + 1 linear constraints. The �rst constraint is that Prj=0 �j = 0. Then for each k 6= k0, includethe constraint that Prj=k �j=2j�k = �. It is not hard to see that these constraints are linearlyindependent and hence are satis�able. Then we change the values of each qj by adding on �j . The�rst constraint maintains the fact that Pj qj = 1. The kth constraint increases s(k) by �. Thischange will increase Minks(k) as long as the change does not decrease s(k0) by too much. However,if � is su�ciently small this will not happen. Then this contradicts the fact that the qj were chosento maximize this minimum.Using the fact that s(k) = s for all k and that Prj=0 qj = 1, we can solve that qr = s, qj = s=2for j 6= r, and s = 2=(r + 2).10 Gradual Speedup FunctionsEven the assumption that all the speedup functions are nondecreasing may not be true in practice.In this section, we only require the speedup functions to be gradual (i.e., there is a constant c > 0such that for every number of processors � and for every factor a 2 [1::2] either �(a�=2) � 1c�(�)or �(a�) � 1c�(�)).10.1 Upper BoundTheorem 10.1 There is a non-clairvoyant algorithm HEQUI 00 such that F (HEQUI 00J) �O(log p) �F (OPT) for every job set J , where each phase of each job has a gradual speedup function.Proof of Theorem 10.1: The scheduler HEQUI 00 is the same as HEQUI 0 de�ned in theproof of Theorem 9.1 except that it considers every number of processors � that is a power oftwo between 1 and p, not just those between p=nt and p. Note that when � > p=nt, HEQUI 00cannot execute all the jobs at once, but must do them in nt�=p batches. On the other hand, if� � p=nt, then all the jobs can be executed at once. Hence, the e�ective rate of HEQUI 00 is
qi (p=nt) =P�=2k2[1;p=nt] 1log p�qi (�) +P�=2k2[p=nt;p] 1log p pnt��qi (�). As in the proof of Theorem 9.1,there are two statements to be proved.No matter how many processors �ti OPT uses at time t, there exists a factor a 2 [1::2] suchthat both a�ti=2 and a�ti are powers of two (unless �ti < 1, but we do not allow the optimal to takeadvantage of peaks in the rate for � < 1). Because the speedup functions are gradual, we knowthat either �(a�ti=2) � 1c�(�ti) or �(a�ti) � 1c�(�ti). Let � be the value for which this is true. Notethat � is within a factor of two of �ti .If p=nt � �ti , then
qi (p=nt) � 1log p pnt��qi (�) � 12c log p pnt�ti �qi (�ti), as is required in the �rststatement. If �ti � p=nt, then
qi (p=nt) � 1log p�qi (�) � 1c log p�qi (�ti). The remainder of the prooffollows that of Theorem 4.1, except that a factor 2c log p is introduced at each step.10.2 Lower Bound 35

Theorem 10.2 Consider a non-clairvoyant scheduler S that is allowed continuous preemptions.There is a set of jobs J all with gradual speedup functions for which F (SJ)=F (OPTJ) �
(log p).Proof of Theorem 10.2: Every nondecreasing speedup function is gradual. Hence, the lowerbound of
(log n) on the competitive ratio from Theorem 9.2 applies here directly. If logn �12 log p, then the proof is complete. Otherwise, because logn + log(p=n) = log p, it follows thatlog(p=n) � 12 log p. Therefore, it su�ces to prove a lower bound of
(log(p=n)) for the case whenlog n < 12 log p.For each integer k 2 [0:: log(p=n)], de�ne the speedup function �k to be �k(�) = 1 for � 2[2k; 2k+1) and e�ectively zero elsewhere. (See Figure 1:k.) As in the proof of Theorem 9.2, considerthe allocation of processors under scheduler S for the �rst time unit assuming that during thistime period no jobs have completed. For each job Ji and each k 2 [0:: log(p=n)], de�ne tki to bethe amount of this �rst unit of time during which the number of processors allocated to job Jiis in the interval [2k; 2k+1). Let ki be the index k 2 [0; log(p=n)] for which tki is the smallest.Because Pk2[0;log(p=n)] tji = 1, we know tkii � 1= log(p=n). The adversary sets the speedup functionof job Ji to be �ki and its work to be Wi = tkii (plus an in�nitesimal amount). Hence, jobJi does not complete under S until after the end of this �rst time unit, giving a
ow time ofF (SJ) � n. The optimal scheduler, on the other hand, allocates 2ki processors to job Ji. Notethat all n jobs can be simultaneously allocated its respective number of processors, because nojob is allocated more than pn processors. The completion time of job Ji is tkii , the
ow time isF (OPT) =Pni=1 tkii � n= log(p=n), and the competitive ratio is at least log(p=n).11 Integer Domain and ArbitraryIf we are unable to assume that all the speedup functions are gradual, then we should hope thatthey are in the integer domain job class (i.e., the speedup functions do not change by more than aconstant factor between integer numbers of processors, �(b�c) � 1c�(�)).Theorem 11.1 There is a non-clairvoyant algorithm HEQUI 000 such that F (HEQUI 000J) � O(p) �F (OPT) for every job set J where each phase of each job has an integer domain speedup function.Proof of Theorem 11.1: The proof is the same as that of Theorem 10.1 except the schedulerHEQUI 000 considers every integer number of processors 1 and p, not just powers of two.Theorem 11.2 Consider a non-clairvoyant scheduler S that is allowed continuous preemptions.There is a set of jobs J with all integer domain speedup functions for which F (SJ)=F (OPTJ) �
(p).Proof of Theorem 11.2: The proof is the same as that of Theorem 10.2 except a speedupfunction is considered for each integer k 2 [1::p]. (See Figure 1:l.)Theorem 11.3 Consider a non-clairvoyant scheduler S that allows continuous preemptions. Thereis a set of jobs J with arbitrary speedup functions for which the competitive ratio is arbitrarily bad.36

Proof of Theorem 11.3: For the jobs considered, there need only be one real number ofprocessors � at which substantial progress is made. (See Figure 1:m.) A non-clairvoyant schedulerhas no hope of running the job for a non-in�nitesimal amount of time at this exact number ofprocessors.12 Jobs with Di�cult Speedup Functions and Schedulers thatCannot Preempt ContinuouslyMany of the previous upper bounds require the scheduler to preempt continuously. Again letus consider the situation in which the number of preemptions is restricted. As long as the jobshave nondecreasing speedup functions, a scheduler is able to achieve a competitive ratio of O(n)(Theorem 12.1). The matching lower bound is from (Theorem 8.1). On the other hand, if the jobsare allowed to have gradual speedup functions, then every non-clairvoyant scheduler that is notallowed to preempt continually can have an arbitrarily bad competitive ratio.Theorem 12.1 There is a simple scheduler that does no preemptions and has a competitive ratioof at most n for every set of jobs with nondecreasing speedup functions.Proof of Theorem 12.1: The scheduler S runs the n jobs one at a time with all p processorsstarting the next job when the previous job completes. Let hi be the length of time that job Jiis run with all p processors under S. The
ow time is F (S) = Pi ihi. Let ci be the completiontime of job Ji under OPT . Because the speedup functions are nondecreasing, the jobs under S(when executing) always execute at a rate that is at least as fast as that under OPT . Hence,hi � ci and F (S) � Pi ici. Subject to the constraint that F (OPT) = Pi ci, this is maximizedwhen cn = F (OPT) and ci = 0 for i < n. This gives F (S) � n � F (OPT).13 Conclusions and Open ProblemsIn order to better understand the relationship between jobs of a particular class, preemption cost,and scheduling algorithm performance, we have provided asymptotically tight bounds on the com-petitive ratio of non-clairvoyant scheduling algorithms for a range of job classes and a range ofallowable number of preemptions. For nondecreasing sublinear jobs, we have provided a completetradeo� between the competitive ratio and the number of preemptions allowed, where the numberof preemptions is bounded. In particular, for nondecreasing sublinear jobs, Equi-partition performswithin a constant factor of optimal when it is allowed at least log n preemptions.Besides tightening the bounds in Figure 2, open problems include:� How much does clairvoyance help? For each entry in Figure 2, what is the competitive ratiowhen the scheduler is given complete knowledge, but limited in the number of preemptions?� How much does computation help? For each entry in Figure 2, what is the competitive ratioof the best algorithm to an optimal one that is also limited in the number of preemptions?That is, how much of an advantage does the optimal algorithm have over the online algorithmbecause of its ability to preempt an unlimited number of times (and hence is able to recomputea new distribution of processors to the jobs)?37

Our work applies to the case when all jobs arrive at time 0. In many practical schedulingenvironments, jobs arrive periodically and their arrival times are generally unpredictable. An openproblem is to provide results in this environment. Kalyanasundaram and Pruhs [?] provide someresults in this area.

38

