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Scheduling with Equipartition 1

Scheduling with Equipartition

2000; Edmonds1
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Synonyms4

Round Robin and Equi-partition are the same algorithm.5

Average Response time and Flow are basically the same6

measure.7

ProblemDefinition8

The task is to schedule a set of n on-line jobs on p pro-9

cessors. The jobs are J = �J , . . . , Jn� where job Ji has a re-10

lease/arrival time ri and a sequence of phases �Ji , J

i , . . . ,11

Jqii �. Each phase is represented by �wq
i , Γ

q
i �, where w

q
i de-12

notes the amount of work and Γqi is the speedup function13

specifying the rate Γqi (β) at which this work is executed14

when given β processors.15

A phase of a job is said to be fully parallelizable if16

its speedup function is Γ(β) = β. It is said to be sequential17

if its speedup function is Γ(β) = . A speedup function18

Γ is nondecreasing iff Γ(β) � Γ(β) whenever β � β; is19

sublinear iff Γ(β)�β � Γ(β)�β; and is strictly-sub-20

linear by α iff Γ(β)�Γ(β) � (β�β)−α .21

An s-speed scheduling algorithm Ss(J) allocates s � p22

processors each point in time to the jobs J in a way such23

that all the work completes. More formally, it constructs24

a function S(i , t) from �, . . . , n� � [,	) to [, sp] giv-25

ing the number of processors allocated to job Ji at time t.26

(A job is allowed to be allocated a non-integral number of27

processors.) Requiring that for all t, 
n
i= S(i , t) � sp en-28

sures that at most sp processors are allocated at any given29

time. Requiring that for all i, there exist ri = ci < c

i < ċ ċ ċ <30

Note that an odd feature of this definition is that a sequential job
completes work at a rate of  even when absolutely no processors are
allocated to it. This assumption makes things easier for the adversary
and harder for any non-clairvoyant algorithm. Hence, it only makes
these results stronger.

A job phase with a nondecreasing speedup function executes no
slower if it is allocated more processors.

A measure of how efficient a job utilizes its processors is Γ(β)�β,
which is the work completed by the job per time unit per processor.
A sublinear speedup function is onewhose efficiency does not increase
with more processors.This is a reasonable assumption if in practice β
processors can simulate the execution of β processors in a factor of at
most β�β more time.

Ss(J) is defined to be the scheduler with p processors of speed s.
Ss and Ss are equivalent on fully parallelizable jobs and Ss is s times
faster than Ss on sequential jobs.

cqii such that for all  � q � qi , �
cqi
cq−i

Γqi (S(i , t))dt = w
q
i en- 31

sures that before a phase of a job begins, the job must have 32

been released and all of the previous phases of the job must 33

have completed.The completion time of a job Ji , denoted ci, 34

is the completion time of the last phase of the job. 35

The goal of a scheduling algorithm is to minimize the 36

average response time, 
n 
i�J(ci − ri), of the jobs or equiv- 37

alently its flow time Ss(J) = 
i�J(ci − ri). An alternative 38

formalization is to integrate over time the number of jobs 39

nt alive at time t, Ss(J) = 
i�J �
�

 (Ji is alive a time t)δt = 40

�

�

 ntδt. 41

A scheduling algorithm is said to be on-line if it lacks 42

knowledge of which jobs will arrive in the future. It is said 43

to be non-clairvoyant if it also lacks all knowledge about the 44

jobs that are currently in the system, except for knowing 45

when a job arrives and knowing when it completes. 46

The two examples of non-clairvoyant schedulers that 47

are often used in practice are Equi-partition (also called 48

Round Robin) and Balance. EQUIs is defined to be the 49

scheduler that allocates an equal number of processors to 50

each job that is currently alive. That is, for all i and t, if job 51

Ji is alive at time t, then EQUI(i , t) = sp�nt , where nt is 52

the number of jobs that are alive at time t. The schedule 53

BALs is defined in [] to be the schedule that allocates all of 54

its processors to the job that has been allocated processors 55

for the shortest length of time. (Though no one implements 56

Balance directly, Unix uses a multi-level feedback (MLF) 57

queue algorithm which in a way approximates Balance). 58

The most obvious worst-case measure of the goodness 59

of an online non-clairvoyant scheduling algorithm S is its 60

competitive ratio. This compares the perform of the algo- 61

rithm to that of the optimal scheduler. However, in many 62

cases, the limited algorithm is unable to compete against 63

an all knowing all powerful optimal scheduler. To com- 64

pensate the algorithm Ss, it is given extra speed s. An on- 65

line scheduling algorithm S is said to be s-speed c-competi- 66

tive if: maxJ Ss(J)�Opt(J) � c. For example, being s-speed 67

-competitive means that the cost Ss(J) of scheduler S with 68

s � p processors on any instance J is at most twice the op- 69

timal cost for the same jobs when only given p processors. 70

Key Results 71

If all jobs arrive at time zero (batch), then the flow time 72

of EQUI is -competitive on fully parallelizable jobs [] 73

and ( +



)-competitive on jobs with nondecreasing 74

sublinear speedup functions []. (The time until the last 75

job completes (makespan) on fully parallelizable jobs is 76

the same for EQUI and OPT, but can be a factor of 77

Θ(log n� log log n)worse for EQUI if the jobs can also have 78

sequential phases [].) Table  summarizes all the results. 79
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2 0 Scheduling with Equipartition

Scheduling with Equipartition, Figure 1
To understand the motivation for this resource augmentation
analysis [8], note that it is common for the quality of service of
a system to have a threshold property with respect to the load
that it is given. In this example, it seems that the online schedul-
ing algorithm S performs reasonably well in comparison to the
optimal scheduling algorithm. Despite this, one can see that the
competitive ratio of S is huge by looking at the vertical gap be-
tween the curves when the load is near capacity. To explain why
these curves are close, onemust alsomeasure the horizontal gap
between curves. S performs at most c times worse than optimal,
when either the load is decreased or equivalently the speed is
increased by factor of s

When the jobs have arbitrary arrival times and are80

fully parallelizable, the optimal schedule simply allocates81

all the processors to the jobs with least remaining work.82

This, however, requires the scheduler to know the amount83

of work per job. Without this knowledge, EQUI and BAL84

are unable to compete with the optimal and hence can do85

a factor ofΩ(n� log n) andΩ(n) respectively worse and no86

non-clairvoyant schedulers has a better competitive ratio87

than Ω(n�) [,]. Randomness improves the competi-88

tive ratio of BAL toΘ(log n log log n) []. Havingmore (or89

faster) processors also helps.BALs achieves a s =  + є speed90

competitive ratio of s
s− =  +


є [].91

If some of the jobs are fully parallelizable and some are92

sequential jobs, it is hard to believe that any non-clairvoy-93

ant scheduler, even with sp processors, can perform well.94

Not knowing which jobs are which, it waists toomany pro-95

cessors on the sequential jobs. Being starved, the fully par-96

allelizable jobs fall further and further behind and then97

other fully parallelizable jobs arrive which fall behind as98

well. For example, even the randomized version of BAL can99

have an arbitrarily bad competitive ratio, even when given100

arbitrarily fast processors.101

EQUI, however, does amazingly well. EQUIs achieves 102

a s =  + є speed competitive ratio of  + 
є []. This was 103

later improved to  +O(
�

s
s− ), which is better for large s []. 104

The intuition is that EQUIs is able to automatically “self 105

adjust” the number of processors wasted on the sequential 106

jobs. As it falls behind, it has more uncompleted jobs in 107

the system and hence allocates fewer processors to each 108

job and hence each job utilizes the processors that it is 109

given more efficiently. The extra processors are enough 110

to compensate for the fact that some processors are still 111

wasted on sequential jobs. For example, suppose the job 112

set is such that OPT has ℓt sequential jobs and at most 113

one fully parallelizable job alive at any point in time t. 114

(The proof starts by proving that this is the worst case.) 115

It may take a while for the system under EQUIs to reach 116

a “steady state”, but when it does, mt , which denotes the 117

number of fully parallelizable jobs it has alive at time t, 118

converges to ℓt
s− . At this time, EQUIs has ℓt +mt jobs 119

alive and OPT has ℓt + . Hence, the competitive ratio 120

is EQUIs(J)�OPT(J) = (ℓt + ℓt
s− ))�(ℓt + ) �

s
s− CE , 121

which is  + 
e for s =  + є. This intuition makes it appear 122

that speed s =  + є is sufficient. However, unless the speed 123

is at least  then the competitive ratio can be bad during 124

the time until it reaches this steady state, []. 125

More surprisingly if all the jobs are strictly sublinear, 126

i. e., are not fully parallel, then EQUI performs competi- 127

tively with no extra processors []. More specifically, it is 128

shown that if all the speedup functions are no more fully 129

parallelizable than Γ(β) = β−α than the competitive ra- 130

tio is at most 

α . For intuition, suppose the adversary al- 131

locates p
n processors to each of n jobs and EQUI falls be- 132

hind enough so that it has 

α n uncompleted jobs. Then it 133

allocates p�(

α n) processors to each, completing work at 134

an overall rate of (

α n)Γ(p�(


α n)) =  ċ nΓ(p�n).This is 135

a factor of  more than that by the adversary. Hence, as in 136

the previous result, EQUI has twice the speed and so per- 137

forms competitively. 138

The results for EQUIs can be extended further. There 139

is a competitive s = ( + є)-speed non-clairvoyant sched- 140

uler that only preempts when the number of jobs in the 141

system goes up or down by a factor of two (in some sense 142

log n times). There is s = ( + є)-speed one that includes 143

both sublinear and superlinear jobs. Finally, there is 144

a s = O(log p) speed one that includes both nondecreasing 145

β and gradual jobs. 146

The proof of these results for EQUIs require techniques 147

that are completely new. For example, the previous results 148

prove that their algorithm is competitive by proving that at 149

every point in time, the number of jobs alive under their al- 150

CE Unbalanced parantheses. Please check.
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Scheduling with Equipartition 3

Scheduling with Equipartition, Table 1
Each row represents a specific scheduler and a classJ of job sets. Here EQUIs denotes the Equi-partition scheduler with s times as
many processors and EQUIs the onewith processors that are s times as fast. The graphs give examples of speedup functions from the
class of those considered. The columns are for different extra resources ratios s. Each entry gives the corresponding ratio between
the given scheduler and the optimal

s = 1 s = 1 + є s = 2 + є s = 4 + 2є s = O(log p)

Batch , , or [2.71, 3.74]

Det. Non-clair Ω(n
1
3 ) −

Rand. Non-clair �Θ(log n) −

Rand. Non-clair or Ω(n
1
2 ) Ω( 1є )

BALs Ω(n) 1 + 1
є

2
s

BALs Ω(s−1�αn)

EQUIs , , or Ω( n
log n) Ω(n1−є) [1 + 1

є , 2 +
4
є ] � 1

EQUIs , , or Ω( n
log n) Ω(n1−є) [ 23 (1 +

1
є ), 2 +

4
є ] [ 2s ,

16
s ]

EQUI or [1.481�α , 21�α]
EQUI′s Few Preempts Ω(n1−є) Θ(1)

H EQUIs or Ω(n1−є) Θ(1)

H EQUI′s β or Ω(n) Θ(1)

gorithm is within a constant fraction of that under the opti-151

mal schedule.This, however, is simply not truewith this less152

restrictedmodel.There are job sets such that for a period of153

time the ratio between the numbers of alive jobs under the154

two schedules is unbounded. Instead, a potential function155

is used to prove that this can only happen for a relatively156

short period of time.157

The proof first transforms each possible input into158

a canonical input that as described above only has paral-159

lelizable or sequential phases. Having the number of fully160

parallelizable jobs alive underEQUIs at time t bemuch big-161

ger than the number of sequential jobs alive at this same162

time is bad for EQUIs because it then has many more jobs163

alive then OPT and hence is currently incurring much164

higher costs. On the other hand, this same situation is also165

good forEQUIs because itmeans that it is allocating a larger166

fraction of its processors to the fully parallelizable jobs and167

hence is catching up to OPT. Both of these aspects of the168

current situation is carefully measured in a potential func-169

tion Φ(t). It is proven that at each point in time, the oc-170

curred cost to EQUIs plus the gain dΦ(t)
d t in this potential171

function is at most c times the costs occurred by OPT. As-172

suming that the potential function begins and ends at zero,173

the result follows.174

More formally, the potential function is Φ(t) = F(t) +175

Q(t)whereQ(t) is total sequential work finished by EQUIs176

by time t minus the total sequential work finished by177

the adversary by time t. To define F(t) requires some178

preliminary definitions. For u � t, define mu(t) (ℓu(t)) 179

to be number of fully parallelizable (sequential) phases 180

executing under EQUIs at time u, for which EQUIs at 181

time u has still not processed as much work as the ad- 182

versary processed at time t. Let nu(t) = mu(t) + ℓu(t). 183

Then F(t) =
�

�

t fu(mu(t), ℓu(T))du, where fu(m, ℓ) = 184

s
s−
(m−ℓ)(m+ℓ)

nu . As the definition of the potential function 185

suggests, the analysis is quite complicated. 186

Applications 187

In addition to being interesting results on their own, they 188

have been powerful tools for the theoretical analysis of 189

other on-line algorithms. For example, in [,] TCP was 190

reduced to this problem and in [], the online broadcast 191

scheduling problem was reduced to this problem. 192

Open Problems 193

An open question is whether there is an algorithm that is 194

competitive when given processors of speed s =  + є (as 195

opposed to s =  + є). There is a candidate algorithm that 196

is part way between EQUIs and BALs. 197

Cross References 198

� Flow TimeMinimization 199

� List Scheduling 200

�Minimum Flow 201



Unc
or

re
cte

d 
Pro

of

20
08

-0
3-

26

��

Kao: Encyclopedia of Algorithms — Entry  — // — : — page  — LE-TEX
��

�� ��

4 0 Scheduling with Equipartition

�MinimumWeighted Completion Time202

�Online List Update203

�Online Load Balancing204

� Schedulers for Optimistic Rate Based Flow Control205

� Shortest Elapsed Time First Scheduling206
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