Using the Groebner basis algorithm to find proofs of unsatisfiability
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Abstract

A propositional proof system can be viewed as a non-deterministic
algorithm for the (co-NP complete) unsatisfiability problem.
Many such proof systems, such as resolution, are also used as
the basis for heuristics which deterministically search for short
proofs in the system.

We discuss a propositional proof system based on algebraic rea-
soning, which we call the Groebner proof system because of a tight
connection to the Groebner basis algorithm. For an appropriate
measure of proof size, we show that (a degree-limited implementa-
tion of ) the Groebner basis algorithm finds a Groebner proof of a
tautology in time polynomial in the size of the smallest such proof,
In other words, unlike most proof systems, the non-deterministic
algorithm can be converted to a deterministic one without loss in
power.

We then compare the power of the Groebner proof system to
more studied systems. We show that the Groebner system polyno-
mially simulates Horn clause resolution, quasi-polynomially simu-
lates tree-like resolution, and weakly exponentially simulates reso-
lution. Thus, Groebner proofs will have better than worst-case be-
haviour on the same classes of inputs that resolution does. On the
other hand, there are simple tautologies which have polynomial-
size Groebner proofs but which require exponential-size resolution
proofs.

We also compare the Groebner proof system to the similar
Nullstellensatz proof system introduced in [BIK+94]. We show
a family of tautologies that have degree 3 (and hence polynomial-
size) Groebner refutations, but which require ®(y/n) degree Null-
stellensatz refutations. Thus, there is an exponential separation
between the two systems.

These results suggest that the Groebner basis algorithm might

replace resolution as a basis for heuristics for N P-complete prob-
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lems. We have done some preliminary experiments comparing
[CW]’s implementation of the Groebner basis algorithm to [KS]’s
implementation of the Putnam-Davis procedure for unsatisfiabil-
ity. [KS]’s program is superior on the instances tested. However,
the difference is small enough to hope that further optimization
of the Groebner basis algorithm for unsatisfiability could make it

the method of choice.

1 Introduction

Propositional proof systems are formal systems for reason-
ing about the consequences of known relationships between
propositional (true/false) variables. Understanding such sys-
tems is highly important not just for logic but also for com-
plexity theory and artificial intelligence.

First, lower bounds for such systems can be thought of as
a concrete step towards proving P # N P. Many of the best
algorithms for N P-complete problems use the back-tracking
approach. In an N P-complete problem, one is typically try-
ing to find a “solution” to a problem that satisfies certain
constraints. In the back-tracking approach, the algorithm
adds a new constraint, and then recursively tries to find a
solution that meets this new constraint as well. If it can-
not, it backtracks, and attempts to find a solution that also
meets the negation of the constraint. Hopefully, the added
constraint narrows the search space, so that recursive prob-
lems are easier than the original. If you examine the com-
putation of a back-tracking program on a problem with no
solution, it gives you a proof by contradiction that the prob-
lem has no solution. The proof has the format: Assume
(first back-tracking constraint) . Obtain contradiction (re-
cursively). Assume (negation of constraint). Obtain contra-
diction.

The formal proof system corresponding to a back-tracking
algorithm will have as “lines” the constraints that the al-
gorithm branches on, “axioms” and “inference rules” cor-
responding to the (hopefully, contradictory) situations in



which the recursion bottoms out, and the size of the proof
is proportional to the ronning time of the algorithm. Thus,
lower bounds on proof size for formal proof systems give you
corresponding lower bounds for any program that uses the
corresponding type of back-tracking. Such lower bounds give
us large, natural classes of algorithms that provably cannot
solve N P-complete problems quickly. Separations of differ-
ent proof systems give us examples of inputs where certain
types of branching or termination rules give better perfor-
mance than others.

On the other hand, proof systems are used in artificial in-
telligence and “logic programming” languages such as Pro-
log. as a method of computation and as a way to represent
knowledge. This is basically the contrapositive of the above
discussion. If the heart of an algorithm for an N P problem
is finding a proof, then proof systems should be used to de-
velop better algorithms. These approaches typically make
use of simple but weak proof systems such as resolution, be-
cause the size of the smallest proof is often less of an obstacle
than the complexity of actually finding small proofs if they
exist. This means such algorithms are doubly heuristic: one
must hope that tautology one is interested in has a rela-
tively small proof, and then also hope that the proof search
heuristic actually finds it. From this perspective, the goal
of studying various proof systems is to find systems that are
strong (i.e., short proofs exist for many tautologies), simple,
and for which searching for proofs is computationally feasi-
ble. Although the exact complexity of proof-searching for
resolution is unknown, there is some work indicating that it

is itself a hard problem ([IM]).

In this paper, we “introduce” a “new” proof system based
on algebraic reasoning which seems quite promising as a po-
tential replacement for resolution. (Actually, the system will
be basically familiar to anyone who has taken a course in al-
gebra.) We then show that the Groebner basis algorithm,
well-known to algebraicists, can be used to approximate the
smallest proof in the system in polynomial time in the size
of the proof. For this reason, we refer to it as the “Groebner
proof system”. This shows that, unlike for more conventional
proof systems, for Groebner proofs, the search for proofs can
be feasibly done provided small proofs exist.

Of course, this is not very interesting if short Groebner
proofs do not exist for the relevant tautologies (i.e., those
for which resolution-based methods are currently used.) We
show that in fact the Groebner proof system should in prin-
ciple be useful on for the same kinds of instances for which
resolution methods are sub-exponential. More precisely,
we show the Groebner system polynomially simulates Horn
clause resolution, quasi-polynomially simulates tree-like res-
olution, and weakly exponentially simulates arbitrary reso-
lution proofs. (We say that a system polynomially simulates
another if whenever there are polynomial (no(l)) size proofs
in the second system for a family of tautologies, there are
also polynomial size proofs in the other. Quasi-polynomial
(2logo(1)") and weakly exponetial (20(")) simulations are de-
fined analogously.) Thus, for a tautology that for which

a sub-exponential size resolution proof exists, the Groebner
basis algorithm will find a Groebner proof in sub-exponential
time. The simulation is even better if the proof is tree-like,
and almost all implemented proof-searching heuristics (e.g.
the Putnam-Davis procedure) find tree-like proofs. This is a
theoretical justification for our belief that our method should
be competitive against the current best ones, which use a
resolution-based backtracking approach, and better for some
applications.

Using Clegg and Wallach’s implementation of the Groeb-
ner basis algorithm ([CW]), we have begun some testing of
our method as a heuristic for unsatisfiability using bench-
mark data from Selman [S]. Most recently, our approach
took 10 minutes of CPU time on a SPARC 20 Model 61
to solve a problem that took 5 minutes using Kirkpatrick
and Selman’s backtracking algorithm [KS]. (It should be
noted that the [KS] algorithm is specifically geared to solv-
ing satisfiability, while [CW] is intended for generic algebra
applications.) This suggests that, while further work at im-
plementation is needed, the method may be competitive or
superior to the best known techniques for this problem.

The Groebner proof system generalizes a similar proof
system, the Nullstellensatz system, introduced in [BIK+94].
However, we give a simple family of tautologies based on the
principle of strong induction for which there is an exponen-
tial separation between the two systems,

2 The Groebner proof system

The main factors defining a proof system are the allowable
lines, i,e., the types of relationships between propositional
variables the system reasons about, and the inference rules,
i.e., how new relationships are deduced from known ones.
Let F be a field. Allowable lines in a Groebner proof over
F are polynomial equations over F, ie., g(z1,...z5,) = 0 for
g € Flz1,..xn]. The equation z° = & for each variable =
is an axiom; this says that each variable is Boolean, either
0 or 1. Inference rules are as follows: from g (f) = 0 and
g2(Z) = 0 infer agi(Z) 4 bg2 (&) = 0 where a,b are constants
from F'; and from ¢(&) = 0 infer z¢(Z) = 0 for = a variable.

As an example, consider the following valid inference;
given &1 — T2,T2 — T3,..Ln—1 — Tp, infer 1 — z,,. We can
represent ¢ — y by the equation : zy = « (if z = 1, then
y = 1, if ¢ = 0, the equation gives no constraint). Thus,
we translate the given relationships as the system of equa-
tions: x1 — 2122 = 0, 22 — 2223 = 0,..Zn—1 — Tn_1Zn, = 0.
Multiplying the second by z1 gives us x122 — z12223 = 0,
adding the first gives us (*)z1 — 212203 = 0 Multiplying the
first given by z3 gives £123 — 12223 = 0, subtracting from
(*) gives us 1 — z12z3 = 0, i.e., xr1 — z3. We then repeat
this process to get 1 — x4, etc. For this inference, we did
not use any line of degree more than 3. (On the other hand,
Buss and Pitassi have recently shown that the above tautol-
ogy requires degree O(logn) for the Nullstellensatz system
[BP].)



The effect of the axioms 2z = z is, intuitively, to allow
each line in the proof to be multi-linear, i.e., if a variable
appears in any term with an exponent greater than 1, we
replace the exponent by 1 and combine like terms. Define
m(p) to be the multi-linear version of polynomial p. We
require that polynomials be represented explicitly, i.e., that
zero co-efficients be listed as co-efficients, so a polynomial of
degree d is represented as the vector of its co-efficients, whose
elements are indexed by the Zz:g (7) multi-linear terms of
degree 1 < d, i.e., since the exponent of each variable in each
term is either 0 or 1, a term of degree at most d is determined
by a subset of variables with at most d members. We use

the notation <<"d) for the above sum. We use as a measure

of the size of a proof <<"d) = O(n?), where d is the maximum
degree of a polynomial equation appearing in the proof, since
(as we will see later) this number also bounds the number of
lines in any minimal proof. So a tautology has a polynomial-
size proof (under this measure of size) if and only if it has
one where each line is at most a constant degree d. We write
P1y.-, Pk Fa ¢ to mean that there is a Groebner proof of
polynomial ¢ from pi,...,px where every line has degree at
most d.

3 A characterization of provable
polynomials

In this section, we give a characterization of those polynomi-
als provable from a given set of polynomials p1,...,pr with a
degree d Groebner proof. Consider multi-linear polynomials
of degree d over F' as a vector space whose co-ordinates are
indexed by the multi-linear terms of degree at most d. Let
Va(pi1, ..., px) be the smallest sub-space V' of this space that
includes p1,...,pr and so that if p € V and p has degree at
most d — 1, and z is any variable, then m(zp) isin V (i.e.,
if p = xp1 + p2 then zp1 + zp2 € V.) Since the intersec-
tion of sub-spaces with these closure properties also has the
properties, such a smallest sub-space exists.

Theorem 1: For any multi-linear polynomials
P1y ..y Pk, q of degree at most d, p1,...,pr Fa ¢ if and only
if ¢ € Va(p1,...,px).

Proof: Let V be the set of multi-linear polynomials ¢ so
that p1,...,px Fa ¢. Then V is a vector space, since if we
can prove ¢1 and g2 with a degree d Groebner proof, we can
prove aqi + bge for any a,b € F by concatenating the two
proofs and then adding this line as a conclusion. V certainly
contains pi,...,pr Moreover, if ¢ has a degree d Groebner
proof and is of degree at most d — 1, then adding z¢ to the
end of this proof is still a Groebner proof of degree d, and
then we can use the axiom #? — & to derive m(zq) from zg,
Thus by definition , Va(p1,,..,px) C V.

Conversely, assume ¢ € V — Va(p1,...,pr). Let
Ply ey Pky Th41, ..Tt be a degree d Groebner proof of ¢, and let
r; be the first line of the proof with m(r;) & Va(p1,,..,px)

Then r; cannot be one of the p,’s, and cannot be an ax-
iom ¢ — o either, since m(2® — &) = 0. It cannot be the
weighted sum of two previous lines since Vd(ﬁ) is a vector
space (and m(ar + bs) = am(r) + bm(s)). It cannot be zr;
for some previous line r; since for the degree of zr; to be at
most d, the degree of r; must be at most d — 1, and then
m(zr;) € Vg(p). Thus, there can be no such line, and so
g € Va(P), a contradiction. So V = Vy(p). O

4 A proof-searching algorithm

In this section, we give an algorithm to compute a basis for
Va(p) and hence to determine whether ¢ is provable from §
by a degree d Groebner proof. In the next section, we will
show how the well-known Groebner basis algorithm can be
used for the same purpose. We include this section to present
some ideas used in the next, and because the worst-case time
of the Groebner basis algorithm seems to be worse than that
of the algorithm presented here.

Fix an order on multi-linear monomials that respects de-
gree, i.e. degree d monomials are larger than degree d — 1
in the sense of the order. Define the leading term LT (p) of a
multi-linear polynomial p to be the largest monomial with a
non-zero co-efficient.

The algorithm we describe in this section basically closes
the vector space of polynomials spanned by p1, ..., pr under
multiplication by variables. In doing so, it uses Gaussian
elimination to keep all polynomials in the space linearly in-
dependent.

More precisely, the algorithm maintains a set B of multi-
linear polynomials with the property that no two elements
of B have the same leading term, and a set S of polynomials
that will eventually be added to B. Every element of .S and
B will be derivable from p1,...,pr by a degree d Groebner
proof, and pi,...,px will be in the space spanned by BU S.

1. Initially, S = {p1,...,px} and B is empty.
2. Repeat the following until S is empty.

(a) Arbitrarily select and remove a polynomial p from

S.

(b) Perform a Gaussian reduction of p by B to get a
polynomial p’ as follows: Check to see if LT(p) =
LT(g) for some ¢ € B. If not, return p. If so,
compute p—agq for a € F which causes the leading
terms to cancel. Then recursively reduce p — aq.

(c) If the reduced polynomial p’ # 0 add it to B. If
in addition it has degree < d — 1, add m(zp’) to
S for each variable z.

The algorithm halts when S is empty. Note that each
p’ that causes n polynomials to be added to S adds a new
polynomial of degree d — 1 or smaller to B. Thus, since
no two elements of B have the same leading term, there

are at most k + n( O(n( )) polynomials that

n ) _ n
<d-1) = <d—1



are ever in S. Assuming that a constant cost hash table of

leading terms can be maintained and that polynomials are
n

<d> dimensional vectors, reducing a polynomial

stored as (

requires time O((<"d)2). So the total time for the algorithm

is O(n( - ) ((2)) = 0((2)")

Lemma 2: At the end of this algorithm, B is a basis for
Va(p1, ..., pr) -

Proof: The steps of the algorithms form degree d Groebner
proofs of each of the elements of B, so Span(B) C Va(p).

B has no two members with the same leading terms, so
B is linearly independent. It is easy to see that Span(S U
B) only increases at every stage of the algorithm. This is
because reducing a polynomial p by B does not change the
span of B U {p} and otherwise we only add elements to S.
Therefore, at the end, p1,...,px € Span(B).

Thus, if we can show that for any degree d — 1 or smaller
polynomial ¢ € Span(B), m(zq) € Span(B) then we can
conclude that Vy(F) C B by the definition of V4(p) Since
the leading terms of B are all distinct, ¢ = Zaibi where
a; € F and b; € B are of degree at most d — 1. To see this,
consider any linear combination of elements of B that has
any non-zero term from a member of degree d. Consider the
maximum leading term of a member of the linear combina-
tion. Every other member has co-efficient 0 for this term, so
this term has non-zero co-efficient in the linear combination.
Thus any linear combination that involves polynomials of
degree d from B is itself degree d. Each b; was added to B
at some point, after which m(zb;) was added to 5, since its
degree is at most d—1. Since Span(BUS) only increases, this
means each m(zb;) € Span(B) at the end of the algorithm,
and hence so is m(zg). So Span(B) C Va(§) C Span(B),
and B is a basis for Vy(§). O

To see whether ¢ € Vd(ﬁ) we run the above algorithm and
then reduce ¢, and see if the result is 0.

Thus we have

Theorem 3: There is an algorithm that runs in time

O(d(snd)g) = O(n"%) which determines whether ¢ is derivable

from p1,...,pr via a degree d Groebner proof.

5 The Groebner Basis

rithm

Algo-

The Groebner Basis Algorithm [B65] is an algorithm for de-
ciding membership in a polynomial ideal. In this section, we
formulate a variant of the Groebner Basis Algorithm called
the degree-d Groebner Basis Algorithm. The degree-d Groeb-
ner Basis Algorithm allows us to decide membership in Vy
without explicitly computing all of the polynomials in B. For
example, if the first polynomial were zy — x, our previous al-
gorithm would mindlessly add all the polynomials zyz — 2,

ryw — xw, cyzw — rzw, etc. to B. These polynomials do
not really add any additional information over the original.
In the (degree-d) Groebmner basis algorithm, we would only
explicitly compute the first polynomial. The algorithm then
considers all the products as being virtually in the basis B.

The output of the degree-d Groebner Basis Algorithm is
a set GG of polynomials which compactly represents the basis
B. The algorithm requires that a term order be chosen where
1 < t for every term ¢ and which respects multiplication, i.e.
if t1 < t2, then zt; < xi2 for any variable . The output
of the algorithm is dependent upon the choice of the term
order.

Given a degree-d Groebner Basis G, membership in V; can
be decided through a reduction algorithm. The definition of
a reduction is as follows. Given a term ¢, define p(t) to be
an arbitrary but fixed element ¢ € G such that LT(g) | ¢t.
If no such g exists, we define p(t) = L. If ¢ is a polynomial
such that p(LT(q)) # L, we say that ¢ is directly Groebner
reducibletorif r = ¢— %%p(LT(q)). We say that g is
Groebner reducible to ¢’ if ¢ = ¢’ or if there exists an r such
that ¢ is directly Groebner reducible to v and r is Groebner
reducible to ¢’. The reduction process is deterministic, and
each direct reduction results in a polynomial whose leading
term is less than the leading term of the previous polynomial.
So after a finite number of steps, a unique polynomial ¢’ will
be found which cannot be further reduced. If ¢’ is 0, we will
omit reference to it and simply say that ¢ is reducible with
respect to G.

Given a polynomial f and a set of polynomials G, we will
say that f has a degree-d representation with respect to GG
if it is possible to write f = Zgihi where ¢; € G, h; is
an arbitrary polynomial and deg g;h; < d for each ¢. If in
fact LT(g:h;) < LT(f) for each i, then we will say that f is

semi-reduceble with respect to G.

Note that if the degree of f is less than or equal to d
and f is semi-reducible, then f has a degree-d representa-
tion. Also, if f is reducible, then it is semi-reducible. For
arbitrary sets G, though, the converses of these statements
are not in general true. This motivates our definition of a
degree-d Groebner basis. We will say that G is a degree-d
Groebner basis if f is reducible whenever f has a degree-d
representation.

A key part of the Groebner basis algorithm is the compu-
tation of S-remainders. The S-remainder of two polynomials

f and ¢ is defined to be

Srem(f,g) = lcm(L{(Tf()f’)LT(g))

Computing S-remainders allows us to find polynomials which
have degree-d representations but which are not semi-
reducible. It turns out that all such polynomials can be
found through repeated computations of S-remainders and
reductions, so a degree-d Groebner basis can be found by
computing a set which is closed under the formation of S-
remainders and reductions.

_ lem(LT(£), LT(g))
LT(g)

f



In the rest of this section, we will describe an algorithm for
computing a degree-d Groebner basis. The algorithm which
we present is a simple variant of the standard Groebner basis
algorithm. The underlined part is our modification of the
algorithm to keep degrees bounded.

1. Initialize G = {}, and S = {7 —
{pla apk}
2. Repeat the following until S is empty:

(a) Pick pe S

|t = 1,...,n} U

(b) Groebner reduce p by G, getting p'.

(c) If p’ # 0, add p' to the end of G and for each g;
if deg (Iem(LT(g:), LT(p")) < d, add Srem(p’, gi)
to S.

After each iteration of the main loop, note that either S
gets smaller or G gets larger. If G gets larger, the polyno-
mial p’ which is added to G has a leading term which is not
divisible by the leading term of any other polynomial in G.
Since there are only <<"d) choices for distinct leading terms,
G can only increase this many times. The total number of
entries added to Sisn+ &k + (gl), where m is the final size

of G. Consequently, the running time of the algorithm is
n

2 . . .
Sd) times the cost of a single reduction, or

proportional to (

n\4
O(<§d) )-

To prove that the output of the algorithm is a degree-d
Groebner basis, we first prove a few lemmas.

Lemma 4: Suppose that a polynomial f is added to S
at some stage of the algorithm. Then, f is semi-reducible
with respect to the output set G.

Proof: More generally, let H be an arbitrary set of
polynomials, and suppose that a polynomial ¢ is reducible
to g' with respect to H. If f is semi-reducible with respect
to H U {g}, then f is also semi-reducible with respect to
Hu{g'}

Under the hypotheses of the lemma, f is semi-reducible
with respect to G U S at some stage of the algorithm. Since
the algorithm executes by replacing G U S with G U S —
{p} U {p’} for polynomials p and p’, the invariant of semi-
reducibility with respect to G U .S is maintained. Since S
is empty when the algorithm terminates, the lemma follows.
O

This lemma allows us to make the following observations:

e 7 —z1,..,82 — &, are semi-reducible.
® p1,...,pr are semi-reducible.

o If gi,9; € G and deg (lem(LT(g;), LT(g5))) < d, then

Srem(g;, g;) is semi-reducible.

Lemma 5: Suppose that f has a degree-d representa-
tion. Then, f is semi-reducible.

Proof: This is a direct application of Lemma 5 (p.
83) from [CLO]. Let f = ) gih: be a representation of f,
and let ¢t = max{LT(g:h;)}. If LT(f) < t, then Lemma 5,
combined with our observation that degree-d S-remainders
are semi-reducible, allows us to rewrite f = Zgihg such
that max{LT(g;k!)} is smaller than ¢ in the term order.
Consequently, we can find a representation for f where
max{LT(g;k{)} = LT(f). But this says that f is semi-
reducible. O

Theorem 6: The set G computed by the above algo-
rithm is a degree-d Groebner basis.

Proof: Suppose to the contrary that there exists a poly-
nomial f which has a degree-d representation but which is
not reducible. Assume that f is chosen such that LT(f) is
minimal among all such polynomials with this property. Let
> gihi be a representation of f, and let ¢ = max{LT(g:hi)}.
By the previous lemma, we may assume that ¢ = LT(f).
But this implies that there is an i such that LT(g:) | LT(f).
Consequently, p(LT(f)) # L. Therefore, there exists a poly-
nomial f’ such that f is directly reducible to f'. By the
minimality of our choice of f, f’is reducible. But then f is
reducible, so we have a contradiction. O

Let Bg be the set of polynomials which are reducible with
respect to G. By the Theorem, B 1s the same as the set of
polynomials which have degree-d representations. We have
already noted that xf — x; € Bg for each variable z; and
that p1,...,px € Bg. In addition, it is easy to see that a
linear combination of degree-d representations is a degree-d
representation, so Bg is a vector space. Now suppose that
f € B¢ is of degree at most d — 1. Since f is reducible, it
has a degree d — 1 representation. Consequently, z;f has a
degree d representation, so Bg is closed under multiplication
of degree d — 1 polynomials by variables. We therefore have
the following:

Theorem 7: Vy(p1,...,px) C Ba.

As noted above, the running time of the degree-d Groeb-

ner basis algorithm is O((<"d)4). While this would appear to
be worse than the running time of the algorithm described
in the previous section, in practice it performs quite a bit
better. It is possible to show that many of the S-remainders
need not be computed [B79]. In addition, the running time
of the algorithm can be improved through using heuristics
for choosing a suitable term order, for ordering the set S, for
computing the function p(t), and for computing the reduc-
tion of a polynomial. An implementation of these heuristics
in a distributed setting is described in [CW]. There remain
many questions about the optimal methods to implement
this algorithm.



6 The power of the proof system

In this section, we compare the power of the Groebner proof
system to that of traditional proof systems such as resolu-
tion. Resolution is a system for reasoning about clauses, or’s
of literals. The or of k literals requires degree k to express as
a polynomial. Since we assume that the input polynomials
to a Groebner proof are low degree polynomials, we need to
either restrict to proofs of tautologies involving small clauses,
or to give an indirect formulation for arbitrary clause size.
One such indirect formulation is given below. Our results
hold for either way of handling this issue. Resolution proofs
are typically presented as refutations; one proves that the
negation of the and of a set of clauses is a tautology by deriv-
ing a contradiction from the set, The equivalent for Groebner
proofs is to derive 1 (i.e., 1 = 0) from the translations of the
clauses.

We give several simulations of traditional proof systems by
Groebner proofs. First, we show that if the clauses are Horn
clauses or the duals of Horn clauses, and are unsatisfiable,
then their translation has a Groebner proof of degree 3, and
hence the Groebner basis algorithm will derive a contradic-
tion in polynomial-time. Since the translation from clauses
to polynomials can be done in log space, we have as a con-
sequence that distinguishing between satisfiable polynomials
and those with a degree 3 Groebner proof is P-complete.

Second, if a set of clauses have a tree-like resolution refu-
tation with S lines, then they have a degree log .S Groebner
refutation. If S is quasi-polynomial, then this refutation will
be of quasi-polynomial size and findable in quasi-polynomial
time by the Groebner basis algorithm. The Putnam-Davis
procedure is an algorithm (with many variations in imple-
mentation) to find tree-like resolution proofs. Thus, for
instances on which any version of the Putnam-Davis pro-
cedure finds a contradiction in time 2", the algorithm in
section 4 will find a contradiction in time approximately
(3clog(1/9+39)n §q any instances on which even an optimal
Putnam-Davis procedure is sub-exponential, our algorithm
will also be sub-exponential.

Finally, if a set of clauses has any resolution refutation
with S lines, then it has a degree 3(n1In S)'/? Groebner refu-
tation. In particular, if S = 2", our algorithm finds a
refutation in time 20(¢1/7los(1/9m)  gq if weakly exponen-
tial (S = 2°(n)) size resolution proofs exist for a class of
instances, then our algorithm also has weakly exponential
behaviour on these instances.

Represent literal © by 1 — z. For tautologies with large
clauses, we can translate the clause C; = ;1 V ;2 V ..%im
into the polynomial r;1%;1 4+ 7i2%i2 + .75, m%;,m = 1 where
each r;; is a new variable. If z;; = 1, we can assign
value 1 to r;; = 1 and 0 to all the other r;; to sat-
isfy the equation. However, if all z;; = 0, we cannot
satisfy the equation no matter how we pick r;;. Thus,
the original set clauses are satisfiable if and only if the
translations are mutually satisfiable. If the clause size is

small, and we represent the polynomials directly, we can
use arguments based on the above translation by letting
Ti; = (—l)m” (zij+1 — 1)(z4i,542 —1)..(zim — 1). The or of
the variables is given by r; 121 + ri2%i2 + ..7i,mTi,m when
we make the given substitution for r; ;. Doing this substitu-
tion for every line of a proof from the translations will then
at most multiply the refutation degree by the clause size -1.
(Actually, using the arguments given below with the direct
translation only increases the degree by an additive factor of
the clause size.)

If all the clauses are duals of Horn clauses (for simplicity,
Horn clauses work out identically), i.e., at most one variable
is negated per clause, we proceed as follows to find a degree 3
proof. Take all the variables we know to be false, i.e. where
we’ve been given or derived z; = 0. If they cover all the non-
negated variables in a clause, but not the negated variable
in the clause, this allows us to make the following series of
deductions: We know r1z1+...rxz2x+ri41(1—2x41) = 1 and
each z; = 0 for i < k. We use this to derive rp41(1—2r41) =
1. Multiply by #x41 to get rrqi1(zrg1r — xi_l_l) = 741 Then
multiply the axiom 41 — xi_l_l by rx4+1 and subtract to get
zr+1 = 0. So we’ve added a new variable to the list of known
false variables. Similarly, if our list of known false variables
covers an entire clause with no negated variables, we can
derive 0 = 1, and we’re done. If at some point, neither is
true, set all remaining variables to 1, and we’ve satisfied all
clauses. So if the Horn clauses were unsatisfiable we find a
degree 3 proof of 0 = 1.

It follows that:

Theorem 8: It is P-hard to distinguish satisfiable poly-
nomials from those with a degree 3 Groebner refutation.

It 1s actually possible to replace degree 3 with degree 2 in
the above theorem, by using a translation that distinguishes
between negated and non-negated variables. We would not
have a co-efficient r; 141 for the only non-negated variable.
It is easy to see that the same argument holds. This was
suggested by Pitassi [P].

The following simple properties of the Groebner proof sys-
tem will be used in showing simulations of resolution proofs
for general clauses. For p a polynomial and z a variable, let
plz=1 be the polynomial in the other variables obtained by
setting = to 1, and similarly for p|s=o.

Lemma 9: Let = be a variable and p,p1,..px,q,¢ be
multilinear polynomials of degree at most d.

. Hpi,pr,x g 1 then pi, .. pe Fay1 1 —x.
. Hpi,ypr, 1 —x kg 1 then p1, ... pr Fay1 .
. p, & g plz=o

.py 1l —x b ple=1.

T = W N =

I pr,uprFaqand pi, ... pr,q Faq, then pi, ... pr Fa
ql

6. If p1|m=0,~~~,pk|m=0 l_d 1 and p1|m=1,~~~,pk|m=1 |_d+1 1,

then pi,...,px Fay1 1.



7. If p1|m=1,...,pk|m=1 l—d 1 and p1|m=0,...,pk|m=0 l—d+1 1,
then p1,...,px Fay1 1.

Proof:

1. Assume p1,...,pk,%,71,...,7¢,1 18 a Groebner refuta-
tion of degree d of p1,...,px,z. Then p1,..pr,p1(1 —
z),..pr(l—2x),2(1—2),r1(1—g),.re(l—2),1—zisa
degree d+1 Groebner proof from p1, ..., px (since ¢(1—x)
is an axiom.)

2. Similar to the previous claim.

3. Let p = xp1 + po, where p1,po are independent of .
Then p|z=0 = po = p — p1z. So to prove po from p and
z, multiply = by each term of p; and subtract from p.
Since p has degree at most d, p1 has degree at most
d — 1, so no line will have degree more than d.

4. Similar to the previous claim, p+pi1(1—2z) =p1+po =
p|:r:1~ .

5. Concatenate the two proofs.

6. p1|z=0,..pk|z=0 Fa
1, so p1,..,Pks % Fa pile=0, ..., Pklz=0 Fa 1. Then
by claim 1, pi,...,px Fa41 1 — z. Similarly, since
p1|m=1,~~~,pk|m=1 |_d+1 1, p1,...,pk,1—x |_d+1 1. Then
P1,..pk Fag1 1 by the previous claim.

7. Similar to the previous claim.

[}

It is particularly useful that the last two claims of the
lemma are not symmetric with respect to the two degrees
required.

Resolution is a proof system whose lines are or’s of sets of
literals, and whose one inference rule is, from z vV (VA) and
-z V (VB) , infer AV B, where A and B are sets of literals,
and V.S represents the or of all elements of S. The graph of
a proof has lines of the proof as nodes, and a directed edge
from each line to the previous lines used to derive it. (Axioms
and initial assumptions are sinks.) A proof is tree-like if
the graph of the proof is a tree; we may make copies of the
original clauses in order to make a proof tree-like. In general,
a backtracking algorithm that does not use memoization,
such as the Putnam-Davis procedure in most incarnations,
will produce tree-like proofs, since it will re-derive results for
identical sub-problems on different branches of the program.

The next theorem gives a quasi-polynomial simulation of
tree-like resolution proofs by Groebner proofs. This gives the
best algorithm we know of to separate sets of clauses with
small tree-like resolution refutations from satisfiable clauses.
Computing the minimal size of a tree-like resolution refu-
tation of a set of clauses is N P-hard ([IM]). It should be
noted that the ideas here can also be used to produce a
direct quasi-polynomial time, quasi-polynomial approxima-
tion algorithm for this problem. However, it appears that
this algorithm will be slower than finding the correspond-
ing Groebner refutation if the size of the minimal tree-like
resolution refutation is close to exponential.

Theorem 10: If a set of clauses of size at most k has
a tree-like resolution proof with S lines, then the corre-
sponding polynomials have a Groebner refutation of degree
k + log, S}. Their translations using new variables have a
Groebner refutation of degree 2 + log, S.

Proof:

We prove the claim by induction on S. Let Cq,..Cy be
the clauses and pi,...,px be the direct or implicit transla-
tions into polynomials. It should be noted that if = is a
literal in C;, then for either kind of translation, p;|z=o is the
translation of C; — x, the clause when z is restricted to be
false. Let m be the maximum degree of the p;, either m =k
if we represent the clauses directly or m = 2 if we represent
them implicitly.

Consider the derivation of the last line, the empty clause,
in the refutation. It must be either one of the C;’s, or
obtained by resolving z with —& for some variable z. If
the former , one of the C;’s is empty, and the correspond-
ing p;, = 1. This is a degree 0, 1 line Groebner refuta-
tion. If the latter, £ was derived by a tree-like resolution
proof with S; lines and —xz by a tree-like resolution proof
with S lines, where S1 + S2 = S — 1. Then restricting
z = 0 at all lines of the first sub-proof gives a S1 line tree-
like refutation from the restrictions of the C;’s substitut-
ing ¢ = 0. Inductively, pile=0,...,Pk|e=0 Fm4log, s; 1 and
P1le=1s -, Pkle=1 Fmilog, 5, 1 . Assume S1 < S/2. Then
applying Claim 6 of Lemma 9, with d = m +1log, S —1 >
m+log2S1, we have p1,..px Fmtlog, s 1 as desired. The case
Sz < S is symmetric, applying Claim 7 instead. 0O

This gives an (<m+7fog s) o algorithm for unsatisfiabil-

ity , where S is the smallest tree-like resolution proof. The
above approach (to find a refutation given that there is a
tree-like refutation of size .S, search through all literals for a
refutation of the restricted version aassuming that a tree-like
refutation of size S/2 exists. If we find a refutation for z, we
restrict our clauses by —z and recursively search for a refu-
tation assuming that one of size S exists) directly gives an
pOto925) algorithm, This is approximately the same when
S 1s relatively small, but is more than polynomially better

1—o0(1
when S = 2" @

We prove a similar but weaker result for general resolution
proofs.

Theorem 11: If a set of clauses of size at most k has a
resolution proof with .S lines, then the corresponding polyno-
mials have a Groebner refutation of degree 3(n In 5)1/2 + k4
1. Their translations using new variables have a Groebner
refutation of degree 3 4+ 3(nln 5)1/2.

Proof:

Let b > 0. Let m be as before. We prove by induction
on S’ and the number of variables that if there are at most
S’ > 1 lines larger than b in the resolution proof, then there
is a refutation of degree at most b+m +1—log;_,/5,(5") If



there are no such lines, it i1s easy to see that the proof can
be directly simulated with a degree b + 1 Groebner proof.
(Each derivation is sound and involves at most b+1 variables;
Groebner proofs are a complete system and the maximum
degree of a proof is the number of variables.) If there are S’
such lines then there must be a literal z in at least S'b/2n
lines. Restricting the proof by setting z = 1 sets all of these
lines to true, and only reduces the size of other lines. So there
are at most (1 —b/2n)S’ lines larger than b in the restricted
proof. Inductively then, there is a Groebner refutation of
P1le=1,..Plo=1 of degree b+m+1-log, _y /5, ((1-b/2n)S") =
b4+ m+1—1logi_pj2.(5")) — 1. Also, by induction on the
number of variables, p1|z=0, ..., pk|z=0 has a Groebner refuta-
tion of degree b+m+1—log,_; s, S’. Thus, applying claim
6 or 7 of Lemma 9 depending on whether z is a variable or
negated variable, we have a degree b +m +1 —log,_; s, S’
degree refutation of pi, ..., px.

The theorem then follows by setting b = (nln 5)/? in the
inductive claim. O

Again, the above argument can be made into a direct proof
search procedure for resolution, but it will be less efficient
than using the Groebner proof searching algorithms when S
is almost exponential. (In this case, if S = 2, using our

algorithm takes time at most G log(1/)m) ‘bt the direct

procedure will take 90(!/ nlog ) )

When we use the above simulations to get time bounds
for our algorithms, the constant factors in the exponents
are enough to make the bounds of no practical importance.
However, these simulations do provide a theoretical justifi-
cation for our belief that the Groebner basis algorithm will
do relatively well on those instances of unsatisfiability that
resolution methods do well on. We have begun experimen-
tal testing to see if this belief holds up for real instances.
Experimentally, the time taken by the Groebner basis algo-
rithm seems to heavily depend on the term order and data
structures used. It is not clear how or why. For example, we
ran [CW]’s Groebner basis program (on a SPARC 20 Model
61) on an unsatisfiable 3-CNF formula which [KS]’s method
solved in 5 minutes of CPU time using back-tracking([S]).
With good choices for the representation of the problem
and the term order, the Groebner program took 10 min-
utes; other runs, with other representations and term orders,
failed to find a refutation after several days. Once we un-
derstand how to optimize the Groebner basis algorithm for
unsatisfiability problems, we hope to substantially improve
the difference in times.

7 Groebner vs. Nullstellensatz

In this section we show:

Theorem 12: There is a refutation on n(n+1) variables
that can be proved in the Grobner proof system with degree
3 yet that requires degree n in the Nullstellensatz proof sys-
tem.

(See [BIK+94] for the definition of the Nullstellennsatz

system.)

The separating refutation is a generalization of the pigeon
hole principle. We call it the house sitting problem. The
problem consists of n + 1 pigeons indexed by [0..r] and n
holes [1..r]. Each pigeon ¢ owns hole ¢, except for pigeon 0
that owns no hole. The holes are ordered in terms of how
nice they are. Every pigeon must be in exactly one hole. A
pigeon is either home or is house sitting in a hole nicer then
its own, i.e. in hole j for some 5 > ¢. If the owner is home,
then no other pigeon may be there. On the other hand, if
the owner is not home, then any number of pigeons may be
there. It is easy using strong induction to see that this is
a refutation. Pigeon n» must be home because there are no
nicer holes to stay in. Now assume by way of induction that
pigeons [i 4+ 1..n] are all home. Because these owners are
home, pigeon ¢ can’t stay any of the holes [i + 1..rn], yet it
must stay in one of the holes [i..n]. Hence, it too must be
home. The conclusion is that pigeon 0 is home, but it does
not have a home.

This can be represented by the following polynomials. For
each pigeon i € [0..n] and hole j € [1..n], let z(; ;y indicate
that pigeon ¢ is in hole j. (For simplicity, we include g 0y
as a variable ).

e For each ¢ € [0..n], let Q; be : (Z]e[i..n]x(w)) -1
Q:; = 0 implies that pigeon 1 must be in (at least) one
hole that is at least as nice as its own.

o For each ¢ € [0..n] and j,k € [l.n], let Q; ;xy be
T T ky. @y = 0 states that pigeon i can’t be
in both holes.

o For each ¢ € [0..n] and y € [t 4 1..n], let Q; ;y be
T T, Qu,yy = 0 states that pigeon ¢ cannot be
in hole j if pigeon j is home.

o Let Q be 34 0y. @ = 0 states that pigeon 0 is not home.

e Tor each i € [0..n] and j € [1..n], let Q; ;, be x?w) —
T 5y Qijky = 0 insures that the variable z(; ;) takes
on {0,1} values.

The proof that this set of polynomials cannot all simul-
taneously be zero in the Grobner proof system parallels the
above prove by strong induction.

In reverse order on the value of i, we derive the polyno-
mials z;; for 5 > 2 and z;; — 1, 1.e., that the pigeon 1 is
not in any hole other than its home, and hence is home. For
1 =N, Tny = @n is given. Suppose that we have derived the
equations Ti41,i4+1 —1,...,Znn — 1. For each j € [i + 1..n],
derive x(; ;) as —&( ;) - (255 — 1) + Qi jy and then derive

z;; as Qi — z; ;. Eventually we derive z¢, and

. ]G[i-l-l...n] o .
) —zo,0 gives the desired contradiction. Note no polynomial

in the proof has degree higher then two.

The lower bound that the Nullstellensatz proof system re-
quires degree n is of course harder. We use the technique
developed in [BCE+95], using linear algebra duality to re-
duce the issue to the question of the existence of a certain
combinatorial design.



Suppose there are polynomials P of degree d = n —

1 so that ZiG[O..n] PQi + ZiG[O..n],],kG[l..n] Pri 51y Qi 5, k)

+ Zie[o..n],]e[i+1..n] Py Qi + PQ
' ' :

+ Zie[o..n]de[l..n] Pli,5y@igy = 1. The first thing to ob-

serve is that this statement is equivalent to ZiG[O..n] P.Q; =
1(mod Qi j k), @i gy, @, Q'(w)). From now on all our algebra
will be polynomials modulo (x(iyj)x(iyk), Ty T(5,5) T(0,0)
x?w) — x4 53) with GI[2] as the co-efficient field. Given this
modulus, we may assume that if Xy = H(i’,g’)eM T 4 s a
monomial in one of the polynomials P;, then M is a partial
legal mapping from pigeons to holes. Specifically, M maps
a subset dom (M) C [0..n] of the pigeons to holes with the
requirements that each mapped pigeon is mapped to hole
that is at least as nice as his own home and no other pigeon
is mapped to a hole if the owner is home. Let the coefficient
in P; of the monomial X s corresponding to matching M be

a’y-

DEFINITION 7.1: Matching M matches @ if {(i,j) € M for
some j € [1, N]. We write this formally as 1 € M. If 1 € M,
we write M — i for the matching M — {{, j}} where j is the
unique value such that (i, j} € M.

One useful observation is that we can assume that a; =
0if i € M, since for M = {{1,k)} U (M —¢) and Xpy =
Xyr—ixik, we have Xpr - @ = 0.

We can view the equation
Zie[o..n] PQi = Zie[o..n] Pi[(zje[i..n] vagy) —1] =1 as
a set of restrictions on the coefficients aé\/f of P;. For each
legal partial mapping M, we obtain a constraint by equating
the coefficients for the monomial X s on the two sides of the
equation. These constraints are:

(1) _Zie[17N+s] aé) =1
(2) ZieM ahy_; — ZieM a’y =0, for all M # 0.

That the polynomials are of maximum degree d = n—1 adds
the constraints:

(3) ayy =0, for [IM|>d+1=n.

We will now show that the above system of equations (1)-
(3) has a solution over GF[2] if and only if there does not
exist a particular combinatorial design.

DEFINITION 7.2: For each subset of pigeons S, let Mg de-
note a collection of legal matchings where each of the match-
ings M € Ms matches only those pigeons in S. Then
MS@M'S 1s defined to be the collection of matches that
appear an odd number of times in MgU M. For¢ € S, de-
fine M s — ¢ to be the collection of matchings that is formed
by removing pigeon ¢ from each of the matchings in Mg
and then keeping those matchings (on pigeons S — i) that
appear an odd number of times. More formally Mg — ¢ =

DrrentM —i}.

DEFINITION 7.3: A d-design is a collection of legal match-
ings, M = Ugclo..n],|5|<d+1Ms, such that each matching
in M has size at most d + 1 and such that the following
conditions hold.

(a) The empty matching M = ¢ is in M.

(b) Forany S C [0..n], |S| < d+1, and ¢ € S, the collections
satisfy Mg_; = Mg — 1.

Lemma 13: If there is an n-design then equations (1)-
(3) have no solution over GF[2].

Proof: Suppose we have an n-design M and a solution
for (1)-(3). We view the matchings M € M as selecting a
subset of the equations in (1)-(3), since there is one equation
for each matching. We consider the GF[2] sum of the selected
equations. Condition (a) in the definition of an n-design
requires that equation (1) is selected so the right-hand side
of the sum is 1.

We will show that condition (b) in the definition of an n-
design implies that the left-hand side of this sum is 0 which
is a contradiction. Consider the coefficient of a}; in the
sum. It occurs once (with coefficient -1) if M € M. It
also occurs once (With coeflicient —|—1) for each j such that
M U{{1,5)} € M. In other words, there is a contribution of
-1if M € Ms and a contribution of 41 if there are an odd
number of j such that M U {{i,j)} € Msyr;;. The latter
is true if and only if M € Mgy(y —i. By condition (b) of
the definition of an n-design, Ms = Mgsy; — ¢ so the net
coefficient of b, is 0. O

What remains is to construct such a design.
Lemma 14: There exists an n-design.

The proof will be given in the journal version of the paper.

8 Future directions

We do not know of any non-trivial lower bounds for the
degrees of Groebner proofs. Besides giving insight into which
are the hard instances of unsatisfiability for our methods,
such a lower bound might have consequences for traditional
proof systems. Pitassi [P] has pointed out that a lower bound
for Groebner proofs for one of the matching principles where
a switching lemma is known would yield a corresponding
lower bound for Frege proofs whose formulas are parities of

AC, formulas.

If the (non-onto) pigeonhole-principle had a constant or
low degree Groebmer proof, then this would give a new
method for solving bipartite mathching and for separating -
colorable graphs from graphs with a k 4 1-clique. Lovasz [L]
has such an algorithm using semi-definite programming, but
it would be interesting to see if the Groebner basis algorithm
could also be used for this purpose.



Can our simulations of resolution be used to show that
there is no resolution proof that exponentially hard one-way
functions exist? Such a result might be possible using the
“natural proofs” technique of Razbarov and Rudich, and
might be usable in showing that the existence of one-way
functions is not provable in certain constructive fragments

of arithmetic ([RR]).

Clegg and Impagliazzo [CI] have observed that the Null-
stellensatz degree of a system of polynomials is characterized
by a Groebner basis for homogenized versions of the polyno-
mials. This gives a simpler technique for proving Nullstellen-
satz lower bounds, and raises questions about the efficiency
of the commonly used heuristic of homogenizing polynomials
before running the Groebner basis algorithm.
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