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lems. We have done some preliminary experiments comparing[CW]'s implementation of the Groebner basis algorithm to [KS]'simplementation of the Putnam-Davis procedure for unsatis�abil-ity. [KS]'s program is superior on the instances tested. However,the di�erence is small enough to hope that further optimizationof the Groebner basis algorithm for unsatis�ability could make itthe method of choice.1 IntroductionPropositional proof systems are formal systems for reason-ing about the consequences of known relationships betweenpropositional (true/false) variables. Understanding such sys-tems is highly important not just for logic but also for com-plexity theory and arti�cial intelligence.First, lower bounds for such systems can be thought of asa concrete step towards proving P 6= NP . Many of the bestalgorithms for NP -complete problems use the back-trackingapproach. In an NP -complete problem, one is typically try-ing to �nd a \solution" to a problem that satis�es certainconstraints. In the back-tracking approach, the algorithmadds a new constraint, and then recursively tries to �nd asolution that meets this new constraint as well. If it can-not, it backtracks, and attempts to �nd a solution that alsomeets the negation of the constraint. Hopefully, the addedconstraint narrows the search space, so that recursive prob-lems are easier than the original. If you examine the com-putation of a back-tracking program on a problem with nosolution, it gives you a proof by contradiction that the prob-lem has no solution. The proof has the format: Assume(�rst back-tracking constraint) . Obtain contradiction (re-cursively). Assume (negation of constraint). Obtain contra-diction.The formal proof system corresponding to a back-trackingalgorithm will have as \lines" the constraints that the al-gorithm branches on, \axioms" and \inference rules" cor-responding to the (hopefully, contradictory) situations in1



which the recursion bottoms out, and the size of the proofis proportional to the ronning time of the algorithm. Thus,lower bounds on proof size for formal proof systems give youcorresponding lower bounds for any program that uses thecorresponding type of back-tracking. Such lower bounds giveus large, natural classes of algorithms that provably cannotsolve NP -complete problems quickly. Separations of di�er-ent proof systems give us examples of inputs where certaintypes of branching or termination rules give better perfor-mance than others.On the other hand, proof systems are used in arti�cial in-telligence and \logic programming" languages such as Pro-log. as a method of computation and as a way to representknowledge. This is basically the contrapositive of the abovediscussion. If the heart of an algorithm for an NP problemis �nding a proof, then proof systems should be used to de-velop better algorithms. These approaches typically makeuse of simple but weak proof systems such as resolution, be-cause the size of the smallest proof is often less of an obstaclethan the complexity of actually �nding small proofs if theyexist. This means such algorithms are doubly heuristic: onemust hope that tautology one is interested in has a rela-tively small proof, and then also hope that the proof searchheuristic actually �nds it. From this perspective, the goalof studying various proof systems is to �nd systems that arestrong (i.e., short proofs exist for many tautologies), simple,and for which searching for proofs is computationally feasi-ble. Although the exact complexity of proof-searching forresolution is unknown, there is some work indicating that itis itself a hard problem ([IM]).In this paper, we \introduce" a \new" proof system basedon algebraic reasoning which seems quite promising as a po-tential replacement for resolution. (Actually, the system willbe basically familiar to anyone who has taken a course in al-gebra.) We then show that the Groebner basis algorithm,well-known to algebraicists, can be used to approximate thesmallest proof in the system in polynomial time in the sizeof the proof. For this reason, we refer to it as the \Groebnerproof system". This shows that, unlike for more conventionalproof systems, for Groebner proofs, the search for proofs canbe feasibly done provided small proofs exist.Of course, this is not very interesting if short Groebnerproofs do not exist for the relevant tautologies (i.e., thosefor which resolution-based methods are currently used.) Weshow that in fact the Groebner proof system should in prin-ciple be useful on for the same kinds of instances for whichresolution methods are sub-exponential. More precisely,we show the Groebner system polynomially simulates Hornclause resolution, quasi-polynomially simulates tree-like res-olution, and weakly exponentially simulates arbitrary reso-lution proofs. (We say that a system polynomially simulatesanother if whenever there are polynomial (nO(1)) size proofsin the second system for a family of tautologies, there arealso polynomial size proofs in the other. Quasi-polynomial(2logO(1)n) and weakly exponetial (2o(n)) simulations are de-�ned analogously.) Thus, for a tautology that for which

a sub-exponential size resolution proof exists, the Groebnerbasis algorithm will �nd a Groebner proof in sub-exponentialtime. The simulation is even better if the proof is tree-like,and almost all implemented proof-searching heuristics (e.g.the Putnam-Davis procedure) �nd tree-like proofs. This is atheoretical justi�cation for our belief that our method shouldbe competitive against the current best ones, which use aresolution-based backtracking approach, and better for someapplications.Using Clegg and Wallach's implementation of the Groeb-ner basis algorithm ([CW]), we have begun some testing ofour method as a heuristic for unsatis�ability using bench-mark data from Selman [S]. Most recently, our approachtook 10 minutes of CPU time on a SPARC 20 Model 61to solve a problem that took 5 minutes using Kirkpatrickand Selman's backtracking algorithm [KS]. (It should benoted that the [KS] algorithm is speci�cally geared to solv-ing satis�ability, while [CW] is intended for generic algebraapplications.) This suggests that, while further work at im-plementation is needed, the method may be competitive orsuperior to the best known techniques for this problem.The Groebner proof system generalizes a similar proofsystem, the Nullstellensatz system, introduced in [BIK+94].However, we give a simple family of tautologies based on theprinciple of strong induction for which there is an exponen-tial separation between the two systems,2 The Groebner proof systemThe main factors de�ning a proof system are the allowablelines, i,e., the types of relationships between propositionalvariables the system reasons about, and the inference rules,i.e., how new relationships are deduced from known ones.Let F be a �eld. Allowable lines in a Groebner proof overF are polynomial equations over F , i.e., g(x1; :::xn) = 0 forg 2 F [x1; ::xn]. The equation x2 = x for each variable xis an axiom; this says that each variable is Boolean, either0 or 1. Inference rules are as follows: from g1(~x) = 0 andg2(~x) = 0 infer ag1(~x) + bg2(~x) = 0 where a; b are constantsfrom F ; and from g(~x) = 0 infer xg(~x) = 0 for x a variable.As an example, consider the following valid inference;given x1 ! x2,x2 ! x3,..xn�1 ! xn, infer x1 ! xn. We canrepresent x ! y by the equation : xy = x (if x = 1, theny = 1, if x = 0, the equation gives no constraint). Thus,we translate the given relationships as the system of equa-tions: x1 � x1x2 = 0, x2 � x2x3 = 0,...xn�1 � xn�1xn = 0.Multiplying the second by x1 gives us x1x2 � x1x2x3 = 0,adding the �rst gives us (*)x1 � x1x2x3 = 0 Multiplying the�rst given by x3 gives x1x3 � x1x2x3 = 0, subtracting from(*) gives us x1 � x1x3 = 0, i.e., x1 ! x3. We then repeatthis process to get x1 ! x4, etc. For this inference, we didnot use any line of degree more than 3. (On the other hand,Buss and Pitassi have recently shown that the above tautol-ogy requires degree O(logn) for the Nullstellensatz system[BP].)



The e�ect of the axioms x2 = x is, intuitively, to alloweach line in the proof to be multi-linear, i.e., if a variableappears in any term with an exponent greater than 1, wereplace the exponent by 1 and combine like terms. De�nem(p) to be the multi-linear version of polynomial p. Werequire that polynomials be represented explicitly, i.e., thatzero co-e�cients be listed as co-e�cients, so a polynomial ofdegree d is represented as the vector of its co-e�cients, whoseelements are indexed by thePi=di=0 �ni� multi-linear terms ofdegree i � d, i.e., since the exponent of each variable in eachterm is either 0 or 1, a term of degree at most d is determinedby a subset of variables with at most d members. We usethe notation � n�d� for the above sum. We use as a measureof the size of a proof � n�d� = O(nd), where d is the maximumdegree of a polynomial equation appearing in the proof, since(as we will see later) this number also bounds the number oflines in any minimal proof. So a tautology has a polynomial-size proof (under this measure of size) if and only if it hasone where each line is at most a constant degree d. We writep1; :::; pk `d q to mean that there is a Groebner proof ofpolynomial q from p1; :::; pk where every line has degree atmost d.3 A characterization of provablepolynomialsIn this section, we give a characterization of those polynomi-als provable from a given set of polynomials p1; :::; pk with adegree d Groebner proof. Consider multi-linear polynomialsof degree d over F as a vector space whose co-ordinates areindexed by the multi-linear terms of degree at most d. LetVd(p1; :::; pk) be the smallest sub-space V of this space thatincludes p1; :::; pk and so that if p 2 V and p has degree atmost d � 1, and x is any variable, then m(xp) is in V (i.e.,if p = xp1 + p2 then xp1 + xp2 2 V .) Since the intersec-tion of sub-spaces with these closure properties also has theproperties, such a smallest sub-space exists.Theorem 1: For any multi-linear polynomialsp1; :::; pk ; q of degree at most d, p1; :::; pk `d q if and onlyif q 2 Vd(p1; :::; pk).Proof: Let V be the set of multi-linear polynomials q sothat p1; :::; pk `d q. Then V is a vector space, since if wecan prove q1 and q2 with a degree d Groebner proof, we canprove aq1 + bq2 for any a; b 2 F by concatenating the twoproofs and then adding this line as a conclusion. V certainlycontains p1; :::; pk Moreover, if q has a degree d Groebnerproof and is of degree at most d � 1, then adding xq to theend of this proof is still a Groebner proof of degree d, andthen we can use the axiom x2 � x to derive m(xq) from xq,Thus by de�nition , Vd(p1; ; ::; pk) � V .Conversely, assume q 2 V � Vd(p1; :::; pk). Letp1; :::; pk ; rk+1; ::rt be a degree d Groebner proof of q, and letri be the �rst line of the proof with m(ri) 62 Vd(p1; ; ::; pk)

Then ri cannot be one of the pj's, and cannot be an ax-iom x2 � x either, since m(x2 � x) = 0. It cannot be theweighted sum of two previous lines since Vd(~p) is a vectorspace (and m(ar + bs) = am(r) + bm(s)). It cannot be xrjfor some previous line rj since for the degree of xrj to be atmost d, the degree of rj must be at most d � 1, and thenm(xrj) 2 Vd(~p). Thus, there can be no such line, and soq 2 Vd(~p), a contradiction. So V = Vd(~p). 24 A proof-searching algorithmIn this section, we give an algorithm to compute a basis forVd(~p) and hence to determine whether q is provable from ~pby a degree d Groebner proof. In the next section, we willshow how the well-known Groebner basis algorithm can beused for the same purpose. We include this section to presentsome ideas used in the next, and because the worst-case timeof the Groebner basis algorithm seems to be worse than thatof the algorithm presented here.Fix an order on multi-linear monomials that respects de-gree, i.e. degree d monomials are larger than degree d � 1in the sense of the order. De�ne the leading term LT(p) of amulti-linear polynomial p to be the largest monomial with anon-zero co-e�cient.The algorithm we describe in this section basically closesthe vector space of polynomials spanned by p1; :::; pk undermultiplication by variables. In doing so, it uses Gaussianelimination to keep all polynomials in the space linearly in-dependent.More precisely, the algorithm maintains a set B of multi-linear polynomials with the property that no two elementsof B have the same leading term, and a set S of polynomialsthat will eventually be added to B. Every element of S andB will be derivable from p1; :::; pk by a degree d Groebnerproof, and p1; :::; pk will be in the space spanned by B [ S.1. Initially, S = fp1; :::; pkg and B is empty.2. Repeat the following until S is empty.(a) Arbitrarily select and remove a polynomial p fromS.(b) Perform a Gaussian reduction of p by B to get apolynomial p0 as follows: Check to see if LT(p) =LT(q) for some q 2 B. If not, return p. If so,compute p�aq for a 2 F which causes the leadingterms to cancel. Then recursively reduce p� aq.(c) If the reduced polynomial p0 6= 0 add it to B. Ifin addition it has degree � d � 1, add m(xp0) toS for each variable x.The algorithm halts when S is empty. Note that eachp0 that causes n polynomials to be added to S adds a newpolynomial of degree d � 1 or smaller to B. Thus, sinceno two elements of B have the same leading term, thereare at most k + n� n�d�1� = O(n� n�d�1�) polynomials that



are ever in S. Assuming that a constant cost hash table ofleading terms can be maintained and that polynomials arestored as � n�d� dimensional vectors, reducing a polynomialrequires time O(� n�d�2). So the total time for the algorithmis O(n� n�d�1�(� n�d�)2) = O(d� n�d�3)Lemma 2: At the end of this algorithm, B is a basis forVd(p1; :::; pk) .Proof: The steps of the algorithms form degree d Groebnerproofs of each of the elements of B, so Span(B) � Vd(~p):B has no two members with the same leading terms, soB is linearly independent. It is easy to see that Span(S [B) only increases at every stage of the algorithm. This isbecause reducing a polynomial p by B does not change thespan of B [ fpg and otherwise we only add elements to S.Therefore, at the end, p1; :::; pk 2 Span(B).Thus, if we can show that for any degree d� 1 or smallerpolynomial q 2 Span(B), m(xq) 2 Span(B) then we canconclude that Vd(~p) � B by the de�nition of Vd(~p) Sincethe leading terms of B are all distinct, q = Paibi whereai 2 F and bi 2 B are of degree at most d � 1. To see this,consider any linear combination of elements of B that hasany non-zero term from a member of degree d. Consider themaximum leading term of a member of the linear combina-tion. Every other member has co-e�cient 0 for this term, sothis term has non-zero co-e�cient in the linear combination.Thus any linear combination that involves polynomials ofdegree d from B is itself degree d. Each bi was added to Bat some point, after which m(xbi) was added to S, since itsdegree is at most d�1. Since Span(B[S) only increases, thismeans each m(xbi) 2 Span(B) at the end of the algorithm,and hence so is m(xq). So Span(B) � Vd(~p) � Span(B),and B is a basis for Vd(~p). 2To see whether q 2 Vd(~p) we run the above algorithm andthen reduce q, and see if the result is 0.Thus we haveTheorem 3: There is an algorithm that runs in timeO(d� n�d�3) = O(n3d) which determines whether q is derivablefrom p1; :::; pk via a degree d Groebner proof.5 The Groebner Basis Algo-rithmThe Groebner Basis Algorithm [B65] is an algorithm for de-ciding membership in a polynomial ideal. In this section, weformulate a variant of the Groebner Basis Algorithm calledthe degree-dGroebner Basis Algorithm. The degree-d Groeb-ner Basis Algorithm allows us to decide membership in Vdwithout explicitly computing all of the polynomials in B. Forexample, if the �rst polynomial were xy�x, our previous al-gorithm would mindlessly add all the polynomials xyz� xz,

xyw � xw, xyzw � xzw, etc. to B. These polynomials donot really add any additional information over the original.In the (degree-d) Groebner basis algorithm, we would onlyexplicitly compute the �rst polynomial. The algorithm thenconsiders all the products as being virtually in the basis B.The output of the degree-d Groebner Basis Algorithm isa set G of polynomials which compactly represents the basisB. The algorithm requires that a term order be chosen where1 � t for every term t and which respects multiplication, i.e.if t1 � t2, then xt1 � xt2 for any variable x. The outputof the algorithm is dependent upon the choice of the termorder.Given a degree-d Groebner Basis G, membership in Vd canbe decided through a reduction algorithm. The de�nition ofa reduction is as follows. Given a term t, de�ne p(t) to bean arbitrary but �xed element g 2 G such that LT(g) j t.If no such g exists, we de�ne p(t) = ?: If q is a polynomialsuch that p(LT(q)) 6= ?, we say that q is directly Groebnerreducible to r if r = q� LT(q)LT(p(LT(q)))p(LT(q)). We say that q isGroebner reducible to q0 if q = q0 or if there exists an r suchthat q is directly Groebner reducible to r and r is Groebnerreducible to q0. The reduction process is deterministic, andeach direct reduction results in a polynomial whose leadingterm is less than the leading term of the previous polynomial.So after a �nite number of steps, a unique polynomial q0 willbe found which cannot be further reduced. If q0 is 0, we willomit reference to it and simply say that q is reducible withrespect to G.Given a polynomial f and a set of polynomials G, we willsay that f has a degree-d representation with respect to Gif it is possible to write f = P gihi where gi 2 G, hi isan arbitrary polynomial and deg gihi � d for each i. If infact LT(gihi) � LT(f) for each i, then we will say that f issemi-reducible with respect to G.Note that if the degree of f is less than or equal to dand f is semi-reducible, then f has a degree-d representa-tion. Also, if f is reducible, then it is semi-reducible. Forarbitrary sets G, though, the converses of these statementsare not in general true. This motivates our de�nition of adegree-d Groebner basis. We will say that G is a degree-dGroebner basis if f is reducible whenever f has a degree-drepresentation.A key part of the Groebner basis algorithm is the compu-tation of S-remainders. The S-remainder of two polynomialsf and g is de�ned to beSrem(f; g) = lcm(LT(f);LT(g))LT(f) f � lcm(LT(f);LT(g))LT(g) g:Computing S-remainders allows us to �nd polynomials whichhave degree-d representations but which are not semi-reducible. It turns out that all such polynomials can befound through repeated computations of S-remainders andreductions, so a degree-d Groebner basis can be found bycomputing a set which is closed under the formation of S-remainders and reductions.



In the rest of this section, we will describe an algorithm forcomputing a degree-d Groebner basis. The algorithm whichwe present is a simple variant of the standard Groebner basisalgorithm. The underlined part is our modi�cation of thealgorithm to keep degrees bounded.1. Initialize G = fg, and S = fx2i � xi j i = 1; :::;ng [fp1; :::; pkg.2. Repeat the following until S is empty:(a) Pick p 2 S(b) Groebner reduce p by G, getting p0.(c) If p0 6= 0, add p0 to the end of G and for each giif deg (lcm(LT(gi);LT(p0)) � d, add Srem(p0; gi)to S.After each iteration of the main loop, note that either Sgets smaller or G gets larger. If G gets larger, the polyno-mial p0 which is added to G has a leading term which is notdivisible by the leading term of any other polynomial in G.Since there are only � n�d� choices for distinct leading terms,G can only increase this many times. The total number ofentries added to S is n + k + �m2 �, where m is the �nal sizeof G. Consequently, the running time of the algorithm isproportional to � n�d�2 times the cost of a single reduction, orO(� n�d�4).To prove that the output of the algorithm is a degree-dGroebner basis, we �rst prove a few lemmas.Lemma 4: Suppose that a polynomial f is added to Sat some stage of the algorithm. Then, f is semi-reduciblewith respect to the output set G.Proof: More generally, let H be an arbitrary set ofpolynomials, and suppose that a polynomial g is reducibleto g0 with respect to H. If f is semi-reducible with respectto H [ fgg, then f is also semi-reducible with respect toH [ fg0g.Under the hypotheses of the lemma, f is semi-reduciblewith respect to G [ S at some stage of the algorithm. Sincethe algorithm executes by replacing G [ S with G [ S �fpg [ fp0g for polynomials p and p0, the invariant of semi-reducibility with respect to G [ S is maintained. Since Sis empty when the algorithm terminates, the lemma follows.2 This lemma allows us to make the following observations:� x21 � x1; :::; x2n � xn are semi-reducible.� p1; :::; pk are semi-reducible.� If gi; gj 2 G and deg (lcm(LT(gi);LT(gj))) � d, thenSrem(gi; gj) is semi-reducible.Lemma 5: Suppose that f has a degree-d representa-tion. Then, f is semi-reducible.

Proof: This is a direct application of Lemma 5 (p.83) from [CLO]. Let f = P gihi be a representation of f ,and let t = maxfLT(gihi)g. If LT(f) � t, then Lemma 5,combined with our observation that degree-d S-remaindersare semi-reducible, allows us to rewrite f = P gih0i suchthat maxfLT(gih0i)g is smaller than t in the term order.Consequently, we can �nd a representation for f wheremaxfLT(gih0i)g = LT(f). But this says that f is semi-reducible. 2Theorem 6: The set G computed by the above algo-rithm is a degree-d Groebner basis.Proof: Suppose to the contrary that there exists a poly-nomial f which has a degree-d representation but which isnot reducible. Assume that f is chosen such that LT(f) isminimal among all such polynomials with this property. LetP gihi be a representation of f , and let t = maxfLT(gihi)g.By the previous lemma, we may assume that t = LT(f).But this implies that there is an i such that LT(gi) j LT(f).Consequently, p(LT(f)) 6= ?. Therefore, there exists a poly-nomial f 0 such that f is directly reducible to f 0. By theminimality of our choice of f , f 0 is reducible. But then f isreducible, so we have a contradiction. 2Let BG be the set of polynomials which are reducible withrespect to G. By the Theorem, BG is the same as the set ofpolynomials which have degree-d representations. We havealready noted that x2i � xi 2 BG for each variable xi andthat p1; :::; pk 2 BG. In addition, it is easy to see that alinear combination of degree-d representations is a degree-drepresentation, so BG is a vector space. Now suppose thatf 2 BG is of degree at most d � 1. Since f is reducible, ithas a degree d � 1 representation. Consequently, xif has adegree d representation, so BG is closed under multiplicationof degree d� 1 polynomials by variables. We therefore havethe following:Theorem 7: Vd(p1; :::; pk) � BG.As noted above, the running time of the degree-d Groeb-ner basis algorithm is O(� n�d�4). While this would appear tobe worse than the running time of the algorithm describedin the previous section, in practice it performs quite a bitbetter. It is possible to show that many of the S-remaindersneed not be computed [B79]. In addition, the running timeof the algorithm can be improved through using heuristicsfor choosing a suitable term order, for ordering the set S, forcomputing the function p(t), and for computing the reduc-tion of a polynomial. An implementation of these heuristicsin a distributed setting is described in [CW]. There remainmany questions about the optimal methods to implementthis algorithm.



6 The power of the proof systemIn this section, we compare the power of the Groebner proofsystem to that of traditional proof systems such as resolu-tion. Resolution is a system for reasoning about clauses, or'sof literals. The or of k literals requires degree k to express asa polynomial. Since we assume that the input polynomialsto a Groebner proof are low degree polynomials, we need toeither restrict to proofs of tautologies involving small clauses,or to give an indirect formulation for arbitrary clause size.One such indirect formulation is given below. Our resultshold for either way of handling this issue. Resolution proofsare typically presented as refutations; one proves that thenegation of the and of a set of clauses is a tautology by deriv-ing a contradiction from the set, The equivalent for Groebnerproofs is to derive 1 (i.e., 1 = 0) from the translations of theclauses.We give several simulations of traditional proof systems byGroebner proofs. First, we show that if the clauses are Hornclauses or the duals of Horn clauses, and are unsatis�able,then their translation has a Groebner proof of degree 3, andhence the Groebner basis algorithm will derive a contradic-tion in polynomial-time. Since the translation from clausesto polynomials can be done in log space, we have as a con-sequence that distinguishing between satis�able polynomialsand those with a degree 3 Groebner proof is P -complete.Second, if a set of clauses have a tree-like resolution refu-tation with S lines, then they have a degree log S Groebnerrefutation. If S is quasi-polynomial, then this refutation willbe of quasi-polynomial size and �ndable in quasi-polynomialtime by the Groebner basis algorithm. The Putnam-Davisprocedure is an algorithm (with many variations in imple-mentation) to �nd tree-like resolution proofs. Thus, forinstances on which any version of the Putnam-Davis pro-cedure �nds a contradiction in time 2�n, the algorithm insection 4 will �nd a contradiction in time approximately2(3� log(1=�)+3�)n. So any instances on which even an optimalPutnam-Davis procedure is sub-exponential, our algorithmwill also be sub-exponential.Finally, if a set of clauses has any resolution refutationwith S lines, then it has a degree 3(n ln S)1=2 Groebner refu-tation. In particular, if S = 2�n, our algorithm �nds arefutation in time 2O(�1=2 log(1=�)n). So if weakly exponen-tial (S = 2o(n)) size resolution proofs exist for a class ofinstances, then our algorithm also has weakly exponentialbehaviour on these instances.Represent literal x by 1 � x. For tautologies with largeclauses, we can translate the clause Ci = xi;1 _ xi;2 _ ::xi;minto the polynomial ri;1xi;1 + ri;2xi;2 + ::ri;mxi;m = 1 whereeach ri;j is a new variable. If xi;j = 1, we can assignvalue 1 to ri;j = 1 and 0 to all the other ri;k to sat-isfy the equation. However, if all xi;j = 0, we cannotsatisfy the equation no matter how we pick ri;j . Thus,the original set clauses are satis�able if and only if thetranslations are mutually satis�able. If the clause size is

small, and we represent the polynomials directly, we canuse arguments based on the above translation by lettingri;j = (�1)m+j(xi;j+1 � 1)(xi;j+2 � 1)::(xi;m � 1). The or ofthe variables is given by ri;1xi;1 + ri;2xi;2 + ::ri;mxi;m whenwe make the given substitution for ri;j . Doing this substitu-tion for every line of a proof from the translations will thenat most multiply the refutation degree by the clause size -1.(Actually, using the arguments given below with the directtranslation only increases the degree by an additive factor ofthe clause size.)If all the clauses are duals of Horn clauses (for simplicity,Horn clauses work out identically), i.e., at most one variableis negated per clause, we proceed as follows to �nd a degree 3proof. Take all the variables we know to be false, i.e. wherewe've been given or derived xj = 0. If they cover all the non-negated variables in a clause, but not the negated variablein the clause, this allows us to make the following series ofdeductions: We know r1x1+:::rkxk+rk+1(1�xk+1) = 1 andeach xi = 0 for i � k. We use this to derive rk+1(1�xk+1) =1. Multiply by xk+1 to get rk+1(xk+1 � x2k+1) = xk+1 Thenmultiply the axiom xk+1�x2k+1 by rk+1 and subtract to getxk+1 = 0. So we've added a new variable to the list of knownfalse variables. Similarly, if our list of known false variablescovers an entire clause with no negated variables, we canderive 0 = 1, and we're done. If at some point, neither istrue, set all remaining variables to 1, and we've satis�ed allclauses. So if the Horn clauses were unsatis�able we �nd adegree 3 proof of 0 = 1.It follows that:Theorem 8: It is P -hard to distinguish satis�able poly-nomials from those with a degree 3 Groebner refutation.It is actually possible to replace degree 3 with degree 2 inthe above theorem, by using a translation that distinguishesbetween negated and non-negated variables. We would nothave a co-e�cient ri;k+1 for the only non-negated variable.It is easy to see that the same argument holds. This wassuggested by Pitassi [P].The following simple properties of the Groebner proof sys-tem will be used in showing simulations of resolution proofsfor general clauses. For p a polynomial and x a variable, letpjx=1 be the polynomial in the other variables obtained bysetting x to 1, and similarly for pjx=0.Lemma 9: Let x be a variable and p; p1; ::pk; q; q0 bemultilinear polynomials of degree at most d.1. If p1; :::; pk; x `d 1 then p1; :::; pk `d+1 1� x.2. If p1; :::; pk; 1� x `d 1 then p1; :::; pk `d+1 x.3. p; x `d pjx=04. p; 1� x `d pjx=1.5. If p1; :::; pk `d q and p1; :::; pk; q `d q0, then p1; :::; pk `dq06. If p1jx=0; :::; pk jx=0 `d 1 and p1jx=1; :::; pkjx=1 `d+1 1,then p1; :::; pk `d+1 1.



7. If p1jx=1; :::; pkjx=1 `d 1 and p1jx=0; :::; pkjx=0 `d+1 1,then p1; :::; pk `d+1 1.Proof:1. Assume p1; :::; pk; x; r1; :::; rt; 1 is a Groebner refuta-tion of degree d of p1; :::; pk; x. Then p1; ::pk; p1(1 �x); :::; pk(1�x); x(1�x); r1(1�x); ::rt(1�x);1�x is adegree d+1 Groebner proof from p1; :::; pk (since x(1�x)is an axiom.)2. Similar to the previous claim.3. Let p = xp1 + p0, where p1; p0 are independent of x.Then pjx=0 = p0 = p� p1x. So to prove p0 from p andx, multiply x by each term of p1 and subtract from p.Since p has degree at most d, p1 has degree at mostd� 1, so no line will have degree more than d.4. Similar to the previous claim, p+ p1(1�x) = p1+ p0 =pjx=1. .5. Concatenate the two proofs.6. p1jx=0; ::pkjx=0 `d1, so p1; :::; pk; x `d p1jx=0; :::; pkjx=0 `d 1. Thenby claim 1, p1; :::; pk `d+1 1 � x. Similarly, sincep1jx=1; :::; pkjx=1 `d+1 1, p1; :::; pk ; 1� x `d+1 1. Thenp1; ::pk `d+1 1 by the previous claim.7. Similar to the previous claim.2It is particularly useful that the last two claims of thelemma are not symmetric with respect to the two degreesrequired.Resolution is a proof system whose lines are or's of sets ofliterals, and whose one inference rule is, from x _ (_A) and:x_ (_B) , infer A _B, where A and B are sets of literals,and _S represents the or of all elements of S. The graph ofa proof has lines of the proof as nodes, and a directed edgefrom each line to the previous lines used to derive it. (Axiomsand initial assumptions are sinks.) A proof is tree-like ifthe graph of the proof is a tree; we may make copies of theoriginal clauses in order to make a proof tree-like. In general,a backtracking algorithm that does not use memoization,such as the Putnam-Davis procedure in most incarnations,will produce tree-like proofs, since it will re-derive results foridentical sub-problems on di�erent branches of the program.The next theorem gives a quasi-polynomial simulation oftree-like resolution proofs by Groebner proofs. This gives thebest algorithm we know of to separate sets of clauses withsmall tree-like resolution refutations from satis�able clauses.Computing the minimal size of a tree-like resolution refu-tation of a set of clauses is NP -hard ([IM]). It should benoted that the ideas here can also be used to produce adirect quasi-polynomial time, quasi-polynomial approxima-tion algorithm for this problem. However, it appears thatthis algorithm will be slower than �nding the correspond-ing Groebner refutation if the size of the minimal tree-likeresolution refutation is close to exponential.

Theorem 10: If a set of clauses of size at most k hasa tree-like resolution proof with S lines, then the corre-sponding polynomials have a Groebner refutation of degreek + log2 Sg. Their translations using new variables have aGroebner refutation of degree 2 + log2 S.Proof:We prove the claim by induction on S. Let C1; ::Ck bethe clauses and p1; :::; pk be the direct or implicit transla-tions into polynomials. It should be noted that if x is aliteral in Ci, then for either kind of translation, pijx=0 is thetranslation of Ci � x, the clause when x is restricted to befalse. Let m be the maximum degree of the pi, either m = kif we represent the clauses directly or m = 2 if we representthem implicitly.Consider the derivation of the last line, the empty clause,in the refutation. It must be either one of the Ci's, orobtained by resolving x with :x for some variable x. Ifthe former , one of the Ci's is empty, and the correspond-ing pi = 1. This is a degree 0, 1 line Groebner refuta-tion. If the latter, x was derived by a tree-like resolutionproof with S1 lines and :x by a tree-like resolution proofwith S2 lines, where S1 + S2 = S � 1. Then restrictingx = 0 at all lines of the �rst sub-proof gives a S1 line tree-like refutation from the restrictions of the Ci's substitut-ing x = 0. Inductively, p1jx=0; :::; pkjx=0 `m+log2 S1 1 andp1jx=1; :::; pk jx=1 `m+log2 S2 1 . Assume S1 < S=2. Thenapplying Claim 6 of Lemma 9, with d = m + log2 S � 1 �m+ log2S1, we have p1; ::pk `m+log2 S 1 as desired. The caseS2 < S2 is symmetric, applying Claim 7 instead. 2This gives an � n�m+log2 S�O(1) algorithm for unsatis�abil-ity , where S is the smallest tree-like resolution proof. Theabove approach (to �nd a refutation given that there is atree-like refutation of size S, search through all literals for arefutation of the restricted version aassuming that a tree-likerefutation of size S=2 exists. If we �nd a refutation for x, werestrict our clauses by :x and recursively search for a refu-tation assuming that one of size S exists) directly gives annO(log2S) algorithm, This is approximately the same whenS is relatively small, but is more than polynomially betterwhen S = 2n1�o(1) .We prove a similar but weaker result for general resolutionproofs.Theorem 11: If a set of clauses of size at most k has aresolution proof with S lines, then the corresponding polyno-mials have a Groebner refutation of degree 3(n ln S)1=2+k+1. Their translations using new variables have a Groebnerrefutation of degree 3 + 3(n ln S)1=2.Proof:Let b > 0. Let m be as before. We prove by inductionon S0 and the number of variables that if there are at mostS0 � 1 lines larger than b in the resolution proof, then thereis a refutation of degree at most b+m+1� log1�b=2n(S0) If



there are no such lines, it is easy to see that the proof canbe directly simulated with a degree b + 1 Groebner proof.(Each derivation is sound and involves at most b+1 variables;Groebner proofs are a complete system and the maximumdegree of a proof is the number of variables.) If there are S0such lines then there must be a literal x in at least S0b=2nlines. Restricting the proof by setting x = 1 sets all of theselines to true, and only reduces the size of other lines. So thereare at most (1� b=2n)S0 lines larger than b in the restrictedproof. Inductively then, there is a Groebner refutation ofp1jx=1; ::pkjx=1 of degree b+m+1�log1�b=2n((1�b=2n)S0) =(b+m+ 1 � log1�b=2n(S0)) � 1. Also, by induction on thenumber of variables, p1jx=0; :::; pkjx=0 has a Groebner refuta-tion of degree b+m+1� log1�b=2n S0. Thus, applying claim6 or 7 of Lemma 9 depending on whether x is a variable ornegated variable, we have a degree b+m+ 1� log1�b=2n S0degree refutation of p1; :::; pk.The theorem then follows by setting b = (n ln S)1=2 in theinductive claim. 2Again, the above argument can be made into a direct proofsearch procedure for resolution, but it will be less e�cientthan using the Groebner proof searching algorithms when Sis almost exponential. (In this case, if S = 2�n, using ouralgorithm takes time at most 2O(�1=2 log(1=�)n), but the directprocedure will take 2O(�1=2n log n). )When we use the above simulations to get time boundsfor our algorithms, the constant factors in the exponentsare enough to make the bounds of no practical importance.However, these simulations do provide a theoretical justi�-cation for our belief that the Groebner basis algorithm willdo relatively well on those instances of unsatis�ability thatresolution methods do well on. We have begun experimen-tal testing to see if this belief holds up for real instances.Experimentally, the time taken by the Groebner basis algo-rithm seems to heavily depend on the term order and datastructures used. It is not clear how or why. For example, weran [CW]'s Groebner basis program (on a SPARC 20 Model61) on an unsatis�able 3-CNF formula which [KS]'s methodsolved in 5 minutes of CPU time using back-tracking([S]).With good choices for the representation of the problemand the term order, the Groebner program took 10 min-utes; other runs, with other representations and term orders,failed to �nd a refutation after several days. Once we un-derstand how to optimize the Groebner basis algorithm forunsatis�ability problems, we hope to substantially improvethe di�erence in times.7 Groebner vs. NullstellensatzIn this section we show:Theorem 12: There is a refutation on n(n+1) variablesthat can be proved in the Grobner proof system with degree3 yet that requires degree n in the Nullstellensatz proof sys-tem.

(See [BIK+94] for the de�nition of the Nullstellennsatzsystem.)The separating refutation is a generalization of the pigeonhole principle. We call it the house sitting problem. Theproblem consists of n + 1 pigeons indexed by [0::n] and nholes [1::n]. Each pigeon i owns hole i, except for pigeon 0that owns no hole. The holes are ordered in terms of hownice they are. Every pigeon must be in exactly one hole. Apigeon is either home or is house sitting in a hole nicer thenits own, i.e. in hole j for some j � i. If the owner is home,then no other pigeon may be there. On the other hand, ifthe owner is not home, then any number of pigeons may bethere. It is easy using strong induction to see that this isa refutation. Pigeon n must be home because there are nonicer holes to stay in. Now assume by way of induction thatpigeons [i + 1::n] are all home. Because these owners arehome, pigeon i can't stay any of the holes [i + 1::n], yet itmust stay in one of the holes [i::n]. Hence, it too must behome. The conclusion is that pigeon 0 is home, but it doesnot have a home.This can be represented by the following polynomials. Foreach pigeon i 2 [0::n] and hole j 2 [1::n], let xhi;ji indicatethat pigeon i is in hole j. (For simplicity, we include xh0;0ias a variable ).� For each i 2 [0::n], let Qi be : (Pj2[i::n] xhi;ji) � 1.Qi = 0 implies that pigeon i must be in (at least) onehole that is at least as nice as its own.� For each i 2 [0::n] and j; k 2 [1::n], let Qhi;j;ki bexhi;jixhi;ki. Qhi;j;ki = 0 states that pigeon i can't bein both holes.� For each i 2 [0::n] and j 2 [i + 1::n], let Qhi;ji bexhi;jixhj;ji. Qhi;ji = 0 states that pigeon i cannot bein hole j if pigeon j is home.� Let Q be xh0;0i. Q = 0 states that pigeon 0 is not home.� For each i 2 [0::n] and j 2 [1::n], let Q0hi;ji be x2hi;ji �xhi;ji. Qhi;j;ki = 0 insures that the variable xhi;ji takeson f0; 1g values.The proof that this set of polynomials cannot all simul-taneously be zero in the Grobner proof system parallels theabove prove by strong induction.In reverse order on the value of i, we derive the polyno-mials xi;j for j > i and xi;i � 1, i.e., that the pigeon i isnot in any hole other than its home, and hence is home. Fori = n, xn;n = Qn is given. Suppose that we have derived theequations xi+1;i+1 � 1; : : : ; xn;n � 1. For each j 2 [i + 1::n],derive xhi;ji as �xhi;ji � (xj;j � 1) + Qhi;ji and then derivexi;i as Qi �Pj2[i+1::n] xi;j . Eventually we derive x0;0, andQ�x0;0 gives the desired contradiction. Note no polynomialin the proof has degree higher then two.The lower bound that the Nullstellensatz proof system re-quires degree n is of course harder. We use the techniquedeveloped in [BCE+95], using linear algebra duality to re-duce the issue to the question of the existence of a certaincombinatorial design.



Suppose there are polynomials P of degree d = n �1 so that Pi2[0::n] PiQi + Pi2[0::n];j;k2[1::n] Phi;j;kiQhi;j;ki+ Pi2[0::n];j2[i+1::n] Phi;jiQhi;ji + PQ+ Pi2[0::n];j2[1::n] P 0hi;jiQ0hi;ji = 1. The �rst thing to ob-serve is that this statement is equivalent toPi2[0::n] PiQi �1(mod Qhi;j;ki;Qhi;ji;Q;Q0hi;ji). From now on all our algebrawill be polynomials modulo (xhi;jixhi;ki, xhi;jixhj;ji, xh0;0i,x2hi;ji �xhi;ji) with GF[2] as the co-e�cient �eld. Given thismodulus, we may assume that if XM =Qhi0;j0i2M xi0;j0 is amonomial in one of the polynomials Pi, then M is a partiallegal mapping from pigeons to holes. Speci�cally, M mapsa subset dom(M) � [0::n] of the pigeons to holes with therequirements that each mapped pigeon is mapped to holethat is at least as nice as his own home and no other pigeonis mapped to a hole if the owner is home. Let the coe�cientin Pi of the monomial XM corresponding to matching M beaiM .Definition 7.1: Matching M matches i if hi; ji 2 M forsome j 2 [1;N ]. We write this formally as i 2M . If i 2M ,we write M � i for the matching M �fhi; jig where j is theunique value such that hi; ji 2M .One useful observation is that we can assume that aiM =0 if i 2 M , since for M = fhi; kig [ (M � i) and XM =XM�ixi;k, we have XM �Qi � 0:We can view the equationPi2[0::n] PiQi = Pi2[0::n] Pi[(Pj2[i::n] xhi;ji) � 1] � 1 asa set of restrictions on the coe�cients aiM of Pi. For eachlegal partial mapping M , we obtain a constraint by equatingthe coe�cients for the monomial XM on the two sides of theequation. These constraints are:(1) �Pi2[1;N+s] ai; = 1(2) Pi2M aiM�i �Pi62M aiM = 0, for all M 6= ;.That the polynomials are of maximum degree d = n�1 addsthe constraints:(3) aiM = 0, for jM j � d+ 1 = n.We will now show that the above system of equations (1)-(3) has a solution over GF[2] if and only if there does notexist a particular combinatorial design.Definition 7.2: For each subset of pigeons S, let MS de-note a collection of legal matchings where each of the match-ings M 2 MS matches only those pigeons in S. ThenMSLM0S is de�ned to be the collection of matches thatappear an odd number of times in MS [M0S. For i 2 S, de-�ne MS � i to be the collection of matchings that is formedby removing pigeon i from each of the matchings in MSand then keeping those matchings (on pigeons S � i) thatappear an odd number of times. More formally MS � i =LM2MfM � ig.

Definition 7.3: A d-design is a collection of legal match-ings, M = [S�[0::n];jSj�d+1MS, such that each matchingin M has size at most d + 1 and such that the followingconditions hold.(a) The empty matching M = � is in M.(b) For any S � [0::n], jSj � d+1, and i 2 S, the collectionssatisfy MS�i =MS � i.Lemma 13: If there is an n-design then equations (1)-(3) have no solution over GF[2].Proof: Suppose we have an n-design M and a solutionfor (1)-(3). We view the matchings M 2 M as selecting asubset of the equations in (1)-(3), since there is one equationfor each matching. We consider the GF[2] sum of the selectedequations. Condition (a) in the de�nition of an n-designrequires that equation (1) is selected so the right-hand sideof the sum is 1.We will show that condition (b) in the de�nition of an n-design implies that the left-hand side of this sum is 0 whichis a contradiction. Consider the coe�cient of aiM in thesum. It occurs once (with coe�cient -1) if M 2 M. Italso occurs once (with coe�cient +1) for each j such thatM [ fhi; jig 2M. In other words, there is a contribution of-1 if M 2 MS and a contribution of +1 if there are an oddnumber of j such that M [ fhi; jig 2 MS[fig. The latteris true if and only if M 2 MS[fig � i. By condition (b) ofthe de�nition of an n-design, MS = MS[i � i so the netcoe�cient of aiM is 0. 2What remains is to construct such a design.Lemma 14: There exists an n-design.The proof will be given in the journal version of the paper.8 Future directionsWe do not know of any non-trivial lower bounds for thedegrees of Groebner proofs. Besides giving insight into whichare the hard instances of unsatis�ability for our methods,such a lower bound might have consequences for traditionalproof systems. Pitassi [P] has pointed out that a lower boundfor Groebner proofs for one of the matching principles wherea switching lemma is known would yield a correspondinglower bound for Frege proofs whose formulas are parities ofAC0 formulas.If the (non-onto) pigeonhole-principle had a constant orlow degree Groebner proof, then this would give a newmethod for solving bipartite mathching and for separating k-colorable graphs from graphs with a k+1-clique. Lovasz [L]has such an algorithm using semi-de�nite programming, butit would be interesting to see if the Groebner basis algorithmcould also be used for this purpose.
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