
The Power of Free Branching in a General Model of Backtracking

and Dynamic Programming Algorithms

SASHKA DAVIS

IDA/Center for Computing Sciences

Bowie, MD

sashka.davis@gmail.com

JEFF EDMONDS

Dept. of Computer Science

York University

jeff@cse.yorku.ca

RUSSELL IMPAGLIAZZO

Dept. of Computer Science

University of California, San Diego

russell@cs.ucsd.edu

ALLAN BORODIN

Dept. of Computer Science

University of Toronto

bor@cs.toronto.edu

June 27, 2020

Abstract

The Priority Branching Tree (pBT) model was defined in [ABBO+11] to model recursive back-

tracking and a large sub-class of dynamic programming algorithms. We extend this model to the Pri-

oritized Free Branching Tree (pFBT) model by allowing the algorithm to also branch in order to try

different priority orderings without needing to commit to part of the solution. In addition to capturing a

much larger class of dynamic programming algorithms, another motivation was that this class is closed

under a wider variety of reductions than the original model, and so could be used to translate lower

bounds from one problem to several related problems. First, we show that this free branching adds a

great deal of power by giving a surprising moderately exponential (2n
c

for c < 1) upper bound in this

model. This upper bound holds whenever the number of possible data items is moderately exponential,

which includes cases like k-SAT with a restricted number of clauses. We also give a 2Ω(
√

n) lower bound

for 7-SAT and a strongly exponential lower bound for Subset Sum over vectors mod 2 both of which

match our upper bounds for very similar problems.

1 Introduction

Algorithms are often grouped pedagogically in terms of basic paradigms such as greedy algorithms, divide-

and-conquer algorithms, local search, dynamic programming, etc. There have been many moderately suc-

cessful efforts over the years to formalize these paradigms ([BNR03, DI09, ABBO+11, BODI11, ?, ?]).

The models defined capture many algorithms known (intuitively) to be in the DP paradigm. These works

establish lower bounds for the given models; that is, either that certain approximation ratios cannot be im-

proved, or that exponential size algorithms are required within the model. These models also provide a

formal distinction between the power of different paradigms.

The general framework for many models is that such algorithms view the input one data item at a time,

and after each data item, the algorithm is forced to make irrevocable decision(s) about the solution as related

to the received data item. (For example, should the data item be included or not in the solution, should

the item be scheduled on machine 1 or 2, etc.). The technique for lower bounds is information-theoretic

in that the algorithm does not know the rest of the input before needing to commit to part of the solution.

These techniques borrowed from those dealing with online algorithms [BEY98, FW98], where an adversary

1

chooses the order in which the items arrive. However, the difference here is that, while inputs arrive in

a certain order, the algorithm determines that order, not an adversary. A very successful formalization of

greedy-like algorithms was developed in [BNR03] with the priority model. In this model, the algorithm is

able to choose a priority order (greedy criteria) specifying the order in which the data items are processed.

[ABBO+11] extends these ideas to the priority branching tree (pBT) model which allows the algorithm when

reading a data item to branch so that it can make, not just one, but many different irrevocable decisions about

the data item. In an adaptive pBT algorithm, each such branch of the tree is allowed to specify a different

order in which to read the remaining data items. The solution of the algorithm is is obtained by taking the

best branch. The width of the algorithm is the maximum number of branches that are alive at any given

level (i.e. time) of the tree. This relates to the space (and total time) of the algorithm. In order to keep this

width down the algorithm is allowed to later terminate a branch (and back track) when this computation

path does not seem to be working well. Surprisingly, the resulting model can also simulate a large fragment

of dynamic programming algorithms. This model was extended further in [BODI11] to the Prioritized

Branching Program model (pBP) as a way of capturing more of the power of dynamic programming.

One weakness of both the pBT and pBP models is that they are not closed under reductions that introduce

dummy data items. In a typical reduction, we might translate each data item for one problem into a gadget

consisting of a small set of corresponding data items for another. In addition, many reductions also have

gadgets that are always present, independent of the actual input. For example, when we reduce 3-SAT to

exactly-3-out-of-five SAT, we might introduce two new variables per clause, and if the clause is satisfied by

t ≥ 1 literals, we can set 3 − t of these new variables to true. The set of new variables and which clauses

they are in depends only on the number of clauses in the original formula, not the structure of these clauses.

Setting the value of one of these “dummy” variables does constrain the original satisfying assignment, but

not any particular original variable. Such a data item in the extreme is what we call a free data item. These

are data items such that the irrevocable decision that must be made about it does not actually affect the

solution in any way. The reason that adding these free data items to the pBT model increases its power is

because when reading them the computation is allowed to branch without needing to read a data item that

matters.

Note: Which do you like priority free branching tree or prioritized free branching tree. I don’t

have an opinion. We extend the pBT model to the prioritized Free Branching Tree (pFBT) model by

allowing the algorithm to also branch in order to try different priority orderings without reading a data item

and hence needing to fix the part of the solution relating to this data item. In addition to closing the model

under reductions, it also allows for a much wider range of natural algorithms. For example, one such branch

of an algorithm for the Knapsack Problem might sort the data items according to price, another according

to weight, and another according to price per weight. The algorithm will branch initially and return the

best of these three greedy (i.e. priority algorithm) solutions. Obviously, free branching is simply a non-

deterministic branching but we will use the word “free” to contrast it with branching only on the decisions

for data items.

The contributions of this paper are both to develop a new general proof technique for proving lower

bounds in this seemingly not much more powerful model and (in contrast) for finding new surprising al-

gorithms showing that this change in fact gives the model a great deal of additional (albeit unfair) power.

While the known lower bounds for 3-SAT in pBT are the tight 2Ω(n), for pFBT, we are only able to prove a

2Ω(n1/2) lower bound for 7-SAT. The upper bounds show that perhaps this is due more to the model’s sur-

prising strength, rather than to our inability to prove tight lower bounds. More precisely, any problem whose

set |D| of possible data items is relatively small has an upper bound in the model of roughly exponential in√
n. This covers the case of any sparse SAT formula where the number of occurrences of each variable is

bounded. There is some formal evidence that this is actually the most difficult case of SAT ([IPZ01]).

The idea behind the “unreasonable algorithm” is as follows. When the algorithm reads data item D,

2

it learns all the data items appearing before D in the priority ordering that are not in the instance. Being

allowed to try many orderings and abandoning those that are not useful, the algorithm is able to learn all

of the data items from the domain D that are not in the instance and in so doing effectively learns what the

input is. The algorithm is computationally unbounded (with respect to making decisions) and hence can then

instantly know a valid solution. Having m = O(n log |D|) free data items, i.e. those whose decision does

not affect the solution, brings the tree width down toO(n log |D|)3 even without free branching, i.e. in pBT.

NOTE: I took out the point at which m starts to help. I could also break it into multiple sentences if

you like.

Figure 1 gives a summary of those results.

Computational Problem |D| W in pBT W in pFBT W with m f.d.i.

General d 2O(n) 2O(
√
n log d) 2

O
(

n log d
m+

√
n log d

)

k-SAT O(1) clauses per var nO(1) 2O(
√
n logn)

k-SAT m′ clauses 2n
k−1

2O(k1/2n1/3m′1/3 log n)

Matrix Inversion nO(1) 2Ω(n) 2Ω(
√
n) 2

Ω
(

n
m+

√
n

)

7-SAT O(1) clauses per var

Matrix Parity n2n 2Ω(n) 2
Ω
(

n2

m+n

)

Subset Sum 2Ω(n/ log n)

SS no carries or in pFBT− 2Ω(n)

Figure 1: This table summarizes the results in the paper. Here pBT and pFBT stand for the two models

of computation priority Branching Trees and prioritized Free Branching Tree. The prioritizing allows the

model to specify an order in which to read the data items defining the input instance. Branching allow

the algorithm to make different irrevocable decisions about the data items read and to try different such

orderings. The free branches allow the tree to branch without reading and hence needing to fix the part of

the solution relating to a data item. Free data items, f.d.i., are data items whose irrevocable decision does

not effect the solution. Here D is the full domain of all possible data items that potentially could be used

to define the problem. The algorithm that uses free branching and/or free data items in a surprising and

unfair way depends on this domain being small. ’W’ is short for the width of the branching tree. This is a

measure of how much space (or total time over all executed branches) the algorithm uses. The problem “SS

no carries” is the Subset Sum problem with the non-standard change that the sums are done over GF-2. A

slightly better lower bound can be obtained for this because the reduction to it does not need dummy/free

data items. Similarly the lower bound is obtained in another the model pFBT− which restrict the use of such

dummy data items.

NOTE: Yes. This is what Russel did not like too. Do you think it worth including or would you

prefer it to be deleted entirely? I just don’t care.

The second way of getting around the challenges of doing reductions is to restrict the model pFBT to

pFBT−. The input instance is allowed to specify some of its data items to be known. The pFBT− algorithm

knows that such a data item is in the input instance even though it has not yet received it or made an

irrevocable decision about it. If, despite this knowledge, an pFBT− algorithm wants to read such data items,

it must do so separately from reading the unknown ones. Similarly, the input instance is allowed to pair

some of the data items to be equivalent. The pFBT− algorithm does not know which pairs of data items

will be in the instance, but does know that if one is then the other will be as well. An input reading state

of a pFBT− computation tree can either read such a pair together or when one of the pair is read, the other

automatically becomes a known data item as previously described. These restrictions prevent the algorithm

3

from inadvertently learning what unknown data items are not in the instance (because they would appear

before the known data items in the priority order). Having removed their power, the 2Ω(n) width lower bound

for the matrix parity problem goes through in the pFBT− model no matter how many known/free data items

there are. The reduction then gives the 2Ω(n) width lower bound for Subset Sum in pFBT− model.

The paper is organized as follows. Section 2 formally defines the computational problems and the

pFBT model. It also motivates the model in terms of its ability to express online, greedy, recursive back-

tracking, and dynamic programming algorithms. Section 3 provides the upper bounds arising from having

free branching and/or free data items and small domain size. We also extend this algorithm to obtain subex-

ponential algorithms when there are few (i.e. m − o(n2)) clauses. In Section 4 we present the reductions

from the hard problems 7-SAT and Subset Sum to the easy problems Matrix Inversion and Matrix Parity. In

Section 5 we provide a general technique for proving lower bounds within pFBT and then use the technique

to obtain the results for the matrix problems. The sections after Section 2, can be read in any order.

2 Definitions

This section defines the computational problems in Section 2.1, intuition about the model in Section 2.2, the

formal definition of the pFBT model in Section 2.3, and pFBT− in Section 2.4.

2.1 The Computational Problems

Here we give a formal definition of a general computational problem and also state the k-SAT, the Matrix

Inversion, the Matrix Parity Problem, and the Subset Sum problem in the priority algorithm framework:

A General Computational Problem: A computational problem with priority model (D,Σ) and a family

of objective functions fn : Dn × Σn 7→ R is defined as follows. The input I = 〈D1, D2, . . . , Dn〉 ∈
Dn is specified by a set of n data items Di chosen from the given domain D. A solution S =
〈σ1, σ2, . . . , σn〉 ∈ Σn consists of a decision σi ∈ Σ made about each data item Di in the instance. For

an optimization problem, the desired solution S maximizes f(I, S). For a search problem, f(I, S) ∈
{0, 1}.

k-SAT: The input consists of the AND of a set of clauses, each containing at most k literals and the output

is a satisfying assignment, assuming there is one. A data item contains the name xj of the variable

and the description of all clauses in which it participates.

Unrestricted: The number of potential data items in the domain is |D| = n · 22(2n)k−1
, because there

are 2(2n)k−1 clauses that the given variable xi might be in.

m clauses: Restricting the input instance to contain only m clauses, does not restrict the domain of

data items D.

O(1) clause per variable: If k-SAT is restricted so that each variable is in at mostO(1) clauses, then

|D| = n · [2(2n)k−1]O(1) = nO(1).

The Matrix Inversion Problem (MI): This problem was introduced in [ABBO+11] and slightly modified

by us. It is defined by a matrix M ∈ {0, 1}n×n that is fixed and known to the algorithm. It is

non-singular, has exactly seven ones in each row, at most K ones in each column, and is a (r, 7, c)-
boundary expander (defined in Section 5.2), with K ∈ Θ(1), c = 3 and r ∈ Θ(n).

The input to this problem is a vector b ∈ {0, 1}n. The output is an x ∈ {0, 1}n such that Mx = b over

GF-2. Each data item contains the name xj of a variable and the indices of the at most K bits bi from

b involving this variable, i.e. those i for which there is a j such that M〈i,j〉 = 1. Note |D| = n2K .

4

The Matrix Parity Problem (MP): The input consists of a matrix M ∈ {0, 1}n×n. The output xi, for each

i ∈ [n], is the parity of the ith row, namely xi =
⊕

j∈[n]M〈i,j〉. This is easy enough, but the problem

is that this data is distributed in an awkward way. Each data item contains the name xj of a variable

and the jth column of the matrix. Note |D| = n2n.

Subset Sum (SS): The input consists of a set of n n-bit integers, each stored in a data item. The goal is to

accept a subset of the data items that adds up to a fixed known target T . Again |D| = n2n.

Subset Sum No Carries: Another version of SS does the GF-2 sum bit-wise so that there are no carries to

the next bits. NOTE: See the last line in Table figure 1. The bound for this problem is slightly

better. I am happy to delete it or not.

2.2 Definitions of Online, Greedy, Recursive Back-Tracking, and Dynamic Programming

Algorithms

Ideally a formal model of an algorithmic paradigm should be able to capture the complete power and weak-

nesses of the paradigm. In this section, we focus on the defining characteristics of online, greedy, recursive

back-tracking, and dynamic programming. The formal definition of the pFBT model appears in Section 2.3.

To make the discussion concrete, consider the Knapsack Problem specified as follows. A data item

Di = 〈pi, wi〉 specifies the price and the weight of the ith object. The decision option is σi ∈ Σ = {0, 1},
where 1 and 0 are the two options, meaning to accept and not to accept the object, respectively. The goal is

to maximize f(I, S) =
∑

i piσi as long as
∑

iwiσi ≤W .

An deterministic online algorithm for such a problem would receive the data items Di one at a time

and must make an irrevocable decision σi about each as it arrives. For example, an algorithm for the

Knapsack Problem may choose to accept the incoming data item as long as it still fits in the knapsack. We

will assume that the algorithm has unbounded computational power based on what it knows from the data

items it has seen already. The algorithm’s limitation of power arises because it does not know the data

items that it has not yet seen. After it commits to a partial solution PSin = 〈σ1, σ2, . . . , σk〉 by making

decisions about the partial instance PIin = 〈D1, D2, . . . , Dk〉 seen so far, an adversary can make the future

items PIfuture = 〈Dk+1, Dk+2, . . . , Dn〉 be such that there is no possible way to extend the solution with

decisions PSfuture = 〈σk+1, σk+2, . . . , σn〉 so that the final solution S =
〈

PSin, PSfuture
〉

is an optimal

solution for the actual instance I =
〈

PIin, P Ifuture
〉

. This lower bound strategy is at the core of all the

lower bounds in this paper.

A greedy algorithm is given the additional power to specify a priority ordering function (greedy criteria)

and is ensured that it will see the data items of the instance in this order. For example, an algorithm for the

Knapsack Problem may choose to sort the data items by the ratio pi
wi

. In order to prove lower bounds as

done with the online algorithm, [BNR03] defined the priority model. It allows the algorithm to specify the

priority order without allowing it to see the future data items by having it specify an ordering π ∈ O(D) of

all possible data items. The algorithm then receives the next data item Di in the actual input according this

order. An adaptive algorithm is allowed to reorder the data items every time it sees an new data item (also

known as fully adaptive priority algorithm in [BNR03, DI09]). NOTE: Sounds good. Did you correct

it? An added benefit of receiving data item D is that the algorithm learns that every data item D′ before

D in the priority ordering is not one of the remaining data items in the input instance. The set of data items

learned to not belong to the instance is denoted as PIout.
It is a restriction on the power of the greedy algorithm to require it to make a single irrevocable decision

σi about each data item before knowing the future data items. In contrast, backtracking algorithms search

for a solution by first exploring one decision option about a data item and then if the search fails, then the

algorithm backs up and searches for a solution with a different decision option. The computation forms a

5

tree. To model this [ABBO+11] define 1 prioritized Branching Trees (pBT). Each path of the computation

tree is determined by priority ordering; each node reveals one data item Di (according to the priority ordering

for the path leading to this node, and makes zero, one, or more decisions σi about it. If more than one

decision is made, the tree branches to accommodate these. If zero decisions are made then the computation

path terminates. The computation returns the solution S that is best from all the nonterminating paths.

A computation of the algorithm on an instance I dynamically builds a tree of states as follows. Along

the path from the root state to a given state u in the tree, the algorithm has seen some partial instance PIu =
〈

D〈u,1〉, D〈u,2〉, . . . , D〈u,k〉
〉

and committed to some partial solution PSu =
〈

σ〈u,1〉, σ〈u,2〉, . . . , σ〈u,k〉
〉

about it. At this state (knowing only this information) the algorithm specifies an ordering πu ∈ O(D)
of all possible data items. The algorithm then receives the next unseen data item D〈u,k+1〉 in the actual

input according to this order. The algorithm then can make one decision σ〈u,k+1〉 that is irrevocable for the

duration of this path, to fork making a number of such decisions, or to terminate this path of the search all

together. The computation returns the solution S that is best from all the nonterminating paths.

A curious restriction of this model is that it does not allow the following completely reasonable knapsack

algorithm. Return the best solution after running three parallel greedy algorithms, one with the priority

function being largest pi, another smallest wi, and another largest pi
wi

. Being fully adaptive, each state along

each branch is allowed to choose a different ordering π ∈ O(D) for its priority function. However, the

computation is only allowed to fork when it is making different decisions about a newly seen data item and

this only occurs after seeing a data item. We generalize their model by allowing the algorithm to fork without

seeing a data item. This is facilitated by, in addition to the input reading states described above, having free

branching states which do nothing except branch to some number of children. This ability introduces a

surprising additional power to the algorithms. We call this new model prioritized Free Branching Tree

(pFBT) algorithms. See Section 2.3 for the formal definition.

Though it is not initially obvious how, pFBT (pBT) are also quite good at expressing some dynamic

programming algorithms. NOTE: Sounds good. Certain dynamic programming algorithms derive a col-

lection of sub-instances to the computational problem from the original instance such that the solution to

each sub-instance is either trivially obtained or can be easily computed from the solutions to the subsubin-

stances. Generally, one thinks of these sub-instances being solved from the smallest to largest, but one can

equivalently continue in the recursive backtracking model where branches are pruned when the same subin-

stance has previously been solved. Each state u in the pFBT computation tree can be thought of the root of

the computation on the subinstance PIfuture = 〈Dk+1, Dk+2, . . . , Dn〉 consisting of the yet unseen data

items, whose goal is to find a solution PSfuture = 〈σk+1, σk+2, . . . , σn〉 so that S =
〈

PSu, PSfuture
〉

is

an optimal solution for the actual instance I =
〈

PIinu , P Ifuture
〉

. Here, PIinu =
〈

D〈u,1〉, . . . , D〈u,k〉
〉

is the

partial instance seen along the path to this state and PSu =
〈

σ〈u,1〉, . . . , σ〈u,k〉
〉

is the partial solution com-

mitted to. It is up to the algorithm to decide which pairs of states it considers to be representing the “same”

computation. For example, in the standard dynamic programming algorithm for the Knapsack Problem,

the data items are always viewed in the same order. Hence, all states at level k have the same “subin-

stance” PIfuture = 〈Dk+1, Dk+2, . . . , Dn〉 yet to be seen. However, because different partial solutions

PSu =
〈

σ〈u,1〉, . . . , σ〈u,k〉
〉

have been committed to along the path to different states u, their computation

tasks are different. As far as the future computation is concerned, the only difference between the different

subproblems is the amount W ′ = W −∑

i≤k wiσ〈u,i〉 of the knapsack remaining. Hence, for each such

W ′, the algorithm should kill off all but one of these computation paths. This reduces the width from 2k

to being the range of W ′. For a given value W ′, which of the paths should be kept is clearly the one that

made the best initial partial solution PSu =
〈

σ〈u,1〉, . . . , σ〈u,k〉
〉

according to maximizing
∑

i≤k piσ〈u,i〉.

1What follows is a description of a strongly adaptive pBT algorithm pBT algorithm as defined in [ABBO+11]. The weaker

fixed order pBT (respectively, adaptive order pBT) models initially fix an ordering (respectively, create the same adaptive ordering

for each path) rather than allow different priority orderings on each path.

6

An additional challenge in implementing the standard dynamic programming algorithm for the Knapsack

Problem in the pBT model is the following. In the model, the algorithm does not know which path should

live until it knows partial instance PIinu , however, after this partial instance is received, the pBT model does

not allow cross talk between these different paths. This is where the unbounded computational power of

the pBT model comes in handy. Independently, each path, knowing PI inu , knows what every other paths

in the computation is doing. Hence, it knows whether or not it should be terminated. If required, it quietly

terminates itself. In this way, pBT is able to model many dynamic programming algorithms.

Note: What you say about Bellman-Ford sounds right. I am not completely up on it. However,

Bellman-Ford’s dynamic programming algorithm for the shortest paths problem cannot be expressed in

the model. Each state in the computation tree at depth k will have traversed a sub-path of length k in

the input graph from the source node s, and the future goal is to find to a shortest path from the current

node to the destination node t. States in the computation tree whose sub-path end in the same input graph

node v are considered to be computing the same subproblem. However, because the different states u have

read different paths PIinu =
〈

D〈u,1〉, . . . , D〈u,k〉
〉

of the input graph, they cannot know what the other

computation states are doing. Without cross talk, they cannot know whether they are to terminate or not.

[BODI11] formally proves that pBT requires exponential width to solve shortest paths and defines another

model called prioritized Branching Programs (pBP) which captures this notion of memoization by merging

computation states that are computing the “same” subproblem. The computation then forms a DAG instead

of a tree.

2.3 The Formal Definition of pFBT

We proceed with a formal definition of a pFBT algorithm A. On an instance I , a pFBT algorithm builds a

computation tree TA(I) as follows. Each node in the tree represents a state, which is either a input reading or

free branching state. Consider a state up of the tree along a path p. It is labeled with 〈PIp, PSp, fp〉, consti-

tuting the partial instance, the partial solution, and the free branching seen along this path. The partial infor-

mation about the instance is split into two types PIp =
〈

PIinp , P Ioutp

〉

. Here PIinp =
〈

D〈p,1〉, . . . , D〈p,k〉
〉

and PSp =
〈

σ〈p,1〉, . . . , σ〈p,k〉
〉

, where D〈p,i〉 ∈ D is the data item seen and σ〈p,i〉 ∈ Σ is the decision made

about it in the ith input reading state along path to p. PIoutp ⊆ D denotes the set of data items inadver-

tently learned by the algorithm to be not in the input instance. Finally, fp =
〈

f〈p,1〉, . . . , f〈p,k′〉
〉

, where

f〈p,i〉 ∈ N indicates which branch is followed in the ith free branching state along path p. NOTE: No.

That was a mistake. Thanks An input reading state up first specifies the priority function with the ordering

πA(up) ∈ 2D of the possible data items. Suppose D〈p,k+1〉 is the first data item from I \ PIinp according to

this total order. The input reading state up must then specify the decisions cA(up, D〈p,k+1〉) ⊆ Σ to be made

about D〈p,k+1〉.
2 For each σ〈p,k+1〉 ∈ cA(up, D〈p,k+1〉), the state up has a child u′p with D〈p,k+1〉 added to

PIinp , each data item D′ appearing before D〈p,k+1〉 in the ordering πA(up) added to PIoutp , and σ〈p,k+1〉
added to PSp. A free branching state up must specify only the number FA(up) of branches it will have.

For each f〈p,k′+1〉 ≤ FA(up), the state up has a child u′p with f〈p,k′+1〉 added to fp. The width WA(n) of

the algorithm A is the maximum over instances I with n data items, of the maximum over levels k, of the

number of states up in the computation tree at level k.

Though this completes the formal definition of the model pFBT, in order to give a better understanding

of it, we will now prove what such an algorithm knows about the input instance I when in a given state

up. This requires understanding how the computation tree TA(I) changes for different instances I . If these

TA(I) were allowed to be completely different for different instances I , then for each I , TA(I) could simply

know the answer for I . Lemma 1 proves that the partial instance PIp =
〈

PIinp , P Ioutp

〉

constitutes the sum

2If one wanted to measure the time until a solution is found, then one would want to specify the order in which these decisions

σ〈p,k+1〉 ∈ cA(up, D〈p,k+1〉) were tried.

7

knowledge that algorithmA knows about the instance. Namely, if we switched algorithmA’s input instance

from being I to being another instance I ′ consistent with this information, thenA would remain in the same

state up. Define I ⊢ PIp to mean that instance I is consistent with p, i.e. contains the data items in PI inp
and not those in PIoutp .

Lemma 1. Suppose that for input I there exists a path p ∈ TA(I) identified with 〈PIp, PSp, fp〉. Suppose

that a second input I ′ is consistent with this same partial instance PIp, i.e. I ′ ⊢ PIp. It follows that there

exists a path p′ ∈ TA(I ′) identified with the same
〈

PIp′ , PSp′ , fp′
〉

= 〈PIp, PSp, fp〉.
Note: Allan, you are so right. This proof was bad. Russell added the idea of a super tree. Like

you, I was not convinced it removed the need for induction. When I started writing up the proof it was

much more subtle than I had previously thought. I removed the idea of a super tree because I don’t

feel that it added much. I also shortened the statement of the lemma itself. How do you feel about

them now?

Proof. The proof uses the fact that pFBT considers deterministic algorithms that explore an unknown in-

stance and given the same knowledge they always make identical decisions. The proof will be by induction

on the length of the path. Suppose by way of induction that it is true up to some depth. Now consider a

path p ∈ TA(I) followed by some input I whose length is one longer. Let u(p−1) and up denote the second

last and last states in this path. If the second input I ′ is consistent with the last partial instance PIp, i.e.

I ′ ⊢ PIp, then it is consistent with the previous partial instance PI(p−1), i.e. I ′ ⊢ PI(p−1), because it says

less. And hence by the induction hypothesis there exists a path (p′− 1) ∈ TA(I ′) identified with the same
〈

PI(p′−1), PS(p′−1), f(p′−1)
〉

=
〈

PI(p−1), PS(p−1), f(p−1)
〉

.

If this second last state is an input reading state, then its next task is to specify a priority function

πA(u(p−1)). The implication in this notation is that which priority function the pFBT algorithm A selects

depends only on the label
〈

PI(p−1), PS(p−1), f(p−1)
〉

of the state u(p−1). And hence, both inputs I and I ′ will

be subjected to the same priority function.

A more subtle proof is that both inputs I and I ′ in this state will receive the same data item. Let

D = D〈p,k+1〉 denote the one received on input I . It follows that the partial instance PIp labeled in the tree

TA(I) specifies that this data item is in the input I . Because I ′ agrees with this partial instance, this data

item must also be in I ′. By way of contradiction, lets assume that on input I ′, despite I ′ containing D, the

state receives D′. This must be because the priority function for I ′ puts a higher priority on D′ than on D.

But then we showed that the same is true on I . It follows that the partial instance PIp labeled in the tree

TA(I) specifies that this data item D′ is not in the input I . Because I ′ agrees with this partial instance, this

data item must also not be in I ′. This contradicts the fact that D′ was received under I ′. Hence, we know

that on both inputs the state received the same data item D〈p,k+1〉.
Because on the two inputs I and I ′, the state has the same priority function and receives the same data

item D, it follows that in both it learns that this data item D is in the input and that all the data items

D′ appearing before D in the priority order is not in the instance. Hence, their partial instance PIp′ =
PIp remains the same. From this, we know that on both inputs the state will make the same decision

cA(up, D〈p,k+1〉), making their partial solutions PSp′ = PSp the same as well.

If the second last state in this path is a free branching state, then both inputs will have the same set of

free branches f〈p,k′+1〉. We will dictate that on I ′ the path p′ follows the same free branch that p follows

on I . This completes the inductive step that there exists a path p′ ∈ TA(I ′) identified with the same
〈

PIp′ , PSp′ , fp′
〉

= 〈PIp, PSp, fp〉.

2.4 The Formal Definition of pFBT−

NOTE: Yes. This is what Russel did not like too. Do you think it worth including or would you prefer

it to be deleted entirely? I just don’t care.

8

We now formally define the restricted model pFBT−. Recall that free data items are defined to be

additional data items that have no bearing on the solution of the problem. The reason adding these free data

items to the pBT model increases its power is that when the algorithm reads data item D, it inadvertently

learns that all data items appearing before D in the priority ordering are not in the instance. This allows

a pBT algorithm to solve any computational problem with width W = (n log |D|)3. Though this makes

the proving of lower bounds in the model even more impressive, this aspect of the model is clearly not

practical. The pFBT− model restricts the algorithm in a way that excludes the possibility of it implementing

this impractical algorithm while still allowing any practical algorithm that is in pFBT to still be in pFBT−.

The input instance in the model pFBT− is allowed to specify some of its data items to be known. The

pFBT− algorithm knows that such a data item is in the input instance even though it has not yet received

it. Each input reading state up of a pFBT− computation tree either specifies an order in which all of the

possible unknown data items occur before the known ones in its priority order or visa versa. It is not allowed

to mix the two types of data items together in the ordering. Similarly, the input instance is allowed to pair

some of the data items to be equivalent. The pFBT− algorithm does not know which pairs of data items

will be in the instance, but does know that if one is then the other will be as well. An input reading state

of a pFBT− computation tree can either read such a pair together or when one of the pair is read, the other

automatically becomes a known data item as previously described.

We argue that any practical algorithm that is in pFBT is still in pFBT− by arguing that there is no (direct)

reason that an algorithm should want to receive a known data item. Already knowing that it is in the instance,

it gains no new information, but it is still required to make an irrevocable decision about it, which it may or

may not be prepared to do. The algorithm should either order the known data items first in order to get these

data items out of the way, or after in order to avoid receiving them until the end when knowing the entire

input instance is easy to make an irrevocable decision about them.

The flaw in this argument is that mixing the known and unknown data items is useful. The surprising

algorithm from Theorem 2 does this to learn every data item that is not in the instance without receiving

a single real unknown data item. No plausible poly-time algorithm, however, is able to do this. First,

it requires the algorithm to keep track of an exponential amount of information. Second, it requires the

algorithm to have unbounded computational power with which to instantly compute the solution for the now

known instance.

3 Upper Bounds

In this section, we provide a surprising algorithm for any computational problem where the algorithm has

access either to free branching and/or free data items, and the computational problem has a small set of

possible data items D. Next we will extend the generic algorithm to an algorithm for the k-SAT problem

with only m clauses.

Theorem 2 (Algorithm with Free Branching and/or Free Data Items). Consider any computational problem

with known input size n and |D| = d potential data items. There is a pFBT algorithm for this problem

with width WA(n) = 2O(
√
n log d). When m free data items are added to the problem, the required width

decreases to 2
O(n log d

m+
√
n log d

)
. When m = O(n log d), it decreases toO(n log d)3 even without free branching,

i.e. in pBT.

Proof. We first consider the case without free data items. We “construct” the deterministic algorithm by

proving that for every fixed input instance, the probability of our randomized algorithm failing to find a

correct solution is less than one over the number
(

d
n

)

≤ dn of instances. Hence, by the union bound we

know that the probability that a randomly chosen setting of coin flips fails to work for all input instances is

less than one. Hence, there must exist an algorithm that solves every input instance correctly.

9

In its first stage, the algorithm learns what the input instance is, not by learning each of the data items in

the instance but by learning the complete set of |D|−n data items that are not in the input instance. It does

this without having to commit to values for more than ℓ = O(√n log d) variables. The algorithm branches

when making a decision about each of these variables. Hence, the width is ≈ |Σ|ℓ = 2O(
√
n log d). In its

second stage, the algorithm uses its unbounded computational power to instantly compute the solution for

the now known instance. This solution will be consistent with one of its |Σ|ℓ branches.

We now focus on the how the algorithm can use free branches to learn lots of data items that are not

in the instance. The algorithm randomly orders the potential data items and learns the first one that is in

the input instance. The items earlier in the ordering are learned to be not in the instance and are added to

PIout. This is expected to consist of a 1
n fraction of the remaining potential items. However, if instead, the

algorithm free branches to repeat this experiment F = 2ℓ = 2O(
√
n log d) times, then we will see below that

with high probability at least one of these branches will result a in Θ(ln(F)
n) = Θ(

√
log d√
n

) fraction of the

remaining potential data items being added to PIout. The algorithm might want to keep the one branch that

performs the best, but this would require “cross talk” between the branches. Instead, it keeps any branch

that performs sufficiently well. The threshold qi is carefully set so that the expected number of branches

alive stays about the constant r from one iteration to the next.

algorithm pFBT (n, d)

〈pre−cond〉: n is the number of data items in the input instance and d is the number of potential data

items

〈post−cond〉: Forms a pFBT tree such that whp one of the leaves knows the solution

begin

ℓ = O(√n log d)
F = 2ℓ

r0 = r = O(ℓ2n log d) = O(n log d)2

Width ≤ (2r)× F × |Σ|ℓ = 2O(
√
n log d)

Free branch to form r0 branches

Loop: i = 1, 2, . . . , ℓ

〈loop−invariant〉: The current states in the pFBT tree form a ri−1 × |Σ|i−1

rectangle. The ri−1 rows were formed using free branches. For each such

row, the states know a set PIini−1 of i−1 of the data items known to be in

the input instance. The column of |Σ|i−1 states within this row were formed

from decision branches in order to make all |Σ|i−1 possible decisions on

these i−1 variables. Except for making different decision, these states are

identical. Each of the ri−1 rows of states also knows a set PIouti−1 of the data

items known to be not in the instance. PIouti−1 has grown large enough so that

there are only di−1 = d− |PI ini−1| − |PIouti−1| remaining potential data items.

Each state free branches with degree F forming a total of ri−1F rows

For each of these ri−1F rows of states

Randomly order the di−1 remaining potential data items

D = the first data item that is in the input

q = # of data items before D in the order

qi = Θ(di ln(F)
n), set so that Pr(q ≥ qi) =

1
F

if(q ≥ qi) then

10

add D to PIini−1 and these q earlier data items to PIouti−1

di = di−1 − qi − 1 remaining potential data items

Make a decision branch to decide each possibility in Σ about D
else

Abandon all the branches in this row

end if

end for

ri = the total # of these ri−1F rows that survive

if(ri 6∈ [1, 2r]) abort

end loop

We know what the input instance is by knowing all the data items that are not in it.

We use our unbounded power to compute the solution.

This solution will be consistent with one of our |Σ|ℓ states.

end algorithm

The first thing to ensure is that dℓ = d− |PI inℓ | − |PIoutℓ | becomes n− ℓ so the remaining possible data

items must all be in the instance. At the beginning of the ith iteration, there are di−1 remaining potential

data items. The algorithm randomly chooses one of these to be first in the ordering. It is one of those in

our fixed input instance with probability at most n
di−1

. Conditional on this one not being in the instance, the

next has probability at most n
di−1−1 of being in the instance, while the last of concern has probability at most

n
di−1−q−1 = n

di
. If all of these events occur, then at least qi data items appear before the first that is in the

instance, i.e. Pr[q ≥ qi] ≥ (1− n
di
)qi ≈ e−nqi/di . (This approximation is good until the end game. See below

for how the time for that is bounded.) Because we have F chances and we want the expected number of

these to survive to be one, we set qi =
di ln(F)

n so that this probability is 1
F . For the states that achieve q ≥ qi,

the number of remaining potential data items is di = di−1 − qi − 1 ≤ di−1 − di ln(F)
n = di−1 − diℓ

n = di−1

1+ ℓ
n

.

Hence, in the end dℓ =
d

(1+ ℓ
n
)ℓ
≈ d

e
ℓ2
n

= d

e

√
n ln d

2

n

= 1. Before this occurs, the input instance is known.

As is often the case, the last 20% of the work takes 80% the time. The approximation (1 − ni
di
)qi ≈

e−niqi/di fails in the end game when the number of remaining possible data items di gets close to the

number of unseen input items ni, say di ≤ 2ni. This means the number of data items that must still be

eliminated is at most ni. Not being done means that di ≥ ni+1 giving that Pr[q ≥ qi] ≥ (1− ni
di
)qi ≥ 1

di

qi
.

Setting this to F−1 and solving gives that qi ≥ log2(F)
log2(di)

= O(
√
n log d)

log2(di)
. If this many data items are eliminated

each round then the number of required rounds to eliminate the remaining ni data elements is at most
ni
qi
≤ O(√n log d). This at most doubles the number of rounds already being considered.

We must also bound the probability that the algorithm aborts to be less than one over the number dn of

instances. It does so if rℓ 6∈ [1, 2r] because it needs at least one branch to survive and we don’t want the

computation tree to grow too wide. Lemma 3 proves that this failure probability is at most 2−Θ(r/ℓ2), which

is d−n as long as r = Θ(ℓ2n log d) = Θ(n log d)2. This gives a total width of WA(n) ≤ (2r)×F × |Σ|ℓ =
2O(

√
n log d) as required. This completes the proof when there are no free data items.

Free data items provide even more power than free branching does. Just as done above the set PIouti of

data items known not to be in the instance grows every time one of these data items is received. However,

because they have no bearing on the solution of the problem, the algorithm need not branch making all

possible decisions Σm about them. The algorithm is identical to the one above, except that m′ = min(m,n)
of the free data items are randomly ordered into the remaining real data items. The next data item received

will either be one of the n real data items or one of these m′ free data items. As before, let q denote the

number of data items before this received data item in the priority ordering, i.e. the number added to PIouti−1.

Pr[q ≥ qi] ≥ (1 − n+m′
di

)qi ≥ e−2nqi/di . During this first stage, the algorithm wants to receive all m

11

of the free data items and only receive ℓ of the real data items. If a real data item is read after already

having received ℓ of them, then the branch dies. Pr[q ≥ qi and the data item received is a free one] ≥
e−2nqi/di × m′

n+m′ . Still having F = 2ℓ chances and wanting the expected number of these to survive to be

one, we set qi =
di(ln(F)−ln(m′

n+m′))

2n ≥ diℓ
3n so that this probability is 1

F . (ln(F) = ℓ will be set toO(n log d
m)≫

ln(m′
n+m′).) Hence, di = di−1 − qi − 1 ≤ di−1

1+ ℓ
3n

, giving in the end dm+ℓ =
d

(1+ ℓ
3n

)m+ℓ
≈ d

e
ℓ(m+ℓ)

3n

< 1, when

ℓ = Ω(n log d
m+

√
n log d

). The probability that the algorithm aborts because rℓ 6∈ [1, 2r], by Lemma 3 is at most

2−Θ(r/(m+ℓ)2), which is d−n as long as r = Θ((m + ℓ)2n log d). This is r = Θ(n log d)2 when m = 0
and grows to Θ(n log d)3 when m = O(n log d). This gives a total width of WA(n) ≤ (2r)× F × |Σ|ℓ =
2
O(n log d

m+
√

n log d
)

as required.

The remaining point is that this can be achieved without free branching, i.e. in pBT, when m =
O(n log d) and WA(n) ≤ 2r = O(n log d)3. In this case, a branch terminates every time a real data item

is received, i.e. ℓ = 0. Only F = 2 branches are needed each time a free data item is received. Though we

do not have free branches, this can be achieved by having the algorithm branch on the Σ different possible

decisions for this received free data item.

We now bound the probability that the number of rows starting at r goes to zero or expands past 2r.

Lemma 3. Start with r rabbits. Each iteration i ∈ [ℓ], all the rabbits currently alive have F babies (and

dies). Each baby lives independently with probability 1
F . Hence, the expected number of rabbits remaining

is again r. The game succeeds if the population does not die out and there are never more than 2r rabbits.

The probability of failure is at most 2−Θ(r/ℓ2).

Proof. We are given Exp[ri] = ri−1 . Set h =

√
r/2

ℓ . Using Chernoff bounds, the probability that r

deviates by more than h
√
ri−1 is at most 2−Θ(h2). The probability that this occurs in any at least one of the

ℓ iterations is at most ℓ2−Θ(h2) = 2−Θ(r/ℓ2). Otherwise, ri is always below 2r and each of the ℓ iterations

changes ri by at most h
√
2r = r

ℓ .

In reality, these changes perform a random walk, because each of these changes is in a random direction.

But even if they are all in the same direction, the total change is at most r, which neither zeros, nor doubles

ri.

The width 2O(
√

n log |D|) of the algorithm described in the last section is 2O(
√
n logn) for k-SAT when

restricted to having only O(1) clauses per variable, because then the domain D of data items is no bigger

than nO(1). However, for general k-SAT problem, this result does not directly improve the width because

there are |D| = n · 22(2n)k−1
potential data items. Despite this, this algorithm can surprisingly be extended

to 2O(n1/3m1/3 log n) when the instance is restricted to having only m clauses.

Theorem 4 (k-SAT m-clauses). When there are only m clauses, then k-SAT can be done with 2O(k1/2n1/3m1/3 logn)

width.

For k = 3, this is 2O(n2/3 log n) when there are only m = Θ(n) clauses and 2o(n) when there are only

m = o(n2) clauses. The problem is that there may be m = Θ(n3) clauses.

Proof. The first step is to ask for all variables that appear in at least ℓ = k1/2n−1/3m2/3 clauses. There are

at most km
ℓ = k1/2n1/3m1/3 of these. Branching on each of these requires width 2O(k1/2n1/3m1/3) width.

For each of the remaining variables, only kℓ log(2n) bits are needed to specify the k variables in each of

the at most ℓ clauses that they are in. Hence, the number of possible data items for each of these is at most

d = (2n)kℓ. Theorem 2 then gives a pFBT algorithm for this problem with width w = 2O(
√
n log d) =

2O(
√
nkℓ logn) = 2O(k1/2n1/3m1/3 logn).

12

4 Reductions from Hard to Easy Problems

This section presents the reductions to show that if pBT or pFBT cannot do well on the simple matrix

problems then they cannot do well on the hard problems either.

Theorem 5 (Lower Bounds for Hard Problems). 7-SAT requires width 2Ω(n) in pBT and 2Ω(
√
n) in pFBT.

Subset Sum requires width 2Ω(n/ logn) in pFBT and 2Ω(n) in pFBT−. Finally, Subset Sum without carries

requires width 2Ω(n) in pFBT.

Proof. Lemma 6 gives a reduction to 7-SAT from the Matrix Inversion Problem in both the pBT and the

pFBT models. Lemma 7 gives a reduction in pFBT to Subset Sum (with and without carries) from the

Matrix Parity Problem with free data items. Lemma 8 gives a reduction from Subset Sum in the pFBT−

model to the Matrix Parity Problem with no free data items in the pFBT model. The results then follow from

the lower bounds for the matrix problems given in Theorem 9.

Lemma 6. [Reduction to 7-SAT] If 7-SAT can be solved with width W in the pBT (pFBT) model, then the

Matrix Inversion Problem can be solved with the same width.

Recall that the Matrix Inversion Problem is defined by a fixed and known matrix M ∈ {0, 1}n×n with at

most seven ones in each row and K ∈ O(1) in each column. The input is a vector b ∈ {0, 1}n. The output

is x ∈ {0, 1}n such that Mx = b. Each data item contains the name xj of a variable and the value of the at

most K bits bi from b involving this variable, i.e. those for which M〈i,j〉 = 1.

Proof. Given a pBT (pFBT) algorithm for 7-SAT, we design a pBT (pFBT) algorithm for the Matrix Inver-

sion Problem as follows. Consider a matrix inversion data item. Let xj be the variable specified and bi be

one of the at most K bits from b involving this variable, i.e. M〈i,j〉 = 1. Because the ith row of M has

at most seven ones, its contribution to Mx = b is that the parity of these corresponding seven x variables

must be equal to bi. This parity can be expressed as the AND of 1
22

7 = 64 clauses involving these seven

variables. These 64K clauses involving variable xj for each of the K bits bi are included in the one 7-SAT

data item corresponding to this matrix inversion data item. Note that as required for the 7-SAT problem,

this constructed data item contains a variable xj and the list of clauses containing this variable. Each clause

contains at most seven variables. As with a matrix inversion data item, the only new information that an

algorithm who is aware of the reduction learns from a new 7-SAT data item is the value of the at most K
bits bi from b involving this variable. Finally, note that the output of both the matrix inversion problem and

of 7-SAT is x ∈ {0, 1}n such that Mx = b.

Lemma 7. [Reduction to Subset Sum with free data items] If Subset Sum can be solved with width W in

pFBT, then the Matrix Parity Problem, with the introduction of m = O(n logn) free data items, can be

solved with the same width. If the version of SS without carries can be solved then only m = O(n) free

data items need to be added to the Matrix Parity Problem.

Recall that the Matrix Parity Problem is given as input a matrix M ∈ {0, 1}n×n. For each j ∈ [n], there is

a data item containing the name xj of a variable and the jth column of the matrix. The output xi, for each

i ∈ [n], is the parity of the ith row, namely xi =
⊕

j∈[n]M〈i,j〉.

Proof. Given a pFBT algorithm for SS (Subset Sum), we design a pFBT algorithm for the MP (Matrix

Parity Problem) as follows. We map the matrix M instance for MP to a 2n + O(n logn) integer instance

for SS. These integers will be such that if you write them in binary in separate rows j, lining up the 2i
′

bit places into columns, then at least part of this will be the transpose of M . Let Dj denote the MP data

item containing the variable name xj and the jth column of the matrix M . This data item will get mapped

to two SS data items D〈j,−〉 and D〈j,+〉. Each such integer is 4n log2 n bits long. Of these 2n are special.

13

More specifically, for i, j ∈ [n], we make the 2cj′ and the 2ri bit places special, where cj′ = j′ · 2 logn
and ri = 2n logn + i · 2 logn. Consecutive special bits are separated by at least 2 log2 n zeros so that the

sum over all the numbers of one of the special bits does not carry into the next special bit. To identify the

column-integer relation, the cj′
th bit of D〈j,−〉 will be one iff j′ = j. To store the jth column of the matrix,

for i ∈ [n], the ri
th bit is M〈i,j〉. The second integer D〈j,+〉 associated with data item Dj is exactly the

same as D〈j,−〉 except that the rj
th bit of D〈j,−〉 storing the diagonal entry M〈j,j〉 is complemented. The SS

instance will have another O(n logn) integers in dummy data items, in order to deal with carries from one

bit to the next. For each bit index k ∈ [1, ⌈logn⌉] and each row i ∈ [n], the integer E〈i,k〉 will be one only

in the ri+kth bit. The target T will be one in the cj
th bit and the ri+⌈log n⌉th bit for each i, j ∈ [n].

Having mapped an instance of the MP problem to an instance of the SS problem, we must now prove

that the solutions to these two instances correspond to each other. Let Ssum be a solution to the SS instance

described above. We first note that for each j, SSS must accept exactly one of D〈j,+〉 and D〈j,−〉 because

these are the only integers with a one in the cj
th bit and the target T requires a one in this bit. Let SMP be

the solution to the MP instance in which xj = 1 if and only if D〈j,+〉 is accepted by SSS . We now prove that

this is a valid solution, i.e. ∀i ∈ [n], xi =
⊕

j∈[n]M〈i,j〉. Consider some index i. Because SSS is a valid

solution, we know that its integers sum up to T and hence the ri
th bit of the sum is zero. Because there is

no carry to the ri
th bit, we know that the parity of the ri

th bit of the integers in SSS is zero. The dummy

integers E〈i′,k〉 are zero in this bit. For j 6= i, both D〈j,+〉 and D〈j,−〉 have M〈i,j〉 in this bit and as seen

exactly one of them is in SSS and hence these integers contribute M〈i,j〉 to the parity. For j = i, it is slightly

trickier. D〈i,−〉, if it is in SSS , also contributes M〈i,i〉 to the parity, while D〈i,+〉 contributes the compliment

M〈i,i〉 ⊕ 1. In this first case, xi = 0 and in the second xi = 1. Hence, we can simplify this by saying that

together D〈i,−〉 and D〈i,+〉 contribute M〈i,i〉⊕xi. Combining these gives that the parity of the ri
th bit of the

integers in SSS is 0 =
[

⊕

j 6=iM〈i,j〉
]

⊕
[

M〈i,i〉 ⊕ xi
]

. This gives as required that xi =
⊕

j∈[n]M〈i,j〉. And

hence, SMP is a valid solution.

Now we must go in the opposite direction. Let SMP be a solution for our MP problem. Put D〈j,+〉 in

SSS if xj = 1, otherwise put D〈j,−〉 in it. For each row i, let N = 2⌈logn⌉ and Ni = N−(xi+
∑

j∈[n]M〈i,j〉)

and let the binary expansion of Ni be [Ni]2 =
〈

N〈i,⌈log n⌉〉, . . . , N〈i,0〉
〉

, so that Ni =
∑

k∈[0,⌈log n⌉]N〈i,k〉2
k.

For k 6= 0, include the integer E〈i,k〉 in SSS if and only if N〈i,k〉 = 1. We must now prove that the integers

in SSS add up to T . The same argument as above proves that the cj
th and the ri

th bits of the sum are as

needed for T . What remains is to deal with the carries. The cj
th bits will not carry. The ri

th bits in the

D〈j,+〉 or D〈j,−〉 integers of SSS add up to xi +
∑

j∈[n]M〈i,j〉. For k ∈ [1, ⌈logn⌉], the integer in E〈i,k〉
is one only in the ri+kth bit and hence can be thought of contributing 2k to the ri

th bit. Together, they

contribute
∑

k∈[1,⌈log n⌉]N〈i,k〉2
k, which by construction is equal to Ni−N〈i,0〉. Because SMP is a solution,

Ni = N−(xi +
∑

j∈[n]M〈i,j〉) is even, making N〈i,0〉 = 0. The total contribution to the ri
th bit is then

(xi+
∑

j∈[n]M〈i,j〉)+Ni = N = 2⌈log n⌉, which carries to be zeros everywhere except in the ri+⌈logn⌉th
bit. This agrees with the target T .

What remains to prove is that the MP computation tree can state-by-state mirror the SS computation

tree. In addition to the MP problem having n data items Di, it will have m = O(n logn) free data items.

For each i ∈ [n], the MP problem will have a free data item labeled D〈i,2nd〉 and for each i ∈ [n] and

k ∈ [1, ⌈logn⌉], it will have one labeled E〈i,k〉. In each state of the computation tree, the SS algorithm

specifies an priority ordering of its data items D〈i,+〉, D〈i,−〉, and E〈i,k〉. The simulating MP algorithm

constructs as follows its ordering of its data items Di, D〈i,2nd〉, and E〈i,k〉. If neither D〈i,+〉 nor D〈i,−〉 have

been seen yet, then the first occurrence of them in this ordering is replaced by Di. The second occurrence

of them can be ignored because it will never come into play. If at least one of D〈i,+〉 or D〈i,−〉 has been seen

already, then the occurrence of the other one in this SS ordering is replaced by the free data item D〈i,2nd〉.

14

Any dummy data item E〈i,k〉 in the SS ordering are replaced by the corresponding free data item E〈i,k〉 in

the MP ordering. If according to this SS priority ordering, SS receives the first of D〈i,±〉, then MP according

to its mirrored ordering will receive Di. Note that MP learns the same information (or more3) about its

instance that SS does. If on the other hand, SS receives the second of D〈i,±〉 or receives a dummy data item

E〈i,k〉, then MP will receive the corresponding free data item. The MP algorithm (and we can assume the

SS algorithm) knows that its instance is coming from this reduction and hence they knew before receiving it

that this dummy/free data item is in the instance and hence neither gains any new information from this fact

when it is received. The information of interest that they both inadvertently learn is that all data items D′

in the ordering before this received data item are learned to not be in the instance and as such are added to

PIout. Because the MP algorithm always learns the same information that SS does, MP is able to continue

simulating SS’s algorithm.

If we are reducing from the carry free version of Subset Sum then the dummy data items E〈i,k〉 are not

needed.

Lemma 8. [Reduction to Subset Sum in pFBT−] If Subset Sum can be solved with width W in the pFBT−

model, then the Matrix Parity Problem without free data items can be solved in pFBT with the same width.

Proof. Given a pFBT− algorithm for SS, our goal is to construct a pFBT algorithm for MP. We map the

matrix M instance for MP to an instance for SS as before with integers D〈j,−〉, D〈j,+〉, and E〈i,k〉. We must

assume that the Subset Sum algorithm, SSA, knows that it is receiving an input from the reduction. Hence,

the data items E〈i,k〉 are known in that the algorithm knows that they are in the actual input instance even

though it has not yet received them. The data items D〈j,−〉 and D〈j,+〉 are paired to be equivalent in that

the algorithm knows that if one is the input then the other will be as well. The pFBT− model then does not

allow SSA to have mixed reading states that intertwine the unknown and known data item together in its

priority orderings. Consider an unknown reading state of SSA, i.e. one that puts all of the possible unknown

data items before the known ones. The simulating MP algorithm constructs its ordering of its data items Di

by replacing the first occurrence of D〈i,±〉 with Di. If SSA receives one of D〈i,±〉, then MP receives Di.

If SSA receives a known data item, then this means that the current computation path is done because the

input instance is completely known. Now consider a known reading state of SSA, i.e. one that puts all of the

known ones before the possible unknown ones. Both SSA and MP know that these known data items are in

SSA’s instance and hence know that SSA will receive the first one in this order. In fact, there was no point

in this read state at all. If SSA forks in order to make more than one irrevocable decision about this known

data item then MP makes this same branches using a free branch. This free branch was one of the initial

motivators of having free branches.

5 Lower Bounds for the Matrix Problems

This section will prove the following lower bounds for the matrix problems.

Theorem 9 (Lower Bounds for the Matrix Problems). The Matrix Inversion Problem requires width 2Ω(n)

in the pBT model and width 2Ω(
√
n) in the pFBT model. The Matrix Parity Problem requires width 2Ω(n) in

the pFBT model. If included in these problems are m free data items, then widths 2
Ω
(

n
m+

√
n

)

and 2
Ω
(

n2

m+n

)

are still needed.

This Section will be organized as follow. We will begin by developing in Section 5.1 a general technique

for proving lower bounds on the width of the computation tree of any algorithm solving a given problem

3SS may not be able differentiate between D〈i,+〉 and D〈i,−〉, while MP can.

15

in either the pBT or the pFBT models. Theorem 10 formally states and proves that this technique works.

We will then show how it is applied to get all of the results in Theorem 9. This proof still depends on

four lemmas specific to the problems at hand. Section 5.2 proves Lemmas 12 and 13 for the Matrix Parity

Problem and Section 5.3 proves Lemmas 16 and 17 for the Matrix Inversion Problem. Finally, Section 5.4

proves that the required boundary expander matrices exist.

5.1 The Lower Bound Technique

As said, we begin developing a general technique for proving lower bounds for pBT and pFBT models

which we will use to prove Theorem 9 subject to four lemmas proved later.

For each input instance I , the computation tree TA(I) has height n = |I| measured in terms of the

number of data items received. Let l be a parameter, Θ(n) or Θ(
√
n) depending on the result. We will focus

our attention on partial paths p from the root to a state at level l in TA(I). Recall that such states are uniquely

identified with
〈

PIinp , P Ioutp , PSp, fp
〉

. The partial instance PIp =
〈

PIinp , P Ioutp

〉

consists of the l data

items known to be in the instance and those inadvertently learned to be not in the instance. Lemma 1 proves

that PIp constitutes the sum knowledge that algorithm A knows about the instance I in this state. With

only this limited knowledge, it is unlikely that the partial solution PSp that the algorithm has irrevocably

decided about the data items in PI inp are correct. Formally, we prove that PrI [S(I) ⊢ PSp | I ⊢ PIp] is

small, where I ⊢ PIp is defined to mean that instance I is consistent with p, i.e. contains the data items in

PIinp and not those in PIoutp and S(I) ⊢ PSp is defined to mean that the decisions PSp are consistent with

the/a solution for I .

With free branching, in depth only lupper = O(√n log d), the unreasonable upper bound in Theorem 2

manages to learn the entire input I not by having PIinp contain all of its data items but by having PIoutp

contain all of the data items not in it. This demonstrates how having PIoutp extra ordinarily large, can cause

I ⊢ PIp to give the algorithm sufficient information about the instance I that it can deduce a correct partial

solution PSp causing PrI [S(I) ⊢ PSp | I ⊢ PIp] to be far too big. Hence, we define a path p to be bad if

this is the case.

A pFBT algorithm A is allowed to fork both in a free branching state in order to try different pri-

ority orderings and in an input reading state in order to try different irrevocable decisions. Each of the

computation paths p for a given tree TA(I) can be uniquely identified by a tuple of forking indexes f =
〈σ1, . . . , σl, f1, . . . , fl〉, where σi ∈ Σ is indicates the decision made in the ith input reading state and

fi ∈ N indicates which branch is followed in the ith free branching state. Note that if the width of the

computation tree TA(I) is bounded by WA(n), then each fi is at most WA(n). This allows us to define

ForkspFBT = [Σ∪ [WA(n)]]l be the set of possible tuples of forking indexes. In contrast, a pBT algorithm

is not allowed free branching, and hence ForkspBT = Σl. The only difference between these two models

that we will use is the sizes of these sets. Once we fix such a tuple f (independent of an input I), we can

then define the algorithmic strategy Af used by the branching program A to be the mapping between the

input I and the
〈

PIinp , P Ioutp , PSp, fp
〉

identifying the state at the end of the path identified by tuple f .

This next theorem outlines the steps sufficient to prove that the width of the algorithm must be high.

Theorem 10 (The Lower Bound Technique).

1. Define a probability distribution P on a finite family of hard instances.

• For both the Matrix Parity and Matrix Inversion Problems the distribution is uniform on the

legal instances with n data items.

2. Only consider partial paths p from the root to a state at level l in the tree TA(I).

• l = Θ(n) or Θ(
√
n) depending on the result.

16

3. A path p is defined to be good if its set PIoutp is good.

• For the Matrix Inversion Problems, PIoutp is defined to be good if it is sufficiently small. For the

Matrix Parity Problems, it only must be sufficiently small with respect to at least one variable

xj .

4. Prove that if p is a good path at level l, then PrI [S(I) ⊢ PSp | I ⊢ PIp] ≤ prgood, namely that the

information about the instance I gained from PIp =
〈

PIinp , P Ioutp

〉

is not sufficient to effectively

make the irrevocable decisions PSp about the data items in PI inp .

• If the algorithm simply guesses the decision PSp for each of the l data items in PIinp , then it

is correct with probability |Σ|−l = 2−l. For both the Matrix Parity and the Matrix Inversion

problems, we are able to bound prgood ≤ 2−Ω(l). See Lemmas 13 and 17.

5. Prove that with probability at least 1
2 , every set PIoutp in TA(I) is sufficiently small so that it is consid-

ered good. Consider a tuple of forking indexes f ∈ Forks. Consider some algorithmic strategy Af

along these forking indexes. Prove that PrI
[

Af produces a PIout that is bad
]

≤ prbad ≤ 1
2|Forks| .

Note that 1
2|Forks| gives us the probability 1

2 after doing the union bound.

• For the Matrix Inversion Problem, we are able to bound prbad ≤ 2−Ω(n). For the Matrix Parity

Problem, we are able to do much better bounding it by 2−Ω(n2). See Lemmas 16 and 12.

These three step gives that any pFBT (pBT) algorithm A requires width WA(n) ≥ 1
2prgood

.

We now prove that the technique works.

Proof. Step 5 in the technique proves that for a random instance I , the probability that TA(I) contains a bad

partial path is at most 1
2 . Hence, any working algorithm A must solve the problem with probability at least

1
2 using a full path whose first l levels is a good partial path. This requires that there exists a partial path

p ∈ TA(I) such that the irrevocable decisions PSp made along it are consistent with the/a solution S(I) of

the instance, namely

1
2 ≤ PrI [∃p ∈ TA(I)l, such that p is good and S(I) ⊢ PSp]

This probability deals only with paths in TA(I), which in turn depends on the randomly selected instance

I . In contrast, the Step 4 probability, PrI [S(I) ⊢ PSp | I ⊢ PIp] ≤ prgood, talks about fixed sets PIp and

PSp that can depend on the algorithm A as a whole but not on our current choice of I . To understand the

algorithm A independent of a particular instance I , define Paths = {p = 〈PIp, PSp, fp〉 | ∃I ′ such that p
is a partial path of length l in TA(I ′) } and Pathsg those that are good. Note that p ∈ TA(I)⇒ [p ∈ Paths
and I ⊢ PIp]. Hence,

PrI [∃p ∈ TA(I)l, such that p is good and S(I) ⊢ PSp]

≤ PrI [∃p ∈ Pathsg, such that I ⊢ PIp and S(I) ⊢ PSp]

The union bound, conditional probabilities, and plugging in the probability from Step 4 translates this prob-

ability into the following.

≤
∑

p∈Pathsg

PrI [I ⊢ PIp and S(I) ⊢ PSp]

17

=
∑

p∈Pathsg

PrI [S(I) ⊢ PSp | I ⊢ PIp] · PrI [I ⊢ PIp]

≤ prgood ·
∑

p∈Pathsg

PrI [I ⊢ PIp]

Translating from the algorithm A as a whole back to the just those paths in TA(I) requires understand-

ing how the computation tree TA(I) changes for different instances I . Lemma 11 proves that if p =
〈PIp, PSp, fp〉 is a path that algorithm A follows for some instance I ′ and I is consistent with what is

learned in this path, then this same p will be followed whenA is given instance I , namely if p ∈ Paths and

I ⊢ PIp, then p ∈ TA(I). This bounds the previous probability with the following.

≤ prgood ·
∑

p∈Paths

PrI [p ∈ TA(I)]

The width of TA(I) at level l is equal to the number of paths of length l in TA(I). This width is bounded by

WA(n). Hence, the above sum of probabilities is can be interpreted as follows.

= prgood · ExpI [width of TA(I) at level l] ≤ prgood ·WA(n)

Together this gives us WA(n) ≥ 1
2prgood

as required.

We now state and prove the lemma needed in the above proof that considers how the computation tree TA(I)
changes for different instances I .

Lemma 11. If p = 〈PIp, PSp, fp〉 is a path that algorithmA follows for some instance I ′ and I is consistent

with what is learned in this path, then this same p will be followed when A is given instance I , namely if

p ∈ Paths and I ⊢ PIp, then p ∈ TA(I).

Proof. Suppose p ∈ Paths and I ⊢ PIp. Recall p ∈ Paths means that there exists an instance I ′ such that

p = 〈PIp, PSp, fp〉 is the label of a partial path of length l in TA(I ′). It follows that I ′ ⊢ PIp. This gives us

everything needed for Lemma 1, namely we have two inputs I and I ′ that are both consistent with the partial

instance PIp, i.e. I ⊢ PIp and I ′ ⊢ PIp and there exists a path p ∈ TA(I ′) identified with 〈PIp, PSp, fp〉.
This lemma then gives that p ∈ TA(I).

Our lower bound results follow from this technique and the four Lemmas specific to the problems at hand.

Proof. (Theorem 9) In all cases, the technique gives that WA(n) ≥ 1
2prgood

≥ 2Ω(l). See Lemmas 13

and 17. What remains is to ensure that the probability prbad of a bad path is at most 1
2|Forks| . Lemmas 16

states that for the Matrix Inversion Problem, prbad ≤ 2−Ω(n). In the model pBT, |ForkspBT | = 2l, giving

|ForkspBT | · prbad ≤ 1
2 even when l ∈ Θ(n). In the pFBT model, however, |ForkspFBT | = [2WA(n)]l =

[2Θ(l)]l = 2Θ(l2), giving |ForkspFBT | · prbad ≤ 1
2 only when l ∈ Θ(

√
n). Lemmas 12 states that for the

Matrix Parity Problem prbad ≤ 2−Ω(n2). Hence we have no problem setting l ∈ Θ(n) either way. If included

in this problem are m free data items then what changes is that instead of just considering l levels of the

computation, we consider the computation up to the point at which l real data items have been received and

any number of free data items have been received. This involves up to l +m levels in total. This increases

|ForkspFBT | from [2WA(n)]l = 2Θ(l2) to [2WA(n)]l+m = 2Θ(l(l+m)). Hence, when prbad ≤ 2−Ω(n),

l ∈ Θ
(

n
m+

√
n

)

is needed and when prbad ≤ 2−Ω(n2), l ∈ Θ
(

n2

m+n

)

is needed.

18

5.2 The Matrix Parity Problem

This section proves the required good and bad path lemmas needed for the Matrix Parity Problem. Here is a

reminder the relevant definitions.

• MP with distribution P: The distribution P uniformly chooses a matrix M ∈ {0, 1}n×n for the input

instance. The jth data item contains the name xj of a variable and the jth column of the matrix. The

output xi, for each i ∈ [n], is the parity of the ith row, namely xi =
⊕

j∈[n]M〈i,j〉.

• Height l: Define l = ǫn to be the level to which the partial paths p are considered.

• Partitioning D: For each j ∈ [n], let Dj ⊂ D denote the set of possible data items labeled by xj and

hence containing the jth column of the matrix. Similarly, for a given path p, PIout can be partitioned

into PIoutj ⊆ Dj . Define PI?j ⊆ Dj to be the set of data items for which it remains unknown whether

or not it is in the instance I . If j 6∈ PIin (i.e. PIin does not contain a data item from Dj), then

PI?j = Dj − PIoutj . If j ∈ PI in, then PI?j = ∅, because having received one data item from Dj , the

algorithm knows that no more from this domain are possible.

• Good Path: A computation path p and the set PIout arising from it are considered to be q-good if

∃j 6∈ PIin, |PI?j | ≥ q|Dj |, where q is set to be 2−(1−ε)l = 2−(1−ε)ǫn. Note that this effectively means

that at most (1−ε)ǫn bits about the jth column have been revealed.

The next lemma then bounds the probability that a computation path is bad. Consider a tuple of forking

indices f ∈ Forks. Consider some algorithmic strategy Af along these forking indexes halting after l
levels.

Lemma 12. prbad = PrI [Af is a q-bad path] ≤ (3q)n−l.

This gives prbad ≤ 2−
1
2
ǫn2

for the matrix parity problem as claimed.

Proof. The algorithmic strategy Af follows one path p until l data items have been read. During each of

these l steps, it chooses a permutation of the remaining data items and then learns which of the items in the

randomly chosen input appears first in this ordering. The item revealed to be in the input is put into PIin

and all those appearing before it in the specified ordering are put into PIout. We will, however, break this

process into sub-steps, both in terms of defining the orders and in terms of delaying fully choosing the input

until the information is needed. In each sub-step, the computation Af specifies one data item D to be next

in the current ordering. Then the conditioned distribution P randomly decides whether to put D into the

input. Above we partitioned the data items into Dj ⊂ D based on which variable xj it is about. Though the

algorithm deals with all suchDj in parallel, they really are independent. When taking a step in the jth game,

Af selects one data item D from PI?j = Dj − PIoutj to be next in the current ordering. Given Af knows

that exactly one of the data items in this set are in the input and they are equally likely to be, P decides that

D is in the input with probability 1/|PI?j |. If it is, then this jth game is done. Otherwise, D is removed

from PI?j . Given the statement of the lemma being proved bounds the probability that this path p followed

is bad, we need to assume that the algorithm Af is doing everything in its power to make this the case.

Hence, we say thatAf lose this game if this path is good, i.e. if after PI in contains l data items it is the case

that ∃j 6∈ PIin, |PI?j | ≥ q|Dj |. In order to make the game less confusing and to give Af more chance of

winning, we will not stop the game when PIin contains l data items, but instead we will let him play all n
games to completion. He wins the jth game if he can manage to shrink PI?j to be smaller than q|Dj | without

adding j to PIin. If he accidentally add j to PIin, then he loses this jth game. It is ok for him to lose l of

these n games, because, during the part of his computation we consider, we allow PIin to grow to be of size

19

l. However, if he loses l + 1 of the games, then we claim that this computation path is good. At least one

of these lost games had its j added to PIin after we stopped considering his computation and at the point

in time j 6∈ PIin and |PI?j | ≥ q|Dj |. Now let us bound the probability that he is able to win the jth game.

Effectively what he is able to do in this game is to specify the one order in which it will ask about the data

items in Dj . The algorithm wins this game if and only if the data item Dj from Dj that is in the input lays

in the last q fraction of this ordering. Because Dj is selected uniformly at random, the probability of the

algorithm winning this game is q. For j ∈ [n], let Xj be the random variable indicating whether Af wins

the jth game and let X =
∑

j∈[n]Xj denote the number of games won. We proved that Pr[Xj = 1] = q.

We also proved that Pr[path is bad] ≤ Pr[X ≥ n− l]. Define µ = Exp[X] = qn and 1 + δ = 1
q (1− l

n) so

that (1 + δ)µ = n− l. Chernoff bounds gives that Pr[X ≥ (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
≤ (3q)n−l.

We now prove that the partial information about the input I gained from a good PI =
〈

PIin, P Iout
〉

is not sufficient to effectively make irrevocable decisions PS about the data items in PIin. This is the only

result in the lower bounds section that depends on anything specific about the computation problem and it

does not depend on the specifics of the model of computation.

Lemma 13. If 〈PI, PS, f〉 is the label of a q-good path p of length l, then prgood = PrI [S(I) ⊢ PS | I ⊢ PI] ≤
1
q2

−l.

Here q = 2−(1−ε)l, giving prgood ≤ 2−εl as needed.

Proof. Assume the data items in PI in have told the algorithm the first l columns of M , but required him

to make irrevocable guesses PS of the parities x1, . . . , xl of the first l rows of M . PIout being q-good

means that ∃j 6∈ PIin, |PI?j | ≥ q|Dj |, where Dj ∈ PI?j ⊆ Dj = {0, 1}n is a vector that remains possible

for the jth column of M . In order to be nice to the algorithm, we will give the algorithm all of M except

for this column j. Then for each row i ∈ [1, l], we now know the parity
⊕

j′ 6=j M〈i,j〉 of these columns

and know the parity xi =
⊕

j∈[n]M〈i,j〉 that the algorithm has promised for the entire row. Hence, we can

compute the required value for M〈i,j〉 in order for the algorithm to be correct. Let A be the set of vectors

α for the jth column such that the algorithm is correct, namely A = {α ∈ {0, 1}n | ∀i ∈ [1, l], αi =
the required M〈i,j〉}. Note that |A| = 2n−l because there is such an α for each way of setting the remaining

n − l bits of this column. The adversary now randomly selects α ∈ PI?j that will be the jth column

in the input M . If the selected α is in A, then the algorithm wins. The probability of this, however, is

|A|/|PI?j | ≤
[

2n−l
]

/ [q2n] = 1
q2

−l.

This completes the lower bound for the Matrix Parity Problem.

5.3 The Matrix Inversion Problem

This section proves the required good and bad path lemmas needed for the Matrix Inversion Problem. Here

is a reminder the relevant definitions.

• Fixed Matrix M : The problem MI is defined by a fixed matrix M ∈ {0, 1}n×n that is non-singular,

has exactly seven ones in each row, at most K ones in each column, and is a (r, 7, 3)-boundary

expander, with K ∈ Θ(1), and r ∈ Θ(n).

• Boundary Expander: M is a (r, 7, c)-boundary expander if it has exactly seven ones in each row and

if for every set R ⊆ [n] of at most r rows, the boundary ∂M (R) has size at least c|R|. The boundary

is defined to contain the column j if there is a single one in the rows R of this column. Section 5.4

sets K = Θ(1), c = 3, and r = Θ(n) and proves that such a matrix exits.

20

• MI with distribution P: The distribution P uniformly chooses a vector b ∈ {0, 1}n. The jth data item

contains the name xj of a variable and the value of the at most K bits bi from b involving this variable,

i.e. those for which M〈i,j〉 = 1. The output is x ∈ {0, 1}n such that Mx = b over GF-2.

• Height l: Define l to be the level to which the partial paths p are considered. If we are proving the

2Ω(n) width lower bound for the pBT model, then set l = n
2K+3 = Θ(n). If we are proving 2Ω(

√
n) for

the pFBT, then set l = Θ(
√
n).

• Good Path: A computation path p and the set PIout arising from it are considered to be Q-good if

|PIout| ≤ Q. Here Q = r −Kl = Θ(n), which is reasonable given that the number of possible data

items is |D| = 2Kn = Θ(n).

At each point along the computational path p, the algorithmic strategyAf knows that the input is consistent

with the current partial instance PI . Knowing what the algorithm learns from this is complex. Hence, we

will change the game by having the adversary reveal extra information to the algorithms so that at each point

in his computation, what he knows is only some r′ bits of the input b. If the path is good, then this number

does not exceed r, i.e. the first parameter of expansion.

Lemma 14. Let PI =
〈

PIin, P Iout
〉

be arbitrary sets of data items. I ⊢ PI reveals at most r′ =
K · |PI in| + |PIout| bits of b. More formally, let B = {b ∈ {0, 1}n | I ⊢ PI} be the set of instances

b ≡ I consistent with the partial instance PI . The adversary can reveal more information to the algorithm,

restricting this set to B′ ⊆ B, so that the vectors in B′ have fixed values in r′ of its bits and all 2n−r′

possibilities in the remaining n− r′ bits. Note that when PIout is good, the algorithm learns at most

K · |PI in|+ |PIout| ≤ K · l + (r −Kl) = r bits of b.

Proof. When the algorithm learns that data item D is in PIin, he learns learns the value of at the most K
bits of b ∈ {0, 1}n corresponding to the jth column of M . When he learns that D is in PIout, he learns a

setting in {0, 1}k that k ≤ K of bits in b do not have. The adversary chooses one of the k bits of b that the

data item is about and that the algorithm does not yet know the value of and reveals that this bit of b has

the opposite value from that given in the data item. The algorithm, seeing this as the reason the data item is

not in the input, learns nothing more about the input. In the end, what the algorithm learns from I ⊢ PI is

K · |PI in|+ |PIout| bits of b.

Lemma 15. Let PI =
〈

PIin, P Iout
〉

denotes the current state computation. Let D be a data item that is

still possibly in the input I . It follows that PrI [D ∈ I | I ⊢ PI] ≥ q = 1
2K

.

Proof. The proof of Lemma 14 changes the game so that what the algorithm knows at each step of the

computation is some r′ of bits of the vector b ∈ {0, 1}n. The conditional distribution P uniformly at

random chooses the remaining n−r′ bits. Each data item D specifies a variable xj and up to K bits of the

vector b. If this D disagrees with some of the r′ revealed bits of b, then D in not still possible. Otherwise,

the probability that D is in the input is 1
2K

′ ≥ 1
2K

, where K ′ ≤ K is the number of the specified bits that

have not been fixed.

The next lemma then bounds the probability that the computation path given by Af is bad.

Lemma 16. prbad = PrI [Af is a Q-bad path] ≤ 2−Ω(n).

Proof. Generally, we consider Af ’s computation until it receives l data items. However, instead, let us

consider it for Q sub-steps as done in Lemma 12. In each of these sub-steps, the algorithm specifies one

data item D from those that are still possible and is told whether or not D is in the input. If it is then D is

added to PIin and if not it is added to PIout. For each t ∈ [Q], let Xt be the random variable indicating

21

whether the tth such data item is added to PIin. By Lemma 15, Pr[Xt = 1] ≥ q. Note that X =
∑

t∈[Q]Xt

denotes the resulting size of PI in. If X ≥ l, then by this point in the computation |PI in| ≥ l, so the

part of the computation we normally consider has already stopped, but |PIout| = Q − |PI in| ≤ Q and

hence this computation is considered to be good. It follows that Pr[path is bad] ≤ Pr[X < l]. Define

µ = Exp[X] = qQ and δ = 1− l
qQ so that (1− δ)µ = l. Chernoff bounds gives that Pr[X < (1− δ)µ] <

e−µδ2/2 = e
−qQ(1− l

qQ
)2/2

. We defined l ≤ r
2K+3 , Q = r−Kl, q = 1

2K
, giving that qQ

l = qr
l − qK ≥ 8− 1

and that l
qQ ≤ 1

2 . This gives prbad ≤ e
− Q

2K+3 ≤ 2−Ω(n).

Lemma 14 proves that for good paths, I ⊢ PI reveals at most r bits of b. We now prove that this is not

sufficient to effectively make irrevocable decisions PS about the data items in PIin.

Lemma 17. If p is a good path, then PrI [S(I) ⊢ PS | I ⊢ PI] = prgood ≤ 2−Ω(l).

Proof. Our probability distribution P on inputs I is uniform on the settings of b. Because there is a bijection

mapping x = M−1b between the settings of b and the settings of x, it is equivalent to instead consider the

uniform distribution on setting of x. Let R ⊆ [n] denote the indexes i of the at most r bits of b that have

been fixed by Lemma 14 from I ⊢ PI and let b̄R ∈ {0, 1}|R| be the values that these |R| bits have been

fixed to. Let MR denote the corresponding rows of the matrix M . These rows impose the requirement

MR · x = b̄R. An interesting effect of translating from a distribution on b to one on x is that the equations

M([n]−R) · x = b([n]−R) no longer matter. In addition, PS commits the algorithm to the values of exactly

l variables. Let Fixed ⊆ [n] denote the indexes j of these variables xj and let x̄Fixed denote the values

committed to them. To conclude,

prgood = PrI [S(I) ⊢ PS | I ⊢ PI] = Pr
x∈u{0,1}n

[

xfixed = x̄fixed |MR · x = b̄R
]

=
|{x | xfixed = x̄fixed and MR · x = b̄R}|

|{x |MR · x = b̄R}|

What we now need to compute is both the number of solutions x to the subsystem of equations MR ·x = b̄R
and the number of these consistent with xfixed = x̄fixed. Towards this goal, we will run the following

Gaussian-like elimination algorithm. It selects, satisfies, and eliminates equations i ∈ R one at a time by

setting and eliminating a variable xj . We easily establish the loop invariant by setting R0 = R and C0 = [n].

GAUSSIAN-LIKE ELIMINATION

R0 ← R and C0 ← [n]
while (c|Rt| > l)

% Loop Invariant:

LI1: We have a set Rt ⊆ R of rows and a set Ct ⊆ [n] of columns with Fixed ⊆ Ct.

Let M〈Rt,Ct〉 denote the submatrix with the selected rows and columns.

Let xCt denote the vector of selected variables.

LI2: prgood =
|{xCt | xfixed=x̄fixed and M〈Rt,Ct〉·xCt=b̄Rt}|

|{xCt | M〈Rt,Ct〉·xCt=b̄Rt}|
.

LI3: M〈Rt,Ct〉 is a (r, 7, 3)-boundary expander.

1. Pick xj ∈ ∂(Rt)− Fixed
2. Let i ∈ Rt be the row in which xj appears.

3. xj ← value that satisfies Mi · x = b̄i
4. Rt+1 ← Rt−i and Ct+1 ← Ct−j
5. t = t+ 1

22

We prove as follows that this code maintains the loop invariant. Assume by way of induction that it is true

for t. We now prove that it is true for t+1. By the definition of M〈Rt,Ct〉 being a (r, 7, 3)-boundary expander

and from the fact that |Rt| ≤ |R| ≤ r, we know that the boundary ∂M (Rt) ⊆ Ct has size at least c|Rt|,
which by not having exited more is than l. Hence, line 1 is able to pick a variable xj ∈ ∂(Rt)−Fixed. The

boundary ∂M (Rt) is defined to contain the column j if there is a single one in the rows Rt of this column.

Let i ∈ Rt be the row in which xj appears. The equations M〈Rt−i,Ct〉 · xCt = b̄(Rt−i) do not use this variable

xj and hence are not effected by how it is set. The equation M〈i,Ct〉 ·xCt = b̄i can be solved and satisfied by

setting the value of xj to be this linear combination of the variables in Rt−i. Being satisfied, the equation i
is removed from Rt+1 = Rt−i. Not effecting the remaining equations, the variable xj can be removed from

them, Ct+1 = Ct−j. Being set, the variable xj adds no degrees of freedom and hence does not effect the size

of either {xCt | xfixed = x̄fixed and M〈Rt,Ct〉 · xCt = b̄Rt} or of {xCt |M〈Rt,Ct〉 · xCt = b̄Rt}. Hence, the

ratio of their sizes remains being equal to prgood, maintaining LI2. Deleting row i from M〈Rt,Ct〉 does not

effect it being a (r, 7, 3)-boundary expander because the definition considers every subset of rows. Neither

does deleting column j because once row i has been deleted, this jth column is all zeros. This proves that all

the loop invariants have been satisfied. The Gaussian-like elimination algorithm terminates when c|Rt| ≤ l.
The size of {xCt | xfixed = x̄fixed and M〈Rt,Ct〉 · xCt = b̄Rt} is at most 2|Ct|−l because Ct is the set of

remaining variables and xfixed = x̄fixed fixes the value of l of them. The size of {xCt |M〈Rt,Ct〉·xCt = b̄Rt}
is at least 2|Ct|−l/3 because only |Rt| ≤ l

3 equations restrict the values of the |Ct| variables. LI2 then gives

that prgood ≤ 2|Ct|−l

2|Ct|−l/3 = 22/3 l, completing the proof.

5.4 Boundary Expander Matrix

Here we need to prove that a square matrix A ∈ {0, 1}n×n exists such that

1. Each row has exactly 7 ones.

2. Each column has at most K = 7∆ ones, for some constant ∆ ≥ 1.

3. A is of full rank and hence is non-singular.

4. A is a (r, 7, 3) boundary expander with r ∈ θ(n). This means that for any set I of at most r rows, the

boundary |∂A(I)| has size is at least 3|I|. The boundary is defined to contain column j if there is a

single one in the rows I of this column.

First we define a distribution on ∆n× n binary matrices A, with ∆n ≥ n rows, such that each row has

exactly 7 ones and each column exactly 7∆ ones. Then we show that the probability that A is not a good

boundary expander is less than 1
2 . Next we argue that the probability that A is not full rank is also less than

1
2 . Hence, there must exist such an A that is both a good boundary expander and of full rank. Then we are

done because any n linearly independent rows of that matrix will inherit the expansion of the big matrix, is

non-singular, and the number of ones in each column will be at most 7∆.

The ∆n×n binary matrix is randomly chosen by randomly choosing a perfect matching in the following

bipartite graph. On the left side we have ∆n equations, each with 7 slots (for distinct variables). On the

right side we have n variables, each with 7∆ slots. An edge from a slot of equation i to a slot of variable j
puts a one at matrix entry A[i, j]. The graph being a perfect matching ensures that there are exactly 7 ones

in each row and exactly 7∆ ones in each column. This perfect matching is chosen randomly by filling one

at a time each slot on the left by randomly picking an unmatched slot on the right and match them.

Lemma 18. For any sufficiently large n and constant ∆, the probability that matrix A ∈ {0, 1}∆n×n is not

an (r, 7, 3) boundary expander is less than 1
2 .

23

Proof. Let I denote an arbitrary set of rows I , |I| = t ≤ r, defining t equations. Each such equation

randomly chooses 7 of the variable slots for a total of 7t. Suppose that 0 ≤ i ≤ 7t of these variables slots

have been chosen already. Let B denote the current number of boundary variables, i.e. the number for which

exactly one of its slots have been selected. Similarly, let D denote the number that have duplicate slots filled.

This leaves n − B − D variables with none of its slots filled. We will watch these values dynamically as

more slots are chosen. We need to bound the probability of the bad event that after i = 7t such steps B < 3t.
We bound the probability that the next step will increase B by one to be

p+ =
7∆(n−B −D)

7∆n− i
≥ 1− B +D

n

This is because there are n−B −D variables with all 7∆ of there slots empty and filling one of these will

make such a variable a boundary variable. Here 7∆n− i is the total number of slots currently unfilled.

We will now prove that we may assume that at all times B + D ≤ 5t. Other than B increasing, the

other two options are as follows. If the next slot chosen is that of a boundary variable, B decreases and D
increases, keeping B +D constant. If it is of a duplicate variable neither changes. On the other hand, if B
ever increases during more than 5t of the steps, then in the remaining 7t − 5t = 2t steps, B be unable to

decrease below 3t as required for A to fail.

We simplify this process by assuming that each step B either increases or decreases by one each step

with the probability of decrease being p− = 1 − p+ ≤ B+D
n ≤ 5t

n . The probability that this random walk

of length 7t ends with B < 3t then is bounded by the probability that this decrease occurs at least 2t times.

We will set t ≤ r ≤ 1
35n, so that the expected number of decreases is at most t, giving that it is unlikely to

have 2t and exponentially less likely to have more. This gives

ptbad ≤
7t
∑

k≥2t

(

7t

k

)

p−
k(1− p−)

7t−k ≤
∑

i≥0

2−i ×max term ≤ 2

(

7t

2t

)

p−
2t.

We then do the union bound to bound the probability that there exists a set of size t ≤ r whose boundary

is at most 3t.

p =
r

∑

t=1

(

∆n

t

)

ptbad ≤
r

∑

t=1

(

e∆n

t

)t

(2)

(

7e

2

)2t(5t

n

)2t

≤
r

∑

t=1

2

(

6152∆t

n

)t

≤
r

∑

t=1

2

(

1

5

)t

<
1

2

Here we ensure 6152∆t
n ≤ 1

5 by setting r = n
31,000∆ ∈ Θ(n). In this case, such an expander exists.

Lemma 19. For any sufficiently large n and constant ∆, the probability that matrix A ∈ {0, 1}∆n×n does

not have full rank is less than 1
2 .

Proof. Suppose A is not full rank. Then there exits a new equation that is not in the span of the ∆n equations

given by the rows of A. Let F ⊆ [n] be the subset of variables such that this new equation is
∑

i∈F xi = 0.
This F does in fact witness the fact that A is not full rank iff each row of A, viewed as the values of the

n variables, satisfies this equation. When |F | ≤ r′ ∈ Θ(n), we will show that F likely fails to be such a

witness because there is a row of A that contains exactly one variable from F and hence
∑

i∈F xi = 1 for

this row. In contrast, when |F | > r′, we will show that F likely fails because there is a row that contains

exactly seven variables from F and hence when doing Boolean algebra we also get that
∑

i∈F xi = 1. If all

such F fail to be a witness then A is full rank.

The amusing thing is that the case with small F is exactly the same boundary expansion property as

proved in Lemma 18 and hence the same proof with slightly different numbers works. The only difference

is that we switch the roles of rows and the columns and the boundary does not need to be of size 3t but only

of size one. Repeating the statement is that for any set F of at most r′ columns, the boundary |∂A(F)| has

24

size is at least 1. The boundary is defined to contain row j if there is exactly one one in the columns F of

this row. The required changes in the numbers are as follows.

p+ =
7(∆n−B −D)

7∆n− i
≥ 1− B +D

∆n
≥ 1− 3.5∆t

∆n
= 1− 3.5t

n
= 1− p−

ptbad ≤
∑

k≥3.5∆t

(

7∆t

k

)

p−
k(1− p−)

7∆t−k ≤ 2

(

7∆t

3.5∆t

)

p−
3.5∆t.

p =
r′
∑

t=1

(

n

t

)

ptbad ≤
r′
∑

t=1

(en

t

)t
27∆t

(

3.5t

n

)3.5∆t

≤
r′
∑

t=1

(

20t

n

)3∆t

This is strictly less than 1
4 as long as 20t

n ≤ 1
8 , which we can assure by setting r′ = n

160 ∈ Θ(n). In this case,

all F smaller than r′ fail to be witnesses that A is not full rank.

We now switch to proving that for |F | > r′ = n
c , F likely fails to be a witness because there is a row

(equation) such that all seven of its variables are from F . Consider one such row. When randomly selecting

a variable for this row, the probability that it is in F is 1
c . The probability that all seven variables fall in F

is 1
c7

. The probability that this fails to happen for all ∆n rows is
(

1− 1
c7

)∆n
. The number of different sets

F ⊆ [n] is at most 2n. Hence, probability that there exists a large witness F is at most 2n ·
(

1− 1
c7

)∆n
< 1

4
for any ∆ ≥ c7.

By Lemmas 18 and 19 for reasonably large n there exists a non-singular binary matrix which is (r, 7, 3)
boundary expander in which each column sums up to at most a constant 7∆.

6 Conclusions

We define the prioritized Free Branching Tree (pFBT) model extending the Prioritized Branching Trees

(pBT) model use to model recursive back-tracking and a large sub-class of dynamic programming algo-

rithms. We give some surprising upper bounds and matching lower bounds.

7 Bug

The definition (5.4) of the Boundary Expander graphs (and the resulting problems) clearly say “Each row

has exactly 7 ones.” But in the constuction it may have fewer.

Lets bound prob that EVERY row has EXACTLY 7 ones. The bug occurs when one of the ∆n equations

has two of its 7 slots be matched to two of the 7∆ slots for the SAME one of the n variables,

There are
(

7
2

)

∆n such pairs of equation slots. The probability that this slot does not hit the same variable

is (1− 1
n). The probability that things are good because none of these pairs collide is (1− 1

n)
35∆n = e−35∆.

This is awfully small.

The probability diestribution is defined as “This perfect matching is chosen randomly by filling one at a

time each slot on the left by randomly picking an unmatched slot on the right and match them.”

If we condition this probability on not having the same variable appear twice in the same equation:

1. There there are more ones in the matrix.

2. I claim the prob that it A is an expander could go up. Fix some column j and some small set of rows.

“The boundary is defined to contain column j if there is a single one in the rows I of this column.”

This column j could fail this condition because it has no ones in I or because it has more than one.

25

The first reason is much more likely. Our new conditioning of having ones in the matrix improves this

probability.

3. I assume that the probability that A is full rank also goes up. ??

References

[AB04] Spyros Angelopoulos and Allan Borodin. On the power of priority algorithms for facility

location and set cover. Algorithmica, 40(4):pp.271–291, 2004.

[ABBO+11] Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell Impagliazzo,

Avner Magen, and Toniann Pitassi. Toward a model for backtracking and dynamic program-

ming. Computational Complexity, 20(4):pp. 679–740, 2011.

[AHI05] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsykson. Exponential lower bounds

for the running time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning, 35(1-

3):51–72, 2005.

[AJPU07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential

separation between regular and general resolution. Theory of Computing, 3(1):81–102, 2007.

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[BBLM10] Allan Borodin, Joan Boyar, Kim S. Larsen, and Nazanin Mirmohammadi. Priority algorithms

for graph optimization problems. Theor. Comput. Sci., 411(1):239–258, 2010.

[BCM11] Allan Borodin, David Cashman, and Avner Magen. How well can primal-dual and local-ratio

algorithms perform? ACM Trans. Algorithms, 7(3):29, 2011.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.

[BNR03] Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (Incremental) Priority Algorithms.

Algorithmica, 37(4):pp.295–326, 2003.

[BODI11] Joshua Buresh-Oppenheim, Sashka Davis, and Russell Impagliazzo. A stronger model of

dynamic programming algorithms. Algorithmica, 60(4):938–968, 2011.

[Bol01] Bela Bollobas. Random Graphs. Cambridge University Press, 2001.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

[DI09] Sashka Davis and Russell Impagliazzo. Models of greedy algorithms for graph problems.

Algorithmica, 54(3):269–317, 2009.

[FW98] Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms, The State of the Art (the

book grow out of a Dagstuhl Seminar, June 1996), volume 1442 of Lecture Notes in Computer

Science. Springer, 1998.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of boundded random variables. J. of

Amer. Statist. Assoc., 58(301):13–30, 1963.

26

[IKR85] Oscar H. Ibarra, Sam M. Kim, and Louis E. Rosier. Some characterizations of multihead finite

automata. Information and Control, 67(1-3):114–125, 1985.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addisn Wesley, 2005.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University

Press, 2005.

[MV04] Jiri Matousek and Jan Vondrak. The Probabilistic Method, Lecture Notes. Manuscript, 2004.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago J.

Theor. Comput. Sci., 1999, 1999.

[RSZ02] Alexander Russell, Michael E. Saks, and David Zuckerman. Lower bounds for leader election

and collective coin-flipping in the perfect information model. SIAM J. Comput., 31(6):1645–

1662, 2002.

[Woe01a] Gerhard J. Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial

Optimization, pages 185–208, 2001.

[Woe01b] Gerhard J. Woeginger. When does a dynamic programming formulation guarantee the ex-

istence of an fptas? Electronic Colloquium on Computational Complexity (ECCC), (084),

2001.

27

