
Linear Time Erasure Codes With Nearly Optimal Recovery(Extended Abstract)Noga Alon � Je� Edmonds y Michael Luby zAbstractAn (n; c; `; r)-erasure code consists of an encodingalgorithm and a decoding algorithm with the followingproperties. The encoding algorithm produces a set of`-bit packets of total length cn from an n-bit message.The decoding algorithm is able to recover the messagefrom any set of packets whose total length is r, i.e.,from any set of r=` packets. We describe erasure codeswhere both the encoding and decoding algorithms runin linear time and where r is only slightly larger thann.1 IntroductionMost existing and proposed networks are packetbased, where a packet is �xed length indivisible unit ofinformation that either arrives intact upon transmis-sion or is completely lost. This model accurately re-
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times of the encoding and decoding algorithms andthe amount of encoding su�cient to recover the mes-sage. An erasure code where any portion of the encod-ing equal to the length of the message is su�cient torecover the message is called a maximal distance sep-arable (MDS) code in the literature. An ideal erasurecode would be a linear time MDS code, but so far nosuch code is known.Standard Reed-Solomon codes can be used to im-plement quadratic time MDS codes. These methodshave been customized to run in real-time for mediumquality video transmission on existing workstations[3,2], i.e., at the rate of a few megabits per second,but high quality video sent at the rate of hundredsof megabits per second will require either better al-gorithms or custom designed hardware. Theoreticallymore e�cient (but not linear time) MDS codes canbe constructed based on evaluating and interpolat-ing polynomials over specially chosen �nite �elds us-ing Discrete Fourier Transform, but these methods arenot competitive in practice with the simpler quadraticmethods except for extremely large messages. Thus,the design of highly e�cient algorithms for implement-ing erasure codes is interesting theoretically and im-portant for practical applications.All of our schemes have the property that the codecan be constructed for any message length n and re-dundancy factor c > 1. We call such a code an (n; c)-code. In applications, c is relatively small (it typicallyvaries between 1 and 2, but can be as large as 5). Thus,when stating running times, we ignore the dependenceon c.A natural relaxation of an MDS code is to allowslightly more of the encoding than the optimal amountin order to recover the message: We say a (n; c)-codeis (1 + �)-MDS if the message can be recovered fromany (1 + �)n of the encoding. For example, if � = :05then only 5% more of the encoding than the optimalamount is su�cient to recover the message. A fur-ther relaxation of an MDS code is to allow both theencoding and decoding algorithms to be probabilistic(using the same set of random bits for both encodingand decoding): We say a (n; c)-code is probabilistic(1+ �)-MDS if the message can be recovered from any(1 + �)n of the encoding with high probability. Forprobabilistic codes, the network is assumed to droppackets independent of their contents.Of secondary importance, but still important, is thelength ` of the packets. Ideally, the length of the pack-ets should be as short as possible, e.g., ` = 1, becausean erasure code using longer packets can always be



constructed by concatenating several packets from anerasure code using shorter packets, but the reverseis not necessarily true. Internet packets for sendingvideo are typically moderate sized, e.g., 1000 bytes,but ATM cells are rather short, i.e., 48 bytes, andhere the payload size is more of a constraint. We tryto minimize the value of ` as much as possible, but ingeneral ignore this parameter when stating results.We assume that each packet contains a unique in-dex. >From this index, the portion of the encodingcarried by each received packet can be determined.We do not count the space for the index as part ofthe packet size. In practice, the space for this indexis small compared to the size of the payload of thepacket, and packet based protocols typically include aunique index for each packet within the packet in anycase.This paper describes two new erasure code schemes,the �rst deterministic and the second probabilistic.The �rst scheme has the property that, on inputs n, c,and �, the run time of the (n; c)-code is O(n=�4), it is(1 + �)-MDS, and the packet size is O(1=�4 log(1=�)).Note that for constant � this scheme runs in lineartime. Although this is an interesting theoretical re-sult, it is not clear if it can be made practical for val-ues of � that are reasonable, e.g., � = :10, becausethe (1=�4) factor is rather large both in terms of therunning time and the packet size.The second scheme has the property that, on in-puts n, c, and �, the run time of the (n; c)-code isO(n log(1=�)=�)), it is probabilistic (1 + �)-MDS, andthe packet size can be as small as O(log(1=�)). Partialimplementations of variants of this scheme show it haspromise of being practical.Both of the schemes we describe are what is calledsystematic in the literature, which means that the mes-sage itself is part of the encoding. This property isgood especially in the case when only a small numberof the packets are lost, because the time to decode themessage from the encoding is proportional only to theamount of the message that is missing.Our deterministic scheme is based on the propertiesof expanders which are explicit graphs with pseudo-random properties. The relevance of these graphs toerror correcting codes has been observed in [4], andindeed we apply some of the ideas of that paper. Ourprobabilistic scheme is based on grouping the messageinto a hierarchical set of unequal length blocks andthen placing in each redundant packet the value ofa random linear equation evaluated on a randomlychosen block of the message.Erasure codes are related to error correcting codes,and are typically easier to design. For example, anerror correcting code with encoding length cn that cancorrect up to bn bit 
ips can be used as an erasure codethat can recover the message from any (c� b)n of theencoding: For packets not received, set the missingbits to zero and then use the error correcting code torecover the message. This can be improved to (c�2b)nby setting the missing bits randomly, noting that onaverage half of them will be correctly set.The recent breakthrough result of Spielman [13] on

error correcting codes is directly relevant to both ourschemes. Spielman applies the techniques in [12] and[7], and constructs linear time error correcting codeswith linear rate and linear minimum distance. Thiserror correcting code stretches an n-bit message to acn-bit message and can recover the message when upto bn of the encoding bits are 
ipped. Here, b << 1and c � 4 are absolute constants. A direct applica-tion of [13] to the design of an erasure code yields alinear time code that at best is (4 � 2b)-MDS. Thus,[13] cannot be used directly to yield an (1 + �)-MDScode for an arbitrary value of �. Nevertheless, [13] isa crucial ingredient in both of our constructions.2 Recovering All from Almost AllWe assume that � < 1. Let 
 = �=3, 
0 = 
=4, � =
02=8, and let q = 4 log(1=�)+log(c)+16. Throughout,our basic unit of length is a letter, which is a bit stringof length q. We assume operations on letters, such asthe XOR or AND of two letters, can be performed inconstant time. The value of q has been chosen largeenough so that all of the MDS codes we use in ourconstructions can be implemented over the �nite �eldGF[2q].Let M1; . . . ;Mn be the message consisting of n let-ters. The �rst step of both schemes constructs anencoding M1; . . . ;Mn; S1; . . . ; S
n with the propertythat the message can be recovered from any fraction1� � of this encoding.The �rst step proceeds in two stages. The �rststage uses expander graphs to construct S1; . . . ; S
0nfrom the message. The property of the �rst stage isthat the entire message can be recovered from anyn��n portion of the message given all of S1; . . . ; S
0n.The second stage directly uses the constructions ofSpielman [13] to stretch S1; . . . ; S
0n to S1; . . . ; S
n.This stage has the property that all of S1; . . . ; S
0n canbe recovered from any 
n��n portion of S1; . . . ; S
n.Thus, the overall property of the �rst two stages isthat the message can be recovered when up to a �nportion of M1; . . . ;Mn; S1; . . . ; S
n is missing.2.1 Stage 1: Restricted erasuresThe main result of this subsection is the following.Lemma 1 There is a scheme for generating, for anygiven message M1; . . . ;Mn of n letters, a sequence of
0n additional letters S1; . . . ; S
0n with the followingproperties.(i) The encoding time is O(n=�).(ii) If S1; . . . ; S
0n are known, and at most a frac-tion � of M1; . . . ;Mn are missing, then all ofM1; . . . ;Mn can be recovered in time O(n).The construction used in the proof of the above issimilar to the one in [12], and is based on properties ofexpanders. Let us call an in�nite increasing sequenceof integers dense if the ratio between consecutive el-ements of the sequence tends to 1. The known con-structions of expanders supply, for every admissibledegree of regularity, in�nite families of graphs on setsof nodes whose cardinalities form a dense sequence.



To simplify the presentation we assume here that thereare su�ciently many expanders in these families whosenumber of nodes is divisible by any desired constant.It is not di�cult to show that this assumption can beomitted.De�nition (Expanders): A graph is called a (d; �)-expander if it is d-regular and the absolute value ofeach of its nontrivial eigenvalues is at most �.By [9], [10] the sequence of integers m for which thereis a (d; 2pd� 1)-expander on m nodes is a dense se-quence. We need the following from [5].Proposition 1 [5] The number of edges induced byany set of x nodes in a (d; �)-graph on m nodes doesnot exceed 12x(d xm + �(1� xm )):Proof of Lemma 1: Fix an integer d, where64
02 < d � 128
02 , and let � = 2pd� 1. Let G = (V;E)be a (d; �)-expander on m = 2n=d nodes. Given asequence fMe : e 2 Eg of n letters we de�ne thecorresponding sequence S1; . . . ; S
0n by assigning eachnode v of G a set of 
0d=2 letters Sv;1; . . . ; Sv;
0d=2as described below. Note that the total number ofletters Sv;j is m
0d=2 = 
0n, as needed. Let vbe a node of G and let e1; . . . ; ed be the edges in-cident with it. Use a quadratic time MDS codeto map the message Me1 ; . . . ;Med to an encodingMe1 ; . . . ;Med ; Sv;1; . . . ; Sv;
0d=2. Such a code can beimplemented so that the encoding time is proportionalto d � 
0d=2 = O(d=�) and the decoding time is pro-portional to d2, plus an additive O(d) for each missingmessage letter. Note that the letter length q is su�-cient to implement such a code.We claim that this scheme satis�es the two proper-ties required in the proposition. The validity of (i) isclear, as the total encoding time isO(md=�) = O(n=�).Since we assume we are missing at most �nmessageletters, and since the time for recover of each missingmessage letter is O(d2), and since �d2 = O(1), it fol-lows that the decoding time is at most O(n).We now prove that the entire message can be recov-ered if we are given all the letters associated with thenodes and at most �n = 
02n=8 of the original messageletters are missing. The decoding algorithm works asfollows. If there is some node v in the graph whereat most 
0d=2 of the message letters associated withthe edges incident with v are missing, then, becauseSv;1; . . . ; Sv;
0d=2 are also known, we know a total ofat least d letters of the MDS code associated with v,and thus from the properties of the MDS code we canrecover all the missing message letters associated withedges incident to v. Repeating this process as long asthere are such nodes v, we either recover the entiremessage, or we are left with a nonempty set of edgescorresponding to the missingmessage letters that forma subgraph of minimum degree greater than 
0d=2 inG.We now show that Proposition 1 implies that if thesubgraph is non-empty then it must contain more than�n edges, and from the assumption that we started

with at most �n such edges it will follow that thesubgraph must be empty, i.e., the entire message isrecovered. Let x denote the number of nodes incidentwith edges of this subgraph. Then, since each suchnode has degree at least 
0d=2 in the subgraph, thetotal number of edges of the subgraph exceeds x
0d=4.Thus, by Proposition 1,x
0d=4 � 12x(dx=m+ �(1 � x=m)):Therefore,
0d2 � dxm + �(1 � xm ) � dxm + �:Since � = 2pd� 1 < 2pd, and d > 64=
02, the in-equality 
0d=2� � � 
0d=4 holds and hencedx=m � 
0d=2� � � 
0d=4;implying that the number of edges corresponding tomissing letters exceedsx
0d=4 � 
02md16 = 
028 n = �n;contradicting the assumption. This completes theproof.2.2 Stage 2: Spielman-like ConstructionWe need the following result, which is an easy con-sequence of the main result of Spielman in [13].Proposition 2 [13] There is an absolute positive con-stant b so that for all m there is an explicit construc-tion that maps messages of m letters into 4m lettersso that:(i) The encoding time is O(m).(ii) If at most bm letters are missing then the originalm letters can be recovered in time O(m).We note that since we are interested here only inerasure codes, whereas the construction of Spielmansupplies error correcting ones, it is possible to im-prove the constant b that follows from his construc-tion considerably, but since we are not optimizing theconstants here we do not include the details. For sim-plicity hereafter, we assume b � 
0=8, which impliesthat b
0 � �.The second stage of the construction uses the con-struction of Proposition 2 to stretch S1; . . . ; S
0n toS1; . . . ; S
n. The next lemma follows directly fromLemma 1 and Proposition 2.Lemma 2(i) The encoding M1; . . . ;Mn; S1; . . . ; S
n can becomputed in O(n=�) time from the messageM1; . . . ;Mn.(ii) The message can be decoded in time O(n) whenat most �n letters of the encoding are missing.



3 The Deterministic SchemeLet c0 = c=(1 + 
), N = (1+ 
)n, and ` = 8=(
2�).The �nal goal is to stretch the encoding produced bythe �rst step by a factor of c0. The second step parti-tions M1; . . . ;Mn; S1; . . . ; S
n produced from the �rststep into blocks B1; . . . ; BN=` of ` letters each and thenuses a standard MDS erasure codes to produce, foreach i 2 f1; . . . ; N=`g, an encoding Ei based on Biconsisting of c0` letters. Note that the letter length qis su�cient to implement such a code. The propertiesof the second step are the following.Lemma 3(i) If, for at least a fraction 1�� of the N=` encodingsE1; . . . ; EN=`, at least ` letters of the encoding arerecovered, then the entire message M1; . . . ;Mncan be recovered.(ii) Both the encoding and decoding times are O(n`).Proof of Lemma 3: By properties of MDS codes,for each i where at least ` letters of Ei are recovered,the corresponding block of Bi can be completely re-covered. From Lemma 2 and the conditions of thelemma, it follows that the message can be completelyrecovered. The time for both encoding and decodingusing a quadratic time MDS code is (N=`) � `2 = N`.The third step of the scheme is to use a c0`-regularexpander graph with N=` nodes to deterministicallysimulate a \random mapping" of the letters of theencodings E1; . . . ; EN=` into N=` packets P1; . . . ; PN=`containing c0` letters each.Lemma 4 There is a scheme for mapping the lettersof E1; . . . ; EN=` into packets P1; . . . ; PN=` containingc0` letters each such that:(i) The time for both the mapping and the inversemapping is O(n).(ii) Every set I � f1; . . . ; N=`g with jIj � (1+�)nc0` hasthe following property: For at least a fraction 1��of i 2 f1; . . . ; N=`g, at least ` letters of Ei arecontained in the set of packets indexed by I.Proof of Lemma 4: Let � = 2pc0`� 1. Let G =(V;A) be a (c0`; �)-expander with V = f1; . . . ; N=`g.The mapping of the letters of E1; . . . ; EN=` into pack-ets P1; . . . ; PN=` is de�ned as follows: For each i 2 V ,let (i; w1); . . . ; (i; wc0`) be the edges incident to i in G.Then, the jth letter of the encoding Ei is placed intopacket Pwj .Let I be any subset of V with jIj = (1+�)nc0` . Foreach i 2 V , let di denote the number of letters of Eithat are in the packets indexed by I. By a lemma in[5] (see also [6], page 122),Xi2V (di�jIjc0`2=N )2 � �2jIj(1�jIj`=N )� 4c0`jIj � 8n:(1)

Note thatjIjc0`2N = (1 + �)n`N = (1 + �)`1 + 
 � (1 + 
)`: (2)Let M be the set of i 2 V for which the packets in-dexed by I contain less than ` letter of Ei. >FromEquation (2) it follows that, for each i 2M ,(di � jIjc0`2=N )2 � (
`)2;and thus the left-hand side of Inequality (1) is at leastjM j�(
`)2. This and Inequality (1) implies that jM j �8n(
`)2 . Recalling that ` = 8
2� , this implies that jM j ��n=` � �N=` as desired.We now state and prove the main theorem.Theorem 1 There is a scheme that, on input n, cand �, has the following properties:(i) A message of n letters is encoded into packets con-taining a total of cn letters, where each packetcontains O(1=�4) letters.(ii) The message can be decoded from any set of pack-ets containing in total at least (1 + �)n letters.(iii) The run time for both the encode and decode al-gorithms is O(n=�4).Proof of Theorem 1: The encoding consists ofapplying the constructions described in steps 1, 2, and3, in sequence. The decoding guarantee and the runtime follow from combining Lemma 4 with Lemma 3.4 The Probabilistic SchemeIn this section, we relax the requirementson the erasure code to a probabilistic guaran-tee and thereby improve the running time fromO(n=�4) to O(n log(1=�)=�) and the packet size fromO(1=�4 log(1=�)) to O(log2(1=�)). We will �rst presenta simple way of using randomness in the above de-terministic scheme that allows the block size ` tobe O(log(1=�)=�2) instead of O(1=�4 log(1=�)). Au-tomatically, this deceases running time O(n`) toO(n log(1=�)=�2).Starting from Lemma 3, we are given the N=` en-codings E1; . . . ; EN=` consisting of c0` letters each. Re-call, the deterministic scheme used an expander graphto simulate \randomly mapping" these letters. In-stead, the probabilistic scheme simply randomly per-mutes the c0N = cn letters and puts one into eachof the packets (as opposed to c0` letters per packet).When one receives any (1 + �0)N = (1 + �)n of thepackets, one receives a random subset of (1 + �0)N ofthe letters. Note the expected number received abouta particular block is (1 + �0)`. What remains is toprove that with high probability for at least a fraction1�� of the N=` encodings E1; . . . ; EN=`, at least ` let-ters are received. Lemma 3 then states that the entire



message can be recovered. (For the rest of this sectionthe ' will be dropped on the � and the c.)A key parameter to this block based encodingscheme is the block size `. If it is too big, then the run-ning time is too large. If it is too small, then the prob-ability of failure is too large. For example, consider theextreme example when the blocks are of size one. Inthis case, each packet would contain the jth messageletter with probability 1=N . Receiving (1 � �)N ofthe letters, becomes the classical coupon collector oroccupancy problem. It is well known that N ln(1=�)>> (1+�)N packets would need to be received, beforeone could expect to receive (1� �)N distinct messageletters. The optimal block size is ` = �(ln( 1� )=�2).Lemma 5 Whenthe blocks have size ` = 
(ln( 1� )=�2), the probabilityof not being able to recover at least (1 � �)N of themessage is at most e�
(��2N).Proof of Lemma 5: A complication in the proofis that there is dependency between the number ofletters of the encoding received about the di�erentblocks. To simplify things, we will �rst consider adi�erent distribution, in which the number receivedabout each block is chosen independently accordingto the Poisson distribution with mean (1 + �)`. Stan-dard bounds on the Poisson distribution give theprobability of not receiving at least ` letters abouta particular block when you expect (1 + �)` is atmost e�
(�2`). Then the recovery of each block isan independent Bernoulli trial. Standard Cherno�bounds state that the probability of failing to re-cover at least a 1 � � fraction of the N=` blocksis at most e�
(�(N=`)[�2`�ln(1=�)]) = e�
(��2N). (Forsmall message sizes N = O(ln(1� )=��2), a block sizeof ` = O �ln(m�` )=�2� gives a failure probability of atmost �.)What remains is to adjust for the change in distri-bution. The key observation is that the only di�er-ence between the distributions is that in the originaldistribution, the total number of letters received is def-initely (1 + �)N , while in the new one the number re-ceived is a random variable. LetK denote this numberreceived. It happens that if one takes the new distribu-tion with the added constraint thatK = (1+�)N , thenone (more or less) gets the original distribution, i.e.Prold [E]� Prnew[E jK = (1+�)N ], where E denotesthe event that not enough of the message is recovered.Decreasing the number of letters of the encoding re-ceived only increases the probability of E. Therefore,Prold [E] � Prnew[E j K � (1 + �)N ]. The variableK has the Poisson distribution with mean (1 + �)N .Therefore, Prnew[K � (1 + �)N ] � 1e . We can con-clude that Prold[E] � 1e . � Prnew[E j K � (1 + �)N ]�Prnew[K � (1 + �)N ] � Prnew[E].Both the deterministic and the above probabilis-tic scheme use a standard deterministic MDS erasurecode to expand each of the N=b blocks Bj from ` let-ters to c0` letters. This takes time O(`2) for a total

of O(N`) time. Hence, the running time of the prob-abilistic scheme can be improved to O(N log(1=�)=�)simply by using instead a probabilistic erasure codewith the following properties.Lemma 6 There is a deterministic encoding schememapping a block B of ` letters into an encoding E withc` letters and the following properties.(i) If a random subset of the letters of the encodingis received, where the number received is Poissonwith mean (1 + �)`, then the probability of notrecovering all ` letters of the message is at moste�
(�2`).(ii) The encoding and the decoding times are O(�`2).(iii) It is systematic, meaning that the message itselfis part of the encoding.The encoding scheme is as follows. As required, the�rst ` letters of the encoding consist of the message it-self. The message then is broken into a hierarchy ofblocks. The message itself is considered to be a blockof size `. (Recall in Lemmas 3 and 5, the N letter mes-sage is broken into blocks of size `.) This block is thenbroken into two sub-blocks, which are further brokeninto two even smaller sub-blocks, and so on. (Recallthat smaller blocks lead to a faster computation.) Letf = log(1=�2)�O(1) be the number of di�erent blocksizes and for s 2 f0; . . . ; fg, let Bhs;ii � f1; . . . ; `g bethe set of letters of the message in the ith block ofsize `s = `=2s. Let r0 = 0; for s 2 f1; . . . ; fg, letrs = c�2s=2`; and let rf+1 = (c � 1)`. The encodingwill consist of (rs+1� rs)=2s letters \about" the blockBhs;ii, for s 2 f0; . . . ; fg and i 2 f1; . . . ; 2sg. Thisgives rs+1 � rs letters about blocks of size `s, (c� 1)`letters about some block, and c` letters in total.The scheme is also spec-i�ed by a �xed ((rs+1 � rs)=2s � `s) boolean matrixVs for reach s 2 f0; . . . ; fg. (It is su�cient to choosethese matrices randomly and then to �x them.) Of the(rs+1 � rs)=2s letters about the block Bhs;ii, the jthletter will be the linear combination (over GF[2]) ofthe letters in Bhs;ii speci�ed by the jth row of the ma-trix Vs. (It is su�cient for all the blocks of the samesize to use the same matrix). The ` letters of the mes-sage can be recovered from the received letters of theencoding if the equations de�ning the received lettershave full rank.Proof of Lemma 6(i): To simplify the analysis, wewill initially not use �xed matrices Vs. Instead, we willindependently for each letter of the encoding randomlychoose a subset of the letters from the appropriateblock. This is done by including each letter of theblock with probability 12 . The letter of the encodingis a linear combination of the chosen letters.We will say that a letter of the encoding contributesto a block Bhs;ii if it is about the block, about one ofits sub-blocks, or is itself one of the letters of the block.Denote by chs;ii the number of letters received that are



about the block Bhs;ii. If chs;ii exceeds the size of theblock `s, then the message block is over-determinedand the excess encoding letters are necessarily useless.Consider each block Bhs;ii of size `s < ` starting withthe smallest blocks. The �rst step is to compute theexpected value of chs;ii. Being a block of size `s, the ex-pected number of letters received that are themselvesone of the letters of the block is 1+�c `s. The expectednumber received about a block Bhs0;i0i of size `s0 is1+�c (rs+1� rs)=2s. The number of sub-blocks of Bhs;iiof size `s0 is `s`s0 = 2s0�s. Hence, E(chs;ii) = 1+�c `s +Ps02[s::f ] `s`s0 [1+�c (rs0+1 � rs0)=2s0] = (1� 
(�2s=2))`s.Cherno� bounds give that Pr �chs;ii > (1� �22s)`s�� e�
(�22s`s) = e�
(�2`). Now assume, that we re-ceive fewer than (1 � �22s)`s letters contributing tothe block Bhs;ii.The next step is to bound the probability that theequations de�ning these (1��22s)`s letters are linearlyindependent. Consider the kth letter contributing toBhs;ii. If it is about a sub-block of Bhs;ii, then weconsidered the possibility of the equation de�ning thisletter being linearly dependent on the previous equa-tions when we considered that sub-block. On the otherhand, if the kth letter is about Bhs;ii, then the equationis randomly chosen from a space of dimension `s. Theprevious k � 1 equations span a sub-space of dimen-sion at most k�1. Hence, the probability that the kthequation is within this sub-space is at most 2�(`s�k+1).The probability that the (1 � �22s)`s equations aredependent is at most Pk2f1;...;(1��22s)`sg 2�(`s�k+1)� 2�
(�22s`s) = e�
(�2`).Even after multiplying this probability by the num-ber of blocks Bhs;ii of size `s < `, the probability isstill at most e�
(�2`). Hence we can conclude that withhigh probability all the letters that are about blocksof size smaller than ` are linearly independent.What remains is the consider the letters of the en-coding that are about the block of size `. By the state-ment of the lemma, the number of letters of the encod-ing received is Poisson with mean (1 + �)`. Therefore,the probability that at least (1 + 2�2)` letters are re-ceived is at least 1�e�
(�2`). With the same argumentjust given, the �rst (1 � �2)` of these are linearly de-pendent with probability at least 1 � e�
(�2`). Nowconsider one of the remaining 3�2` equations. If theequations before it do not have full rank, then theprobability that it increases the rank is at least 12 .Hence, choosing these 3�2` equations can be thoughtof as 3�2` Bernoulli trials. The matrix has full rank ifat least �2` of the trials succeed. The expected num-ber of successes is 1:5�2`. The probability of gettingfewer than �2` is at most e�
(�2`).The remaining step is to prove that it is su�cientto use a �xed matrix Vs for each size of block. Assumeby way of induction that the probability of success is

the same as proven above even if a �xed matrix Vs0is used for each size of block `s0 for s0 < s, whilethe equations for the letters about larger blocks arestill chosen independently at random. Now changethe scheme so that the equations for the letters aboutblocks of size `s are chosen as follows. First choose the((rs+1 � rs)=2s � `s) boolean matrix Vs by choosingeach entry independently from f0; 1g with probability12 . Then for each block of this size independently dothe following. For each of the letters received aboutthe block choose independently without replacementa row from the matrix Vs. For a particular block ofsize `s, the probability distribution has not changedat all. The only change is that using the same Vs foreach block of size `s adds some dependence betweenthe events for these blocks. This is not a problemfor the following three reasons. First, the equationsabout di�erent blocks are on di�erent variables andhence will not be linearly dependent. Second, muchof the randomness in choosing the equations comesfrom choosing (1 + �)=c of the rows of Vs. Finally, re-call that in the above proof, the probability of failurefor one block was multiplied by the number of blocks.Hence, the proof does not assume independence be-tween these events. Therefore, the overall probabilityof failure remains unchanged. We can conclude that ifthe overall probability of failure is e�
(�2`) when Vf ischosen randomly, then there exists a �xed matrix Vfthat leads to a probability that is at least as good. FixVf to be such a matrix. This completes the inductionstep.Proof of Lemma 6(ii): The encoding is done viaboolean matrix multiplication V �M = E, where V isthe (cn�`) matrix described by the equations for eachletter of the encoding and M and E are respectivelyare the (`� q) and the (c`� q) boolean matrixes rep-resenting the message and the encoding. (Recall thata message for this lemma is ` letters of q bits each.)As stated a single operation is considered to be theXOR of two q bit letters. This is done once for everynon-zero value in V . The number of letters about thethe block of the largest size ` is r1� r0 = O(c�`) Eachcorresponding row of V has at most ` ones. Hence,the number of ones in these rows is at most O(c�`2).The number of ones in the rows of V for all blocks ofsize `s decreases geometrically in s making the totalnumber and the encoding time also O(c�`2).Decoding is a little harder. It requires solving thesystem bV �M = bE, where bV and bE are the rows of thematrices V and E corresponding to those letters of theencoding that are received. Here again, the fact thatbV is sparse should help. However, inverting a (`� `)-boolean matrix with only O(`) non-zero entries seemsto require more than O(`2) bit operations. The mainreason is that the inverse of a sparse matrix is notnecessarily sparse. This is no improvement at all overthe standard deterministic MDS erasure codes usedabove. To improve the computation time, we takeadvantage of the fact that V has a block hierarchicalstructure. A ((1+ �)`� `)-boolean matrix bV is said tohave its rows blocked by B1; . . . ; B(1+�)` � f1; . . . ; `g,



if each row is zero outside of its block Bi, i.e. j 62 Biimplies that bVhi;ji = 0. These blocks are said to have ahierarchical structure if the rows are partially orderedwith respect to containment of the blocks, i.e. for i <j, either Bi � Bj or Bi \Bj = ;.This block hierarchical structure improves the com-putation time for the following reason. During Gaus-sian elimination, the ith row may be added to the jthrow in order to remove one non-zero entry from the jthrow. In a general sparse matrix, the non-zero entriesof these rows do not necessarily fall in the same places.Hence, the jth row will gain most of the non-zero en-tries of the ith row. The e�ect is that the numbergrows exponentially with the number of row opera-tions. This provides intuition into why the inverse of asparse matrix is not necessarily sparse. This exponen-tial growth in the number of non-zero entries, however,does not occur when the matrix has the block hierar-chical structure. By the de�nition of the partial order,Bi is either disjoint from or contained in Bj . In the�rst case, adding the ith and the jth row would notcancel any entries, hence these rows are never addedtogether. In the second case, adding the ith row tothe jth will change which entries in the block Bj areone, but will not contribute ones outside of the block.Hence, as the matrix bV is zeroed below the diago-nal, the block hierarchical structure is maintained. Onthe other hand, when zeroing above the diagonal, thisstructure is destroyed, because the jth row is added tothe ith row where Bi � Bj . In fact, the inverse of bVis not likely to be sparse. However, once the matrix isupper triangular, the system can be solved quickly.The decoding time has two components. We will�rst consider the number of letter operations withinthe matrix bE and later consider the number of bitoperations within bV . One letter operation within bE(i.e. the XOR of two q bit letters) is required for ev-ery row operation in bV . The number of row oper-ations when zeroing below the diagonal is at mostPj2f1;...;(1+�)mg jBj j, because the ith row is added tothe jth at most once and only if i 2 Bj . The num-ber of row operations when zeroing above the diago-nal is the number of one's that are above the diago-nal of the upper triangular matrix. The block struc-ture of the matrix does not change when zeroing belowthe diagonal. Hence, the number of ones is at mostPj2f1;...;(1+�)`g jBjj. Note that this is the same as theencoding, except for the fact that there are (1 + �)`instead of c` rows. Hence, Gaussian elimination ofbV requires O(�`2) row operations and the time is asrequired in Lemma 6(ii).If we instead considered a single operation to be asingle bit operation, then the time spent in bE blowsup by a factor of q. On the other hand, measuring thelength of the message in bits blows the length up bythe same factor. Hence, the time is still linear with thesame constant. For the algorithm, the letter size (alsothe packet size) q could be a single bit. The reasonfor having it larger is to \amortize" the number of bit

operations required to invert bV .The main sub-task during Gaussian elimination ofbV is that of taking the ith row, which has a one onthe diagonal, and adding it to every row below it thatcontains a one in the ith column. Let us compute thenumber of bit operations required to do this. The �rstobvious savings in time comes from never looking ator even storing the entries of bV outside of the blockstructure. There are, however, two additional tricksthat save a considerable amount of time.The �rst trick is not to check every row j > i,but only those for which Bi � Bj . This can be doneby associating with each row i, a pointer to the nextrow j for which Bi � Bj . A property of the par-tial order is that following this linked list of pointersstarting at any row i will reach every row j for whichBi � Bj . (The same would not be true in reverse.)If Bi is of size `s, then the expected number of rowsj for which Bi � Bj is at most the geometric sumPs02f0;...;sg 1+�c (rs0+1 � rs0)=2s0 = O(�`).What now is the cost each time the ith row is addedto some row j? The second trick is that this costshould be the number of ones in the ith row and notthe size `s of Bi. There are two ways of achieving this.Either at the beginning of this sub-task a succinct listof the ones of the ith row can be made or the blockBi in the ith row can scanned and each time a one isfound the above linked list giving all rows j for whichBi � Bj could be followed. The expected number ofones in the ith row is `s minus the number of entriesthat have already been zeroed. The number of entriesthat have been zeroed is the number of rows j beforeit for which Bj � Bi. This is close to the expectednumber of letters contributing to the block and wascomputed as being (1� O(�2s=2))`s. Hence, the totalnumber of ones remaining is at most O(�2�s=2`).The expected number of rows i whose block Bi isof size `s is 1+�c (rs+1 � rs) = O(�2s=2`). We can con-clude that the total number of bit operations in theGaussian elimination then is Ps2f0;...;fg O(�2s=2`) �O(�`)�O(�2�s=2`) = O(log(1=�2)�3`3). If a single op-eration is considered to be q = O(ln(1=�)�2`) bit op-erations, then decoding only takes O(�`2) operationsas required.In the full version of the paper, we prove the lowerbound, that for no setting of the parameters (i.e. thesizes of the blocks and the number of letters about eachletter) are the encoding and decoding times for thisscheme more than a constant factor better than wehave achieved. It is interesting that this goes againstour initial intuition. Initially, we planned for the ex-pected number of letters received contributing to ablock of size `s to be larger than (1� 
(�2s=2))bs. Insuch a case, it is very possible that a particular blockis over de�ned, i.e. chs;ii > `s. However, averagedover many such blocks, with high probability not toomany letters of the encoding will be wasted in thisway. The advantage of doing this is that having moresmall blocks decrease the computation time. It turns



out, however, that a large fraction of the computationtime is spent on the letters about the blocks of size `and making this change means increasing the numberof them and hence increases the overall time.5 Concluding remarks and open prob-lemsIt would be interesting to obtain a constructionsimilar to the one in Theorem 1 in which the packetsize is smaller. It is not di�cult to prove, usingthe Plotkin bound, that the minimum possible packetsize in any erasure code with the parameters in thetheorem (without any assumption on the e�ciencyof its encoding and decoding procedures) is at least
(log((c�1)=�)) for all � � 1=n, and the algebraic ge-ometry codes show that this is essentially tight. Ourconstruction supplies much bigger packet sizes, buthas the advantage of linear encoding and decodingtime.It is probably possible to construct a scheme thathas a theoretical run time that is polylogarithmic in1=� and linear in n, using Discrete Fourier Transformmethods in place of quadratic time methods for MDScodes, but details of this need to be checked. Even ifthis is the case, it is unlikely that using these methodsin places where we use quadratic time MDS codes willbe as e�cient in practice.The construction in Section 3 can be improved byusing walks in expanders instead of edges, using themethods of [1]. The relevance of this method to thecase of expander based error correcting codes has beenobserved in (cf. [12]), and a similar remark holds herealso.Combining our technique here with the methods ofSpielman in [13] we can obtain explicit, linear timeencodable and decodable error correcting codes over alarge alphabet, whose rate and minimum distance inthe range close to the MDS bound are close to optimal.We omit the details.References[1] M. Ajtai, J. Koml�os, E. Szemer�edi, \Determin-istic Simulation in Logspace", Proc. of the 19thSTOC, 1987, pp. 132-140.[2] A. Albanese, J. Bl�omer, J. Edmonds, M. Luby, M.Sudan, \Priority Encoding Transmission", Pro-ceedings of 35th FOCS, 1994.[3] A. Albanese, J. Bl�omer, J. Edmonds, M. Luby,\Priority Encoding Transmission", ICSI Techni-cal Report No. TR-94-039, August 1994.[4] N. Alon, J. Bruck, J. Naor, M. Naor, R. Roth,\Construction of asymptotically good, low-rateerror-correcting codes through pseudo-randomgraphs", IEEE Transactions on Information The-ory, Vol. 38, 1992, pp. 509-516.[5] N. Alon, F. R. K. Chung, \Explicit constructionof linear sized tolerant networks", Discrete Math.,Vol. 72, 1988, pp. 15-19; (Proc. of the First JapanConference on Graph Theory and Applications,Hakone, Japan, 1986.)
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