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Abstract

We consider server scheduling strategies to minimize average flow time in a multicast pull
system where data items have uniform size. The algorithm Longest Wait First (LWF) always
services the page where the aggregate waiting times of the outstanding requests for that page
is maximized. We provide the first non-trivial analysis of the worst case performance of LWF.

On the negative side, we show that LWF is not s-speed O(1)-competitive for s <
1+

√
5

2
. On the

positive side, we show that LWF is 6-speed O(1)-competitive.

1 Introduction

In a pull-based client-server system, the server receives client initiated requests for
items/pages/documents over time. In a multicast/broadcast system, when the server sends a re-
quested page, all outstanding client requests to this data item are satisfied by this multicast. The
system may use broadcast because the underlying physical network provides broadcast as the basic
form of communication, for example if the network is wireless or the whole system is on a LAN.
Multicast may also arise in a wired network as a method to provide scalable data dissemination. See
for example multicast based scalable data dissemination systems described in [6, 7]. One commer-
cial example of a multicast-pull client-server system is Hughes’ DirecPC system [8]. In the DirecPC
system the clients request documents via a low bandwidth dial-up connection, and the documents
are broadcast via high bandwidth satellite to all clients.

In this paper we consider a setting where the data items, or pages, are of approximately the same
size. This might arise, for example, if the server is a DNS server. We consider the objective function
of minimizing the average flow/response/waiting time of the client requests. The preponderance of
evidence to date indicates that the “right” algorithm for this problem is Longest Wait First (LWF).
LWF always services the page where the aggregate waiting times of the outstanding requests for
that page is maximized. All the experimental comparisons of the most natural algorithms have
identified the LWF as the clear champion [9, 23, 2]. In the natural setting where the request arrival
times for each page have a Poisson distribution, LWF broadcasts each page with frequency roughly
proportional to the square root of the page’s arrival rate, which is essentially optimal [3].

To understand the worst-case analysis results in the literature, we need to introduce and motivate
resource augmentation analysis. Resource augmentation analysis was proposed as a method for
analyzing scheduling algorithms in [16]. We adopt the notation and terminology from [20]. In the

context of our problem, an s-speed c-competitive algorithm A has the property that maxI
As(I)

OPT1(I) ≤
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Figure 1: The worst possible performance curve of an s-speed c-competitive online algorithm.

c where As(I) denotes the average flow time for the schedule that algorithm A with a speed s
processor on input I, and similarly OPT1(I) denotes the flow time of the adversarial schedule for
I with a unit speed processor. Our analysis philosophy is to put first priority on minimizing the
speed, while keeping the competitive ratio reasonable, ideally O(1). The reason for this is average
quality of service (QoS) curves such as those in figure 1 are ubiquitous in server systems. That
is, the average QoS at loads below capacity is negligible, and the average QoS above capacity is
intolerable. The concept of load is not so easy to formally define, but generally reflects the rate at
which work arrives at the server. So in some sense, one can specify the performance of such a system
by simply giving the value of the capacity of the system. In this setting, As(I) is at most c times
optimal average flow time with s times higher load, since slowing down the speed by a factor of s is
the same as increasing the load by a factor of s. But since the optimal flow time is almost always
negligible or intolerable, a modest c times either negligible and intolerable, still gives you negligible
or intolerable. So an s-speed c-competitive algorithm should perform reasonably well up to load
1/s of the capacity of the system as long as c is of modest size. An algorithm that is (1 + ǫ)-speed
O(1)-competitive is said to be almost fully scalable [21].

Worst-case analysis of this multicast pull scheduling problem was initiated in [17]. They showed
that there is no O(1)-competitive online algorithm for this problem. They also showed the intu-
itive greedy algorithm, Most Requests First (MRF), is not even O(1)-speed O(1)-competitive. MRF
always services the page with the most outstanding requests. This result perhaps explains the exper-
imental inferiority of MRF observed in [9, 23, 2]. In [17] it was observed that O(1)-competitiveness
for O(1)-speed online algorithms can not be proved using local competitiveness. An online algorithm
A is locally c-competitive if at all times the increase in the objective function for A increases by at
most c times the rate that the objective function increases for any adversary [21]. Building on the
work in [10], in [11] it was shown that there exists an algorithm that is (4 + ǫ)-speed O(1 + 1/ǫ)-
competitive. Unfortunately, this algorithm is not particularly natural, and it is known that it can
not be 2-speed O(1)-competitive.
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1.1 Our Results

In [17] is was conjectured that LWF was almost fully scalable. We refute this conjecture in section

3 by showing that that LWF is not s-speed O(1)-competitive for s < 1+
√

5
2 . On the positive side, we

show in section 2 that LWF is 6-speed O(1)-competitive. Intuitively, this result should probably be
viewed as saying that LWF’s performance is at least reasonable. This is the first non-trivial analysis
of the worst case performance of LWF.

Traditionally the multicast pull problem for constant sized pages has been formalized in a discrete
time model. However, when one considers variable speed servers, there is some intuitive appeal to
formalizing the problem in a continuous time model. In particular, the discrete time model is not so
natural for non-integer speeds. In this paper we prove our upper bound in a discrete time model and
our lower bound in a continuous time model. Our lower bound on speed being non-integer makes
it natural for us to adopt the continuous model there. We adopt the discrete model for our integer
upper bound on speed because we believed that this would simplify the algebraic complexity of the
argument. We believe that our analysis are valid for both the discrete and continuous time models.
But, strictly speaking, the results in this paper do not formally establish this.

1.2 Related Results

In order to obtain a positive result for multicast pull scheduling for unit sized pages, [17] resorted to
considering offline algorithms. They found an LP-based polynomial-time algorithm that is 3-speed
3-approximate. Subsequently better results were obtained by using different rounding schemes. In
[12] a rounding that is 6-speed 1-approximate algorithm is given. In [13] a rounding that is 2-speed
2-approximate is given. In [14] a rounding that is 3-speed 1-approximate is given. Finally, in [4],
a rounding that is O(1 + ǫ)-speed O(1)-approximate is given. Note that all of these algorithms are
offline and thus are not implementable in a server. This problem was proven to be NP-hard in [12].

There has also been some worst case analysis of multicast pull scheduling algorithms in the
case that data items have different sizes and where preemption is allowed. This would be a more
appropriate formalization of the DirecPC system for example. Firstly there is more than one rea-
sonable way to formalize this problem, for example, the clients may or may not be required to
receive the requested file in order. In [22] different alternative formalizations of the problem are
compared. Building on the work of [10], it is shown in [11] that the algorithm, which broadcasts
each document at a rate proportional to the number of outstanding requests for that document, is
(4 + ǫ)-speed O(1 + 1/ǫ)-competitive in all the reasonable models. In [5] some results for maximum
flow time are given. Experimental results in the case of arbitrary data item size can be found in
[1, 15]. For a survey on online scheduling, including multicast pull scheduling, see [21]. Problems
that are special cases of multicast pull scheduling include weighted flow time, and scheduling jobs
with sequential/parallel speed-up curves [11, 21].

LWF can be implemented in logarithmic time per query [18].

There has been a fair amount of research into push-based broadcast systems, sometimes called
broadcast disks, where the server pushes information to the clients without any concept of a request,
ala a television or radio broadcast. See for example [19]. A survey of the literature of both pull and
push multicast/broadcast scheduling can be found in [24].
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1.3 Definitions and Preliminaries

We formalize the problem in the following way. The setting consists of a corpus P of n possible
pages. A total of Q requests for these pages arrive over time.

Discrete Time Model: Events at each integer time t happen in the following order:

1. First, the s-speed server for LWF decides on up to s pages to broadcast.

2. Then the unit speed adversary decides on a page to broadcast.

3. And finally the server receives Ri(t) ≥ 0 new requests for page i ∈ P (for each 1 ≤ i ≤ n).

It is important to remember this order as it will be implicitly used throughout our analysis. We say
that the Ri(t) requests for page i at time t are satisfied/serviced/completed at time Ci(t) if Ci(t) > t
is the first time when page i is broadcast after these requests arrived. We consider the objective
function of minimizing the total (or equivalently average) system performance. The response/flow
time of a request for page i ∈ P at time t is Ci(t)− t, which is how long a client that requested page i
at time t has to wait until page i is broadcast. The total response time is then

∑
t

∑
i Ri(t)·(Ci(t)−t).

LWF Definition: The current wait of a page is defined as follows. At time t, let Ĉi(t) be the last
time, strictly before time t, that LWF broadcast page i. If there is no such time, then Ĉi(t) = 0.
Then the wait of a page i at time t is

∑
Ĉi(t)≤t′<t Ri(t

′) · (t − t′). At each time t, LWF broadcasts
the up to s pages with largest wait. It will be convenient in our proofs to think of LWF ordering
these s broadcasts by decreasing wait. So the first of the s broadcasts at time t, is the page with
the highest total wait. Ties may be broken arbitrarily.

As is common when analyzing scheduling algorithms, we need a time/event ordering not only for
the times in the schedule, but for also for the events internal to the scheduling algorithms. Assume
that each of S and T is either a broadcast by LWF or the adversary. We then use the notation
S <
∼ T to mean that S happened before T in the scheduler’s time. In contrast, S < T means that

the S happened in an strictly earlier time step. If for example, S is the broadcast of a page i at time
t by LWF and T is the broadcast of a page j at time t by the adversary then S <

∼ T , but S 6< T
and T 6 <

∼ S. As another example, S is the broadcast of a page i at time t by LWF and T is the
broadcast of a page j at time t by LWF then S <

∼ T is equivalent to saying the i’s wait is at least
j’s wait at time t.

Continuous Time Model: In this model, requests for pages may arrive at arbitrary real times.
A speed s processor picks a page to broadcast at each time that is an integer multiple of 1

s . A page
that a speed s processors starts to broadcast at time t, completes at time t+ 1

s . All other definitions,
and the description of LWF are as in the discrete time model.

2 Analysis of LWF

Our goal in the section is to prove the following theorem:

Theorem 1 For all instances I, LWF6(I)
OPT1(I) = O(1)

We benevolently assume that when LWF services a page, all outstanding requests for this are
implicitly serviced for the adversary. This allows us to simplify our arguments in two ways. Firstly,
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because all requests for this page are serviced by both schedulers, we can analyze subsequent requests
to this page independently. Secondly, since this assumption implies that the adversary never falls
behind LWF on any page, this greatly reduces the number of cases that we have to consider. We
further assume, without loss of generality, that LWF broadcasts s pages on every step. Otherwise,
we can just apply our argument to every maximal time interval where this holds. From here on we
fix a particular instance I and drop it from the notation.

In this paragraph we give an informal road map of our analysis. We develop an accounting scheme
in which the adversary’s costs eventually pay for all of LWF’s costs. The currency of payment is
not actually wait time, which depends on the number of requests, but is the number of time steps
in which servicing is delayed. The proof first identifies A-costly-events which are more costly for
the adversary because LWF services them quickly and L-costly-events that are more costly for LWF
because it services them long after the adversary does. The proof transforms the original input
into a canonical input to make this distinction even more pronounced. LWF is initially delayed by
A-costly-events. These A-costly-events pay for the L-costly-events that they delay. L-costly-events
are payed more than they actually need so that they can in turn pay for the L-costly-events that
they delay. When an event is in the role of paying, it will either be referred to as an A-paying-event
or as an L-paying-event depending on whether it is A or L-costly. Similarly, when an L-costly-event
is in the role of being payed, it will be referred to either as a payed-by-A-event or as a payed-by-L-
event. An L-costly-event begins being costly when the adversary services it. The events that LWF
is servicing during this same time step are referred to as its time-linked-events. Every time that an
L-costly-event is payed by other L-costly-events, it is also payed by one of its time-linked-events.

LWF: E
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Figure 2: The figure on the left shows a generic lifetime for requests satisfied by a particular LWF
broadcast. The two figures on the right side show the two possible results of the canonical transfor-
mations.

Consider a collection Qk of requests for a particular page satisfied by an LWF servicing at time
Ek. The lifetime of these requests can be depicted as a roughly triangular region as in the left side
of Figure 2. The vertical axis is time and the horizontal axis is the indices of requests. The width
of the triangle increases with time as more requests arrive. Any point in the triangle is represents a
point in time for a request between its release and its servicing by LWF. The bottom point of the
triangle represents the arrival of the first request in Qk. The top horizontal line is the time Ek at
which LWF next services the requests in Qk. The intermediate horizontal lines are the times bj ,
1 ≤ j ≤ r, that the adversary explicitly services the page. Let ej = bj+1 for 1 ≤ j ≤ r − 1, and
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er = E. Wait time is measured as area. Let pj, 1 ≤ j ≤ r, denote the total number of requests
serviced at time bj or earlier by the adversary and remaining unserviced by LWF. Let ℓj = ej − bj ,
1 ≤ j ≤ r, denote the amount of time until the next servicing of the page. It follows that ℓjpj

is the flow time that accumulates for LWF during this period for the requests already serviced by
the adversary. Even if the adversary never services the page again, more requests can arrive for
this page during [br, Ek], because of our assumption that they will get serviced for her when LWF
services the page at time Ek. Let qj , 1 ≤ 1 ≤ r denote the total flow time accumulated by LWF and
the adversary during [bj , ej] for requests for this page that arrive during [bj , ej − 1]. Let q0 denote
the total flow time accumulated by the adversary for the pages that she broadcasts at time b1. The
total wait time of this page during this time period under LWF is q0 +

∑
j∈[1,r] (ℓjpj + qj). For the

adversary, the corresponding wait time for this page during this time period is
∑

j∈[0,r] qj .

We will now transform the original instance into a canonical instance, one LWF servicing at a
time. Further we will alter the rules of the game being played between LWF and the adversary. Our
goal is to make a complete distinction between A-costly-events and L-costly-events. See Figure 2.
We now describe how to create a canonical input.

Canonical Input: Let γ be some small constant that we will specify later. A canonical input is
constructed by repeating the following construction for each LWF servicing k of a collection Qk of
requests for some page at time Ek. We consider two cases depending up how the adversary’s cost

minus Qk,
∑

j∈[0,r] qj − Qk, compares to LWF’s cost,
(
q0 +

∑
j∈[1,r] (ℓjpj + qj)

)
.

Case of an A-costly-event: If
∑

j∈[0,r] qj − Qk ≥ γ
(
q0 +

∑
j∈[1,r] (ℓjpj + qj)

)
, then the instance

is changed so that the Qk requests under consideration are replaced by
(
q0 +

∑
j∈[1,r] (ℓjpj + qj)

)

requests for this page at time Ek − 1. This is then called an A-costly-event. Thus LWF’s cost for
these requests remain unchanged, and the adversary’s cost increases to LWF’s cost. Because the
competitive ratio we are proving is 6, this same cost is 6 times costlier for the adversary. Hence, the
name A-costly event.

Case of an L-costly-event: If
∑

j∈[0,r] qj − Qk < γ
(
q0 +

∑
j∈[1,r] (ℓjpj + qj)

)
, then we will change

the instance in the following way. If a request in Qk arrives before time b1, its arrival is delayed
until time b1 − 1. If a request in Qk arrives during the interval [bj , bj+1 − 1], 1 ≤ j ≤ r − 1, then
its arrival is delayed until time bj+1 − 1. If a request in Qk arrives at time br or later, it will be
removed from the instance. The L-costly-events are then the r rectangles, or time periods, (bj , bj+1],
1 ≤ j ≤ r − 1, and (br, E]. The total wait time for LWF for the requests in Qk decreases from(
q0 +

∑
j∈[1,r] (ℓjpj + qj)

)
to Qk +

∑
j∈[1,r][ℓjpj ]. The total wait time for the adversary for the

requests in Qk decreases from
∑

j∈[0,r] qj to Qk

We now define what we mean by the new game.

New Game: The adversary must give LWF a canonical input. To compensate the adversary, she
is allowed to force LWF to service any page with wait time at least 1− γ of the maximum wait time
of any page. The adversary still implicitly completes a page when LWF services the page.

We now show that an O(1)-competitiveness analysis for the new game is sufficient to establish
O(1)-competitiveness for the original problem.

Lemma 2 If LWF is s-speed c-competitive in the new game then LWF is s-speed c
γ -competitive in

the original game.
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Proof: We prove the contrapositive. Consider an adversarial strategy X for the original game that
forces the competitiveness to be more that c

γ . We now explain how the adversary can mimic X in
the new game. In the new game the adversary forces LWF to service the pages in exactly the order
that X forced LWF to service the pages in the old game. The first thing to check is that this is a
legal strategy for the adversary in the new game. We need to argue that our transformation never
increases the wait time of a page, and at the time Ek that a page is broadcast in the old game, the
wait time for this page in the new game is at least 1−γ of the wait time of that page in the old game.
That wait times never increase is obvious since both canonical transformations only delay requests.
To see that wait times are not decreased too much at broadcast time, consider a page with wait time
W that LWF broadcast at time Ek in the old game. It is obvious that the canonical transformation
that produces A-costly-events doesn’t decrease the wait time of the page at time Ek. So assume
that k is a L-costly-event. In this case, LWF’s wait at time Ek decreases by

∑
j∈[0,r] qj − Qk. By

the assumption of being in the L-costly-event case, this decrease is at most γ times LWF’s original

wait of
(
q0 +

∑
j∈[1,r] (ℓjpj + qj)

)
.

We now argue that competitive ratio that the adversary achieves in the new game is at least c.
In the creation of an L-costly-event, both LWF and the adversary’s wait time decrease by the same
amount. Because LWF’s total wait time is greater or equal to that of the adversary, it follows that
this change only increases the competitive ratio. In the creation of an A-costly-event, it is obvious
that LWF’s wait time does not change, and we need to argue that the adversary’s wait time goes up
by at most a factor of 1

γ . The adversary’s wait time increases to the wait time for LWF. Since this is

an A-costly-event, LWF’s wait time is at most 1
γ

(∑
j∈[0,r] qj − Qk

)
, which is at most 1

γ

∑
j∈[0,r] qj .

The adversary’s wait time in the old game was
∑

j∈[0,r] qj . �

kQ
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Figure 3: An A-paying-event paying a payed-by-A-event

For the rest of this section we analyze LWF under the rules of the new game. We will now define
various types of events that are used in the analysis. Each A-costly-event can pay and in this role is
referred to as an A-paying-event. See Figure 3. We will index these events by k ∈ A. We denote the
time that this event occurs by Ek, which is the time that all its requests are serviced by LWF. We
use Qk to denote the collection of requests serviced by this event. It follows that

∑
k∈A Qk is the

total wait time that LWF accumulates for all A-costly-events and is at most the adversary’s total
wait time, namely OPT1 ≥

∑
k∈A Qk.

Each L-costly-event must be payed and in this role is referred to as a payed-event. See Figures 3
and 4. There is one payed-event j for each time the adversary explicitly services a page. Let Qj be
the requests serviced by the event j. That is, there is one event for each rectangle in the bottom
right of Figure 2. We will index these events by j ∈ L. We denote beginning and ending times of
event j by bj and ej , which are the time of the adversary servicing in question, and the time at which
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Figure 4: A time-linked-events and an L-paying-event paying a payed-by-L-event

either the adversary or LWF next services the same page, respectively. Let wj denote the flow time
accumulated by LWF, for the page in question, since the last servicing of this page by LWF up to
and including time bj. As before, let ℓj = ej − bj denote the duration of this period. Let pj denote
the total number requests for the page in question, that were serviced at time bj , or earlier, by the
adversary and remain unserviced by LWF. Because the input is canonical, and j is an L-costly event,
no new requests for this page arrive during [bj , ej − 2]. Hence, ℓjpj is the wait time for this page
that accumulates for LWF during this period. It follows that LWFs =

∑
j∈L ℓjpj +

∑
j∈L∪A Qj , or

equivalently LWFs −
∑

j∈L∪A Qj =
∑

j∈L ℓjpj. Then since OPT1 ≥
∑

j∈L∪A Qj it follows that

LWFs − OPT1 ≤
∑

j∈L
ℓjpj

We partition as follows the set L of payed-events into the set LA of payed-by-A-events and the
set LA of payed-by-L-events depending on whether it is to be payed for by A-paying-events or L-
costly-events. The thresholds for this partitioning are β and ǫ which are be some small constants to
be defined later. During the last 1−β fraction of event j’s life, namely [bj +βℓj , ej ], LWF services a
total of (1−β)sℓj times. We say these servicings are late for j. If at least ǫsℓj of these are servicing
A-paying-events, then we say that j is a payed-by-A-event. Otherwise, it is a payed-by-L-event.

An L-costly-event of the form [br, Ei], that is, one that ends with an LWF servicing, is called an

L-paying-event. We will index L-paying events by i ∈ L̂. We denote the beginning and ending of an
L-paying-event i by Bi = br and Ei. Similarly, Li = Ei − Bi, Wi = wr , and Pi = pr. In total, the
wait time of these requests under LWF is Wi + LiPi is

∑
i∈ bL LiPi ≤ LWFs.

In addition to many L-paying-events, each payed-by-L-event is payed by what we call time-linked-
events. See Figure 4. A time-linked-event can either be A or L-costly. There is one time-linked-event
for each time LWF services a page, and we will index the time-linked-events by h ∈ H. The ending
time of time-linked-event h, denoted by Eh, is the time at which LWF services the page. Let µh

denote the total wait time for LWF for this page at the time Eh. It follows that
∑

h∈H µh = LWFs.
There are s time-linked-events h ending and at most one payed-by-L-event i beginning during any
one time step Eh = bj. There is at most one payed-by-L-event at this time because the adversary
has a unit speed processor. These time-linked-events will pay this payed-by-L-event. Among the s
time linked events, let hj be the one with the smallest wait time at time Eh.
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We now show how the main theorem will follow from the following two payment lemmas.

Lemma 3
(s + 1)

ǫβs

∑

k∈A
Qk ≥ (1 − γ)

∑

j∈LA

ℓjpj

Lemma 4

∑

h∈H
µh +

∑

i∈ bL

LiPi ≥ (1 − γ)2 ·
((1 − ǫ − β)s − 1)2

2s




∑

j∈LL

ℓjpj − 2Q





Proof: (Theorem 1) We multiply the equation in Lemma 3 by (1− γ) · ((1−ǫ)s−1)2

2s and add it to the
equation in Lemma 4 to get

∑

h∈H
µh +

∑

i∈ bL

LiPi +

(
(s + 1)

ǫβs

)(
(1 − γ) ·

((1 − ǫ)s − 1)2

2s

)∑

k∈A
Qk

≥ (1 − γ)2 ·
((1 − ǫ − β)s − 1)2

2s




∑

j∈LA

ℓjpj +
∑

j∈LL

ℓjpj − 2Q





= (1 − γ)2 ·
((1 − ǫ − β)s − 1)2

2s




∑

j∈L
ℓjpj − 2Q





The equality in the equation above holds since LA∪LL = L. Let α′ =
(

(s+1)
ǫβs

)(
(1 − γ) · ((1−ǫ)s−1)2

2s

)

and let α =
(
(1 − γ)2 · ((1−ǫ−β)s−1)2

2s

)
. Substituting the inequalities

∑
h∈H µh = LWFs,∑

i∈ bL LiPi ≤ LWFs,
∑

k∈A Qk ≤ OPT1,
∑

j∈LA
ℓjpj ≥ LWFs − OPT1, and Q ≤ OPT1 yields

LWFs + LWFs + α′OPT1 ≥ α (LWFs − OPT1 − 2OPT1)

By algebra this is equivalent to

(3α + α′)OPT1 ≥ (α − 2) LWFs

Now in order to see that LWF is O(1)-competitive for the new game, it is sufficient that α > 2. By
taking ǫ, γ and β to be very small, we need that

(s − 1)2

2s
> 2

Note that this equation holds for s = 6. Finally, O(1)-competitiveness for the original game follows
from Lemma 2. �

The first step toward proving Lemma 3 uses the order that LWF services the pages to obtain an
inequality on some of the variables involved. This establishes a payment from an A-paying-event to
a payed-by-A-event.

Lemma 5 Let k ∈ A be an A-paying-event and j ∈ LA be an payed-by-A-event such that bj <
Ek

<
∼ ej. Then it is the case that

Qk ≥ (1 − γ)(Ek − bj)pj

9



Proof: LWF services the page associated with the A-paying-event k at time Ek, but because
Ek

<
∼ ej , LWF does not service page associated with payed-by-L-event j until later. Hence, at time

Ek, the page for k has wait time at least (1− γ) of that of the page for j under LWF. At this time,
the wait time on k is Qk. The wait time on j at time Ek is at least wj +(Ek − bj)pj , because at time
bj ≤ Ei, its wait time was wj and the pj unserviced requests at time bj remain unserviced during
the time period [bj , Ek]. The wait time for j at time Ek may be strictly larger than (Ek − bj)pj if
new requests for this page arrived at time Ek − 1. It follows that Qk ≥ (1− γ) (wj + (Ek − bj)pj) ≥
(1 − γ)(Ek − bj)pj . �

The following lemma will establish which A-paying-events will pay which payed-by-A-event.

Lemma 6 If k ∈ A is an A-paying-event and j ∈ LA is an payed-by-A-event, let ak,j be an associ-
ated 0/1 indicator variable. Then there is setting of the variables ak,j’s so that:

• If ak,j = 1 then bj < Ek
<
∼ ej, and k is late for j.

• For all k, it is the case that
∑

j∈LA
ak,j ≤ s+1

ǫs .

• For all j, it is the case that
∑

k∈A ak,j ≥ 1.

We are now ready to compute the total payment from A-paying-events k to payed-by-A-event j.

Proof: (Lemma 3) We use the variables ak,j from Lemma 6 as coefficients in a linear combination
of the inequalities from Lemma 5. That is,

∑

k∈A,j∈LA

ak,jQk ≥
∑

k∈A,j∈LA

ak,j ((1 − γ)(Ek − bj)pj)

Having bj < Ek
<
∼ ej when ak,j 6= 0 ensures that Lemma 6 holds. Having k is late for j ensures

that it is during the last 1 − β fraction of event j’s life, namely Ek ∈ [bj + βℓj , ej ], giving that
Ek − bj ≥ βℓj . Therefore

∑

k∈A,j∈LA

ak,jQk ≥
∑

k∈A,j∈LA

ak,j ((1 − γ)βℓjpj)

By Lemma 6
∑

j∈LA
ak,j ≤ s+1

ǫs and
∑

k∈A ak,j ≥ 1, and hence it must be the case that

∑

k∈A

s + 1

ǫs
Qk ≥

∑

j∈LA

((1 − γ)βℓjpj)

The claim then follows by dividing by β. �

Proof: (Lemma 6) We form a bipartite graph with s+1
ǫs copies of each A-paying-event k on one side

and each payed-by-A-event j on the other side. There is an edge {k, j} if and only if bj < Ek
<
∼ ej ,

and k is late for j. We use Hall’s theorem is establish that this graph has a matching that matches
each paid-by-A-event. Then we will set ak,j equal to 1 if and only if edge {k, j} is in this matching.

Hall’s theorem states that a sufficient condition for there to exist a matching that covers the
paid-by-A-events is that for each subset S of the paid-by-A-events it is the case that |S| ≤ |N(S)|,
where N(S) is the collection of vertices adjacent to a vertex in S. So consider a particular fixed S.

For each paid-by-A-event j ∈ S, let Ij be the collection of A-paying-events j such that bj <
Ek

<
∼ ej , and k is late for j. Let I be the collection of such Ij for j ∈ S. Note that each Ij ∈ I

consists of an interval of contiguous LWF servicings. We then construct a subcollection J of I in
the following manner, starting with step 1:

10



1. If there is an interval Ij ∈ I that starts later than the ending time of every interval in J then
we add the earliest starting interval with this property to J , and go to the next step. If no
such interval exists then halt.

2. If there is an interval in I that intersect the previous intervals J but has a later ending time,
then add to J one such interval with the latest LWF servicing, and repeat this step. Else
repeat the previous step.

It is easy to see that
⋃
J =

⋃
I. Let Jo contain the first, third, fifth, etc. intervals added to J , and

Je contain the second, fourth, sixth, etc. intervals added to J . Then it is easy to see that at least
one of the following is true: |

⋃
Jo| ≥ |

⋃
J |/2, or |

⋃
Je| ≥ |

⋃
J |/2. Without loss of generality,

assume that |
⋃
Jo| ≥ |

⋃
J |/2.

Now consider an interval Ij ∈ Jo. Since j is a payed-by-A-event, it contains at least ǫsℓj A-paying
events i that are late for j. Hence our selected intervals cover at least ǫs|

⋃
I|/2 A-paying-events. All

of these A-paying-events are contained in the neighborhood N(S) of S copied s+1
ǫs times each, giving

that N(S) ≥ s+1
ǫs ·(ǫs|

⋃
I|) = (s+1)|

⋃
I|. Note that |S| ≤ (s+1)|

⋃
I| since for each LWF servicing

i ∈ I there are at most s LWF servicings j at this time, and at most one adversarial servicing at
this time. Combining |S| ≤ (s + 1)|

⋃
I|, and (s + 1)|

⋃
I| ≤ |N(S)|, gives that |S| ≤ |N(S)|. This

this establishes by Hall’s theorem that the desired matching exists. �

This completes our analysis of payments from A-paying-events to payed-by-A-events. We now
will analyze the payments from time-linked-events and L-paying-events to a payed-by-L-events. We
recommend referring to figure 4. We will consider a time-linked-event h ∈ H that happens at the
same time as a payed-by-L-event j ∈ LL that both happen at time Eh = bj . We further consider

a L-paying-event i ∈ L̂ such that Bi < bj = Eh < Ei
<
∼ ej. We will then use these relationships to

establish a payment scheme that will eventually allow us to prove Lemma 4.

Lemma 7 Let h ∈ H be a time-linked-event, i ∈ L̂ be an L-paying-event, and j ∈ LL be an payed-
by-L-event such that Bi < bj = Eh < Ei

<
∼ ej. Then it must be the case that

µh + (Ei − bj)Pi ≥ (1 − γ)2(Ei − bj)pj

Proof: At time Eh, the wait time on h is µh and the wait time on i is Wi +(Eh−Bi)Pi. Since Eh <
Ei, according to the new rules for LWF, it must be the case that µh ≥ (1 − γ) (Wi + (Eh − Bi)Pi),
or equivalently µh

1−γ − (Eh − Bi)Pi ≥ Wi.

At time Ei, the wait time on i is Wi + LiPi and the wait time on j is at least wj + (Ei − bj)pj

(it might be more if more requests for the associated page arrived at time Ei − 1. Since, Ei
<
∼ ej, it

must be the case that Wi + LiPi ≥ (1 − γ) (wj + (Ei − bj)pj).

Substituting, we get that µh

1−γ − (Eh − Bi)Pi + LiPi ≥ (1 − γ) (wj + (Ei − bj)pj). By dropping

the wj term, we get that µh

1−γ − (Eh − Bi)Pi + LiPi ≥ (1 − γ) ((Ei − bj)pj). We now consider the

term (Eh − Bi)Pi + LiPi and find that:

(Eh −Bi)Pi + LiPi = Pi(Li − (Eh −Bi)) = Pi((Ei −Bi)− (Eh −Bi)) = Pi(Ei −Eh) = Pi(Ei − bj)

Hence, µh

1−γ − (Ei − bj)Pi ≥ (1 − γ) (wj + (Ei − bj)pj), or equivalently, µh + (1 − γ)(Ei − bj)Pi ≥

(1−γ)2(Ei−bj)pj . Finally, by noting that (1−γ) < 1, we get the desired result that µh+(Ei−bj)Pi ≥
(1 − γ)2(Ei − bj)pj . �

Now Lemma 4 follows by taking a linear combination of the inequalities from Lemma 7.
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Proof: (Lemma 4) For each L-paying-event i ∈ L̂ and each payed-by-L-event j ∈ LL, define ai,j as
follows:

i ∈ L̂, j ∈ LL, ai,j =

{ 1
ℓj

if Bi < bj < Ei
<
∼ ej

0 otherwise

Using this both as a scaling factor for the equations from Lemma 7 and as an indicator variable as
to when the equation holds, gives the following for all i ∈ L̂, j ∈ LL, and h ∈ H for which bj = Eh:
ai,j (µh + (Ei − bj)Pi) ≥ ai,j

(
(1 − γ)2(Ei − bj)pj

)
. Since LWF services s pages at time bj, there are

s time-linked-events for which bj = Eh. Recall that hj is the time linked event with the smallest
wait time at time Eh. Summing over all i and j, the above equation gives

∑

i∈ bL, j∈LL

ai,jµhj +
∑

i∈ bL, j∈LL

ai,j(Ei − bj)Pi ≥ (1 − γ)2
∑

i∈ bL, j∈LL

ai,j(Ei − bj)pj (1)

We now use three Lemmas that we will prove momentarily. Lemma 8 states that∑
i∈ bL, j∈LL

ai,jµhj ≤
∑

h∈H µh. Lemma 9 states that
∑

i∈ bL, j∈LL
ai,j(Ei − bj)Pi ≤

∑
i∈ bL LiPi.

Hence, substituting these results into equation 1 give

∑

h∈H
µh +

∑

i∈ bL

LiPi ≥ (1 − γ)2
∑

i∈ bL, j∈LL

ai,j(Ei − bj)pj (2)

Lemma 10 states that
∑

i∈ bL, j∈LL
ai,j(Ei − bj)pj ≥ ((1−ǫ−β)s−1)2

2s

(∑
j∈LL

ℓjpj − 2Q
)
. Substituting

this result into equation 2 gives

∑

h∈H
µh +

∑

i∈ bL

LiPi+ ≥ (1 − γ)2 ·
((1 − ǫ − β)s − 1)2

2s




∑

j∈LL

ℓjpj − 2Q



 (3)

as we wanted to prove. �

Lemma 8 ∑

i∈ bL, j∈LL

ai,jµhj ≤
∑

h∈H
µh

Proof: Let j ∈ LL be any payed-by-L-event. There are at most s(ej − bj) = sℓj L-paying-events

i ∈ L̂ for which bj < Ei
<
∼ ej , because at each time step LWF services at most s pages. The number

of L-paying-events i for which ai,j is non-zero is thus at most sℓj . When it is non-zero, ai,j = 1
ℓj

.

This gives that
∑

i∈ bL ai,j ≤ s.

At time bj, when the page associated with the payed-by-L-event j is being serviced by the
adversary, there are s pages serviced by LWF. Let the wait times of the corresponding time-linked-
events be µhj,1 , . . . , µhj,s . By definition of hj , each of these wait times is at least µhj . It then follows
that ∑

h∈H
µh ≥

∑

j∈LL

(µhj,1 + . . . + µhj,s) ≥
∑

j∈LL

sµhj ≥
∑

j∈LL

(
∑

i∈ bL

ai,j)µhj

�

Lemma 9 ∑

i∈ bL, j∈LL

ai,j(Ei − bj)Pi ≤
∑

i∈ bL

LiPi
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Proof: Let i ∈ L̂ be some L-paying-event. There are at most Li = Ei − Bi payed-by-L-events
j ∈ LL for which Bi < bj < Ei, because at each time step the adversary services at most one page.
Therefore the number of j for which ai,j is non-zero is at most Li. When ai,j is non-zero,

ai,j(Ei − bj) =
1

ℓj
(Ei − bj) =

1

(ej − bj)
(Ei − bj) ≤

1

(ej − bj)
(ej − bj) = 1

The inequality in the above equation holds since when ai,j is non-zero, it is the case that Ei
<
∼ ej .

This gives that ∑

i∈ bL

∑

j∈LL

ai,j(Ei − bj)Pi ≤
∑

i∈ bL

∑

j∈LL

Pi ≤
∑

i∈ bL

Li · Pi

�

Lemma 10

∑

i∈ bL, j∈LL

ai,j(Ei − bj)pj ≥
((1 − ǫ − β)s − 1)2

2s




∑

j∈LL

ℓjpj − 2Q





Proof: For each j ∈ LL, we will show that the following inequality holds:

∑

i∈ bL

ai,j(Ei − bj)pj =
pj

ℓj

∑

i∈ bL,ai,j 6=0

(Ei − bj) (4)

≥
((1 − ǫ − β)s − 1)2

2s

(
ℓjpj −

{
2pj if ej is an LWF servicing
0 otherwise

)
(5)

The proof then follows by summing up over all such j. We break the proof into cases. In the first
case let j ∈ LL be any payed-by-L-event which ends with an explicit servicing by the adversary (i.e.
subtracting 0 and not pj in equation 5).

Our first goal is to count the number, denoted by mj, of i ∈ L̂ for which ai,j is non-zero, namely
the number of L-paying-events i for which Bi < bj < Ei

<
∼ ej . There are s(ej − bj) = sℓj LWF

servicings i satisfying bj < Ei
<
∼ ej since LWF has a speed s processor and the adversary servicing

j at time Ej happened after all LWF servicings at time Ej . We subtract off of these the number
that are A-paying-events. Since j is a payed-by-L-event, at most ǫsℓj of the LWF servicings i,
that are late for j, are A-paying-events. It is possible that all of the early servicings are A-paying-
events, however, there are at most βsℓj of these. This leaves (1 − ǫ − β)sℓj L-paying-events i with
bj < Ei

<
∼ ej . Now we must subtract off the number of these for which bj ≤ Bi, but there are at

most ej − bj = ℓj of these, because the adversary services at most one page at each time step. (Note
that i 6= j because i is a L-paying-event that ends with an LWF servicing, and the payed-by-L-event
j by assumption ends with an an explicit adversary servicing.) In conclusion, the number mj of

i ∈ L̂ for which ai,j is non-zero, is at least sℓj − ǫsℓj − βsℓj − ℓj = ((1 − ǫ − β)s − 1)ℓj.

Our goal is to lower bound the sum
∑

i∈ bL,ai,j 6=0(Ei − bj) In the worst case, each Ei − bj is as

small as it can be. (Because we subtracted off from our count mj the early LWF servicings, we
know that Ei − bj ≥ βℓj . However, this does not significanly improve the bound so we will only use
the fact from bj < Ei that Ei − bj ≥ 1.) However, at most s of them can have any one particular
value t, because at most s pages are serviced by LWF at time Ei = bj + t. Hence, in the worst case
there are s L-paying-events i for which Ei − bj is 1, s for which it is 2, s for which it is 3, . . ., s for
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which it is ⌊
mj

s ⌋, and finally the remainder of them which are ⌊
mj

s ⌋ + 1. Assume briefly, that mj is
divisible by s. Then this gives

∑

i∈ bL,ai,j 6=0

(Ei − bj) ≥

mj/s∑

t=1

st = s
(mj

s

)(mj

s
+ 1
)

/2 ≥
m2

j

2s
. (6)

We will leave it as an exersize that the same bound is true when mj is not divisible by s.

Let us return our attention to equation 4. Recall that when ai,j is non-zero, it is equal to 1
ℓj

.

Therefore, we know that the left hand side of the inequality in equation 4 is at least

pj

ℓj
·
m2

j

2s
=

((1 − ǫ − β)s − 1)2

2s
ℓjpj

For the second case assume that ej represents an LWF servicing. Now we can only argue that
there are s(ej − bj − 1) = s(ℓj − 1) LWF servicings at an Ei ∈ [bj + 1, ej] with Ei

<
∼ ej since ej may

be the first LWF servicing at time ej . Thus using the argument in the preceding case, we get that

pj

ℓj

∑

i∈ bL,ai,j 6=0

(Ei − bj) ≥
((1 − ǫ − β)s − 1)2

2s

(
(ℓj − 1)2

ℓj
pj

)
≥

((1 − ǫ − β)s − 1)2

2s
(ℓjpj − 2pj) (7)

Summing up the pj over the Payed-by-L-events that end with an LWF servicing is then at most the
total number of requests Q. �

3 Lower Bound

Theorem 11 There exists instances I such that

LWFs(I)

OPT1(I)
= Ω

(
n1− ln s

ln(1+1/s)

lnn

)

which is nΩ(1) for s < 1+
√

5
2 ≈ 1.618

Proof: We now define the instance I. We encourage the reader to refer to figure 3 to help understand
the construction. The instance I is partitioned into R sets S0, S1, S2, . . . , SR of requests, where
R = log1+1/s n = lnn

ln(1+1/s) . The set of requests Sr will contain requests for nr = n
sr different pages.

All requests for a particular page in Sr arrive at the same time. Thus a total of Θ(n) pages are
requested.

S0 consists of the one request arriving at time zero for each of n different pages P1, . . . Pn. We
now define the remaining Sr sets of requests. Let Tr = n1+n2+n3+. . .+nr. Let wr = 1

s (1+ 1
s )r−1n;

think of wr as a common wait time. For each r ∈ [1, R] and i ∈ [0, nr), request Rr,i ∈ Sr will have
pr,i = wr

i requests arrive at time Tr − i for page PTr−i. So note that by the definition of s, the n1

requests in S1 are to the same pages as the first n1 requests in S0. Further, the first n−n1 requests
in S2 are to the same pages as the last n − n1 requests in S0. The fact that n < n1 + n2 follows

from s < 1+
√

5
2 . After the requests in S2, no page is requested at more than one time. The fact that

wR/R > 1 follows since s < 1 + 1/s for s < 1+
√

5
2 . Note that at time Tr, all of the pages in Sr have

total wait time of pr,i · ((Tr) − (Tr − i)) = wr

i · i = wr .
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We now give a bit of intuition and explanation, and then formally prove that our explanation
is correct. The ith collection of requests from the Sr’s, r ≥ 1, arrives at time i, and the adversary
immediately finishes these requests. So the adversary’s wait time on these requests is proportional
to the number of such requests. LWF first does the requests in S0 in order, finishing these at time
n1 = n/s. Then during each time period [Tr, Tr+1], r ≥ 1, while the adversary is processing Sr+1,
LWF is processing the requests in Sr in the reverse order of their arrival. We think that it is helpful
to keep figure 3 in mind. The horizontal axis are the various pages, and the vertical axis is time. A
dot represents requests for that page at that time. The solid line shows that the adversary answers
requests in some Sr, r ≥ 1, as they arrive. The dashed line represents the order that LWF services
the requests. As in figure 2, you can find the response time for a query for a particular scheduling
algorithm by measuring the vertical distance from the arrival dot to the completion curve for that
scheduling algorithm. Thus the total response time for any algorithm is a region under its completion
curve. The doubly shaded region represents the total response time that is common to LWF and
the adversary for requests in S0. The singly shaded region represents total response time for LWF
that the adversary doesn’t experience.

n1

n

n3

4n

n5

T5

4T

T3

2T

T

Adversary’s flow time
LWF’s flow time

LWF services
Adversary services
Requests arrives

Pages

T
im

e

�����
�����
�����

�����
�����
����������
�����
�����

�����
�����
�����

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

2

1

i

i/s

S

i

0

S2

5S

S4

3S

1S

Figure 5: The time that requests for requests arrive and are serviced by LWF and by the adversary.

We will now prove that LWF services the requests in the stated order as indicated in Figure 3.
Specifically, LWF services request R0,i at time i

s and request Rr,j at time Tr + i
s .

The requests in S0 are equivalent until new requests come, so we can decide the order that they
get completed. In order to prove that all requests in S0 get serviced before those in S1, consider
requests R0,i ∈ S0 for i ∈ [0, n) and R1,j ∈ S1 for j ∈ [0, n1). At time i

s , when R0,i is stated to be

serviced, its one request has wait time i
s . At this time, R1,j ’s

w1

j requests have age
(

i
s

)
−(T1 − j) and

wait time
(

i
s − T1 + j

)
· w1

1
j =

(
i
s − n

s + j
)
· n

s
1
j = −n−i

s · n
sj + n

s . Note that i < n and j < n1 = n
s

giving that n
sj > 1. Hence, R1,j ’s wait time is less than −n−i

s + n
s = i

s , which is R0,i’s wait time.
Hence, LWF chooses to service R0,i over R1,j .
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In order to prove that LWF services the requests in Sr in the order i = 0, 1, 2, . . . , nr−1, consider
requests Rr,i and Rr,j for 0 ≤ i < j < nr. At time Tr + i

s , when Rr,i is stated to be serviced, its wr

i

requests have age
(
Tr + i

s

)
− (Tr − i) =

(
(1

s + 1)i
)

and wait time
(
(1

s + 1)i
)
· wr

1
i = (1

s + 1)wr. At

this time, Rr,j ’s
wr

j requests have age
(
Tr + i

s

)
− (Tr − j) =

(
i
s + j

)
and wait time

(
i
s + j

)
· wr

1
j <(

j
s + j

)
· wr

1
j = (1

s + 1)wr. Hence, LWF chooses to service Rr,i over Rr,j .

In order to prove that all requests in Sr get serviced before those in Sr+1, consider requests
Rr,i ∈ Sr for i ∈ [0, nr) and Rr+1,j ∈ Sr+1 for j ∈ [0, nr+1). At the time Tr + i

s when Rr,i is serviced,

Rr+1,j’s
wr+1

j = wr

j (1 + 1
s ) requests have age

(
Tr + i

s

)
− (Tr+1 − j) =

(
i
s − nr+1 + j

)
=
(

i−nr

s + j
)

and wait time
(

i−nr

s + j
)
· wr

j (1 + 1
s ) < j · wr

j (1 + 1
s ) = wr(1 + 1

s ). This being the wait time of Rr,i,
LWF chooses to service Rr,i over Rr,j . This completes the proof that LWF services the requests at
the stated times.

We are now ready to compute LWF’s flow time. As we have seen request R0,i has wait time i
s

upon completion for a total flow from S0 of n2

2s and request Rr,i has wait time wr(1 + 1
s ) for a total

flow from Sr of nr · wr(1 + 1
s ) = n

sr · 1
s (1 + 1

s )rn = 1
s (1

s + 1
s2 )rn2. LWF’s speed s is restricted to be

less than 1+
√

5
2 so that (1

s + 1
s2 ) > 1 and hence the wait time for Sr grows exponentially with r. At

any rate, we will bound LWF’s flow time by only this last term, giving that LWFs(I) ≥ Ω(nRwR).

Similarly, we compute the adversary’s flow time OPT1(I) as follows. The one request for R0,i

has wait time i upon completion for a total flow from S0 of n2

2 . The adversary services the remaining
requests as they arrive, so incurs a flow of one for each. Rr,i has wr

i requests for a total flow from
Sr of

∑
i∈[0,nr)

wr

i = wr lnnr. Because wr = 1
s (1 + 1

s )r−1n, this flow time grows exponentially

with r, giving that the sum of these terms for r ∈ [1, R] is dominated by the last term, giving that

OPT1(I) = n2

2 + O(wR lnnR). The number of new requests continues to increase with time until

their flow dominates that of the common Θ(n2) flow time. This is achieved by setting R = ln n
ln(1+1/s) .

This gives wR = Ω
(
(1 + 1

s )Rn
)

= Ω
(
(1 + 1

s )
ln n

ln(1+1/s) n
)

= Ω(n2). In conclusion, we also bound the

adversary’s flow time by only its last term, giving that OPT1(I) ≤ O(wR lnnR).

The competitive ratio is then easily computed to be LWFs(I)
OPT1(I) = Ω

(
nRwR

wR ln nR

)
= Ω

(
1

ln n
n
sR

)
=

Ω

(
1

ln n
n

s
ln n

ln(1+1/s)

)
= Ω

(
1

lnnn1− ln s
ln(1+1/s)

)
. �

4 Conclusion

The obvious open question is to close the gap between the upper and lower bounds of the speed
required for LWF to be O(1)-competitive. The upper bound analysis and the lower bound con-
struction match in many ways, for example, the worst case for LWF is if A-costly-events happen
early followed by only L-costly events. Our guess is that the lower bound is either tight, or at least
closer to being tight than the upper bound. By allowing non-integer speeds, the upper bound on
the speed that this analysis provides is (5.83 + ǫ). We seem to have an upper bound analysis with
speed s = 4.69 + ǫ, but the proof complexity goes up substantially.
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