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Abstract. We give a randomized protocol for the classic cake cuttirablem
that guarantees approximate proportional fairness, attiohigh probability uses
a linear number of cuts.

1 Introduction

The classic cake cutting problems originated in the 1940%he Polish mathematics
community and involves fairly apportioning valuable resmms (the cake) when there is
not an agreed upon value of the resources. The analogy ofxakased because of the
well known phenomenon of people valuing frosting and calfemdintly. Cake cutting
is widely studied within the social sciences because of bwionis importance of fairly
dividing resources, and is widely studied in the matherahciences because of the
elegance of the problems. There are several books writtealka cutting, and related
fair allocation problems (See, for example, [3, 12]). Bexmaof the inherent interest
of cake cutting problems to a wide audience, cake cuttingtendaught in discrete
mathematics courses, and often appears in the media in shatvay to popularize
mathematics. For example, in the “One Hour” episode of thesiigw Numba3rs, the
lead FBI agent uses his understanding of cake cutting algosito deduce the portion
of the ransom received by the head of a kidnapping conspitacy

The setting for the cake cutting problem involves a contirmiesource modeled
by the unit interval,n players, a value functiol), for each playemp, and a referee
protocol. The value function for each player specifies howcimthat player values
each subinterval of the cake. A piece is a union of disjoibirstiervals, and the value
functionis additive, so that the value of a piece is the suth@falues of the underlying
subintervals. The value functions are initially unknownthe referee. The standard
operation is a cut query, in which the referee asks the playéatentify the shortest
subinterval with a fixed value and a fixed left endpoint. Weiass here that the players
answer queries honestly (for more discussion of this isser section 2). After the cut
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queries, the referee partitions the resulting subintermadong the players. The referee’s
goal is to fairly apportion the cake among the players. Tl several notions of
fairness in the literature, but the original, and most hasition is that of proportional
fairness. An apportionment goportionally fair, or simplyproportionalif each player
believes that his piece is worth at ledstn of the total value of the cake, according
to that player’s value function. In this paper, we consider hotion of approximate
fairness. We will say that an apportionmentifair fair if each player believes that his
piece is worth at least/(cn) of the total value of the cake, according to that player’s
value function. We will say that a referee protocohjgproximately faiiif there exists
some constant > 1 such that the protocol guarantees-fair apportionment. We are
interested in the query complexity of a referee protocolcWiis the worst-case number
of queries required to achieve a fair allocation for eaclygia

A deterministic proportional protocol with query complgxio(n?) was given in
1948 by Steinhaus in [14]. In 1984, Even and Paz [6] gave amétéstic divide and
conquer proportional protocol that has query complefiy: logn). Recently, there
has been several papers [7,13, 4] that give lower boundseoqulry complexity for
proportional cake cutting. Sgall and Woeginger [13] showreat every proportional
protocol (deterministic or randomized) has query compyesd(n logn) if each player
must receive a contiguous piece of the cake. Edmonds and Pfighow that the query
complexity of every deterministic approximately-fair ppool is 2(n logn).

This left open the question of whether approximate-faisneas achievable by a
randomized protocol with query complexiy(n). In the subsequent paper [5], Ed-
monds and Pruhs was settled this question in the affirmativgiving a randomized
approximately-fair protocol with expected query comptgx®(n). This protocol was
based on the following theorem:

Lemmal (Balanced Allocation Lemma [5]).Let o > 17 be some sulfficiently large
constant. Assume each of theplayers conceptually partitions the unit interval into
an disjoint candidate subintervals/pieces of equal valueriTassume that each player
independently pickd’ = 2d = 4 of her candidate pieces uniformly at random, with
replacement. Then there is an efficient apportionment ndethat, with probability
£2(1), assigns each player one final piece of iecandidate pieces, so that every point
on the cake is covered by at magplayers.

Once overlap of)(1) is achieved for every point of the cake, one can achieve ap-
proximate fairness with linearly more queries by using amypprtional algorithm to
apportion the portions of cake where there is contentionrgtbe final pieces. By
applying the Edmonds and Pruhs Balanced Allocation Theanetiha successful ap-
portionment is possible, one get expected query compleXity(n). This is because
each application of the Balanced Allocation Theorem hasptexity O(n), and the
number of applications until a success is a geometricabjriduted random variable
with probability of success$2(1).

However, several referees of [5] complained that in ordéraee high confidence
of success one would have to apply the Balanced Allocatiaoiigms2(log n) times,
and thus if one accepts the requirement that a randomizexditalign should succeed
with high probability, then this randomized algorithm wdhlave no better query com-
plexity than the Evan and Paz deterministic algorithm. ln¢bntext of this paper, high



probability of success means that the probability of fajus a function of,, should
approach zero asincreases.

In this paper, we answer the referees of [5] by showing thieiehg high confi-
dence version of the Balanced Allocation Lemma in [5].

Lemma 2 (High Confidence Balanced Allocation Lemma)Leta > 17 be some suf-
ficiently large constant. Assume each of thplayers conceptually partitions the unit
interval into an disjoint candidate subintervals of equal value. Each pitapdepen-
dently picksi’ = k x 2 x 2d = 8k of her pieces uniformly at random, with replacement.
Then there is an efficient method that, with probability- O(-%)), picks one of the
d’ subintervals for each player, so that every point on the ¢alevered by at mosit
players.

The rest of the paper is organized as follows. In section 2 iseuds some other
related results, and explain how the standard balls andrbatel is a special case of
cake cutting. In section 3 we briefly explain how [5] obtaimeflow confidence) proof
of the Balanced Allocation Lemma for cake. In section 4 wesgivprotocol, which
turns out to be a rather simple modification of the protocdbinthat establishes the
High Confidence Balanced Allocation Lemma. We discoveredsimple protocol in
section 4 after much effort on another approach. We brieflgudis this other approach
in section 5 because we believe that it poses some integesgien questions.

2 Other Related Work

The lower bound proofs in [13, 4] also allow the referee to enakaluation queries,
which ask a player to state their value for a particular pié&@monds and Pruhs [4]
also showed that every randomized approximately-fairquaithas query complexity
2(nlogn) if answers to the queries asked by protocol are approximsatio actual
answers. Approximately fair protocols were introduced lmpb&tson and Webb [11].
There is deterministic protocol [11, 10, 15] that achieygsraximate-fairness wit®(n)
cuts andO(n?) evaluations. There are several other notions of fairnesfiet in the
cake cutting setting, most notably envy-free fairnessrataee known finite complex-
ity protocols for envy-free divisions, but no bounded coextly protocols are known
(See, for example, [3] for details). The cake cutting probie often defined so that the
players do not need to answer the queries truthfully. Farda@nistic protocols, lying is
generally a non-issue since it is easy to catch any form afjlyfhat would mess up the
standard protocols (See [3] for details). But for randomipeotocols, it seems much
more difficult to catch cheaters.

In the multiple-choice balls and bins modélof an discrete bins are selected for
each ball uniformly at random. Then we select one bin oudtlaihs such that maximum
number of balls in any bin is minimized. There is an efficierdgedure, essentially a
matching algorithm for a bipartite graph, that picks onehefd bins for each player so
that maximum number of balls in any bin@1), with probability(l—O(m)). [2].
The balls and bins model is equivalent to the special casheofake model in which
all the players value the cake uniformly. Analysis of thddahd bins model has found



wide applications in areas such as load balancing [8]. Iedisituations, a ball repre-
sents a job that can be assigned to various bins/machinesiseRoughly speaking,
load balancing of identical machines is to balls and bingad balancing on unrelated
machines is to cake cutting. In the unrelated machine mélkelspeed that a machine
runs a job depends on the job. So the jobs may not agree on linesvaf the vari-
ous machines. Unrelated machines is one of the standardsrindke load balancing
literature [1].

In the balls and bins model, the maximum number of balls intzsinys G(IOIgOi’gln)
with probability (1 — O(m)) [9]. Assumen balls are thrown sequentially into
bins, each ball is placed in the least full bin at the time & glacement, amond
bins,d > 2, chosen independently and uniformly at random. Then aftéha balls
are placed, the maximum number of balls in any bim(&2°2™) with probability

logd
1

3 The Original Balanced Allocation Lemma for Cake

We now outline the protocol and analysis that establishesBhlanced Allocation
Lemma in [5]. Note this protocol uses two graphs, the impiaragraph, and the same-
player-vee graph, and some graph theoretic definitions$,vikawill define after the
protocol.

Edmonds-Pruhs Protocol:

— Step 1:Independently, for each playere [1,n] and each- € [0, 1], randomly
choosed = 2 of the candidate pieces,, ;) to be in the quarterfinal bracket,,, .
Thus each player has two quarterfinals brackets, each oargdivo intervals.

— Step 2:In each quarterfinal bracket, ,,, pick as the semifinal pieag, ,, the
piece that intersects the fewest other candidate pieggs. Thus each player is
left with two semifinal intervals.

— Step 3:Form the implication graph and same-player-vee graph fersgmifinal
pieces

— Step 4:1f implication graph contains a pair path of length greatert or equal to
3, then admit failure.

— Step 5:If same-player-vee graph is net= 2 colorable, then admit failure.

— Step 6:Let Sy, be the subgraph of the implication graph containing onlygéylay-
ers coloredh, in the same-player-vee graph. This ensures that impbicagraph
restricted taS;, contains no pair paths of length 2.

— Step 7:For eachS}, pick the final piece for each player involvedSin by applying
the Final Piece Selection Algorithm 15, .

We now turn to the graph theoretic notions used in this patdhe vertices of the
implication graphIG are the2n piecesa, y, 1 < p < nand0 < r <1, and if piece
a(p,ry iNtersects pieceq ), then there is a directed edge from piegg ,y to piece
a(q,1—s), and similarly froma, y to a(, 1 _,y. The intuition behind the this definition is
that if a playep getsa, -, as her final piece, then playgmust get piece, ;) if p’s
andg’s pieces are not to overlap. Similarlydfgetsa, ., thenp must geta, ; _,y. As
an example, Figure 1 gives a subset of the semifinal piecestedlfrom the candidate



pieces. The corresponding implication graph is also giveRigure 1. Apair pathin
an implication graph is a directed path between two piecesrie player.

Qa0 Aai>
Ao Az 1>

Az1> A0-

Fig. 1. Players’ two selected pieces and corresponding implicagfaph.

In Figure 1, there are two pair paths of length three from tis¢ filayer’s left semi-
final piece to her right and two pair paths of length two frora fhurth player’s left
semifinal piece to her right. Pair paths are problematic lieedhey effectively imply
that if the first player gets her left semifinal piece as hislfpiace then she must get
her right piece too. Edmonds and Pruhs [5] prove that if th@ization graph/ G does
not contain pair paths then the following algorithm selecfsal piece for each player
in such a way that these final pieces are disjoint.

Final Piece Selection Algorithm:We repeatedly pick an arbitrary playethat has not
selected a final piece. We pick the piegg o) as the final piece fop. Further, we pick
as final pieces all those piecesli& that are reachable fromy,, o) in IG.

If edges in the implication graph were independent, then avgdcbound the prob-
ability of a pair path as in the balls and bins case:

n 1 2 1
Prob[IG contain pair paths] ~ Z (n) <—) ~

—\z) \an ala—1)
Unfortunately, edges in the implication graph are not stigilly independent. For ex-
ample, if all of playerB and playerC’s pieces are contained in one candidate piBce
for player A, then the existence of an edge involvidgand B would mean that player
A picked candidate pieck, and thus thus there must be an edge involving playand
playerC'. Nevertheless, [5] show that, in spite of the statisticaledelencies of edges,
the above calculation of the probability of a pair path ddee gpproximately the right
answer.

First, [5] observed the vital difference between pair path&ength two and pair
paths of length three or more. Note that a pair path occurswiere is asteeamong



the semifinal pieces. [5] definedvaeto consist of a triple of pieces, ormenterpiece
and twobasepieces, with the property that the center piece interseatts &f the base
two pieces. [5] proved the following lemma that bounds thgeexed number of vees
in the implication graph.

Lemma 3. If each player only chooses 2 semifinal pieces then the eeghgnimber

of vees inIG can be as high a®(n?), which would be disastrous. However, if two
brackets ofd = 2 pieces are chosen and these are narrowed down to two semifinal
piece then the expected number of vee&diris at mostlgg’3 n.

Using Lemma 3 [5] proved the following lemma that bounds thebpbility of
implication graph having pair paths of length three or more.

Lemma 4. The probability that the implication graphG contains a pair path of length
at least three is at mos%.

A pair path of length two occurs if and only if the implicatigmaph contains a
same-player-veeA same-player-vees a vee where both of the base pieces belong to
the same player. That is, there is a center piggey and two bases , oy anda g 1).

For example, see pieces, o), a(2,0y anda s 1) in Figure 1. To get around the problem
of same-player-vees, they introduced #ame-player-vee grapfThe vertices of the
same-player-vee grap$iG are then playersp, 1 < p < n, and if playerp and playegy

are involved in same-player-vee with playein the center then there is a directed edge
from p to q. [5] show how to partition the players into two groups sucét there is no
same-player-vee involving two players in the same partitjb] proved Lemma 5 by
bounding the probability of same-player-vee graph havipgta of length two.

Lemma 5. The probability that the same-player-vee graph ismct 2 colorable is at
mosti6d’ 4 8d

Finally, because the implication graph 6j contains no pair paths of any length,
the Edmonds-Pruhs protocol ensures that the final piecembst one player frons;,
covers this point. We can then conclude that for any poinbéndake, the final pieces

of at mostw = 2 players cover this point.

4 The High Confidence Balanced Allocation Lemma

In this section we give a modification of the Edmonds-Prulasqmol that will establish
the High Confidence Balanced Allocation Lemma for cake. A¢@ycept in the proof
of correctness of the Edmonds-Pruhs protocol is the corafepbad player. A player
p is badif a pair path of length three or more starting wijitexists in the implication
graph, or a path of length two or more starting wjtlexists in the same-player-vee
graph. Edmonds and Pruhs [5] proved that for some constéarger than 1, the prob-
ability that a particular player is bad is at mocéh{. We modify the Edmonds-Pruhs
protocol in [5] in the following ways:



Protocol

Execution 1

Bracket 2: Each player randomly
select a bracket of d pieces of
value gy

Bracket 1 Each player randomly
select a bracket of d pieces of

1 1
value g value g

Bracket 1: Each player randomly
select a bracket of d pieces of

Bracket 2: Each player randomly
select a bracket of d pieces of
value g

l l

| l

Select one semifinal Select one semifinal
piece from Bracket 1 piece from Bracket 2

Select one semifinal
piece from Bracket 1

Select one semifinal
piece from Bracket|2

graph IG and same-player-vee graph SG

l

From 2n semfinal pieces, build implication ‘

From 2n semfinal pieces, build implication
graph IG and same-player-vee graph SG

l

Remove bad players from IG and SG ’-f ——————— > Interaction e

RN | B

some player is bad in
oth the runs then HALT

v
1 If some player s good in both the
| runs then remove it her from Run 1

Updated IG and SG from Run 1
Colour SG with red and blue colours

‘ 1G for red players ‘ ‘ IG for blue players ‘

-‘ Remove bad players from IG and SG

Updated IG and SG from Run 1
Colour SG with red and blue colours

‘ 1G for red players ‘ ‘ 1G for blue players ‘

Select final piece for each of these
players without any overiap

Select final piece for each of these
players without any overlap

Select final piece for each of these
players without any overlap

Select final piece for each of these
players without any overiap

apiece of value gL Maximum overlap is 4.

Merge answer for 4 types of players. Each player has ‘

Probability of

NZOoTHCcOmXm
xXzZzoTHcCcomxm

Fig. 2. Flowchart of Our Protocol.

Modified Edmonds-Pruhs Protocol:
— We make two independent runs

of the protocol.

Select the first successful Execution

Remove conflicts. Each player has a portion
of value—L— . Portions are disjoint
don

Probabilty of failure < 0(—%7 )

— In each run, after the formation of the implication graph #mel same-player-vee
graph, we remove all bad players. Because of this modificatiome players (the
ones that are bad in both runs) may not be assigned a cangdidage



After these two separate runs, some players may be assigwodihtl pieces, one
from each run. In this case, the player need only keep the fiiege from the first
run. But the key fact is that no point of the cake is covered byathan four candidate
pieces, since each run guarantees contention at most tvbefése we can then use any
proportionally fair protocol to divided the portions of thake where the final pieces
overlap. A flow chart of this protocol is given in Figure 2.

We can then simply calculate the probability that one iterabf this modified
protocol fails to assign a final piece to every player:

Prob[Modi fied Edmonds Pruhs protocol fails]
< Prob[there exists a player p that is bad in both runs]
< n x Prob[player p is bad in both runs]
< n x (Prob[player p is bad in one run))?
<nxO(L)?
=0(3)

Thus the probability that the Modified-Edmonds-Pruhs protdoes not succeed after
k applications is at mosp(-%).

5 Initial Unsuccessful Approach

To us, the most obvious way to modify the Edmonds-Pruhs pobtm obtain a high
confidence result was to show that the same-player-vee gsaplil)-colorable with
high probability, and to show that the implication graph sloet have a pair-path with
high probability. We were able to accomplish the former iminea 6 by slightly modi-
fying the protocol. But the latter is unfortunately faldggtte can be pair-paths with high
probability.

Lemma6. Let « > 10 be some sufficiently large constant. Assume that each player
conceptually partitions the unit interval inten. disjoint candidate subintervals/pieces

of equal value. Each player then independently pitks- 3d = 6 of her pieces uni-
formly at random, with replacement. There is then an efftaethod that, with prob-
ability at least(1 — O(2)), chooses three of thé pieces for each player, and then
narrows down two pieces for each player, so that same-plagergraph build from
these chosen pieces can be colored by at most two colors.

After some reflection, it is clear that a pair path in the irogtion graph, in and of
itself, is not a problem. A pair path from, ,) t0 a(, 1) just implies that we should
selecta, 1, for playerp. However, a directed path in both directions, frap o, to
a(p,1y and froma, 1y toa, o) is problematic since the selection of either piece requires
the selection of the other. This leads us to the followingrdigdin.

Pair Cycle:A pair cycle in the implication graph is a directed cycle @ning both
semifinal pieces, oy anda,, 1) for some playep.

It is not to difficult to see that if the implication graplG does not contain pair
cycle then one can modify the Final Piece Selection Algamito that it can select a
disjoint final piece for each player. Further, if the edgethimimplication graph were



independent, using our standard calculations, we find tieghtobability of a pair-cycle
would beO(2):

Prob[IG contain a pair cycle] = Z ( K 1) (L) ~ O (l)
z— an n

z=2

The reason that this calculation gives1) for a pair-path and (=) for a pair-cycle
is that a pair-cycle has one more edge relative to the numbegrtices than does a
pair-path. While we know that the edges are not indepenttlgistcalculation did give
approximately the right probability for a pair-path, and the saw no reason why this
calculation shouldn’t also give approximately the rightotation for a pair-cycle. This
led us to the following natural conjecture:

Conjecture 1.The probability that for some player we have pair paths of length at
least three frona,(,, o) t0 a(,, 1y and froma,, 1y t0 a, oy in the implication grapH G is
at mostO(2).

Recall that pair cycle requires that at least one playerth bemifinal pieces have
to be present in it. In Lemma 7, we were able to prove Conjectun the case where
exactly one player’s both semifinal pieces are present ipairecycle.

Lemma 7. The probability that for some playgrwe have pair paths of length at least
three froma,, oy t0 a(, 1y and froma, 1y to a, oy in the implication graph/G and
except playep there is no common player involved in both the pair pathstisast
O(%).

Our intuition is that the probability of having more than qulayer repeating in a
pair cycle is not so high. But we are unable to prove this. Mygeerally, we wonder
whether the selection of the semifinal pieces from the qrfaréé pieces (by throwing
out pieces that overlap the most other pieces) leave withllaction of pieces that
essentially have the same graph properties as in the ballsias model.
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