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Abstract. We give a randomized protocol for the classic cake cutting problem
that guarantees approximate proportional fairness, and with high probability uses
a linear number of cuts.

1 Introduction

The classic cake cutting problems originated in the 1940’s in the Polish mathematics
community and involves fairly apportioning valuable resources (the cake) when there is
not an agreed upon value of the resources. The analogy of cakewas used because of the
well known phenomenon of people valuing frosting and cake differently. Cake cutting
is widely studied within the social sciences because of the obvious importance of fairly
dividing resources, and is widely studied in the mathematical sciences because of the
elegance of the problems. There are several books written oncake cutting, and related
fair allocation problems (See, for example, [3, 12]). Because of the inherent interest
of cake cutting problems to a wide audience, cake cutting is often taught in discrete
mathematics courses, and often appears in the media in showsthat try to popularize
mathematics. For example, in the “One Hour” episode of the TVshow Numb3rs, the
lead FBI agent uses his understanding of cake cutting algorithms to deduce the portion
of the ransom received by the head of a kidnapping conspiracy. 3

The setting for the cake cutting problem involves a continuous resource modeled
by the unit interval,n players, a value functionVp for each playerp, and a referee
protocol. The value function for each player specifies how much that player values
each subinterval of the cake. A piece is a union of disjoint subintervals, and the value
function is additive, so that the value of a piece is the sum ofthe values of the underlying
subintervals. The value functions are initially unknown tothe referee. The standard
operation is a cut query, in which the referee asks the playerto identify the shortest
subinterval with a fixed value and a fixed left endpoint. We assume here that the players
answer queries honestly (for more discussion of this issue,see section 2). After the cut

⋆ Supported in part by NSF grants CNS-0325353, CCF-0514058 and IIS-0534531.
3 Although, as is often the case in this show, the application of mathematics is designed to aid
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queries, the referee partitions the resulting subintervals among the players. The referee’s
goal is to fairly apportion the cake among the players. Thereare several notions of
fairness in the literature, but the original, and most basic, notion is that of proportional
fairness. An apportionment isproportionally fair, or simplyproportionalif each player
believes that his piece is worth at least1/n of the total value of the cake, according
to that player’s value function. In this paper, we consider the notion of approximate
fairness. We will say that an apportionment isc-fair fair if each player believes that his
piece is worth at least1/(cn) of the total value of the cake, according to that player’s
value function. We will say that a referee protocol isapproximately fairif there exists
some constantc ≥ 1 such that the protocol guarantees ac-fair apportionment. We are
interested in the query complexity of a referee protocol, which is the worst-case number
of queries required to achieve a fair allocation for each player.

A deterministic proportional protocol with query complexity Θ(n2) was given in
1948 by Steinhaus in [14]. In 1984, Even and Paz [6] gave a deterministic divide and
conquer proportional protocol that has query complexityΘ(n logn). Recently, there
has been several papers [7, 13, 4] that give lower bounds on the query complexity for
proportional cake cutting. Sgall and Woeginger [13] showedthat every proportional
protocol (deterministic or randomized) has query complexity Ω(n logn) if each player
must receive a contiguous piece of the cake. Edmonds and Pruhs [4] show that the query
complexity of every deterministic approximately-fair protocol isΩ(n log n).

This left open the question of whether approximate-fairness was achievable by a
randomized protocol with query complexityO(n). In the subsequent paper [5], Ed-
monds and Pruhs was settled this question in the affirmative by giving a randomized
approximately-fair protocol with expected query complexity O(n). This protocol was
based on the following theorem:

Lemma 1 (Balanced Allocation Lemma [5]).Let α ≥ 17 be some sufficiently large
constant. Assume each of then players conceptually partitions the unit interval into
αn disjoint candidate subintervals/pieces of equal value. Then assume that each player
independently picksd′ = 2d = 4 of her candidate pieces uniformly at random, with
replacement. Then there is an efficient apportionment method that, with probability
Ω(1), assigns each player one final piece of herd′ candidate pieces, so that every point
on the cake is covered by at most2 players.

Once overlap ofO(1) is achieved for every point of the cake, one can achieve ap-
proximate fairness with linearly more queries by using any proportional algorithm to
apportion the portions of cake where there is contention among the final pieces. By
applying the Edmonds and Pruhs Balanced Allocation Theoremuntil a successful ap-
portionment is possible, one get expected query complexityof O(n). This is because
each application of the Balanced Allocation Theorem has complexity O(n), and the
number of applications until a success is a geometrically distributed random variable
with probability of successΩ(1).

However, several referees of [5] complained that in order tohave high confidence
of success one would have to apply the Balanced Allocation TheoremΩ(log n) times,
and thus if one accepts the requirement that a randomized algorithm should succeed
with high probability, then this randomized algorithm would have no better query com-
plexity than the Evan and Paz deterministic algorithm. In the context of this paper, high



probability of success means that the probability of failure, as a function ofn, should
approach zero asn increases.

In this paper, we answer the referees of [5] by showing the following high confi-
dence version of the Balanced Allocation Lemma in [5].

Lemma 2 (High Confidence Balanced Allocation Lemma).Letα ≥ 17 be some suf-
ficiently large constant. Assume each of then players conceptually partitions the unit
interval intoαn disjoint candidate subintervals of equal value. Each player indepen-
dently picksd′ = k×2×2d = 8k of her pieces uniformly at random, with replacement.
Then there is an efficient method that, with probability(1 − O( 1

nk )), picks one of the
d′ subintervals for each player, so that every point on the cakeis covered by at most4
players.

The rest of the paper is organized as follows. In section 2 we discuss some other
related results, and explain how the standard balls and binsmodel is a special case of
cake cutting. In section 3 we briefly explain how [5] obtaineda (low confidence) proof
of the Balanced Allocation Lemma for cake. In section 4 we give a protocol, which
turns out to be a rather simple modification of the protocol in[5], that establishes the
High Confidence Balanced Allocation Lemma. We discovered the simple protocol in
section 4 after much effort on another approach. We briefly discuss this other approach
in section 5 because we believe that it poses some interesting open questions.

2 Other Related Work

The lower bound proofs in [13, 4] also allow the referee to make evaluation queries,
which ask a player to state their value for a particular piece. Edmonds and Pruhs [4]
also showed that every randomized approximately-fair protocol has query complexity
Ω(n logn) if answers to the queries asked by protocol are approximations to actual
answers. Approximately fair protocols were introduced by Robertson and Webb [11].
There is deterministicprotocol [11,10, 15] that achieves approximate-fairness withΘ(n)
cuts andΘ(n2) evaluations. There are several other notions of fairness studied in the
cake cutting setting, most notably envy-free fairness. There are known finite complex-
ity protocols for envy-free divisions, but no bounded complexity protocols are known
(See, for example, [3] for details). The cake cutting problem is often defined so that the
players do not need to answer the queries truthfully.For deterministic protocols, lying is
generally a non-issue since it is easy to catch any form of lying that would mess up the
standard protocols (See [3] for details). But for randomized protocols, it seems much
more difficult to catch cheaters.

In the multiple-choice balls and bins model,d of αn discrete bins are selected for
each ball uniformly at random. Then we select one bin out ofd bins such that maximum
number of balls in any bin is minimized. There is an efficient procedure, essentially a
matching algorithm for a bipartite graph, that picks one of thed bins for each player so
that maximum number of balls in any bin isO(1), with probability(1−O( 1

poly(n)
)). [2].

The balls and bins model is equivalent to the special case of the cake model in which
all the players value the cake uniformly. Analysis of the balls and bins model has found



wide applications in areas such as load balancing [8]. In these situations, a ball repre-
sents a job that can be assigned to various bins/machines/servers. Roughly speaking,
load balancing of identical machines is to balls and bins, asload balancing on unrelated
machines is to cake cutting. In the unrelated machine model,the speed that a machine
runs a job depends on the job. So the jobs may not agree on the values of the vari-
ous machines. Unrelated machines is one of the standard models in the load balancing
literature [1].

In the balls and bins model, the maximum number of balls in anybin isθ( log n

log log n
)

with probability(1 − O( 1
poly(n) )) [9]. Assumen balls are thrown sequentially inton

bins, each ball is placed in the least full bin at the time of the placement, amongd
bins,d ≥ 2, chosen independently and uniformly at random. Then after all the balls
are placed, the maximum number of balls in any bin isθ( log log n

log d
) with probability

Ω(1 − 1
poly(n)

). [2].

3 The Original Balanced Allocation Lemma for Cake

We now outline the protocol and analysis that establishes the Balanced Allocation
Lemma in [5]. Note this protocol uses two graphs, the implication graph, and the same-
player-vee graph, and some graph theoretic definitions, that we will define after the
protocol.
Edmonds-Pruhs Protocol:

– Step 1: Independently, for each playerp ∈ [1, n] and eachr ∈ [0, 1], randomly
choosed = 2 of the candidate piecesc〈p,i〉 to be in the quarterfinal bracketA〈p,r〉.
Thus each player has two quarterfinals brackets, each containing two intervals.

– Step 2: In each quarterfinal bracketA〈p,r〉, pick as the semifinal piecea〈p,r〉, the
piece that intersects the fewest other candidate piecesc〈q,j〉. Thus each player is
left with two semifinal intervals.

– Step 3:Form the implication graph and same-player-vee graph for the semifinal
pieces

– Step 4:If implication graph contains a pair path of length greater than or equal to
3, then admit failure.

– Step 5:If same-player-vee graph is notw = 2 colorable, then admit failure.
– Step 6:Let Sh be the subgraph of the implication graph containing only those play-

ers coloredh, in the same-player-vee graph. This ensures that implication graph
restricted toSh contains no pair paths of length 2.

– Step 7:For eachSh, pick the final piece for each player involved inSh by applying
the Final Piece Selection Algorithm toSh.

We now turn to the graph theoretic notions used in this protocol. The vertices of the
implication graphIG are the2n piecesa〈p,r〉, 1 ≤ p ≤ n and0 ≤ r ≤ 1, and if piece
a〈p,r〉 intersects piecea〈q,s〉, then there is a directed edge from piecea〈p,r〉 to piece
a〈q,1−s〉, and similarly froma〈q,s〉 toa〈p,1−r〉. The intuition behind the this definition is
that if a playerp getsa〈p,r〉 as her final piece, then playerq must get piecea〈q,1−s〉 if p’s
andq’s pieces are not to overlap. Similarly ifq getsa〈q,s〉, thenp must geta〈p,1−r〉. As
an example, Figure 1 gives a subset of the semifinal pieces selected from the candidate



pieces. The corresponding implication graph is also given in Figure 1. Apair path in
an implication graph is a directed path between two pieces for one player.
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Fig. 1.Players’ two selected pieces and corresponding implication graph.

In Figure 1, there are two pair paths of length three from the first player’s left semi-
final piece to her right and two pair paths of length two from the fourth player’s left
semifinal piece to her right. Pair paths are problematic because they effectively imply
that if the first player gets her left semifinal piece as his final piece then she must get
her right piece too. Edmonds and Pruhs [5] prove that if the implication graphIG does
not contain pair paths then the following algorithm selectsa final piece for each player
in such a way that these final pieces are disjoint.

Final Piece Selection Algorithm:We repeatedly pick an arbitrary playerp that has not
selected a final piece. We pick the piecea〈p,0〉 as the final piece forp. Further, we pick
as final pieces all those pieces inIG that are reachable froma〈p,0〉 in IG.

If edges in the implication graph were independent, then we could bound the prob-
ability of a pair path as in the balls and bins case:

Prob[IG contain pair paths] ≈

n
∑

z=2

(

n

z

) (

1

αn

)z

≈
1

α(α − 1)
.

Unfortunately, edges in the implication graph are not statistically independent. For ex-
ample, if all of playerB and playerC ’s pieces are contained in one candidate pieceP
for playerA, then the existence of an edge involvingA andB would mean that player
A picked candidate pieceP , and thus thus there must be an edge involving playerA and
playerC. Nevertheless, [5] show that, in spite of the statistical dependencies of edges,
the above calculation of the probability of a pair path does give approximately the right
answer.

First, [5] observed the vital difference between pair pathsof length two and pair
paths of length three or more. Note that a pair path occurs when there is aveeamong



the semifinal pieces. [5] defined aveeto consist of a triple of pieces, onecenterpiece
and twobasepieces, with the property that the center piece intersects both of the base
two pieces. [5] proved the following lemma that bounds the expected number of vees
in the implication graph.

Lemma 3. If each player only chooses 2 semifinal pieces then the expected number
of vees inIG can be as high asΘ(n2), which would be disastrous. However, if two
brackets ofd = 2 pieces are chosen and these are narrowed down to two semifinal
piece then the expected number of vees inIG is at most16d3

α2 n.

Using Lemma 3 [5] proved the following lemma that bounds the probability of
implication graph having pair paths of length three or more.

Lemma 4. The probability that the implication graphIG contains a pair path of length
at least three is at most 32d5

α2(α−4d2) .

A pair path of length two occurs if and only if the implicationgraph contains a
same-player-vee. A same-player-veeis a vee where both of the base pieces belong to
the same player. That is, there is a center piecea〈p,r〉 and two basesa〈q,0〉 anda〈q,1〉.
For example, see piecesa〈4,0〉, a〈2,0〉 anda〈2,1〉 in Figure 1. To get around the problem
of same-player-vees, they introduced thesame-player-vee graph. The vertices of the
same-player-vee graphSG are then playersp, 1 ≤ p ≤ n, and if playerp and playerq
are involved in same-player-vee with playerp in the center then there is a directed edge
from p to q. [5] show how to partition the players into two groups such that there is no
same-player-vee involving two players in the same partition. [5] proved Lemma 5 by
bounding the probability of same-player-vee graph having apath of length two.

Lemma 5. The probability that the same-player-vee graph is notw = 2 colorable is at
most16d3

α3 + 8d2

α2 .

Finally, because the implication graph onSh contains no pair paths of any length,
the Edmonds-Pruhs protocol ensures that the final piece of atmost one player fromSh

covers this point. We can then conclude that for any point in the cake, the final pieces
of at mostw = 2 players cover this point.

4 The High Confidence Balanced Allocation Lemma

In this section we give a modification of the Edmonds-Pruhs protocol that will establish
the High Confidence Balanced Allocation Lemma for cake. A keyconcept in the proof
of correctness of the Edmonds-Pruhs protocol is the conceptof a bad player. A player
p is bad if a pair path of length three or more starting withp exists in the implication
graph, or a path of length two or more starting withp exists in the same-player-vee
graph. Edmonds and Pruhs [5] proved that for some constantc, larger than 1, the prob-
ability that a particular player is bad is at most1

cn
. We modify the Edmonds-Pruhs

protocol in [5] in the following ways:
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Fig. 2.Flowchart of Our Protocol.

Modified Edmonds-Pruhs Protocol:
– We make two independent runs of the protocol.
– In each run, after the formation of the implication graph andthe same-player-vee

graph, we remove all bad players. Because of this modification, some players (the
ones that are bad in both runs) may not be assigned a candidatepiece.



After these two separate runs, some players may be assigned two final pieces, one
from each run. In this case, the player need only keep the finalpiece from the first
run. But the key fact is that no point of the cake is covered by more than four candidate
pieces, since each run guarantees contention at most two. Asbefore we can then use any
proportionally fair protocol to divided the portions of thecake where the final pieces
overlap. A flow chart of this protocol is given in Figure 2.

We can then simply calculate the probability that one iteration of this modified
protocol fails to assign a final piece to every player:

Prob[Modified Edmonds Pruhs protocol fails]
≤ Prob[there exists a player p that is bad in both runs]
≤ n × Prob[player p is bad in both runs]
≤ n × (Prob[player p is bad in one run])2

≤ n × O( 1
n
)2

= O( 1
n
)

Thus the probability that the Modified-Edmonds-Pruhs protocol does not succeed after
k applications is at mostO( 1

nk ).

5 Initial Unsuccessful Approach

To us, the most obvious way to modify the Edmonds-Pruhs protocol to obtain a high
confidence result was to show that the same-player-vee graphis O(1)-colorable with
high probability, and to show that the implication graph does not have a pair-path with
high probability. We were able to accomplish the former in Lemma 6 by slightly modi-
fying the protocol. But the latter is unfortunately false, there can be pair-paths with high
probability.

Lemma 6. Let α ≥ 10 be some sufficiently large constant. Assume that each player
conceptually partitions the unit interval intoαn disjoint candidate subintervals/pieces
of equal value. Each player then independently picksd′ = 3d = 6 of her pieces uni-
formly at random, with replacement. There is then an efficient method that, with prob-
ability at least(1 − O( 1

n
)), chooses three of thed′ pieces for each player, and then

narrows down two pieces for each player, so that same-player-vee graph build from
these chosen pieces can be colored by at most two colors.

After some reflection, it is clear that a pair path in the implication graph, in and of
itself, is not a problem. A pair path froma〈p,r〉 to a〈p,1−r〉 just implies that we should
selecta〈p,1−r〉 for playerp. However, a directed path in both directions, froma〈p,0〉 to
a〈p,1〉 and froma〈p,1〉 toa〈p,0〉 is problematic since the selection of either piece requires
the selection of the other. This leads us to the following definition.
Pair Cycle:A pair cycle in the implication graph is a directed cycle containing both
semifinal piecesa〈p,0〉 anda〈p,1〉 for some playerp.

It is not to difficult to see that if the implication graphIG does not contain pair
cycle then one can modify the Final Piece Selection Algorithm so that it can select a
disjoint final piece for each player. Further, if the edges inthe implication graph were



independent, using our standard calculations, we find that the probability of a pair-cycle
would beO( 1

n
):

Prob[IG contain a pair cycle] ≈

n
∑

z=2

(

n

z − 1

) (

1

αn

)z

≈ Θ

(

1

n

)

The reason that this calculation givesΘ(1) for a pair-path andΘ( 1
n
) for a pair-cycle

is that a pair-cycle has one more edge relative to the number of vertices than does a
pair-path. While we know that the edges are not independent,this calculation did give
approximately the right probability for a pair-path, and wethe saw no reason why this
calculation shouldn’t also give approximately the right calculation for a pair-cycle. This
led us to the following natural conjecture:

Conjecture 1.The probability that for some playerp, we have pair paths of length at
least three froma〈p,0〉 to a〈p,1〉 and froma〈p,1〉 to a〈p,0〉 in the implication graphIG is
at mostO( 1

n
).

Recall that pair cycle requires that at least one player’s both semifinal pieces have
to be present in it. In Lemma 7, we were able to prove Conjecture 1 in the case where
exactly one player’s both semifinal pieces are present in thepair cycle.

Lemma 7. The probability that for some playerp we have pair paths of length at least
three froma〈p,0〉 to a〈p,1〉 and froma〈p,1〉 to a〈p,0〉 in the implication graphIG and
except playerp there is no common player involved in both the pair paths, is at most
O( 1

n
).

Our intuition is that the probability of having more than oneplayer repeating in a
pair cycle is not so high. But we are unable to prove this. Moregenerally, we wonder
whether the selection of the semifinal pieces from the quarterfinal pieces (by throwing
out pieces that overlap the most other pieces) leave with a collection of pieces that
essentially have the same graph properties as in the balls and bins model.
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