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Abstract

We give a randomized algorithm for the well known caking cutting problem that achieves approx-
imate fairness, and has complexityO(n). The heart of this this result involves extending the standard
offline multiple-choice balls and bins analysis to the case where the underlying resources/bins/machines
have different utilities to different players/balls/jobs.
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1 Introduction

The protocol’s goal in the well known cake cutting problem isto fairly apportion some resources among
n players. Here we consider a continuous resource, modeled, without great loss of generality, by the unit
interval. We assume that each playerp has an initially unknown value functionVp that specifies how player
p values each subinterval of the unit interval. A portion is a union of disjoint subintervals, and the value
function is additive, so that the value of a portion is the sumof the values of the underlying subintervals. A
player believes that a portion isc-fair if that portion has value at least1cn of the total value of cake according
to his value function. In the standard model, the protocol isallowed to make two types of queries to the
players. In an evaluation query, the protocol asks a player how much he values a particular subinterval of
the cake. In a cut query, the protocol asks the player to identify the shortest subinterval with a fixed value
and a fixed left endpoint. We are interested in the query complexity of a protocol, which is the worst-case
number of queries required to achieve a fair allocation for each player that follows the protocol.

The cake cutting problem originated in 1940’s Polish mathematics community. Since then the problem
has blossomed and been widely popularized. The motivation for using cake as a resource is the well known
phenomenon that some people prefer frosting, while others do not. Cake cutting, and related fair allocation
problems, are of wide interest in both social sciences and mathematical sciences. Sgall and Woeginger [11]
provide a nice brief overview. There are several books written on fair allocation problems, such as cake
cutting, that give more extensive overviews, see for example [3, 10]. Some quick Googling reveals that cake
cutting algorithms, and their analysis, are commonly covered by computer scientists in their algorithms and
discrete mathematics courses.

A deterministic 1-fair protocol with complexityΘ(n2) was described in 1948 by Steinhaus in [12].
In 1984, Evan and Paz [5] gave a deterministic divide and conquer 1-fair protocol that has complexity
Θ(n logn). Recently, there has been several lower bound results for cake cutting. In particular, we showed
that the Even-Paz algorithm is optimal for deterministic 1-fair protocols [4]. That is, every deterministic
1-fair protocol for cake cutting has complexityΩ(n logn). This lower bound also applies to deterministic
protocols that need only only guaranteeO(1)-fairness.

A natural open question is then whether there exists arandomizedprotocol with linear query complexity.
Some lower bound results for randomized algorithms are known. Sgall and Woeginger [11] showed that
every randomized 1-fair protocol has complexityΩ(n logn) if every portion is restricted to be a contiguous
subinterval of the cake. We showed that every randomizedO(1)-fair protocol has complexityΩ(n logn) if
there is a small relative error in the response to the queries[4].

In this paper we give a randomized protocol withO(n) query complexity. Our protocol requires exact
answers to the queries, guarantees onlyO(1)-fairness, and does not in general assign a contiguous subin-
terval to each player. That is, we show that linear complexity is obtainable in the variant that is most in
the protocol’s favor. Note that by the results in [4], there is no deterministic protocol that guaranteesO(1)-
fairness. So this result separates deterministic and randomized query complexity for approximate fairness.

Our protocol also requires that all of the players are honest. Honesty is not a real issue in deterministic
protocols, but is a significant issue in most conceivable randomized protocols. For example, a randomized
protocol might ask a player to generate a subinterval/pieceaccording to a particular probability distribution.
To handle a dishonest player, a protocol would seem to need tobe able to determine if the player actually
generated a piece according to this distribution. This seems like a daunting task for the protocol.

Additionally, we show thatO(n)-complexity is still achievable even if there is a small relative error in
the response to the queries, as long as the error that resultsfrom a cut query is independent of value in the
query. We call this a weak adversary.

The heart of our cake cutting algorithm is the following Balanced Allocation Lemma in the cake model
that generalizes the standard multiple-choice balls and bins model [8].
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Deterministic Exact Standard Exact Contiguous
vs. vs. vs. vs. vs. Complexity Reference

Randomized Approximate Weak Approximate Non-contiguous
Protocol Queries Adversary Fairness Portions

* Exact * * * O(n logn) [5]
* * Standard Exact Contiguous Ω(n logn) [11]

Deterministic * Standard * * Ω(n logn) [4]
* Approximate Standard * * Ω(n logn) [4]

Randomized Exact * Approximate Non-contiguous O(n) This paper
Randomized * Weak Approximate Non-contiguous O(n) This paper

Table 1: Summary of known results. An asterisk means that theresult holds for both choices.

Lemma 1 (Balanced Allocation). Let α be some sufficiently large constant. Each ofn players has a
partition of the unit interval[0, 1], or cake, intoαn disjoint candidate subintervals/pieces. Each player
independent picksd′ = 2d = 4 of his pieces uniformly at random, with replacement. Then there is an
efficient method that, with probabilityΩ(1), picks one of thed′ pieces for each player, so that every point on
the unit interval is covered byO(1) pieces.

In the analogous multiple-choice balls and bins model, eachplayer independently selectsd′ of αn dis-
crete bins uniformly at random. This balls and bins model is equivalent to the special case of the cake
model in which each player has the same collection ofαn candidate pieces. It is a folklore result that in the
balls and bins model, the maximum load isΘ( log n

log logn ) if d′ = 1; And if d′ > 1, then with one can with
probabilityΩ(1) pick one of thed′ pieces for each player in such a way that each bin only has 1 ball, and
one can with high probability pick one of thed′ pieces for each player in such a way that each bin only at
most 2 balls. One can even get maximum loadO(log logn) if the assignment has to be made online player
by player [2].

We now briefly discuss how our Balanced Allocation Lemma can be used to solve the cake cutting
problem (See Appendix Section A for more details). Theith candidate piece is theith subinterval of value
1

αn , which can be found by two cut queries. After the applicationof the Balanced Allocation Lemma, any
standard fair allocation algorithm can be used to divide anyportion of the cake desired by more than one
player.

1.1 Related Results

The first step towards obtaining anΩ(n logn) lower bound on the complexity of cake cutting was taken
by Magdon-Ismail, Busch, and Krishnamoothy [7], who were able to show that any protocol must make
Ω(n logn) comparisons to compute the assignment. So this result does not address query complexity.
Approximately fair protocols were introduced by Robertsonand Webb [9]. Traditionally, much of the
research has focused on minimizing the number of cuts, presumably out of concern that too many cuts
would lead to crumbling of a literal cake. There is a deterministic protocol that achievesO(1)-fairness with
Θ(n) cuts andΘ(n2) evaluations [9, 6, 13]. There are several other objectives studied in the cake cutting
setting, most notably, max-min fairness, and envy-free fairness.

The literature on balanced allocations is also rather large. A nice survey is given in [8].
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2 Intuition

In this section we try to give some intuition and a road map forthe proof of our Balanced Allocation Lemma.
We start with an example instance, see Figure 1 that demonstrates several interesting features of the cake
model and our analysis. Each of the rows consists of theαn subintervals of then players. Then/2 A players
haveαn candidate pieces of identical length. Then fori ∈ [1,

√
n
2 ], there is a group of

√
n
2 Bi players.

Half of aBi’s candidate pieces overlap with the2ith piece of theA players, and half with the2i+1st piece
of theA players.

1B

A

2B
B3

A’

Figure 1: An example in which player’s intervals overlap in more complex ways.

One immediate observation is that maximum load equal to 1 result from the standard multiple-choice
balls and bins model will not carry over to the cake model. To see this, note that with high probability, one
of theA players chooses all of hisd′ pieces from his first2

√
n
2 candidate pieces. Call this playerA′. Also

with high probability, for eachd′ pieces ofA′, there is aBi player that has all ofd′ pieces overlapping with
it. This explains the need to relax the maximum load bound from 1 toO(1).
The Implication Graph: To gain intuition, let us assume for the moment thatd′ = 2. Let c〈p,i〉 denote
theith ∈ [1, αn] candidate piece for playerp. Let a〈p,0〉 anda〈p,1〉 be the two semifinal pieces selected for
playerp. We now define what we call the implication graph. The vertices of the implication graph are the
2n piecesa〈p,r〉, 1 ≤ p ≤ n and0 ≤ r ≤ 1. If piecea〈p,r〉 intersects piecea〈q,s〉, then there is an directed
edge from piecea〈p,r〉 to piecea〈q,1−s〉 and similarly froma〈q,s〉 to a〈p,1−r〉. The intuition is that if playerp
getsa〈p,r〉 as his final piece, then playerq must get piecea〈q,1−s〉 if p andq’s pieces are not going to overlap.
Similarly if q getsa〈q,s〉, thenp must geta〈p,1−r〉. As an example, Figure 2 gives a subset of the semifinal
pieces selected from the candidate pieces in Figure 1. The directed edges arising from this example are
given.

b)a)

Figure 2: Two excerpts from an implication graph.

Pair Path: We define apair path in the implication graph to be a directed path between the twopieces for
one player, i.e. from somea〈p,r〉 to a〈p,1−r〉. In Figure 2.a, there are two such paths of length four from the
A player’s left semifinal piece to his right and in Figure 2.b two paths of length two. We will show that if
the implication graphG does not contain any such pair paths, then the following algorithm selects a final
piece for each player in such a way that these final pieces are disjoint. (See Section 3.1.)
Final Piece Selection Algorithm Description: We repeatedly pick an arbitrary playerp that has not selected
a final piece. We pick the piecea〈p,0〉 as the final piece forp. Further, we pick as final pieces all those pieces
in G that are reachable froma〈p,0〉 in G.
Independent Edges: To gain intuition, we now sketch a proof that the implicationgraph does not contain a
pair path for the balls and bins model (each player’s collection of αn candidate pieces are identical). Note
that in the balls and bins model, every pair path has to be of length at least 3. Consider a possible pair
patha〈p0,r0〉, a〈p1,r1〉, . . .a〈pk−1,rk−1〉, a〈p0,1−r0〉 with k edges in the implication graph. The probability that
a particular pair of nodes

〈
a〈p0,r0〉, a〈p1,r1〉

〉
has an edge between them, i.e. the probability that the candidate
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piece chosen to bea〈p0,r0〉 intersects with that chosen to bea〈p1,1−r1〉, is 1
αn . The presence or absence of

thesek edges in the implication graph are statistically independent. Thus the probability that this particular
pair path appears in the implication graph is at most

(
1

αn

)k
. Since there are at most

(2n
k

)
k! possible pair

paths withk edges, the probability that there is pair path is at most
∑n

k=3

(
2n
k

)
k! 1

(αn)k . If α is sufficiently

large, then this probability is say at most1/2.
We now return to the general cake model. One difficulty is thatthe edges in the implication graph are

no longer independent. To see this, recall Figure 1. The probability that any two semifinal pieces over lap is
still O( 1

αn). However, if one of anA player’s semifinal pieces overlaps with oneBi player’s semifinal piece,
then we know that thisA player must have selected either his2ith or 2i+1st candidate piece and hence it
very likely to also overlap with anotherBi player’s semifinal piece.
Pair Paths of Length ≥ Three and Vees: Such dependencies can occur when there is what we call a vee
among the candidate pieces. We define aveeto consist of a triple of pieces, onecenterpiece and twobase
pieces, with the property that the center piece intersects both of the base two pieces. For example, see the
three left most pieces in Figure 2.a.

Note that in the balls and bins model, the expected number of vee’s among the semifinal pieces is
O(
(2n

3

)
1

(αn)2 ) = O(n). And in the cake model, we will show that if the expected number of vee’s among
the semifinal pieces isO(n), then with probabilityΩ(1) there will be no pair path with three of more
edges in the implication graph of the semifinal pieces. (See Section 3.3). Unfortunately, in the example
in Figure 1, it is the case that, with high probability, the number of vees among the semifinal pieces is
Ω(

√
n · (√n)2) = Ω(n3/2). The consequence of this is that, with high probability, there will be pair paths

like those in Figure 2.a. One can also construct instances where the number of vees isΩ(n2) with probability
Ω(1).

Getting the expected number of vee’s in the semifinal pieces down to O(n) necessitates thatd′ ≥ 4.
Let us now explain how we accomplish this. The selection of final pieces will occur in three instead of
two phases. First, each player independently at randomly choosesd′ = 2d quarterfinalpieces. These
are partitioned into twobracketsA〈p,0〉 andA〈p,1〉 containingd pieces each. From each such bracket, we
choose one interval, denoteda〈p,r〉 to be asemifinalpiece. The semifinal piece is chosen to be the one
that intersects the smallest number of other candidate pieces,c〈q,j〉. Note that this processes is independent
for the different playersp and for each bracket. We will show then that the expected number of vees in
the resulting2n semifinal pieces isO(n) (see Section 3.2). We show that as a consequence of this, with
probabilityΩ(1), the implication graph of the semifinal pieces does not contain a pair path of length 3 or
longer.
Pair Paths of Length Two and Same-Player-Vees: Another difficulty is that the implication graph of the
semifinal pieces may, with high probability, have pair pathsof length two. See Figure 2.b. A pair path of
length two occurs if and only if the implication graph contains what we call a same-player-vee. Asame-
player-veeis a vee where both of the base pieces belong to the same player. That is, there is a center piece
a〈p,r〉 and two basesa〈q,0〉 anda〈q,1〉. In the instance in Figure 1, it is the case that with high probability
there will be many same-player-vees.

To get around the problem of same-player-vees, we introducethesame-player-vee graphwith directed
edge〈p, q〉 when these players are involved in a same-player-vee. We show that with probabilityΩ(1) there
are no paths in this graph containingw = 2 edges. Hence the same-player-vee graph can be colored with2
colors. (See Section 3.4). Therefore, with probabilityΩ(1), we can partition the players into2 partitions in
such a way there is no same-player-vee involving two playersin the same partition.
Summary of Balanced Allocation Algorithm: We summarize our Balanced Allocation Algorithm.

• Independently, for each playerp ∈ [1, n] and eachr ∈ [0, 1], randomly choosed of the candidate
piecesc〈p,i〉 to be in the quarterfinal bracketA〈p,r〉.
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• In each quarterfinal bracketA〈p,r〉, pick as the semifinal piecea〈p,r〉, the piece that intersects the
fewest other candidate piecesc〈q,j〉. If we are unlucky and the Implication Graph contains a pair path
of length greater than 3, then start over. See Sections 3.2 and 3.3.

• Construct and vertex color the same-player-vee graph usingthe greedy coloring algorithm using at
mostw = 2 colors. See Section 3.4. LetSk be the subgraph of the implication graph containing only
those players coloredk. This ensures that Implication Graph restricted toSk contains no pair paths of
length 2.

• For eachSk, pick the final piece for each player involved inSk by applying the Final Piece Selection
Algorithm toSk. See Section 3.1. Because the Implication Graph onSk contains no pair paths of any
length, this algorithm ensures that these final pieces for each player are disjoint, i.e. for any point in
the cake, the final piece of at most one player fromSk covers this point.

• Conclude that for any point in the cake, the final piece of at mostw = 2 players cover this point. The
total probability of success is computed in Section 3.5.

In section 3.6 we extend this Balanced Allocation Algorithmto the case of approximate queries against
a weak adversary.

3 The Proofs

In this section we prove the various claims that we made in theprevious section. Each subsection can
essentially be read independently of the others. Due to space limitations, some proofs are moved to the
appendix, and some of the easier proofs are omitted.

3.1 Final Piece Selection Algorithm

We show some structural properties of the implication graphimply the correctness of the Final Piece Selec-
tion Algorithm.

Lemma 2. If there is a path inG froma〈p,r〉 to a〈q,s〉 then there must be a path froma〈q,1−s〉 to a〈p,1−r〉 in
G.

Lemma 3. If both the piecesa〈q,0〉 anda〈q,1〉 are reachable from a piecea〈p,r〉 in the implication graphG,
thenG has a pair path.

Lemma 4. If an implication graphG of the semifinal pieces does not contain a pair path, then the Final
Piece Selection Algorithm selects a final piece for each player and these final pieces are disjoint.

Proof. Consider an iteration that starts by assigninga〈p,0〉 to playerp. This iteration will force the assign-
ment of at most one piece to any one player because by Lemma 3 there can not be a playerq such that both
a〈q,0〉 anda〈q,1〉 are reachable froma〈p,0〉. Similarly, if this same iteration forces playerq to be assigned say
to a〈q,0〉, then we need to prove that he has not already been assigneda〈q,1〉 during an earlier iteration. If
assigninga〈p,0〉 forcesa〈q,0〉, then there is a path from the one to the other. Hence, by Lemma2, there is
a path froma〈q,1〉 to a〈p,1〉. Hence, ifa〈q,1〉 had been previously assigned, then playerp would have been
forced toa〈p,1〉 and in this casep would not be involved in this current iteration. The disjointness of the final
pieces follows from the definition of the implication graph.

3.2 The Number of Vees

In this subsection we show that the number of vees isO(n) with probabilityΩ(1). Recall that aveeconsists
of a triple of semifinal pieces, onecenterpiecea〈p,r〉 and twobasepiecesa〈q,s〉 anda〈q′,s′〉, with the property
that the center piece intersects both of the base two pieces.
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Lemma 5. Assume thatm players have partitioned their cake intoαn pieces each. Letℓp,i be the number of
pieces of the other players that overlap with piecei of playerp. Then for any playerp,

∑αn
i=1 ℓp,i ≤ 2αnm.

Lemma 6. The probability that semifinal piecea〈p,r〉 overlaps with semifinal piecea〈q,s〉 is at most2d2

αn .

Lemma 7. The expected number of vee’s inG is at most16d3

α2 n.

Proof. Consider a particular playerp. Again letℓ〈p,i〉 denote the total number of candidate pieces overlap-
ping theith candidate piecec〈p,i〉 of the playerp. Without loss of generality, let us renumberp’s candidate
pieces in non-increasing order byℓ〈p,i〉, that is,ℓ〈p,i〉 ≥ ℓ〈p,i+1〉.

Forp ∈ [n], i ∈ [αn], andr ∈ [0, 1], letR〈p,i,r〉 be the event that the candidatec〈p,i〉 is selected to be the
semifinal piecea〈p,r〉. To understand this, let us review how this is chosen. First,playerp randomly chooses
d candidate pieces to be in his quarterfinal bracketsA〈p,r〉. Then the semifinal piecea〈p,r〉 is chosen to be the
one with the smallestℓ〈p,i〉 value or, by our ordering, the one with the largest index. Hence, the probability
of R〈p,i,r〉 is the probability thatd indexes are randomly selected froman indexes and the largest selected
index isi. This givesProb[R〈p,i,r〉] = d · ( 1

αn) · ( i−1
αn )d−1.

Let x〈p,r〉 be the number of vee’s witha〈p,r〉 as the center. There are
(ℓ〈p,i〉

2

)
pairs of candidate pieces

that might be the two base piecesa〈q,s〉 anda〈q′,s′〉 with the center piecea〈p,r〉 = c〈p,i〉. The probability that

both of this pair are semifinal pieces is at most
(

2d
αn

)2
. Hence,E[x〈p,r〉 | R〈p,i,r〉] is at most

(ℓ〈p,i〉

2

) (
2d
αn

)2 ≤
2ℓ2

〈p,i〉

(
d

αn

)2
.

E[x〈p,r〉] =

αn∑

i=1

Prob[R〈p,i,r〉] · E[x〈p,r〉 | R〈p,i,r〉] ≤
αn∑

i=1

(
d

αn

)(
i− 1

αn

)d−1

· 2ℓ2
〈p,i〉

(
d

αn

)2

≤
(

2d3

(αn)d+2

)
·

αn∑

i=1

id−1ℓ2
〈p,i〉

Lemma 5 bounds that
∑αn

i=1 ℓ〈p,i〉 ≤ 2αn2 = M . The next lemma then bounds
∑m

i=1 id−1ℓ2
〈p,i〉 ≤ md−2M2.

E[x〈p,r〉] ≤
(

2d3

(αn)d+2

)
· (αn)d−2 ·

(
2αn2

)2 ≤ 8d3

α2
.

By linearity of expectation, the expected number of vees over all is
∑n

p=1

∑1
r=0 E[x〈p,r〉] ≤ 2n · 8d3

α2 .

Lemma 8. If d ≥ 2, ∀i ∈ [1, m− 1] ℓi ≥ ℓi+1 ≥ 0, and
∑m

i=1 ℓi = M , then
∑m

i=1 id−1ℓ2
i ≤ md−2M2.

Proof. Let ℓm+1 = 0, andsi = ℓi − ℓi+1 for 1 ≤ i ≤ m. Note that our constraint gives thatsi ≥ 0. Further
more,ℓi =

∑m
j=i sj andM =

∑m
i=1 ℓi =

∑m
i=1 isi. Then letti = isi so thatM =

∑m
i=1 ti. Now using

basic algebra we conclude that

m∑

i=1

id−1ℓ2
i =

m∑

i=1

id−1




m∑

j=i

sj




2

=

m∑

i=1

id−1
m∑

j=i

m∑

k=i

sjsk =

m∑

j=1

m∑

k=1

sjsk

min(j,k)∑

i=1

id−1

≤
m∑

j=1

m∑

k=1

tjtk
jk

min(j, k)d ≤ md−2
m∑

j=1

m∑

k=1

tjtk = md−2




m∑

j=1

tj




2

= md−2M2
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3.3 The Existence of Pair Paths

In this subsection, we show that with probabilityΩ(1), the implication graph doesn’t contain a pair path of
length three of more. Recall that if the semifinal piecesa〈p,r〉 anda〈q,s〉 intersect, then there is an directed
edge in the implication graphG from a〈p,r〉 to a〈q,1−s〉 and froma〈q,s〉 to a〈p,1−r〉 and that apair path is a
directed path between the two semifinal pieces for the same player, i.e. from somea〈p,r〉 to a〈p,1−r〉. The
next lemma is best understood by studying Figure 3.

<p ,1−r >
4 4

aa
33

<p ,1−r ><p ,1−r >
1 1

aa
00

<p ,1−r >

<p ,r >
0 0

a

<p ,1−r >
2 2

a

a
44

<p ,r ><p ,r >
3 3

aa
22

<p ,r >a
11

<p ,r >

Figure 3: The dotted edges are between semi-final pieces thatoverlap. The solid directed edges are the
resulting edges in the implication graph.

Lemma 9. Consider a simple pair pathP =
〈
a〈p0,r0〉, a〈p1,r1〉, . . .a〈pk−1,rk−1〉, a〈p0,1−r0〉

〉
of lengthk ≥ 3.

Let V be the vee with centera〈p0,r0〉 and basesa〈p1,1−r1〉 anda〈pk−1,rk−1〉. For i ∈ [1, k−2], let Ii ∈ G be
the event that semifinal piecesa〈pi,ri〉 anda〈pi+1,1−ri+1〉 intersect. Then

Prob[P ∈ G] ≤ Prob[V ∈ G] · Πk−2
i=1Prob[Ii ∈ G]

Proof. The edges froma〈p0,r0〉 toa〈p1,r1〉 and froma〈pk−1,rk−1〉 toa〈p0,1−r0〉 mean thata〈p0,r0〉 intersect with
botha〈p1,1−r1〉 anda〈pk−1,rk−1〉. Hence, the veeV occurs. The edge froma〈pi,ri〉 to a〈pi+1,ri+1〉 means that
a〈pi,ri〉 anda〈pi+1,1−ri+1〉 intersect, i.e.Ii. It follows thatProb[P ∈ G] ≤ Prob[V & eachIi ∈ G]. What
remains is to prove that the eventsV and eachIi are independent. Whether a semifinal piece of playersp and
q intersect is independent of whether a semifinal piece of different playersp′ andq′ intersect because these
event have nothing to do with each other. This remains true when the playersp andp′ are the same, but the
we are talking about different semifinal pieces of this player, namely eventIi andIi+1 are independent. This
is because the selection of the quarterfinal pieces for the bracketA〈p,0〉 and the selection ofp’s semifinal
piecea〈p,0〉 within this bracket is independent of this process for his other semifinal piecea〈p,1〉.

Lemma 10. The probability that the implication graphG contains a pair path of length at least three is at
most 32d5

α2(α−4d2)
.

Proof. Let V be the set of all 3-tuples representing all possible vee’s inG and forV ∈ V let Pk(V ) be the
set of all possible pair paths of lengthk that include the veeV . The probability thatG contains a pair path
of length at least three is at most

n∑

k=3

∑

V ∈V

∑

P∈Pk(V )

Prob[P ∈ G] (1)

≤
n∑

k=3

∑

V ∈V

∑

P∈Pk(V )

Prob[V ∈ G] · Πk−2
i=1 Prob[Ii ∈ G] (2)

≤
n∑

k=3

∑

V ∈V

Prob[V ∈ G]
∑

P∈Pk(V )

(
2d2

αn

)k−2

(3)

(4)
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≤
n∑

k=3

∑

V ∈V

Prob[V ∈ G]

((
2n

k − 3

)
(k − 3)!

)(
2d2

αn

)k−2

(5)

≤
n∑

k=3

(2n)k−3

(
2d2

αn

)k−2 ∑

V ∈V

Prob[V ∈ G] (6)

≤
n∑

k=3

(2n)k−3

(
2d2

αn

)k−2 (
16d3

α2
n

)
(7)

≤ 8d3

α2

n∑

k=3

(
4d2

α

)k−2

≤ 8d3

α2

(
4d2

α

)(
1

1 − 4d2/α

)
=

32d5

α2(α − 4d2)
(8)

The inequality in line 2 follows from Lemma 9 and line 3 from Lemma 6. The inequality in line 5 holds
since there arek−3 pieces inP that are not part of the veeV . The inequality in line 7 follows from Lemma
7.

3.4 Coloring Same-Player-Vee Graphs

In this subsection we show that with probabilityΩ(1), we can color the same-player-vee graph with2 colors
since this graph will have no paths of lengthw = 2.

Lemma 11. The probability that the same-player-vee graph is notw = 2 colorable is at most16d3

α3 + 8d2

α2 .

Recall that we put the directed edge〈p, q〉 in the same-player-vee graph if one of playerp’s two semifinal
pieces, namelya〈p,0〉 or a〈p,1〉, overlap with both of playerq’s two semifinal pieces, namelya〈q,0〉 anda〈p,1〉.
Hence, a path of length 3 consists of semi-final piecesa〈p1,r1〉, a〈p2,r2〉, a〈p2,1−r2〉, a〈p3,0〉, anda〈p3,1〉 for
three playersp1, p2, andp3, where botha〈p2,r2〉 anda〈p2,1−r2〉 overlap witha〈p1,r1〉, and botha〈p3,0〉 and
a〈p3,1〉 overlap witha〈p2,r2〉. We will consider the probability of such paths starting backwards.

Lemma 12. Suppose we are considering a set ofℓ̂ candidate pieces for the semi-final piecesa〈p3,0〉

and a〈p3,1〉. The probability that some player gets both of his semi final pieces from this set is at most

min(( dbℓ
αn)2, 1).

Consider some candidate piecec〈p1,i〉 that potentially might bea〈p1,r1〉. Let ℓ〈p1,i〉 denote the number
of other candidate pieces of overlapping it. Consider some player p2. Let c〈p2,jl〉, c〈p2,jl+1〉, . . . , c〈p2,jr〉

be the candidate pieces of playerp2 that overlap with piecec〈p1,i〉. Let ℓ〈p2,j〉 denote the number of other
candidate pieces of overlappingc〈p2,j〉. Consider some playerp3. Defineℓ〈p2,j,p3〉 to be the number of player
p3’s candidate pieces that overlapc〈p2,j〉. Note that ifℓ〈p2,j,p3〉 = 1, then it is impossible to have both of
playerp3’s semi-final pieces over lap with forc〈p2,j〉. Hence, we can ignore playerp3 when considering

c〈p2,j〉 as beinga〈p2,r2〉. Hence, definêℓ〈p2,j,p3〉 to beℓ〈p2,j,p3〉 if ℓ〈p2,j,p3〉 ≥ 2 and zero otherwise. Define

ℓ̂〈p2,j〉 =
∑

q ℓ̂〈p2,j,p3〉. Note this is the number of pieces that overlapc〈p2,j〉 excluding those pieces whose
player only has one piece overlappingc〈p2,j〉.

Lemma 13. Then
∑jr−1

i=jl+1 ℓ̂〈p2,j〉 ≤ 2ℓ〈p1,i〉.

Lemma 14. Consider a candidate piecec〈p1,i〉 such that there areℓ〈p1,i〉 other candidate pieces overlapping
it and some other playerp2. The probability that there are semi-final piecesa〈p2,r2〉, a〈p3,0〉, anda〈p3,1〉 for
some playerp3, wherea〈p2,r2〉 overlaps withc〈p1,i〉, and botha〈p3,0〉 anda〈p3,1〉 overlap witha〈p2,r2〉 is at

most 4d
αn ·

[
dℓ〈p1,i〉

αn + 1
]
.
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Proof. Consider a candidate piecec〈p2,j〉 that overlaps withc〈p1,i〉. The probability that candidate piece
c〈p2,j〉 is a semi-final piece for playerp2 is at most2d

αn . By Lemma 12, the probability that there are semi-final

piecesa〈p3,0〉, anda〈p3,1〉 for some playerp3 which both overlap withc〈p2,j〉 is at mostmin((
dbℓ〈p2,j〉

αn )2, 1).
It follows that the required probability is at most

jr∑

i=jl

2d

αn
· min




(

dℓ̂〈p2,j〉

αn

)2

, 1



 ≤ 2d

αn
·



1 +




jr−1∑

i=jl+1

min




(

dℓ̂〈p2,j〉

αn

)2

, 1







+ 1



 .

By Lemma 13,
∑jr−1

i=jl+1 ℓ̂〈p2,j〉 ≤ 2ℓ〈p1,i〉. Hence, because of the quadratics in the sum, our sum is maxi-

mized by having a feŵℓ〈p2,j〉 as big as possible. But because of themin, there is no reason to make aℓ̂〈p2,j〉

bigger thanαn
d . Hence, the sum is maximized by setting

2dℓ〈p1,i〉

αn of the valueŝℓ〈p2,j〉 to αn
d and the rest to

zero. This gives the result

2d

αn
·
[
1 +

[
2dℓ〈p1,i〉

αn
·min(1, 1)

]
+ 1

]
.

We will now add the requirement that playerp2’s other candidate piecea〈p2,1−r2〉 also overlaps withc〈p1,i〉

and sum the resulting probability over all possible playersp2.

Lemma 15. Consider a candidate piecec〈p1,i〉 such that there areℓ〈p1,i〉 other candidate pieces overlapping
it. The probability that there are semi-final piecesa〈p2,r2〉, a〈p2,1−r2〉, a〈p3,0〉, anda〈p3,1〉 for two playersp2

andp3, where botha〈p2,r2〉 and a〈p2,1−r2〉 overlaps withc〈p1,i〉, and botha〈p3,0〉 anda〈p3,1〉 overlap with

a〈p2,r2〉 is at most
4d2ℓ2

〈p1,i〉

(αn)3
·
[
1 + αn

dℓ〈p1,i〉

]
.

Proof. The probability that a particular candidate piecec〈p2,j〉 is playerp2’s semi-final piecea〈p2,1−r2〉 is at
most d

an . Denote the number of playerp2’s candidate piecesc〈p2,jl〉, c〈p2,jl+1〉, . . . , c〈p2,jr〉 that overlap with
piecec〈p1,i〉 to beqp2

= jr − jl + 1. Because these all overlap withc〈p1,i〉, we have that
∑

p2
qp2

= ℓ〈p1,i〉.
Using Lemma 15, we get that the required probability is at most

∑

p2

d

an
· qp2

·
[

4d

αn
·
[
dℓ〈p1,i〉

αn
+ 1

]]
=

d

an
· ℓ〈p1,i〉 ·

[
4d

αn
·
[
dℓ〈p1,i〉

αn
+ 1

]]
=

4d2ℓ2
〈p1,i〉

(αn)3
·
[
1 +

αn

dℓ〈p1,i〉

]
.

We will now add the requirement thatc〈p1,i〉 is one of playerp1’s semi-final pieces and sum up over allp3

candidate pieces and over all playersp3.

Lemma 16. The probability that there are semi-final piecesa〈p1,r1〉, a〈p2,r2〉, a〈p2,1−r2〉, a〈p3,0〉, anda〈p3,1〉

for three playersp1, p2, andp3, where botha〈p2,r2〉 anda〈p2,1−r2〉 overlap witha〈p1,r1〉, and botha〈p3,0〉

anda〈p3,1〉 overlap witha〈p2,r2〉 is at most16d3

α3 + 8d2

α2 .

Proof. As in the proof of Lemma 7, letR〈p,i,r〉 be the event that the candidatec〈p,i〉 is selected to be the
semifinal piecea〈p,r〉. Recall thatProb[R〈p,i,r〉] = d · ( 1

αn) · ( i−1
αn )d−1. There aren choices for playerp1.
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Thus by Lemma 15, our desired probability is at most

n

(
αn∑

i=1

d

αn

(
i− 1

αn

)d−1 4d2ℓ2
〈p1,i〉

(αn)3
·
[
1 +

αn

dℓ〈p1,i〉

])

≤ n

(
4d3

(αn)d+3

αn∑

i=1

ℓ2
〈p1,i〉(i − 1)d−1 +

4d2

(αn)d+2

αn∑

i=1

ℓ〈p1,i〉(i− 1)d−1

)

≤ n

(
4d3

(αn)d+3
(αn)d−2(2αn2)2 +

4d2

(αn)d+2

αn∑

i=1

ℓ〈p1,i〉(i − 1)d−1

)

≤ n

(
4d3

(αn)d+3
(αn)d−2(2αn2)2 +

4d2

(αn)d+2
(αn)d

(
2αn2

αn

))
=

16d3

α3
+

8d2

α2

The second inequality follows by Lemma 8. The third inequality follows from noting that, given that the
ℓ〈p1,i〉’s are nonincreasing, the sum is obviously maximized if eachℓ〈p1,i〉 is equal. That is, eachℓ〈p1,i〉 =
2αn2

αn .

3.5 Computing the Probability of Failure

The probability that the total same-player-vee graph is not2-colorable is at most16d3

α3 + 8d2

α2 . The probability

that the implication graph contains a pair path of length three or more is at most 32d3

α2(α−d2)
. Thus we get that

the probability that the maximum overlap of the final pieces is more than2 is at most16d3

α3 + 8d2

α2 + 32d3

α2(α−d2)
.

By settingd = 2, and then settingα to be sufficiently large, one can make this probability arbitrarily small.
Hence, the probability that our caking cutting algorithm isnot at least2α-fair is at most16d3

α3 +8d2

α2 + 32d3

α2(α−d2)
.

3.6 Approximate Cuts with a Weak Adversary.

In this section, we show that even if the cut operations are only approximate, then approximate fairness is
still achievable inO(n) complexity against a weak adversary, which must specify therelative error without
knowing the value of the cake specified in the cut. For the proof, see appendix section B.

Theorem 17. If a protocol can only make1 + ǫ approximate queries against a weak adversary, then there
is a randomized protocol for cake cutting that achievesO(1)-fairness inO(n) time.

4 Conclusion

The results in this paper suggest several interesting open questions. As in the balls and bins case, can we get
a high probability result, perhaps at the cost of increasingby a constant factor the maximum load bound?
Is linear query complexity achievable by randomized algorithms for exact fairness? But perhaps most in-
teresting is to see how other balanced allocation results inthe literature extend to the unrelated machines
case. Analysis of balls and bins models have found wide application in areas such as load balancing [8]. In
these situations, a ball represents a job that can be assigned to various bins/machines. Roughly speaking,
load balancing of identical machines is to balls and bins, asload balancing on unrelated machines is to
cake cutting. Unrelated machines is one of the standard models in the load balancing literature [1]. In the
unrelated machines model there is a speedsi,j that a machinei can work on a jobj. Assume that jobs can
use more than one machine, and that machines can be shared. Then the total value of the machines to jobj

is
∑

i si,j, and ac-fair allocation for jobj would be a collection of machines, or portions of machines, that

10



can together processj at a speed of
∑

i
si,j

cn . So it seems to us reasonable to presume the the cake model,
and balanced allocation lemmas, should have interesting applications in settings involving load balancing
on unrelated machines.
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A Our Cake Cutting Algorithm

Before turning to our Balanced Allocation Lemma, let us explain how our cake cutting protocol uses our
Balanced Allocation Algorithm. Each playerp has an initially unknown value functionVp that specifies how
much that player values each subinterval of the unit interval. We imagine the player partitioning the cake
into αn pieces each of value1αn . Theith such candidate piece of cakec〈p,i〉 can be obtained using the two
queries(Cutp(0, i−1

αn ), Cutp(0, i
αn)). Our cake cutting protocol uses our Balanced Allocation Algorithm to

obtain a final piece for each player such that every point of the cake is covered by at mostO(1) of these
final pieces. Because each player chooses only a constant number of candidate pieces, the query complexity
is Θ(n). Because the probability of success isΘ(1), they expect to repeat itΘ(1) times until they succeed.
Once each player has one final piece, we need to divide these pieces further so that the players have disjoint
collections of cake intervals. This is done as follows. These n final pieces have2n endpoints and these
endpoints partition the cake into2n pieces. Denote these byfj. For each piecefj and each playerp, the
player either wants all offj or none of it. For eachj, let Sj be the set of players wanting cake piecefj .
Some playersp may appear in more than oneSj, but we have that|Sj| ≤ k = O(1), because every point of
the cake is covered by at mostO(1) of player’s final pieces. For each piecefj , the players inSj use any fair
algorithm to partitionfj between them. Each such application has complexityΘ(1) since it only involves
Θ(1) players. This protocol guaranteeskα-fairness. Consider playerp. For eachj for which p ∈ Sj, let
v〈p,j〉 denote the amount he values piecefj. Note

∑
j v〈p,j〉 = Vp(∪jfj) = Vp(his final piece) = 1

αn . When

fairly dividing fj , he receives a piece offj with value at least
v〈p,j〉

k . The total cake that he receives has total
value

∑
j

v〈p,j〉

k = 1
kαn . Note that unlike all previous cake cutting algorithms, this one does not guarantee

contiguous portions since a player’s final interval may be involved many different such subintervalsfj .

B Proof of Weak Adversary Result

We start by defining an approximate cut.
ACutp(ǫ, x1, β): This 1 + ǫ approximate cut query returns anx2 ≥ x1 such that the interval of cake
[x1, x2] has value approximatelyβ according to playerp’s value functionVp. More precisely,x2 satisfies

1
1+ǫVp(x1, x2) ≤ β ≤ (1 + ǫ)Vp(x1, x2).
Non-Adaptive Error: We say thatACutp(ǫ, x1, β) has anonadaptive errorif each operation the algorithm
first providesx1 but notβ. The weak adversary, knowing the complete history but notβ, chooses a random
variableE for the error with some distribution in the range[ 1

1+ǫ , 1 + ǫ]. When the algorithm providesβ, the
operationACutp(ǫ, x1, β) returns the random variablex2 = Cutp(x1, E · β) such thatVp(x1, x2) = E · β.

Theorem 18. If a protocol can only make1 + ǫ approximate queries against a weak adversary, then there
is a randomized protocol for cake cutting that achievesO(1)-fairness inO(n) time.

Proof. The algorithm as defined above chooses a random integeri ∈ [0, αn−1] and cuts out a piece starting
atx1 = Cutp(0, i

αn) and ending atx2 = Cutp(0, i+1
αn ) or equivalently atx2 = Cutp(x1,

1
αn). If the second

cut is replaced with the cutx2 = ACutp(ǫ, x1,
1

(1+ǫ)αn) even with adaptive error, then the algorithm does
not change significantly. The piece returned is no wider so overlaps with other player’s intervals are no more
likely and the associated value, though perhaps a factor of(1 + ǫ)2 more unfair, is still constant fair.

For the first cutx1 = Cutp(0, i
αn), if the algorithm instead chooses a random reali ∈ [0, αn−1] instead

of a random integer, the algorithm does not change significantly. This then become a cut at a uniformly
chosen random valueβ = i

αn ∈ [0, 1]. If we replace this cut with an approximate cut with an non-adaptive
adversary, it becomes a cut at valueβ′ = Eβ. But because errorE is a random variable is independent of
β, β′ is basically also a uniformly chosen random valueβ′ ∈ [0, 1]. To see, this consider some fixed value
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b ∈ [ǫ, 1− ǫ] not too close to the endpoints. We have

Pr
[
β′ ∈ [b, b + δb]

]
=

∫

e∈[ 1

1+ǫ
,1+ǫ]

Pr

[
β ∈ [

b

e
,
b + δb

e
]

]
· Pr [E = e] δe

=

∫

e∈[ 1

1+ǫ
,1+ǫ]

δb

e
· Pr [E = e] δe = δb ·

[∫

e∈[ 1

1+ǫ
,1+ǫ]

Pr [E = e]

e
δe

]

.

This is a strange integration, but it is within(1 + ǫ) of one and it is constant with respect tob. Hence,
Pr [β′ ∈ [b, b + δb]] ≈ δb, meaning thatβ′ is uniformly chosen within[ǫ, 1− ǫ].
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