
A Faster Approximate Minimum Steiner Tree Algorithm

& Primal-Dual and Local-Ratio Greedy Algorithms

H. Kwon ∗ Jeff Edmonds † A. Borodin ‡

Abstract

We prove matching upper and lower bounds for the Minimum Steiner Tree (MStT) problem
within the adaptive priority stack model introduced by Borodin, Cashman, and Magen [2] and
lower bounds within the adaptive priority queue model introduced here. These models, which
are extensions of the adaptive priority model of Borodin, Nielson, and Rackoff [4], are said to
capture reasonable primal-dual and local-ratio extensions of greedy algorithms. Borodin etal.
[2] had proved lower bound 11

3
on the approximation ratio obtainable for the problem in the

stack model. We improve this to 2−O(1

|V |). This and similar results prove that the above upper

bound is tight, that the adaptive priority stack model is incomparable with the fully adaptive
priority branching tree (pBT) model, and that the online stack model is incomparable with the
adaptive priority model. We also prove a lower bound in the priority model for complete graphs
improving the result of Davis and Impagliazzo [6] from 11

4
to 1 1

3
. The priority queue model is

better because ????? Within it we prove a 7

6
approximation lower bound.

1 Introduction

We are interested in how well greedy algorithms and their primal-dual and local ratio extensions are
able to approximate various variations of the Minimum Steiner Tree Problem. Borodin, Nielsen
and Rackoff, [4], introduced the priority model which captures reasonable greedy or greedy-like
algorithms. The paper of Borodin, Cashman, and Magen [2] formalized a computational model
referred to as the priority stack model that captures both the primal-dual and the local ratio
algorithm design paradigms. The priority queue model is better because ?????

The Minimum Steiner Tree (MST) problem of finding a minimum subtree that spans the ter-
minal nodes has practical applications such as routing VLSI layout, the design of communication
networks, and accounting and billing for the use of telephone networks [15]. It is NP-complete.

The best known approximation algorithm [12] for the general MStT problem without any tri-
angle inequality restrictions achieves 1.55 performance guarantee, but it likely fits neither into
the priority model nor the stack model. There is a much easier algorithm that achieves a 2-
approximation [14]. Simply do a Minimum Spanning Tree on Gc

R, where Gc
R is the graph on the

terminal nodes R with weight on edge {u, v} being the weight of the minimum path from u to v
in G. We show how to express this algorithm within the adaptive priority stack model. Given that
Davis and Impagliazzo [6] show how to implement Dijkstra single source all destination shortest
paths algorithm in the adaptive priority model, it is not hard to see how to do st-connectivity in the
adaptive priority stack model. Minimum spanning tree is the classic algorithm in the fixed priority

∗York University, Canada. james@cs.yorku.ca.
†York University, Canada. jeff@cs.yorku.ca. Supported in part by NSERC Canada.
‡University of Toronto. bor@cs.toronto.edu.

1

model. Hence, each step of this MStT algorithm can be implemented by an adaptive priority stack
algorithm. However, because this model only allows the algorithm to pass once through the data
items, the trick when implementing this algorithm was to prove that it works correctly when all
of these tasks are performed simultaneously. Inadvertently, doing so improved the running time of
this algorithm from the number |R| of terminal nodes times the running time O(|V | log |V | + |E|)
of Dijkstra’s algorithm to being only the time O(|V | log |V | + |E|) of Dijkstra’s algorithm once on
G.

We also get a 2-approximation algorithm in weaker models when the MStT problem is restricted,
namely within the fixed priority stack model when there are no edges between the Steiner nodes,
within the online stack model when there are no edges between the Steiner nodes and the weight of
every edge included is one, and within the fixed priority model when the triangle inequality holds.

Now let consider lower bounds. When there are only two Steiner nodes s and t, MStT amounts
to st-connectivity, which Davis and Impagliazzo [3] proved it cannot be solved by a fully adaptive
priority branching tree (pBT) algorithm unless it has exponential width. This proves for the first
time that this model is incomparable with the adaptive priority model. Previously the adaptive
priority stack model had been separated from the much weaker priority model for a packing problem
(weighted interval scheduling), but this is the first such separation for a problem that is both a
graph problem and a covering problem.

When MStT is restricted so that there are no edges between the Steiner nodes, there is no
longer a st-connectivity aspect to the MStT problem. Borodin, Cashman, Magen [2] proved a
lower bound that no adaptive priority stack algorithm can achieve an approximation ratio better
than 11

3 in this case even it when restricted to any of the variations listed above. We improve this
lower bound to 2−O(1

|V |), making it tight. Our lower bound is also in a slightly stronger model in
which the algorithm is able to accept implicit edges.

We also obtain an arbitrarily large lower bound on the approximation ratio obtained by an
adaptive priority algorithm for the MStT problem when it does not need to satisfy the triangle
inequality, even when there are no edges between the Steiner nodes are allowed and the weight
of every edge included is one. This proves that the online stack model is incomparable with the
adaptive priority model. The arbitrarily high lower bound also holds when, though the triangle
inequality ”holds,” and all terminal-terminal edges are implicit and cannot be accepted. This gives
the first separation between the initially defined priority model in which implicit edges cannot be
accepted and our new strengthening of the model in which they can.

Davis and Impagliazzo Davis [6], before the [2] results, give a lower bound of 11
4 within the

adaptive priority model when the instance graph to MStT must be complete. We improve this
result by increasing the bound to 11

3 . A weakness of these complete graph lower bounds is that
they apply only to graphs of fixed size and hence do not prove that the error is multiplicative
instead of additive. We give some intuition as to why proving this same result for arbitrarily large
complete graphs would be hard. Proving the same result for in the stack model also seems hard.

Within the priority queue model, we prove a 7
6 approximation lower bound.

Section 2 provides the preliminary definitions, Section 4 provides the upper bounds, and Sec-
tion 3 provides the lower bounds.

2 Preliminaries

In this section, we define the Minimum Steiner Tree problem (MStT), the priority model, and the
priority Stack model.

2

adaptive priority priority stack

br. tree online fixed adaptive

general MStT ∞ ∞ ∞′ ∞′ 2

no edges between the Steiner nodes ∞ 1 ∞′ 2 2

& the weight of every edge included is one ∞ 1 2 2 2

the triangle inequality holds 2 2 ∞′ ∞′ 2

complete & the triangle inequality holds ≥ 11
3 ∞ ?

Table 1: Summary of the known results and results presented in this paper for the MST problem.
Here ∞′ means that we assume that no constant approximation algorithm possible in the model,
but we have not looked for a proof.

A General Computational Problem: An optimization problem with priority model (D, Σ) and
a family of objection functions fn : Dn × Σn → R is defined as follows. An instance I =
{D1, D2, . . . , Dn} ∈ Dn is specified by a set of n data items Di chosen from the given domain
D. A solution for the instance is consists of a decision ai ∈ Σ made about each data item di

in the instance I, namely a set of tuples, S = {(Di, ai)|Di ∈ I}. An exact algorithm must
find a solution that minimizes (maximizes) f(I, S). An R-approximation algorithms finds
one within a factor of R of this optimal value.

The Minimum Steiner Tree (MStT) problem: A data item for the MStT problem in the
edge model is a weighted edge Di = 〈{u, v}, w〉 with the knowledge that the nodes in
N ⊆ V are terminal nodes and those in V \ N are Steiner nodes. The decision ai ∈ Σ =
{accepted, rejected} to be made is whether to include the edge in the solution. If the re-
sulting solution is a Steiner tree, i.e. it spans all the terminal nodes of the instance graph
G, then its cost is f(I, S) =

∑

ai=accept wi. If the triangle inequality is said to hold then
w({u, v})) ≤ w({u, x}) + w({x, v}).

Adaptive Priority Algorithms: [4] models greedy algorithms with the adaptive priority model.
A greedy algorithm receives the data items Di one at a time and must make an irrevocable
decision ai about each as it arrives. For example, an algorithm for MStT might accept the
edge as long as it does not create a cycle. We will assume that the algorithm has unbounded
computational power based on what it knows from the data items it has seen already. The
algorithm’s lack of ability to find an optimal solution arises because it does not know the data
items that it has not yet seen. The algorithm, however, is given the additional power to be
able specify a priority ordering function (greedy criteria) and is ensured that it will see the
data items in this order. For example, an algorithm for MStT may request the cheapest edges
between terminal nodes first. [4] allows the algorithm to specify the priority order without
allowing it to see the future data items by having it specifying an ordering π ∈ O(D) of all
possible data items. The algorithm then receives the next data item Di in the actual input
according this order. An added benefit of ordering the data items is that when receiving the
data item D, the algorithm inadvertently learns that every data item D′ before D in the
priority ordering is not in the input instance.

algorithm Adaptive Priority Algorithm
〈input〉: I = {D1, . . . , Dn}
〈output〉: S = {(Di, ai)| 1 ≤ i ≤ n}

3

begin

Loop: i = 1, 2, . . . , n
〈loop−invariant〉: Assume the data items 〈D1, D2, . . . , Di−1〉 have been

seen and processed. This is all that the algorithm knows about the
instance.

Choose a possible new ordering Π on all possible data items.
Let Di be the next data item according to this new order.
Make an irrevocable decision aπi

about the data item Di.
Update the solution: S = S ∪ {(Di, aπi

)}.
end Loop
Output S = {(Di, ai)| 1 ≤ i ≤ n}.

end algorithm

Online, Fixed, and Adaptive Priorities: An adaptive priority algorithm as described above is
said to be adaptive because it is able to change its priority order Π on the data items each
time it sees a new item. In contrast, it is called a fixed priority algorithm if it chooses one
order that is fixed for the duration of the algorithm, and it is called an online algorithm if an
adversary chooses the order in which the data items are seen.

Accepting Implicit Edges: Normally, an edge not in the instance graph cannot be included in
the solution. In order to gives the algorithm more flexibility, we strengthen the model so
they can. An edge is said to be implicit if is is not explicitly mentioned in the instance. Its
weights is assumed to be that imposed by the triangle inequality, (i.e. the weight of a missing
edge {u, v} is the length of the shortest path from u to v amongst the included edges). The
algorithm can accept or reject an implicit edge any time. This decision however will have to
be made without explicitly learning the weight of the edge. Hence, there is no advantage to
doing so until after all the explicit edges have been seen. The key thing that such an algorithm
cannot do is to initially learn about u and v by saying “Give me the most expensive implicit
edge and I will reject it.” Note that this addition to the model only makes sense when the
triangle inequality holds.

Stack: Borodin, Cashman, and Magen [2] define a new model referred to as the adaptive stack
model. They advocate that their model captures reasonable primal-dual algorithms and local-
ratio algorithms. The weakness of the adaptive priority model is that the algorithm must
make an irrevocable decision on the chosen data item, that is, ai ∈

∑

= {accept, reject}. The
stack model gives the algorithm a second phase in which it can reject previously “accepted”
data items.

The adaptive stack model allows the algorithm to have two phases. The first phase is the
same as the adaptive priority algorithms except that the stack algorithm has a stack and a
choice set Σ = {reject, stack}. The rejected data items are permanently discarded by the
algorithm, whereas stacked items are pushed on the top of the stack.

The data items that are placed in the stack are processed during the second phase, which is
called the pop or clean up phase. Each data item is popped in the reverse of the processed
order in the first phase. Each time an item is popped, the algorithm is forced to discard it
if the data items that have been previously been popped and accepted together with those
remaining in the stack create a feasible solution. Otherwise, the popped item is forced to be
included in the algorithm’s solution.

4

Note that the stack model is carefully designed to give the algorithm no control over the
second phase. If the algorithm had control over the second phase, then it could read all of the
data items during the first phase and push them all onto the stack. Then, knowing the entire
input instance, it can use its unlimited power to compute the optimal solution. During the
second phase, it could simply accept and reject the data items corresponding to this solution.

Queue: We introduced an new (yet obvious) model referred to as the adaptive queue model. It
is the same as the previously defined model, except that data items are placed on a queue
instead of a stack. For MStT, we can assume that the popping of the second phase does
not wait until the pushing phase is completed. In fact, we can assume that the queue aways
contains a tree of edges that spans the terminal nodes (once it initially does). Suppose an
edge is added to the end of the queue that creates a cycle with what is in the queue. Let
e denote the edge that is first in the queue of those in this new cycle. We know that when
second phase considers edge e, it will be discarded because what remains in the queue still
spans the terminal nodes. Hence, we might as well immediately consider e discarded.

To get some idea of the extra power of having such a queue, suppose we simplify the situation
so that instead of the algorithm receiving a sequence individual data items, it receives a
sequence of possible solutions. Then there is an online queue algorithm with approximation

ratio c =
√

fmax

fmin
, where fmax and fmin are the maximum and the minimum of any solution

value. The value fcurrent of the current solution goes up and down as if the algorithm was
walking along a hilly path. If fcurrent ever reaches the value c · fmin or smaller, then the
algorithm states that it is happy with the solution it has and hence rejects the remaining
possible solutions. Even if the adversary can arrange the best possible solution with value
fmin, the algorithm has achieved its required competitive ratio of c. On the other hand
if, all the solutions that appear have value at least c · fmin, then the algorithm continues
until the adversary gets tired and states that all the possible solutions have been seen. The
algorithms solution at this time can’t be worse than fmax and the optimal solution for the
instance can’t be better than seen by the algorithm and hence not better than c · fmin. This

gives an approximation ratio of
falg

fopt
≤ fmax

c·fmin
= c. In our lower bound fmax = 8, fmin = 5,

c =
√

fmax

fmin
= 1.265 and following these same ideas obtained the bounds 7

6 = 1.167. Of course,

the “pseudo” upper bound presented above does not work in general, because even though all
the individual data items went by, the optimal solution might never have been in the queue
at one point in time. Likely, a stronger lower bound could be proved using this fact.

3 Lower Bounds

Section 3.1 describes the general lower bound technique introduced in [4]. Section 3.2 gives the
arbitrarily large lower bounds in the priority model. Section 3.3 gives a 7

6 lower bound in the
priority queue model. Section 3.4 gives a 2 − O(1

|V |) lower bound in the priority stack model.

Finally, Section 3.5 gives the 11
3 lower bound in the priority model given a complete graph.

3.1 The Lower Bound Technique

A lower bound in the priority model can be described as a game between an adversary and an
algorithm. At the beginning of the ith iteration of the game, the algorithm has been given the
partial instance PIi−1 = 〈D1, D2, . . . , Di−1〉 and has committed to the partial solution PSi−1 =

5

〈a1, a2, . . . , ai−1〉 and the adversary has narrowed down the universe of possible data items to Di−1

from which it promises future data items will chosen. The algorithm being adaptive is allowed to
reorder the data items in Di−1. The adversary promises to put in the instance whichever data item
in Di−1 is the algorithm’s favorite. Hence, the game can be simplified by allowing the algorithm to
choose Di from Di−1. The algorithm then must make an irrevocable decision ai about Di. Knowing
Di and ai, the adversary is then allowed to narrow down Di−1 to Di by removing some data items
(including Di) that would make the algorithm’s task “easy”. Generally, the adversary is allowed to
dynamically choose how many data items there will be in the actual instance. Hence, the adversary
has the power at any point in the game to declare I = PIi is the actual instance. The adversary
wins if I is a valid instance and S = PSi is not a sufficiently optimal solution for it.

3.2 Arbitrarily Large Lower Bounds in the Priority Model

Theorem 1. We obtain an arbitrarily large lower bound on the approximation ratio obtained by
an adaptive priority algorithm for the MStT problem when it does not need to satisfy the triangle
inequality, even when there are no edges between the Steiner nodes and the weight of every Steiner-
terminal edge included is one. The arbitrarily high lower bound also holds when, though the triangle
inequality ”holds,” all terminal-terminal edges are implicit and cannot be accepted.

This lower bound together with the upper bound in Theorem 8 proves that the online stack model is
incomparable with the adaptive priority model. Suppose that in the second scenario, the algorithm
was allowed to accept implicit edges. Because all the Steiner-terminal edges have weight one
and the triangle inequality holds, the algorithm implicitly knows that the weight on all terminal-
terminal edges have weight 2. Hence, it can obtain minimum spanning tree of Gc

R by accepting any
spanning tree. Theorem 5 then gives that this is a 2-approximate solution. This gives a separation
between the initially defined priority model in which implicit edges cannot be accepted and our
new strengthening of the model in which they can be.

Proof of Theorem 1: The instance will have nt terminal nodes and ns Steiner nodes. Initially,
the universe D0 of possible data items consists of all the terminal-terminal edges each of weight c,
all terminal-Steiner edges each of weight 1, and no Steiner-Steiner edges. Every time the algorithm
accepts a Steiner edge, the adversary deletes all other unseen Steiner edges adjacent to this same
steiner node. That is, if the algorithm has rejected d edges adjacent to the steiner node sj and then
accepted one adjacent to it, then this node sj will have degree d+1 in the actual instance and the
one accepted edge is useless. This continues until either the algorithm has accepted nt−1 terminal
edges or is about to accept a steiner edge adjacent to the last Steiner node considered. At this point,
the adversary declares the actual instance consists of all the edges seen, all the terminal edges, and
the star of steiner edges from this last Steiner node slast considered to each terminal node. The
optimal steiner tree, consisting of this star, has weight nt. The algorithm’s total weight is c(nt−1)
if it accepts nt−1 terminal edges. Otherwise, the process continued until at least one Steiner edge
is accepted to each steiner node. Let a denote the number of terminal edges that the algorithms
accepts. Because the other Steiner edges go no where, it must accept nt−a of those to the last
steiner node. This gives a total cost of ca+1 ·(ns−1)+1 ·(nt−a), which when c ≥ 1 is minimized by

setting a = 0, giving ns+nt−1. Hence, R = Alg/Opt = min(c(nt−1),ns+nt−1)
nt

= min(c(1− 1
nt

), 1+ns−1
nt

).
This can be made arbitrarily large by making c large (or removing the terminal edges) and by
making the number of Steiner nodes much larger than the number of terminal nodes.

6

3.3 A 7
6
-Queue Lower Bound

Theorem 2. No adaptive queue algorithm achieves better than 7
6 approximation for the MStT

problem. The result still holds even when there are five terminal nodes, all terminal-terminal edges
appear and have weight two, the Steiner-terminal edges that appear have weight one, and there are
no edges between the Steiner nodes

Note that if you prefer the size of the solution to be arbitrarily large so that we know that the
error is multiplicative instead of additive, than we can repeat this five terminal node lower bound
an arbitrary number of times in parallel.

Proof of Theorem 2: As is often the case, the lower bound proof follows the same ideas as the
“pseudo” upper bound. As defined for the queue model, at each point in time i, the queue contains
a solution, i.e. a tree of edges that spans the five terminal nodes. See Figure 1. The algorithm
is able to change this solution by asking for an edge and adding it to the queue. His goal is to
obtain a solution of low weight. But as if he were following a hilly path, he might have to go up
out of a local minimum before he is able to go down farther. The lower bound adversary allows
the algorithm to build at solution of value fcurrent = cfmin = 6.32 ≈ 6. Then the algorithm has a
choice. If he says that he is happy with this solution, rejecting all unseen edges, then the adversary
can reveal a new Steiner node of degree 5, giving a weight fmin = 5 solution for a ratio of 6

5 . On
the other hand, if the algorithm wants to continue in hopes to find such a weight 5 solution, the
adversary can ensure that he must first pass through a weight 7 solution. The adversary then states
that there are no more edges in the instance. The algorithm has weight 7, but the optimum is the
previous solution of weight 6 for a ratio of 7

6 .

s3

s2

5tt 4t 21t

1s

3t

s3

2s

t 1 2t t 3 4t t 5

s1

s1 2s

t 54tt 32tt 1

C

5t

1s

3tt 21t

D

BA
2s

4t

Figure 1: Examples of spanning trees that might be in the queue. A node is circled if it is closed.

To decrease the number of cases to be considered, consider each terminal edge {tk, tk′} as being
the pair of Steiner edges {sj , tk} and {sj , tk′}. Then, a useful way of viewing the weight of a tree
is the number r of useful Steiner nodes, i.e. those that connect to at least two terminal nodes.
Note that if the algorithm were to stop with such a tree, then the unuseful Steiner edges, i.e. those
connected with only one terminal node, are automatically removed. A quick check would show
that the weight of the resulting solution is 4 + r. Hence, the goal of the algorithm is to cover the
five terminal nodes with a smaller number r of useful Steiner nodes. For example, the weight 6
solutions have r = 2 and Figure 1.A and C are the only possibilities.

As defined in the lower bound technique, the adversary also maintains a set Di−1 of the edges
that still might get seen. The adversary will assure that each Steiner node sj is either considered

7

open in which case all five of its Steiner edges still might be in the input or is considered closed in
which case all of its not previously seen Steiner edges have been removed from Di−1 and as such are
known to not be in the input. Clearly, the adversary will close a Steiner node before the algorithm
can see all five of its edges.

The adversary is able to drastically reduce the actions that the algorithm can safely take. If, for
example, the algorithm ever considers and rejects an edge {sj , tk}, then sj must have been open, in
which case the adversary can state that all five edges from sj are in the instance giving an optimal
solution of weight 5. The algorithm, no longer having access to this one rejected edge, must have
weight at least 6, giving a ratio of at least 6

5 > 7
6 .

Just like rejected edges, edges popped from the queue are no longer available for the algorithm’s
solution. Hence, the algorithm best not do this to an open Steiner node’s edge. An effect of this
is that it is really best for the algorithm to stick with asking for the edges of the same Steiner
node until the adversary closes it. In Figure 1.A, for example, suppose the algorithm chooses not
to continue asking about Steiner node s2’s edges even though it is still open and instead adds s3’s
edges {s3, t4} and {s3, t5}. Because this creates a cycle, the oldest edge in this cycle, in this case
one of s2’s edges, is popped producing Figure 1.B. The adversary can then win by saying that
that popped edge was needed in the solution of value 5 stemming from s2. Similarly, suppose that
Figure 1.A had been produced by first adding those edges adjacent to Steiner node s2, but not
closing it moved on to adding those adjacent to s1. Further suppose that the algorithm then goes
back to s2’s edges adding {s2, t3} to the queue. The effect of this is that edge {s2, t4} is popped.
Again, the adversary can then win by saying that that popped edge was needed.

Now suppose the adversary has allowed the algorithm to build up a solution of weight 6. As
said, there are only two such solutions, that in Figure 1.A and that in B. We will now complete
the proof by showing that the algorithm cannot continue without increasing the weight to 7. From
Figure 1.A, if the algorithm continues with s2 by pushing edge {s2, t3}, then this creates a cycle
popping either {s1, t3} or {s1, t4}. This produces Figure 1.C. From Figure 1.C, (and similarly
from Figure 1.A) if the algorithm asks about other edges then nothing really changes until it has
included a Steiner node s3 with degree of two. In each case, this creates a cycle, popping an edge
and increasing the weight to 7. For example, adding edges {s3, t2} and {s3, t3} produces Figure 1.D.

3.4 A 2 −O(1
|V |

) Stack Lower Bound

Borodin, Cashman, and Magen [2] define a new model referred to as the adaptive stack model
and within it prove a 11

3 lower bound. We improve this ratio to 2 − O(1
|V |). The result is also

strengthened by allowing the algorithm to accepted or rejected implicit edges at any time.

Theorem 3. No adaptive stack algorithm achieves better than 2 − O(1
|V |) approximation for the

MStT problem. The result still holds even in the following very restricted setting. The triangle
inequality holds on the complete graph, though some of the Steiner-terminal edges only exits im-
plicitly and as such can be accepted but not requested. All terminal-terminal edges have weight 2,
explicit Steiner-terminal edges have weight 1, implicit Steiner-terminal edges have weight 3, and
Steiner-Steiner (which are useless) have weight 2.

This lower bound is tight (except for the −O(1
|V |)) with the adaptive priority stack algorithm for

MStT given in Theorem 6. For what it is worth, if you continue to consider the priority model,
but restrict it to being either fixed-stack, online-stack, or fixed-no-stack, then Theorems 7, 8, and
9 will show that there is still a 2-approximate algorithm as long as the graphs are restricted in
the appropriate ways. Because our lower bounds hold in each of these ways, our result is tight for

8

each of these restricted models. Specifically, the triangle inequality holds; we could assume that
the Steiner-Steiner edges do not exist, because in our lower bound they are effectively useless; the
subgraph on the terminal nodes is complete; unless you want all explicit edges to have weight one
in which case you can delete these terminal-terminal edges.

Proof of Theorem 3: Our goal is to force the algorithm to stack an expensive solution followed
by a cheap solution. When the cheap solution is popped, it is forcefully discarded because there
is still a feasible solution, namely the expensive solution, on the stack. Later, on the other hand,
the expensive solution will be kept it is required for the solution consisting of what is left on the
stack and what has already been accepted. A valid solution for the MStT problem consists of a set
of edges that connect the terminal nodes together. Wanting such a solution to be pushed on the
stack, the adversary will monitor how well the edges stacked by the algorithm so far connect the
terminal nodes. To do this, the adversary partitions the terminal nodes into components that are
connected via the stacked edges. Note that nt−c “edges” are needed to connect the nt terminal
nodes into c components.

Wanting this solution on the stack to be expensive, the adversary wants it to cost the algorithm
at least 2 for each “edge” connecting two terminal nodes. There are four types of such connecting
“edges”. The first type of “edge” is simply a terminal edge 〈tk, tk′〉, which as required costs 2. The
second type of “edge” consists of two Steiner edges 〈tk, sj〉 and 〈sj , tk′〉, which also costs 1 + 1 = 2.
The third type of “edge” needs to be avoided because it is too inexpensive. This consists of an
ℓ-star from one Steiner node sj , fanning out with explicit Steiner edges to some ℓ of the terminal
nodes. This acts as ℓ−1 connecting “edges” but only costs ℓ, as explicit Steiner edges only cost 1
each. The adversary will avoid allowing the algorithm to push such stars onto the stack by making
any unseen edges incident to sj implicit as soon as the algorithm pushes two explicit edges incident
to sj . The final type of “edge” involves the algorithm accepting an implicit Steiner edge. However,
these edges cost 3. We will let r, b, and b′ denote the number of accepted “edges” of the first,
second, and fourth type. The loop invariant maintains that r+b+b′ ≥ nt−c which reconfirms
that the number of these “edges” is at least the nt−c needed to connect the terminal nodes into c
connected components. Having enough intuition, we are now ready to prove the theorem.

Before the ith iteration, the set of edges that are still possibly in the instance is denoted Di−1.
Initially D0 contains all terminal and Steiner edges. The adversary announces that a given the
Steiner edge {tk, sj} is implicit by deleting it from this domain Di−1.

We call a stacked edge necessary if it does not create a cycle with edges that appear before it
on the stack. Otherwise, it is called an unnecessary edge. In order to prove the theorem, we first
prove that the adversary is able to maintain the following loop invariants.

LI1: Wrt Di−1, either S1 or S2 applies to each Steiner node sj .

S1: At most one necessary explicit Steiner edge incident to sj has been stacked by the
algorithm and all steiner edges incident to it are still in Di−1.

S2: Exactly two necessary explicit Steiner edges are incident to sj and each of the rest of
the edges incident to sj has been rejected, stacked as unnecessary edge, or removed by
the adversary causing it to be implicit.

LI2: A relation r+b+b′ ≥ nt−c holds.

We prove the loop invariants are maintained as follows. Initially, no edge has been seen. There-
fore, S1 applies to all Steiner nodes, and r = b = b′ = 0 and c = nt, which results in r+b+b′ ≥ nt−c.
Therefore, the base case clearly holds. Now assume that the loop invariants hold at the beginning

9

of ith iteration. The Figure 2 depicts a possible adversarial set Di−1. Imagine that an algorithm
considers an edge. No matter what type it is, nothing changes if it is rejected by the algorithm.
Hence, we consider only acceptance cases.

sjs1 s3

shs2

. . .

.
. . .t1 t2 t3 t4 t5 t6 t7 t8 tg tg+1 tk

unprocessed edge

stacked as unnecessary explicit

stacked as necessary explicit

stacked as necessary implicit

rejected edge

stacked as unnecessary implicit

Figure 2: A possible situation at the beginning of the ith iteration.

Case 1: The algorithm stacks a necessary terminal edge Di = {tk, t
′
k}. The adversary, in turn,

does nothing, yielding Di = Di−1. Since Di is a terminal edge, it does not affect S1 or S2.
The c decreases by one, r increases by one, and b and b′ are unchanged. Hence, the relation
r+b+b′ ≥ nt−c still holds.

Case 2: The algorithm stacks an explicit Steiner edge Di = {tg, sj}, which is the first stacked edge
incident to sj . The adversary does nothing, yielding Di = Di−1. The sj must have been of
type S1 and remains to be type S1. Hence b, b′, r, c, and r+b+b′ ≥ nt−c are unchanged.

Case 3: The algorithm stacks the second necessary and explicit Steiner edge Di = {tk, sj} incident
to Steiner node sj . The adversary, in turn, removes the rest of the unseen edges incident to sj ,
yielding Di ⊂ Di−1. These removed edges become implicit edges. Moreover, S2 now applies
to sj instead of S1, increasing b by one. Since Di is necessary, it does not create a cycle with
previously stacked edges and hence c decreases by 1. The r and b′ are unchanged. Hence, the
relation r+b+b′ ≥ nt−c is true.

Case 4: The algorithm considers an edge which creates a cycle with stacked edges. By definition,
such an edge is called unnecessary. Whether the algorithm decide to stack or to reject it, the
adversary does nothing, yielding Di = Di−1. Note b and c does not change, but r or b′ may
increase by one. Hence, the relation r+b+b′ ≥ nt−c still holds.

Case 5: The algorithm stacks a necessary and implicit Steiner edge {tk′ , sj} without actually seeing
it. If this edge is still in Di−1 then the adversary inform the algorithm that actually this edge
is explicit in the actual input instance. It is just that the algorithm has not yet read this part
of the input. This case can be handled by Case 2, 3, or 4. If the edge being accepted is not in
Di−1, the adversary informs the algorithm that this is in fact an implicit edge and its weight
is 3. In latter case, the adversary in turn does nothing, yielding Di = Di−1. Since the edge is
implicit, it does not affect S1 nodes. The c decreases by one, b′ increases by one, and r and
b are unchanged. Hence, the relation is still true.

Based on the five cases above, we conclude that the loop invariants are maintained. When c
becomes 1, the adversary knows that the terminal nodes are connected by the stacked edges into
one component. Hence, he knows that there is an expensive solution pushed on the stack. The

10

adversary at this point stops this first phase of the game. He declares to the algorithm that the
actual input instance consists of the edges seen by the algorithm so far together with all the edges
remaining in Di. The next task is to prove that this instance contains a cheap optimal solution.
The first step to accomplish this is to note that at most nt−1 Steiner nodes of type S2 connect the
nt terminal nodes into one component. Because there are ns ≥ nt Steiner nodes, the loop invariant
ensures us that there is at least one Steiner node remaining of type S1. All the edges incident to
such a node have not ever been deleted from Di and hence all appear explicitly in the input. This
forms a nt-star which in itself is an optimal solution of weight nt.

At the end of this first stage of the game, the algorithm still must make decisions about the
remaining data items in the input instance (which according to the adversary will be those edges
remaining in Di). The algorithm may decide to stack them or decide to reject them. It does
not actually matter to the adversary, because either way these edges will be rejected at the very
beginning of the pop stage of the algorithm. The reason for this is that the adversary was careful
that there is an expensive solution previously pushed on the stack and hence these remaining edges
in Di are not needed.

As the rest of the pop stage of the algorithm proceeds, we need to prove which of the algorithm’s
stacked edges get forcefully accepted and which get forcefully rejected. This happens in reverse of
the pushed order. Any edge labeled as unnecessary will be rejected when it is popped. It formed
a cycle with the edges already pushed on the stack when it got pushed on and hence it will form
the same cycle with the edges still on the stack when it is popped. The one necessary Steiner edge
incident to a Steiner node of type S1 will also be rejected. All other edges incident to this Steiner
node either was initially rejected and not stacked or has already been popped and rejected by the pop
stage. Hence, this edge is not a part of a remaining solution. What will get forcefully accepted when
popped will be the “edges” forming the expensive solution. As they got stacked by the algorithm
these were needed to merge the connected components of the terminal nodes together and hence are
all needed for the solution. Each terminal edge has weight 2. There are two Steiner edges incident
to each Steiner node of type S2, each with weight 1. Each implicit Steiner edges incident has weight
3. Hence the cost of this popped and accepted solution is 2 · r +(1+1) · b+3 · b′ ≥ 2(r+b+b′) which
by the loop invariant is at least 2(nt−c) and by the termination condition is 2(nt−1). Above we
showed how the cost of the optimal solution is only nt. Hence, we can summarize the competitive
ratio to be R = ALG

OPT
≥ 2(nt−1)

nt
= 2 − 2

nt
= 2 −O(1

|V |).

3.5 A 11
3

Priority Lower Bound given a Complete Graph

Davis and Impagliazzo [6] proved the first priority lower bound for the MStT problem, where the
approximation ratio is 11

4 . This result is still incomparable with the lower bounds of 2 given above
because they give their results when the input graph must be a complete quasi bipartite graph,
meaning that there are no edges between the Steiner nodes, but all other edges are explicitly in the
instance. Playing with their cases further, we managed to improve their lower bound to 11

3 .
Imposing that the instance must be a complete quasi bipartite graph makes proving a lower

bound harder. The adversary can no longer simple delete an edge 〈u, v〉, it must either delete all
the edges incident to the node u or all those incident to v. Although such a step Di ⊆ Di−1 is really
a reduction in the set of edges, we call this the adversary deleting the node u (or v).

Theorem 4. No adaptive priority algorithm can achieve better than 11
3 approximation for the MStT

problem even when restricted to complete quasi bipartite graphs in which the triangle inequality
holds.

Proof of Theorem 4: The adversary initially constructs a set D0 shown in Figure 3.

11

adversary

s1t1
1

s1t1

t2

t3

1

2

2

2

1

1

s1t1

t2

t3

1

2

2

2

1

1

s1t1

t2

t3

1

2

2

2

1

1

t1

t2

2

P0 P1
1

P1
2

P1
3

P1
4

Figure 3: The adversarial set D0 and a bold edge is assumed to be considered first by the algorithm.
Each right of D0 is the second adversarial set D1 ⊆ D0 reduced by the adversary. The squared
nodes are terminals and the circled ones are Steiner.

Case 1: If the algorithm initially considers a Steiner edge, by symmetry we can assume that it
considers D1 = {t1, s1}. If the algorithm accepts the edge, the adversary declares that the
actual instance is this one edge, denoted P 1

0 . Note, it is a complete graph as promised.
Accepting this edge was a mistake, giving the approximation ratio is R = ALG

OPT
= 1

0 ≈ ∞. If
the algorithm rejects this edge, the adversary gives the entire graph as the instance, denoted
P 2

1 . No matter what future decisions are made, the best cost for the algorithm is 4 whereas
the optimal cost is by taking the three Steiner edges. Therefore, the approximation ratio is
R = 11

3 .

Case 2: If the algorithm initially considers a terminal edge, by symmetry we can assume that it
considers D1 = {t1, t2}. If the algorithm accepts the edge, again the adversary gives the entire
graph, P 3

1 again giving R = 11
3 . If the algorithm rejects the edge, the adversary removes all

the remaining edges, shown as P 4
1 . In this case, the algorithm even fails to find a valid Steiner

tree.

An arbitrary large lower bound can be obtained by having much bigger weights on the terminal
edges. This, however, violates the triangle inequality.

A concern with our above 11
3 result and Davis and Impagliazzo [6]’s 11

4 result is that only
small graphs, instances with at most four nodes, are considered. Because the lower bound does not
consider arbitrarily large graphs, it does not prove that this error is multiplicative.

One feature of our 11
4 and their 11

3 result is that it holds even when the algorithm knows a
priori not necessarily which nodes and hence which edges are present in the instance, but what the
weight of each edge will be if it is present. Though this does strengthen the result slightly, because
it gives the algorithm more power and the adversary less, the true motivation for this change is that
it significantly simplifies the proof. When arbitrary weights are possible and the algorithm sorts
the data items according to these weights in an arbitrary way, then it is hard for the adversary to
keep track of which weights are still possible.

This motivates us to want to prove a lower bound with fixed weights, arbitrarily large n, and
a complete graph. It seems, however, that this gives too much power to the algorithm. We now
outline a strange and unfair algorithm that uses tricks to learn the input instance and then uses
its unbounded computational power to obtain what we conjecture to be a near optimal solution.

Conjecture 1. A priority algorithm can achieve a 1 + O(1
k
) upper bound for the MStT problem

with the weights on each possible edge is known a priori but which nodes in the graph are not.

Proof Sketch for Conjecture 1 Because the weights are fixed and the graph is complete on the nodes
that are in the graph, to learn the entire instance, the algorithm need only learn which nodes are

12

in the instance. To learn this, the algorithm need only to see one edge incident to each node. An
algorithm can do this by asking for and reject the most expensive edge incident to each node. One
has to be a little careful the one does not disconnect the graph. But that aside, we conjecture that
there exists an nearly optimal solution not containing any of these rejected edges. The algorithm
uses its unbounded computational power to find such a near optimal solution. ¥

4 Upper Bounds

This section provides the upper bound for four variations of the Minimum Steiner Tree Problem
on four variations of the priority model. We start by considering the most general version of the
problem, i.e. there may be edges between the Steiner nodes and the triangle inequality may not
hold. Takahashi and Matsuyama [13] and Kou, Markowsky and Berman [9] give a well known
2-approximation algorithm. Given a graph G, let Gc

R denote the metric completion of G on the
terminal nodes, namely for every pair of terminal nodes u, v ∈ R, the cost of edge {u, v} in Gc

R is
the length of the shortest path from u to v in G. Let MST (Gc

R) denote a Minimum Span Tree of
Gc

R. Let Alg(G) denote the union over all terminal edges {u, v} ∈ MST (Gc
R) of a shortest path in

G from u to v (if necessary remove edges in order to break cycles). The weight of this Steiner tree is
at most twice the optimal Steiner MStT (G). See Figure 4 for an instance for which there is a factor
of two loss. The optimal has weight |R| consisting of the star branching from the single Steiner node
to each terminal node. The solution Alg(G) has weight 2(|R| − 1) consisting of the path through
the terminal nodes. Figure 5 gives a more complex example. Part of the metric completion Gc

R of
G is given on the bottom right. Its minimal spanning tree is in bold. The solution Alg(G) consists
of every edge in G except for {a, b}. ({b, v} is not bold in order to demonstrate something else.
This solution is in fact optimal.

R
c

GPart of

222222

111111
1

2 2 2 2 2 2

G

Figure 4: An instance for which there is a factor of two loss.

Theorem 5. Alg(G) ≤ 2MStT (G)

Proof of Theorem 5: Let T be a Minimum Steiner Tree of the instance graph G, i.e. spanning all
the terminal nodes R. From this, form a traveling salesman tour, TST , in G that visits every node
in R by embedding the tree T as a wall in the plane, placing ones left hand on the wall, and tracing
the outside of it until you return. Because each edge is visited twice, w(TST) = 2w(MStT (G)).
Figure 5 shows an example of T in bold, TST in curve, and SG in a dotted line. Here SG is a
spanning graph of Gc

R formed from TST by including edge {u, v} if v is the next terminal node
visited after u in this tour. Because the weight on Gc edges are the length of the shortest paths in
G, we have that w(SG) ≤ w(TST). From this, form a spanning tree ST of Gc

R by deleting enough
edges to break all cycles. This gives, w(MST (Gc

R)) ≤ w(ST) ≤ w(SG). The algorithm produces a
Steiner tree Alg(G) such that w(Alg(G)) ≤ w(MST (Gc

R)).

The obvious way to find the metric completion Gc
R is to perform Dijkstra’s algorithm rooted at

each of the terminal nodes, hence requiring time |R| × O(|V | log |V |+ |E|).1 Mehlhorn [11] finds a

1Dijkstra’s algorithm can be sped up from O(|E| log |V |) to O(|V | log |V | + |E|) by using a fractal data base [?]
instead of a heap for the priority queue.

13

x3
1x

x2

x3

x2

1x

G’
c
R

T, TST, and SG

2x

x1
3x

R
c

GPart of

11

u v
7 32

5 5

2087

8

vu

e’

1

1

1

b

1

11

e
11

5

1

1

1

d

a

c

55

327

vu

G

Figure 5: An instance G. The key edges in the metric completion Gc
R with its minimum spanning

tree in bold is used to demonstrate the 2-approximate minimal Steiner tree algorithm. The resulting
Steiner tree in G (which is optimal) consists of the bold edges plus {b, v}. T , TST , and SG used
in the proof of correctness of this algorithm is also given. The graph G is partitioned into N(u)
and G′c

R with its minimum spanning tree in bold is given as done in the Mehlhorn algorithm. The
edges bold in G are those pushed on the stack by our algorithm when ℓ = 10 just before the edge
{a, b} is considered. It is used to demonstrate the proof of correctness of our algorithm.

O(|V | log |V |+|E|) implementation of this algorithm by performing one Dijkstra’s algorithm rooted
at an axillary node s0 connected to each of the terminal nodes. This is done in order to partition
the nodes into {N(u) | u ∈ R}, where N(u) is the set of nodes which are closer to the terminal
node u than to any other terminal node. Figure 5 shows an example instance G partitioned into
these neighborhoods. Mehlhorn then does a second pass through all the edges of the graph in order
to form a graph G′c

R consisting of pairs of terminal nodes {u, v} that are close enough so that their
neighborhoods N(u) and N(v) are connected by a single edge {a, b}. The weight of an edge {u, v}
in G′c

R is the weight of the minimum path between u and v that includes only nodes from N(u) and
N(v). The figure shows the corresponding graph G′c

R. Note that the weight 19 of {x1, x3} is larger
than the weight 8 of the minimum x1x3-path. Despite these differences between G′c

R and Gc
R, they

prove that a minimum spanning tree of G′c
R is also a minimum spanning tree of Gc

R. More over, they
proof that for each edge {u, v} in MST (G′c

R), the found path between u and v in G is of minimum
weight. Hence, Mehlhorn can complete the algorithm by finding MST (G′c

R) and returning these
paths.

In order to fit their algorithm into the adaptive priority stack model, we need to change their
implementation in a few ways. They find the edge {a, b} connecting neighborhoods N(u) and N(v)
during a second pass. We are not allowed such a second pass. Some such edge {a, b} can easily be
found during the first pass as the neighborhoods N(u) and N(v) merge. However, we show how to
slightly modify the Dijkstra priority on the edges so that the connecting edge {a, b} first found is
one that gives a shortest path from u to v. Unlike them, we are not able to compute the minimum
spanning tree of G′c

R in a separate phase. Our modification on {a, b}’s priority also ensures that the
pairs of terminal nodes {u, v} will be connected in the order mirroring the order that edges {u, v}
are added to MST (Gc

R) by the minimum weight greedy algorithm. Their algorithm needs a final
stage that collects together the shortest uv-paths for each edges {u, v} ∈ MST (G′c

R) and breaks
any cycles. Instead, our algorithm pushes on the stack all the edges in the shortest paths trees
expanding out from the terminal nodes. We prove that the pop phase defined for the stack model
automatically deletes all unnecessary edges leaving only the edges in Alg(G).

Theorem 6. There is a 2-approximate adaptive priority stack algorithm solving the MStT problem

14

even when there may be edges between the Steiner nodes and the triangle inequality may does not
hold.

This upper bound together with the lower bound in [3] for st-connectivity proves that the adaptive
priority stack model is incomparable with the fully adaptive priority branching tree (pBT) model.

Proof of Theorem 6: Because our algorithm wants to find a short path between every pair of
terminal nodes u-v, it uses this Dijkstra’s algorithm to simultaneously expand a shortest paths tree
around each terminal node u ∈ R. It is easier to visualize the synchronizing of these expansions
by as having a parameter ℓ slowly increase. For each edge {a, b} and terminal node u, define
ℓ〈{a,b},u〉 to be the length of the shortest path from u that includes the edge {a, b}. When ℓ
reaches this value, this edge will be added to the tree expanding out of u, assuming that it has not
already been added elsewhere. Similarly, define ℓ〈{a,b},{u,v}〉 to be half the length of the shortest
path from u to v, if the edge {a, b} contains this half way point. When ℓ reaches this value, this
edge, if not already used, will be used to merge the tree expanding from u and that expanding
from v. For example, in Figure 5 when ℓ = 5

2 , the tree expanding from terminal node x1 merges
with that expanding from x2 by having the edge {d, e} added. At this same moment, the edge
{x1, x2} is added to the minimal spanning tree of the metric completion graph Gc

R. Define ℓ{a,b} =
min(minu∈R ℓ〈{a,b},u〉, minu,v∈R ℓ〈{a,b},{u,v}〉) to be the value for the parameter ℓ at which the edge
{a, b} is first considered in one of these ways.

This is implement in the adaptive priority stack model simply by choosing next the unseen edge
with the smallest ℓ′{a,b} value. Here ℓ′{a,b} is ℓ{a,b} if all the other edges in that path up to edge

{a, b} have already been seen so that the algorithm can know the value ℓ{a,b}.
When the edge {a, b} is considered, it is pushed onto the stack if it does not creates a cycle with

the previously pushed edges, otherwise, it is rejected. Let MST (Gc
R) denote the minimal spanning

tree of Gc
R, where ties are broken in the same way as done in this algorithm. Lemma 1 proves

that for each edge {u, v} ∈ MST (Gc
R), the edges pushed on the stack by our algorithm contains a

shortest path from u to v, i.e. a path with weight equal to that of edge {u, v} ∈ Gc
R. Because the

edges {u, v} ∈ MST (Gc
R) span the terminal nodes, so does the union of these shortest paths from

u to v. Being a tree, the edges in this union and no edges outside it are kept when the stack pops,
i.e. the pushed edges connecting the unnecessary Steiner nodes are deleted. Hence, the weight of
the Steiner tree returned by this algorithm is at most that of MST (Gc

R), which by Theorem 5 is
at most twice the optimal MStT (G).

Lemma 1. Let MST (Gc
R) denote the minimal spanning tree of Gc

R, returned by the standard
minimum weight greedy algorithm where ties are broken in the same way as done in the Theorem 6
algorithm. For each edge {u, v} ∈ MST (Gc

R), the edges pushed on the stack by contains a shortest
path from u to v. For example, this true for {x1, x2} in Figure 5 but not for for {u, v}.

Proof of Lemma 1: We prove the contra-positive. Denoted by P{u,v} the shortest path between
terminal nodes u and v that would be found by our algorithm if these were the only nodes from
which shortest paths trees expanded. Suppose there is an edge {a, b} ∈ P{u,v} that is not pushed
on the stack. We will prove that the when the MST (Gc

R) algorithm considers the edge {u, v}, it is
not accepted. Figure 5 was designed in particular to help with this proof.

The reason edge {a, b} is not pushed on the stack when it was examined is because it created a
cycle with already pushed edges. Let P{a,b} denote this pushed ab-path. Label each edge {c, d} in
P{a,b} with the terminal node xi at the root of the shortest paths tree that added the edge. If {c, d}
merged trees rooted at xi and xi+1 then give the edge either label. Because these label appear
contiguously, we can let 〈x1, . . . , xr〉 denote the sequence of distinct terminal nodes labeling the
edges in P{a,b}. Let P c denote the uv-path 〈u, x1, . . . , xr, v〉 in Gc

R. For each {xi, xi+1} ∈ P c, we will

15

show that wc
{xi,xi+1}

≤ wc
{u,v}, giving that the MST (Gc

R) algorithm considers the edge {xi, xi+1}

before {u, v}. This ensures that when the MST (Gc
R) algorithm considers the edge {u, v}, it does

not accept it because it forms a cycle with the edges that it has already accepted. This completes
the contra-positive proof of the lemma.

Let {c, d} and {d, e} be consecutive edges P{a,b} that are labeled respectively with xi and xi+1.
Note that wc

{xi,xi+1}
≤ w(P{xi,d})+w(P{xi+1,d}) because by definition wc

{xi,xi+1}
is the weight of the

shortest path from xi to xi+1 in G and P{xi,d} + P{xi+1,d}) is such a path. By the label of xi on
the edge {c, d}, we know that either {c, d} was pushed to be a part of the path from xi to d in
the shortest paths tree rooted at xi or was pushed to extend this path. Either way, we have that
w(P{xi,d}) ≤ ℓ{c,d}. Next we have ℓ{c,d} ≤ ℓ{a,b} because the edge {c, d} was pushed by our MStT (G)
algorithm before {a, b} was. We have that ℓ{a,b} = min(minu′∈R ℓ〈{a,b},u′〉, minu′,v′∈R ℓ〈{a,b},{u′,v;}〉) ≤

ℓ〈{a,b},{u,v}〉 = 1
2w(P{u,v}) = 1

2wc
{u,v}. Similarly, P{xi+1,d}) ≤ 1

2wc
{u,v}, completing the result that

wc
{xi,xi+1}

≤ wc
{u,v} and in doing so completing the proof.

Though [11] has already implemented their MStT algorithm to run in time O(|V | log |V |+ |E|),
it is interesting to see the adaptive priority stack model can also do it in this time.

Lemma 2. As stated, our implementation of the algorithm requires time O(|E| log |E|), but another
small change will decrease the time back to O(|V | log |V | + |E|).

Proof of Lemma 2: Dijkstra’s algorithm can be sped up from O(|E| log |V |) to O(|V | log |V |+|E|)
by using a fractal data base [?] instead of a heap for the priority queue. Removing the minimum
data item still takes O(log |V |) time but decreasing the priority value ℓ of an item now only takes
O(1) amortized time. Dijkstra, using node data items, removes the minimum item |V | times and
decreases a priority 2|E| times, giving the stated times. Theorem 6, using edge data items, removes
the minimum item |E| times, giving the old Dijkstra time O(|E| log |E|). To get the improved time,
the adaptive priority stack model needs to have both node data items and edge data items. The
node data items contain pointers to the adjacent edges and the edge data items contain pointers
to the adjacent nodes. The node data items are taken as the trees grow. The data item {a, b} is
taken only as the tree growing from terminal node u to node a merges with that growing from v
to b.

In order to better understand both the minimum Steiner tree problem and variations of the
priority model, we will now consider upper bounds for three restrictions of the problem on three
more variations of model. The first restriction requires that there are no edges between the Steiner
nodes, i.e. the graph is quasi bipartite. The following algorithm is surprisingly simple and does not
require reordering the edges each iteration.

Theorem 7. There is a 2-approximate fixed stack priority algorithm solving the MStT problem
when there are no edges between the Steiner nodes, even when the triangle inequality does not hold.

Proof of Theorem 7: The push phase of the stack algorithm pushes a minimum spanning tree,
MST (G), of the entire graph G. If a Steiner node only has one adjacent edge pushed, then this
edge is not necessary for spanning the terminal nodes and this edge is deleted in the pop phase of
the algorithm. Let Alg denote the popped and accepted edges. Let S denote the set of Steiner
nodes that are used, i.e. those with degree at least two in Alg, and S the remaining Steiner nodes.
For each Steiner node s, let es denote the cheapest edge adjacent to s and ws its weight. Note this
edge goes to a terminal node because there are no edges between the Steiner nodes. Because each
s ∈ S has degree at least two in Alg, we have that 2

∑

s∈S ws ≤ w(Alg). The algorithm first pushes
Alg∪

⋃

s∈S es and hence this is a minimum spanning tree of G. MStT (G) spans the terminal nodes

16

and hence MStT (G)∪
⋃

s∈S∪S es spans all of G. This gives that w(Alg)+
∑

s∈S ws ≤ w(MStT (G))+
∑

s∈S∪S ws or simplified to w(Alg) ≤ w(MStT (G))+
∑

s∈S ws ≤ w(MStT (G))+ 1
2w(Alg) and hence

1
2w(Alg) ≤ w(MStT (G)).

This previous algorithm sorts the edges according to edge weights. Hence, if all the edges have
the same weight, then any order will suffice.

Theorem 8. There is a 2-approximate online stack priority algorithm solving the MStT problem
when there are no edges between the Steiner nodes and the weight of every edge included is one.

This upper bound together with the lower bound in Theorem 1 proves that the online stack model
is incomparable with the adaptive priority model.

The above algorithms used the popping of the stack to get rid of the edges that are not in the
required shortest paths. This is necessary. Davis and Impagliazzo in [6] shows that when each data
item contains an edge, then though an adaptive priority algorithm without a stack can accept the
shortest paths tree, (even when it is allowed to branch to a subexponential width), it cannot be
designed to accept a shortest path from s to t (without accepting unneeded edges) [3].

Trivially, however, if shortest paths, i.e. the weights of the edges in Gc
R, are given as part of the

input then the 2-approximation of the minimal Steiner tree problem is easy.

Theorem 9. There is a 2-approximate fixed no-stack priority algorithm solving the MStT problem
when the triangle inequality holds and the subgraph on the terminal nodes is complete.

Proof of Theorem 9: By the triangle inequality assumption, the subgraph on the terminal
nodes is Gc

R. Hence, finding a minimum spanning tree, MST (GR), of this subgraph gives a 2-
approximation to MStT (G). MST (GR) can be found using the standard greedy algorithm. Sort
the terminal edges by weight and accept them if they don’t form a cycle.

References

[1] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen,

and T. Pitassi (2005) Toward a model for backtracking and dynamic programming, IEEE
Conference on Computational Complexity.

[2] A. Borodin, D. Cashman, and A. Magen, (2005) How well can primal-dual and local-ratio
algorithms perform?, International Colloquium on Automata, Languages and Programming
(ICALP).

[3] J. Buresh-Oppenheim, S. Davis and R. Impagliazzo, (2011) A Stronger Model of Dy-
namic Programming Algorithms, Algorithmica 60(4): 938 - 968.

[4] A. Borodin, M. Nielsen, and C. Rackoff, (2002) (Incremental) Priority algorithms,
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms.

[5] D. Cashman, (2005) Approximate Truthful Mechanisms for the knapsack problem, and neg-
ative results using a stack model for local ratio algorithms, MSc Thesis, University of Toronto.

[6] S. Davis and R. Impagliazzo (2004) Models of greedy algorithms for graph problems,
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms.

[7] M. R. Garey and D. S. Johnson (1979) Computers and Intractability, Freeman, San Fran-
cisco, CA.

17

[8] E. N. Gilbert and H. U. Pollak, (1968) Steiner minimal trees, SIAM J. Appl. Math. 16
(1) 1-29

[9] L. Kou, G. Markowsky and L. Berman, (1981) A Fast Algorithm for Steiner Trees, Acta
Inf. 141-145.

[10] H. Kwon, (2008) Improved results on models of greedy and primal-dual algorithms, MSc
Thesis, York University.

[11] K. Mehlhorn, (1988) A faster approximation algorithm for the Steiner problem in graphs,
Information Processing Letters 27 (1988) 125-128.

[12] G. Robins and A. Zelikovsky (2000) Improved Steiner tree approximation in graphs, Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms.

[13] H. Takahashi and A. Matsuyama (1980) An approximate solution for the Steiner problem
in graphs, Math. Jap. 24 573-577

[14] V. Vazirani (2001) Approximation Algorithms. Springer.

[15] C. Gröpl, S. Hougardy, T. Nierhoff, and H. Prömel, Approximation Algorithms for
the Steiner Tree Problems in Graphs, Steiner Trees in Industries, editors: D. Z. Du and X.
Cheng, Kluwer.

18

