
Time-Space Trade-O�sFor Undirected ST -Connectivityon a JAGAbstractUndirected st-connectivity is an important problem in computing. There are algorithms for this problemthat use O (n) time and ones that use O (logn) space. The main result of this paper is that, in a very naturalstructured model, these upper bounds are not simultaneously achievable. Any probabilistic JAG requireseither space
(log2 n= log logn) or time n(1+
(1= log logn)) to solve undirected st-connectivity.1 IntroductionGraph connectivity is an important problem, both practically and theoretically. Practically, it is a basicsub-routine to many graph theoretic computations. It the basic step in solving network
ow optimizationproblems, such as project scheduling and the matching of people to jobs. Graph connectivity is also importantfor computer networks and search problems. Theoretically, it has been studied extensively in a number ofsettings. Because the undirected version of the problem is complete for symmetric log-space and the directedversion is complete for non-deterministic log-space, they are natural problems for studying these classes. Thestudy of random walks on undirected graphs and deterministic universal traversal sequences has made theproblem relevant to the issue of probabilism. In addition, the directed version was used by Karchmer andWigderson to separate monotone NC1 from NC2. This paper proves time-space tradeo�s for undirectedst-connectivity. (They apply to the harder problem of directed st-connectivity as well.) The importance ofst-connectivity is discussed in more detail in Wigderson's beautiful survey [24].The fastest algorithms for undirected graph st-connectivity are depth-�rst and breadth-�rst search[23]. These use linear time, i.e. O (m + n) for an n node, m edge graph. However, they require
 (n)space. Alternatively, this problem can be solved deterministically in O �log1:5 n� space and nO(1) time bytraversing the graph using pseudo-random generators to describe a universal traversal sequence [17]. If non-uniformity is allowed, these bounds can be improved to O (logn) space and O �n4 logn� time [10,15]. Ifprobabilism is allowed, random walks can traverse any component of the graph using O (logn) space andonly � (mn) time [1]. More generally, Broder et al. [9] have exhibited a family of probabilistic algorithmsthat achieves a tradeo� between the time and the space of S � T 2 m2 logO(1) n. This has been improved toS � T 2 m1:5n:5 logO(1) n [2]. A long term goal is to prove a matching lower bound.Proving lower bounds for a general model of computation, such as a Turing machine, is beyond thereach of the current techniques. Thus it is natural to consider a \structured" model [8], whose basic operationsare based on the structure of the graph, as opposed to being based on the bits in the graph's encoding. Anatural structured model is the JAG (\jumping automaton for graphs") introduced by Cook and Racko�[11]. It has a set of states and a limited supply of labeled pebbles that it can either move from a node toan adjacent node (\walk") or move directly to a node containing another pebble (\jump"). The pebblesrepresent node names that a structured algorithm might record in its workspace and are useful for markingcertain nodes temporarily, so that they are recognizable when other pebbles reach them. Walking representsreplacing a node name by the name of a node that is adjacent to it in the input graph. Jumping representscopying a previously recorded node name [5]. The space of a JAG is de�ned to be S = p log2 n + log2 q,where p is the number of pebbles and q is the number of states, because it requires log2 n bits to store thename of a node (i.e. the location of a pebble) and log2 q bits to record the current state.1

Although the JAG model is structured, it is not weak. In particular, it is general enough so thatmost known algorithms for graph connectivity can be implemented on it. For example, a JAG can performdepth-�rst or breadth �rst search. It avoids cycling by leaving a pebble on each node when it �rst visits it.This uses O (n logn) space. Cook and Racko� [11] show that the JAG model is powerful enough to executean adaptation of Savitch's algorithm [20] for directed st-connectivity using only O �log2 n� space. Poon [18]shows that Barnes' et al. [3] sub-linear space, polynomial time algorithm for directed st-connectivity runson a JAG as well.Furthermore, Savitch [21] shows that if one allows the JAG the additional ability to move pebblesfrom each node i to node i + 1, (for an arbitrary ordering of the nodes) then the model can simulate anarbitrary Turing machine on directed graphs. Borodin, Raghavan, Ruzzo, and Tompa [5] show that evenwithout this extra feature, JAGs can solve any undirected graph problem to within a polynomial factor asfast as Turing machines.A number of space lower bounds have been obtained (even when an unbounded amount of time isallowed). Cook and Racko� [11] prove a lower bound of
 �log2 n= log logn� on the space required for a JAGto compute directed st-connectivity. This has been extended to randomized JAGs by Berman and Simon[6]. For undirected graph st-connectivity Cook and Racko� [11] prove that pq 2 ! (1) and Beame et al. [5]prove that if the pebbles are not allowed to jump, then pq 2
 (n) even for simple 2-regular graphs. Theseproofs for undirected graphs show that, with a sub-linear number of states, the model goes into an in�niteloop. (This method does not work when there are a linear number of states, because then the JAG is ableto count the number of nodes traversed.)Tradeo�s between the number of pebbles p used and the amount of time needed for undirected graphst-connectivity have also been obtained. These results are particularly strong, because they do not depend onthe number of states q. A universal traversal sequence is simply a JAG with an unlimited number of states,but only one pebble. Borodin, Ruzzo, and Tompa [7] prove that on this model, undirected st-connectivityrequires
 �m2� time. Beame, Borodin, Raghavan, Ruzzo, and Tompa [5] extend this to
 �n2=p� for ppebbles on 3-regular graphs with the restriction that all but one pebble are unmovable. Thus, for this veryweak version of the model, a quadratic lower bound on time�space has been achieved. Beame et al. [5] alsoprove that there is a family of 3p-regular undirected graphs for which st-connectivity with p 2 o (n) pebblesrequires time
�m log�np��, when the pebbles are unable to jump. The new result presented in this paperis the following.Theorem 1 Any probabilistic JAG requires either space
(log2 n= log logn) or time n(1+
(1= log logn)) tosolve undirected st-connectivity even for 3-regular graphs.This result improves upon the previous results in at least �ve ways: the lower bound on time islarger, all pebbles are allowed to jump, the degree of the graphs considered is constant, it applies to anaverage case input instead of just the worst case input, and probabilistic algorithms are allowed.The essential reason that tradeo�s arise between the time and the space required to solve a problemis that when the space is bounded the computation cannot store the results to all the previously computedsubproblems and hence must recompute them over and over again. In order to prove a super linear lowerbound on the time to compute st-connectivity, it must be proved that certain subgraphs must be traversedmany times. Although the �rst time the JAG traverses a particular subgraph may take many time steps,it can use its states to record the structure of the subgraph so that subsequent traversals can be performedmore quickly. To deal with this situation, the lower bound is actually proved on a stronger model, called thehelper JAG. In this model, the helper, after learning the input, is allowed to set the JAG's initial stateand the initial position of the pebbles in the way that minimizes the computation time. The helper is ableto communicate to the JAG at least as much information about the input as it could remember from a �rsttraversal of a subgraph. In e�ect, a helper JAG lower bound is a bound on the time for a regular JAG totraverse the graph subsequent times. 2

The helper JAG lower bound is obtained by reducing st-connectivity to st-traversal and reducingthe traversal problem to a game, referred to as the helper-parity game. The game characterizes therelationship between the number of bits of help (or foreknowledge) and the resulting traversal time.The paper is structured as follows. Section 2 describes the helper parity game. Section 3 formallyde�nes the probabilistic JAG model. Section 4 reduces the st-traversal problem to the st-connectivityproblem. Section 5 de�nes the helper JAG. Section 6 describes the
y swatter graph and gives the complexityof its traversal. Section 7 describes a line of
y swatter graphs and compares its complexity to that of thehelper parity game. Section 8 describes how the input graph is recursively built. Section 9 provides thede�nitions of the time, pebbles, and cost used at a particular level of the recursion. This section does notprovide a formal proof, but it does give some crucial intuition. Section 10 proves the main lemma by reducingthe traversal problem to the helper parity game. Section 11 proves the main theorem from the main lemma.Finally, Section 12 presents some strong intuition and possible techniques for improving the lower bound tothe desired bound of n2�o(1).2 The Helper-Parity GameThe task of one instance of the parity game is to �nd a subset of the indexes on which the input vectorhas odd parity. This idea was introduced by Borodin, Ruzzo, and Tompa [7]. We extend this game byincluding a helper and multiple instances of the game. The helper is included in order to characterize whatthe JAG stores about a computation when a problem must be computed many times. Multiple instances ofthe game are included in order to decrease the number of help bits per game instances (the number of bitsof information that the helper is allowed to give the player is bounded).The helper-parity game with d game instances is de�ned as follows. There are two parties, a playerand a helper. The input ~� consists of d non-zero r bit vectors �1; . . . ; �d 2 f0; 1gr�f0rg, one for each of thed game instances. The helper sends the message M (~�) to the player. It consists of a total of b bits aboutthe d vectors. Then the player repeatedly asks the helper parity questions. A parity question speci�es one ofthe game instances i 2 [1::d] and a subset of the indexes E � [1::r]. The answer to the parity question is theparity of the input �i at the indexes in this set, namelyLj2E [�i]j. The game is complete when the playerhas received an answer of 1 for each of the game instances. To simplify the game, the player is only chargedone for the �rst question asked about a game instance and an additional one for any subsequent questionsabout the same game instance. Hence, the game can be thought of as the player repeatedly selecting a gameinstance i (in any order) and asking a single parity question Ei about that instance. If the parity is odd, theplayer is charged one for the game instance. Otherwise, he is charged two. Independent of the answer, thehelper reveals the input �i to the player. This is repeated until one question has been asked about each ofthe game instances. The cost is de�ned to be the average charge per game instance.c~� = 1d Xi2[1::d]8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;:Without any help, the expected charge per game instance is 1.5. Lemma 1 below proves that if the amountof help is less than a fraction of a bit per game instance, then the player cannot do much better than this.De�ning the game so that the vector �i is revealed after only one question is asked about it, simpli�esthe proof of the st-connectivity lower bound without signi�cantly e�ecting the bound obtained.Lemma 1 Pr~� [c~� < 1:5� �] � 2be�(2�2�2�r+1)d: 3

Proof of Lemma 1 [19]: Fix a helper message m 2 f0; 1gb. Randomly choose an input ~� uniformly overall the inputs in (f0; 1gr)d. We will consider what the player's protocol is given this message and this input,even if the helper does not send this message on this input. For i 2 [1::d], let xi be the indicator variablespecifying whether the question about the ith game instance had odd parity, i.e. Lj2Ei [�i]j = 1. Clearly,these variables are independent and have probability 12 . The cost per game instance given the input ~� andthe actions of the player on message m are de�ned to bech~�;mi = 1d Xi2[1::d]n 1 if xi = 12 otherwise o:From this and Cherno�'s bound [22], we get thatPr~� �ch~�;mi < 1:5� �� = Pr24 Xi2[1::d]xi � �12 + �� d35 � e�2�2d:Therefore, the cost is low for at most this fraction of vectors ~� 2 (f0; 1gr)d or equivalently for at moste�2�2d2rd inputs ~�.There are 2b di�erent helper messages m. For each message, the player's actions are di�erent. Hence,the set of inputs on which the cost is low may be di�erent for each message and in the worst case are disjoint.Hence, the number of inputs ~� for which the cost is low when the player is given the correct help from thehelper is at most 2be�2�2d2rd. The input ~� is actually chosen randomly from (f0; 1gr�f0rg)d. It follows thatPr~� [c~� < 1:5� �] � 2be�2�2d 2rd(2r � 1)d = 2be�2�2d �1� 2�r��d� 2be�2�2d22�r+1d � 2be�(2�2�2�r+1)d:My thesis [12] presents some surprising results about various versions of this game. It turns out thatthe helper must give the player quite of few bits of help before signi�cantly decreasing the number of parityquestions the player must ask when playing a single game instance. However, the same number of bits ofhelp will decrease the number of questions asked down to only two question per game instance, no matterhow many game instances are being played simultaneously. However, the helper must provide an additionalbit of help per game instance to decrease the number of questions asked per game instance below 2� �.This upper bound is best understood by not considering the message sent by the helper as beinginformation about the input, but as being random bits. With a few \random" bits, the worst case complexitydecreases to the point that it matches the expected complexity for a randomized protocol, which is 2 questionsper game instance. The upper and lower bounds on the number of helper bits required match the work doneby Impagliazzo and Zuckerman [14] on recycling random bits.3 The Probabilistic JAG ModelA probabilistic JAG [11] is a �nite automaton with p distinguishable pebbles and q states. The input toa JAG is an n vertex d regular undirected graph with two distinguished vertices s and t. For each vertexv, there is a labeling of the (half) edges emanating from v with d distinct labels. The set of labels used atdi�erent vertices is the same, but an edge can receive two di�erent labels at its two endpoints. One of thepebbles is initially placed on the distinguished node t and other p� 1 are placed on s.The program of the JAG may depend non-uniformly on n and on the degree d of the graph. What theJAG does each time step depends on the current state, which pebbles coincide on the same vertices, which4

pebbles are on the distinguished vertices s and t, and the value R 2 f0; 1g� of some random bits. Basedon this information, the automaton changes state and does one of the following two things. It either selectssome pebble P 2 [1::p] and some label l 2 [1::d] and walks P along the edge with label l or it selects twopebbles P; P 0 2 [1::p] and jumps P to the vertex occupied by P 0. A JAG that solves st-connectivity entersan accepting state if and only if there is a path from s to t in the input graph.The space of a JAG is de�ned to be S = p log2 n+log2 q, where p is the number of pebbles and q is thenumber of states, because it requires log2 n bits to store the name of a node (i.e. the location of a pebble)and log2 q bits to record the current state.In this paper, the running time of a deterministic algorithm averaged over inputs according to a �xedinput distribution is considered instead of considering the expected running time for a probabilistic algorithmon the worst case input. According to Yao [25] this is su�cient.4 Graph TraversalIf it is possible for a pebble of a JAG to walk from s to t on a graph, then a graph is st-connected. However,a JAG can determine that the graph is st-connected in other ways. For example, suppose that at time T0,pebble Ps is on vertex s, Pt is on t, and P1 and P2 are both on some third vertex v; at time T 0 2 [T0::T1], Psand P1 are both on the same vertex v0; and at time T 00 2 [T0::T1], Pt and P2 are both on some other vertexv00. If these pebbles only walk along edges of the graph, then it follows that the graph is st-connected.Additional complexity is caused by the pebbles being able to jump. A single pebble may not walkthese paths from s to t. Instead, one pebble may walk part of the way. Another pebble may jump to thispebble and continue on the walk. In general, one cannot assume that a task is completed by \a speci�cpebble", because the pebbles are able to continually change places and each could complete some fraction ofthe task.Such complex procedures for determining st-connectivity are captured by the st-traversal problem,which is formally de�ned as follows. Given a JAG computation on a graph G, the traversal graph H isde�ned as follows. For every vertex v of G and step T 2 [T0::T1], let hv; T i be a vertex of H if and only ifthere is a pebble on vertex v at time T . Let fhu; T i ; hv; T + 1ig be an edge of H if a pebble walks alongedge fu; vg in G during step T and let fhv; T i ; hv; T + 1ig be an edge of H if there is a pebble that remainson vertex v during step T . We say that the JAG traverses the graph G from vertex s to vertex t duringthe time interval [T0::T1] if and only if there is an undirected path in H between hs; Tsi and ht; Tti for someTs; Tt 2 [T0::T1].In the example given above there is a traversal path comprised of the four segments (see Figure 1):from hs; T0i to hv0; T 0i following the movements of Ps, from hv0; T 0i to hv; T0i following the movements ofP1 backwards in time, from hv; T0i to hv00; T 00i following the movements of P2, and from hv00; T 00i to ht; T0ifollowing the movements of Pt backwards in time. From the existence of this path, the JAG can deduce thats and t are connected.The st-connectivity decision problem and the problem of traversing from s to t are closely related. LetF be a family of connected graphs with distinguished nodes s and t. Let Gs;t[Gs0;t0 be the graph comprisedof two identical disjoint copies of the graph G 2 F . Let Gs;t0 [Gs0;t be the same except that one copy hasthe vertices s and t0 and the other has s0 and t. The �rst is st-connected and the second is not. Let F 0 bethe family of graphs fGs;t [Gs0;t0 j G 2 Fg [fGs;t0 [Gs0;t j G 2 Fg.Lemma 2 If a JAG solves st-connectivity (in T steps) with probability 12 + � for input graphs uniformallychosen from F 0, then a similar JAG can perform st-traversal (in T steps) with probability 2� for graphsuniformally chosen from F . 5

pt< t; T0 > ps < v0; T 0 >< v00; T 00 >p1 p2< s; T0 >< v; T0 >Figure 1: A path in the traversal graph of GProof of Lemma 2: Suppose that there is a JAG that solves st-connectivity (in T steps) with probability12 + � for graphs uniformally chosen from F 0. We will say that the same JAG can perform st-traversal (inT steps) on a graph G 2 F , if on input Gs;t [Gs0;t0 or Gs;t0 [Gs;t0 2 F 0 it either traverses from s to t orfrom s0 to t0. By way of contradiction, suppose for a random graph G 2 F , the probability that it does thisis strictly less than 2�. Consider one of the 1 � 2� fraction of the graphs Gs;t [Gs0;t0 on which it neithertraverses neither from s to t nor from s0 to t0. Consider the connected components of H. At each point intime, the pebbles can be partitioned based on which connected component of H they are in. A pebble canchange which part of this partition it is in by jumping, but not by traversing an edge. Since there is no pathfrom s to t in H, the node hs; Tsi, for any time step Ts, is in a di�erent component than the nodes ht; Tti forany time step Tt. Similarly, for all time steps Ts0 and Tt0 , nodes hs0; Ts0i and nodes ht0; Tt0i are in di�erentcomponents. If this JAG was given Gs;t0 [Gs0;t as input instead, the connected components of H and thepartitioning of the pebbles would be isomorphic. It follows that the computation on Gs;t [Gs0;t0 and onGs;t0 [Gs0;t are identical. Therefore, for at least a half of the 1� 2� fraction of the graphs being consideredthe JAG must give the wrong answer. This contradicts the assumption.By the de�nition of the st-traversal problem, all the pebbles are initially placed on s and t, and notwithin the graph. However, the proof of the lower bound uses an inductive argument for which the inductivestep requires a somewhat stronger hypothesis than the main result, namely that the result holds for traversinga sub-graph (also with distinguished nodes s0 and t0) with an arbitrary initial placement of the pebbles andwith an arbitrary initial state. If the sub-graph initially contains pebbles within the sub-graph or if thepebbles enter the sub-graph via both the s0 and the t0 node, then the path through the traversal graph Hmay go forwards and backwards in time many times, as demonstrated in the above example. However, thefollowing de�nes the type of traversals for which proving a lower bound is easier. Consider a sub-graph withdistinguished nodes s0 and t0, that initially contains no pebbles and which is built so that it can be enteredby pebbles only via s0 or t0. We will say that the sub-graph has been forward traversed from s0 to t0 ifit is traversed, yet, during the time period of the traversal, pebbles enter the subgraph via only one of thedistinguished nodes s0 or t0, but not both. When this occurs, there must be a path from s0 to t0 or from t0to s0 that proceeds only forwards in time.Consider a line of d sub-graphs, the ith of which has distinguished nodes si and ti, which are connectedby the nodes si and ti+1 being the same node. The input graph will be many copies of this line of graphs.Consider a computation on this input graph starting with some initial placement of the pebbles and stoppingwhen one of the lines of sub-graphs has been traversed. Because the line is traversed, each of the sub-graphsin the line must have been traversed. However, only some of these sub-graphs would have been forwardtraversed. These need to be identi�ed. Let S0 � [1::d] consist of those i for which, some copy of the lineinitially contains a pebble in its ith sub-graph. De�ne S1 � [1::d]�S0 to consist of those i such that the �rsttime the ith sub-graph in some line is traversed, it is not forward traversed. These sub-graphs do not initiallycontain pebbles, hence, when they are �rst traversed, pebbles must enter them via both the distinguishednodes si and ti.Claim 1 jS0 [S1j � 2p+ 1 6

Proof of Claim 1: jS0j � p, because there are only p pebbles. Consider two indices i and i0 2 S0, suchthat i < i0 and there is no i00 2 S0 strictly between them i < i00 < i0. Consider two indexes j and j0, suchthat i < j < j0 < i0. If j; j0 2 S1, then pebbles would need to enter the jth sub-graph via tj and enter the j0thsub-graph via sj0 . How did pebbles get in the line of sub-graphs between these two nodes without pebbles�rst traversing the jth or the j0th sub-graphs? Recall pebbles cannot jump to nodes not already containingpebbles. This is a contradiction. Hence, there can only be one j 2 S1 between i and i0. There can also beat most one j 2 S1 before �rst i 2 S0 and at most after the last. Hence, jS1j � jS0j+ 1.For all i 2 [1::d]� (S0 [S1), the ith sub-graph is forward traversed. The parameters will be de�ned so thatp 2 o (d), so that most of the sub-graphs need to be forward traversed.5 The Helper JAGIf the goal of the JAG is to compute the st-connectivity problem, then for any given input graph, a helpercould tell the JAG the answer by communicating only one bit of help. On the other hand, we will show thatmany bits of help are required to signi�cantly improve the time for the JAG to actually traverse from s to tin a certain class of graphs.Having formally de�ned st-traversal, we are now able to formally de�ne a Helper JAG. It is the sameas a regular JAG except that the helper, who knows the complete input, is able to set the initial state andpebble con�guration in a way that minimizes the traversal time. Let T hG;Q;�i be the time required for aregular JAG to traverse the input graph G starting in state Q 2 [1::q] and with � 2 [1::n]p specifying foreach of the p pebbles which of the n nodes it is initially on. The time for the corresponding helper JAGto traverse G is de�ned to be minhQ;�i T hG;Q;�i. It is often easier to think of the helper giving the JAGb = log (qnp) bits of information.6 A Fly Swatter GraphThe basic components of the input graphs de�ned in Section 8 are the
y swatter graph (see Figure 2).A
y swatter graph consists of two identical graphs with r switches between them. It is very similarto the squirrel cage graph de�ned in [5]. Each half consists of a path of length h2 , called the handle,and a swatting part. The swatting part consists of two parallel paths of length r + 1 that are both con-nected to one end of the handle. The distinguished nodes s and t are located at the ends of the handlesfurthest from the swatting parts. Suppose the swatting part of one half of the graph contains the pathsu00; u000 ; u01; u001 ; . . . ; u00r�1; u0r and v00; v000 ; v01; v001 ; . . . ; v00r�1; v0r and the swatting part of the other half containsthe paths u10; u010 ; u11; u011 ; . . . ; u01r�1; u1r and v10 ; v010 ; v11; v011 ; . . . ; v01r�1; v1r . Then the setting of the switches be-tween the halves is speci�ed by a non-zero vector � 2 f0; 1gr as follows. For each j 2 [1::r], the jth switchconsists of the two cross-over edges fu0j ; v[�]jj g and fu1j ; v[�]jg. Note that if [�]j = 0, then the switchremains within the same half and if [�]j = 1, then the switch crosses over from one half to the other. (Thenotation [�]j is used to denote the jth bit of the vector �. The notation �i is reserved to mean the ithvector in a vector of vectors.) The extra nodes u00i and v00i are added so that the smallest square containingcross-over edges contains six edges.Forward traversing from s to t in the
y swatter speci�ed by � requires traversing a sequence ofswitches E 2 [1::r]� for which the parity of the bits of � on the indexes in E is 1, i.e. Lj2E [�]j = 1. Tobe able complete this task, the JAG must be able to determine the parity of such a sequence E. There aretwo ways in which the JAG can ask a parity question. The lower bound will prove that these are the onlyways in which the JAG is able to acquire the information about the input.7

α 2α dα1

h/

d
==1 1 2s s ts t 2 t 3 3

2

4

5

1

3

[α] = 1
[α] = 0

[α] = 0

[α] = 1

[α] = 1

α

s t

(b)(a)

2

r

Figure 2: A
y swatter graph and a line of
y swattersThe �rst method of asking a parity question requires only one pebble, but a great deal of time. Thepebble enters the
y swatter via the distinguished node s (or t), traverses up the handle, through a sequenceof switches E 2 [1::r]+, and back down the handle. While the pebble is inside the
y swatter, the JAGhas no way of learning which half the pebble is in, because the two halves are indistinguishable. However,when the pebble reaches the bottom of the handle, the parity of the sequence is determined by whether thedistinguished node s or t is reached. Each handle contains h=2 edges. Therefore, asking a parity questionwith one pebble requires the JAG to traverse at least h edges. This is illustrated in Figure 3 (a).
1 53

[α] [α] [α] = 1
1 53

[α] [α] [α] = 0

2

4

5

1

3

[α] = 1
[α] = 0

[α] = 0

[α] = 1

[α] = 1

s t

(a)

s t

2

4

5

1

3

[α] = 0

[α] = 0

[α] = 1

[α] = 1

[α] = 0

vs

2h/

3 4
[α] [α] = 0 3 4

[α] [α] = 1

(b)

4

M M

VS
4

3 3

[α] = 0

[α] = 0

[α] = 1

[α] = 0Figure 3: A parity question without and with a markerThe second method requires two pebbles, one of which acts as a marker and the other of whichtraverses a sequence of switches E. The parity of the sequence is determined by whether the traversingpebble returns to the marker. For example, if a pebble starts at node u02 and walks the edges labeledhswitch,up,switch,down i, then one possible sequence of nodes for the pebble to follow is u02; v02; v03; u03; u02 andanother is u02; v02; v03; u13; u12 depending on which switches in the graph are switched. Provided the JAG leavesa pebble as a marker at the node u02, it can di�erentiate between these two sequences and learn whether[�]2 � [�]3 is 0 or 1. This is illustrated in Figure 3 (b). Even though a parity question E (for example, theparity of all the bits in �) may require � (r) edges to be traversed, the lower bound will only charge theJAG for the traversal of at most two edges for a parity question using a marker.8

If the JAG can only gain information about the input by asking parity questions in these two ways,then a JAG that solves st-connectivity for a
y swatter graph must be able to solve the following version ofthe parity game: The input to this game consists of a single non-zero vector � 2 f0; 1gr. The player, afterreceiving no help, asks parity questions. A parity question speci�es a subset of the indexes E � [1::r]. Theanswer to the parity question is the parity of the input � at the indexes in this set, namelyLj2E [�]j . Thecomplexity is the number of questions asked before the player asks a parity question with answer 1.Beame et al. [5] prove that, for this game, r questions must be asked in the worst case. The proofuses the fact that � 2 f0; 1gr�f0rg forms a vector space of dimension r. In this way, they prove that forone pebble, � (hr) = � �n2� time is needed. However, we are considering more than one pebble. With twopebbles the JAG can traverse the
y swatter graph in linear time.In order to prove lower bounds when the JAG has more than one pebble, a more complex graph isneeded. The
y swatter graph will be a subgraph of this more complex graph. In order to traverse thiscomplex graph the JAG will have to traverse a particular
y swatter subgraph many times. Hence, onsubsequent traversals of this
y swatter the JAG may have some precomputed information about it. This ismodeled by a helper providing the JAG with this precomputed information.7 The Helper and a Line of Fly Swatter GraphsThe helper communicates information to the JAG about the input graph by specifying the initial stateQ 2 [1::q] and location of each of the p pebbles. Hence, the amount of information that the helper is able toprovide is limited to at most b = log (qnp) bits. Only log r << b bits are required for the JAG to be able totraverse a
y swatter in linear time. However, b is not enough bits of help to simultaneously provide su�cientinformation about many
y swatter graphs. For this reason, we require the JAG to traverse a line of d
yswatters. Such a line is speci�ed by the parameters r 2 O (1), h 2 O (1), d 2 logO(1) n and the vector ofvectors ~� = h�1; . . . ; �di 2 (f0; 1gr�f0rg)d. The d graphs are connected by making the distinguished nodesti and si+1 be the same node, for i 2 [1::d� 1]. This is illustrated in Figure 2 (b).The similarities between the parity game and the traversal of a line of
y swatter graphs should beclear, at least informally. Lemma 1 proves that if the JAG is only able to gain information by asking parityquestions and b << d, then the average number of questions the JAG must ask is (1:5� �) d. Therefore, ifa marker is utilized in none of the questions, then the number of edges traversed by the JAG is h (1:5� �) dand, if a marker is utilized in all of the questions then 2 (1:5� �) d edges are traversed. Note that without amarker, the time required is roughly a factor of (1:5� �) larger than the number of edges. This factor is notvery impressive, but its e�ect is magni�ed in a recursive construction.8 The Recursive Fly Swatter GraphsLet G (~�l) denote the line of
y swatters speci�ed by the vector of vectors ~�l =
�hl;1i; . . . ; �hl;di�2 (f0; 1gr�f0rg)d. For each l � 0, we recursively de�ne a graph. De�ne G (;) to be a single edge. De�neG (~�1; :::; ~�l) to be the graph G (~�l) where each edge is replaced by a super edge consisting of a copy ofG (~�1; :::; ~�l�1). The node shl�1;1i is one end of the super edge and the node thl�1;di is the other end. Allthe super edges in one level are the same. The family of recursive
y swatter graphs is � G (~�1; :::; ~�L) j~�1; . . . ; ~�L 2 (f0; 1gr�f0rg)d 	, where L is such that n is the total number of nodes. (Gadgets can be addedto make the graph 3-regular without changing it signi�cantly). The graph G (~�1; :::; ~�l) contains (h+ 10r)dcopies of G (~�1; :::; ~�l�1). Therefore, the total number of edges is at most [(h+ 10r)d]L. The number ofnodes n is approximately two thirds of the number of edges.9

Figure 4: The recursive line of
y swatters graph (Sorry, the cycles in the �gure have length 4instead of 6.)A crucial observation in understanding the complexity of traversing this graph is that a pebble canonly be used as a marker in one recursion level at a time. To demonstrate this, consider L = 2 levels ofrecursion and p = 2 pebbles. If a parity question is asked about the top level vector ~�L by leaving a pebbleas a marker, then only one pebble remains to traverse the sequence of super edges required by the question.Hence, these super edges, which are themselves lines of
y swatters, must be traversed with the use of onlyone pebble. Alternatively, if two pebbles are used to traverse each super edge, then there is \e�ectively" onepebble for the traversal of the top level. See Figures 3 (b) and 5.
Figure 5: Ten super edges of a two level recursive
y swatter graphAn intuitive explanation of the lower bound can now be given. (A formal proof is provided in Sec-tion 11.) There are p pebbles, hence at most p � 1 markers. It follows that L � p + 1 levels are traversedwithout the use of a marker. Note, as well, that the time to traverse a copy of G (~�1; :::; ~�l) is the numberof super edges traversed in the lth level subgraph G (~�l) multiplied by the time to traverse each super edgeG (~�1; :::; ~�l�1). Therefore, an estimation of the total time is the product of the number of super edgestraversed at each of the L levels,T � [h (1:5� �) d]L�p+1 [(1:5� �) d]p�1= (1:5� �)L � (hd)L � h�p+1 (1)The parameters are chosen as follows: r; h 2 �(1), d 2 log�(1) n, and L 2 �� lognlog logn�. Then the �rst factorbecomes 2
(log nlog log n), the second is close to n (assuming r << h), and the third is insigni�cant comparedto the �rst assuming that p is a constant fraction of Llog h 2 �� lognlog logn�. This is the bound claimed inTheorem 1. 10

9 The Time, Pebbles, and Cost used at Level lThe lower bound is proved by induction on the number of levels of recursion l. For each l 2 [1::L], weprove a lower bound on the cost to traverse some copy of G (~�1; :::; ~�l). De�ne ~
 = h~�1; . . . ; ~�l�1i and~� = h~�l+1; . . . ; ~�Li so that G (~�1; :::; ~�L) and G�~
; ~�l; ~�� denote the same graph. Think of G (~
; ~�l) (thesub-graph traversed) as a line of d
y swatters G (~�l) with each of its super edges being a copy of G (~
). Thesuper edge G (~
) does not need to be understood, because the induction hypothesis proves a lower boundon the time to traverse it. In the graph G�~
; ~�l; ~��, there are many copies of G (~
; ~�l). The graph G(~�) iscalled the context in which these copies of G (~
; ~�l) appear.Informally, the time required to traverse G (~
; ~�l) is the number of super edges of G (~�l) traversedmultiplied by the time to traverse a super edge G (~
). This fails to be true, because each traversal of a superedge may require a di�erent amount of time. This di�erence in time is caused by the number of markers(pebbles) beings used in the traversal and by the state and position of the pebbles before the traversal. Note,di�erences in traversal times are not caused by di�erences in the structure of the super edges, because theyare all identical.Let Q 2 [1::q] be a state of the JAG and let � 2 [1::n]p specify which node of G�~
; ~�l; ~�� each of thep pebbles is on. Consider the JAG computation starting in the con�guration described by Q and � on thegraph G�~
; ~�l; ~�� until some copy of G (~
; ~�l) is traversed. De�ne T �l;
~
; ~�l; ~�� ;Q;�� to be the number oftime steps taken. This will be abbreviated to T [l] when the rest of the parameters are understood. De�nep�l;
~
; ~�l; ~�� ;Q;�� (abbreviated to p[l]) to bep�l;
~
; ~�l; ~�� ; Q;�� = maxT2[1::T [l]] [p+ 1� (# copies of G (~
; ~�l) containing pebbles at time T)] :At no time during the interval does a copy of G (~
; ~�l) contain more than p[l] pebbles. For example, supposethere are two copies of G (~
; ~�l) containing pebbles. One copy contains at least one pebble and, therefore, theother copy contains no more than p+ 1� 2 = p� 1 pebbles. Think of the \(# copies of G (~
; ~�l) containingpebbles)" as the number of pebbles being used as \markers" in the graph G(~�). Essentially, no more thanone of these pebbles is available to be used in the traversal of G (~
; ~�l).De�ne the cost incurred by the JAG in traversing a copy of G (~
; ~�l) to bew�l;
~
; ~�l; ~��� = minhQ;�ihp�l;
~
; ~�l; ~�� ; Q;��T �l;
~
; ~�l; ~�� ; Q;��The motivation for using hp[l]T [l] comes from Equation 1. Since the average time T [l] to traverse G (~
; ~�l)can be estimated by (1:5� �)l (hd)l h�p[l]+1, the quantity hp[l]T [l] is essentially independent of the numberof pebbles used. The reason for minimizing over hQ;�i is that we are assuming the helper sets the initialJAG con�guration in a way that minimizes the cost of the traversal. The actual bounds obtained (with highprobability) are the following.W [0] = hW [l] = W [l� 1]� h� (d(1:5� �) � 4p� 2)= [h� (d(1:5� �)� 4p� 2)]l h:The remaining goal is to prove that with high probability (over randomly chosen inputs) the cost w�l;
~
; ~�l; ~���to traverse a copy of G (~
; ~�l) is at least W [l]. Lemma 3 provides the inductive step for this proof.11

10 Reducing the Helper Parity Game to st-TraversalSuppose that there is a JAG algorithm for which the time to traverse a copy of G (~
; ~�l) is only a smallfactor more than the time to traverse a copy of G (~
). This means that the JAG is able to traverse the lineof
y swatters G (~�l) without traversing many of its super edges and hence without \asking" many parityquestions about ~�l. In e�ect, the JAG is able to play the helper parity game with parameters r, d, andb = log (qnp), where r and d are the parameters de�ning the line of
y swatters and log (qnp) is the spaceallocated to the JAG. This is captured in the following lemma.Lemma 3 Given an algorithm for st-traversal whose cost on input G�~
; ~�l; ~�� to traverse a subgraph atthe l� 1st and the lth levels are w�l� 1;
~
; ~�l; ~��� and w�l;
~
; ~�l; ~���, we can produce a protocol for the helperparity game for which the number of questions asked per game instance on input ~�l is c~�l , such thatPr~�l [c~�l < 1:5� �] � Prh~
;~�l;~�i �w�l;
~
; ~�l; ~��� < W [l]�� Prh~
;~�l;~�i �w�l� 1;
~
; ~�l; ~��� < W [l� 1]� :Corollary 2 Given a helper-JAG algorithm for st-traversal whose traversal time on input G (~�1; :::; ~�L) isTh~�1;...;~�Li and the helper parity game de�ned in Lemma 3,Prh~�1;...;~�Li hTh~�1;...;~�Li < [h� (d(1:5� �) � 4p� 2)]L h�p+1i � L� Pr~� [c~� < 1:5� �]Proof of Corollary 2: The time and the cost incurred by the JAG to traverse the entire input graphare de�ned to be Th~�1;...;~�Li = T [L] and w[L] = minhQ;�i hp[L]T [L]. The number of pebbles p[L] used in thetraversal is at most the number of pebbles p the JAG has. It follows that if traversal time is small, i.e.T [L] < W [L]h�p, then the cost is small, i.e. w[L] = hp[L]T [L] < W [L]. It remains to prove that for l � L,Prh~�1;...;~�Li �w�l;
~
; ~�l; ~��� < W [l]� � l � Pr~� [c~� < 1:5� �]The proof proceeds by induction on l. For the base case, l = 0, the subgraph G () is a single edge requiringat least 1 time step for traversal by at least one pebble. This guarantees that with probability 1, w[0] =minhQ;�i hp[0]T [0] � h =W [0]. The induction step follows easily using Lemma 3.Proof of Lemma 3: Consider a �xed algorithm for st-traversal. In the helper-parity protocol de�nedbelow, the game-helper learns what help to send and the game-player learns what questions to ask by runningthis �xed JAG algorithm as it traverses a line of
y swatters at the lth level.Both the st-traversal problem and the helper-parity game have the vector ~�l =
�hl;1i; . . . ; �hl;di� 2(f0; 1gr�f0rg)d as part of its input. However, the st-traversal problem has the additional inputs ~
 and ~�.Therefore these vectors are �xed to ~
0 and ~�0 in a way that satis�es the propertyPr~�l �w�l;
~
0 ; ~�l; ~�0�� < W [l]� � Pr~�l �w�l� 1;
~
0; ~�l; ~�0�� < W [l� 1]�� Prh~
;~�l;~�i �w�l;
~
; ~�l; ~��� < W [l]�� Prh~
;~�l;~�i �w�l� 1;
~
; ~�l; ~��� < W [l� 1]� :These vectors ~
0 and ~�0 are known in advance to both the game-helper and the game-player.The �rst thing that the game protocol must specify is the message M (~�l) sent by the game-helper oneach input ~�l. This message is de�ned to be
Qhl;~�li;�hl;~�li�, which speci�es the con�guration in which theJAG-helper initially places the JAG when G�~
0; ~�l; ~�0� is the JAG's input graph. Note that the game-helperonly sends log (qnp) bits, because this is the number of bits needed to encode a state and the locations of allp pebbles. 12

The game-player learns which questions to ask the helper by simulating the JAG algorithm on thegraph G�~
0; ?; ~�0� starting in the con�guration
Qhl;~�li;�hl;~�li�. The only thing preventing the game-playerfrom running the JAG is that he does not know the vector ~�l. However, he can run the JAG as long asthe computation does not depend on this unknown information. Speci�cally, suppose during the simulation,pebbles enter a
y swatter de�ned by a �hl;ii that is not known by the game-player. The game-player will beable to continue running the JAG for quite a while. However, as soon as the computation depends on whichcross-over edges of the
y swatter are switched, he must stop the simulation. He then asks the game-helpera question about the game instance �hl;ii. By de�nition of the parity game, the game-helper reveals to himthe entire vector �hl;ii. With this new information, the game-player is able to continue the simulation untilthe next such event occurs.As done in Section 4, let S0 � [1::d] consist of those i for which some copy of G (~
0; ~�l) initially (i.e.according to �hl;~�li) contains a pebble in its ith
y swatter. Note that the p pebbles of the JAG might becontained in di�erent copies of G (~
0; ~�l), but all such copies are considered. The game-player begins thegame by asking an arbitrary parity question Ei about �hl;ii for each i 2 S0.The game-player then starts simulating the JAG. Because he knows �hl;ii for every
y swatter contain-ing pebbles, he can run the JAG at least until a pebble moves into an adjacent
y swatter. The JAG mightalternately move pebbles contained in di�erent copies of G (~
0; ~�l). However, we will count the number oftime steps taken in each copy separately.If the ith
y swatter in some copy of G (~
0; ~�l) is entered via both its si and ti distinguished nodes,then the game-player will also ask an arbitrary parity question Ei about �hl;ii, as long as a question hasnot been asked about �hl;ii already. The indexes for which this happens forms the set S1, as de�ned inSection 4. By Claim 1, jS0 [S1j � 2p+ 1. Therefore, this completes at most 2p+ 1 of the d game instances�hl;1i; . . . ; �hl;di. The remaining
y swatters indexed by i 2 [1::d]� (S0 [S1) are forward traversed.Two events will now be de�ned. If one of these events occurs within the ith
y swatter in some copyof G (~
0; ~�l), then the game-player asks a question about the ith game instance �hl;ii. Below, we prove thatthe computation of the JAG through the ith
y swatter does not depend on �hl;ii until one of these eventsoccurs. It follows that the game-player is always capable of running the simulation and hence of executingthe parity-game protocol currently being de�ned. We also prove that, because
y swatters indexed byi 2 [1::d]� (S0 [S1) are forward traversed, one of the events eventually occurs within each of them. Fromthis, it follows that the parity-game protocol will terminate, asking a question about each game instance.Finally, I prove that traversing a
y swatter is at least twice as costly for the JAG when the question askedhas even parity. Hence, the total cost for the parity game is proportional to the total cost for the JAGtraversal.Before continuing, recall that Section 6 described two ways to ask a parity question. The �rst eventwill be de�ned so that it occurs within a
y swatter when the two pebble method is used within it, i.e. apebble is left as a marker while another pebble walks along a sequence of super edges. Similarly, the secondevent will be de�ned so that it occurs when the one pebble method is used, i.e. a pebble walks up the handle,through a sequence of switches and back down a handle again.The �rst of these events is formally de�ned to occur within a
y swatter after the following hasoccurred twice during disjoint intervals of time. What must occur twice is that one of the super edges of the
y swatter is traversed and during the entire time of its traversal, there is a pebble (not necessarily the samepebble at each time step) contained in the copy of G (~
0; ~�l) containing the
y swatter, but not containedin the super edge in question. If this occurs in the ith
y swatter in some copy of G (~
0; ~�l), then the playerasks an arbitrary question Ei about �hl;ii.The second event is de�ned to occur within the ith
y swatter, if it is initially empty, pebbles traverseup the handle, reaching the cross-over edges, and then traverse down the handle again, reaching one of thedistinguished nodes shl;ii or thl;ii, yet during this entire time the �rst event never occurs within the ith
y13

swatter. We claim that for this event to occur, for i 2 [1::d]�(S0 [S1), all the pebbles within this
y swattermust traverse a single well de�ned sequence of switches. When the second event occurs within the ith
yswatter in some copy of G (~
0; ~�l), the game-player asks the question Ei that contains j i� the jth switchwas traversed an odd number of times.Now we will prove the claim. As stated, the pebbles are initially outside of the
y swatter. Becausei 62 S1, pebbles do not enter the
y swatter via both the distinguished nodes shl;ii and thl;ii. Without lossgenerality assume that they enter via shl;ii. Furthermore, there are never two pebbles within the
y swatterthat have four or more full super edges between them. The reason is as follows. The pebbles contained inthe
y swatter are initially together, because they enter only via shl;ii. In order for two pebbles to get threefull super edges between them, a super edge must be traversed while there is a pebble contained in this copyof G (~
0; ~�l), but not contained in the super edge in question. For the �rst event to occur, this must happentwice during disjoint intervals of time. For two pebbles to have four full super edges between, a second superedge must be traversed in this way. These two traversals occur during disjoint intervals in time and hencethe �rst event occurs. Because the �rst event does not occur, no two pebbles in the
y swatter ever havefour full super edges between them. Hence, the pebbles must traverse up the handle more or less together.They cannot traverse in opposite directions around a square of six super edges, hence must traverse the samesequence of switches. Finally, they must traverse down the handle together. This proves the claim.We will now prove that the game-player always has enough information to continue running the JAG.Because of the game-helper's message and the fact that ~
0 and ~�0 are �xed, the only information that theplayer is lacking is ~�l. In addition, �hl;ii is revealed as soon he asks a question about it. Therefore, the onlyconcern is whether the game-player, even though it does not know �hl;ii, can run the JAG as it traversesthe ith
y swatter, at least until one of the two events happens. As said, if the �rst event has not occurred,then all the pebbles must traverse the same sequence of switches. Therefore, the only in
uence that �hl;ii(i.e. which switchable edges are switched) has on the computation is which of the two
y swatter halvesthese pebbles are contained in. However, the JAG has no way of knowing which half the pebbles are in,because the super edges in the two halves, the structure of the halves, and even the edge labels are identical.Therefore, the player knows as much as the JAG knows (i.e. the state and the partition of the pebbles) untilsecond event occurs.It has now been proven that the above protocol is well de�ned and meets the requirements ofthe game. The remaining task is to prove that the cost to the parity game is proportional to thecost of the JAG's traversal. Let us �rst consider the cost of the JAG's traversal. The JAG is runon the input graph G�~
0; ~�l; ~�0�, starting in the con�guration
Qhl;~�li;�hl;~�li� speci�ed by the JAG-helper, until some copy of G (~
0; ~�l) (a line of
y swatters at the lth level) is traversed. By def-inition, the time of this traversal is T �l;
~
0; ~�l; ~�0� ; Qhl;~�li;�hl;~�li�, the number of pebbles \used" dur-ing this traversal is p�l;
~
0; ~�l; ~�0� ; Qhl;~�li;�hl;~�li�, and the cost incurred by the JAG is w�l;
~
0; ~�l; ~�0�� =minhQ;�i hp�l;
~
0; ~�l; ~�0� ; Q;��T �l;
~
0 ; ~�l; ~�0� ; Q;��. Abbreviate these values to T [l; ~�l], p[l; ~�l] and w[l; ~�l]. Foreach i 2 [1::d]� S0, de�ne T [l; ~�l; i] to be the number of time steps for the event to occur within the ith
yswatter of some copy of G (~
0; ~�l). This time is at least the product of the number of super edges traversedand the minimum time to traverse a super edge on this input graph. The number of super edges traverseddepends on whether a pebble was left as a marker within the
y swatter and whether a path from shl;ii tothl;ii was found in the �rst attempt, i.e. whether the answer to the parity was odd. The minimum cost totraverse a super edge G (~
0) when the input graph is G�~
0; ~�l; ~�0� is de�ned to be w�l� 1;
~
0; ~�l; ~�0��. Eachtraversal of a super edge will cost at least this minimum. Abbreviate this with w[l� 1; ~�l]. The followingclaim bounds the time T [l; ~�l; i] for the event to occur within the ith
y swatter.14

Claim 2 For each i 2 [1::d]� (S0 [S1),T [l; ~�l; i] � 8<: 1 if Mj2Ei ��hl;ii�j = 12 otherwise 9=;w[l� 1; ~�l]h�p�l; ~�l�+1:Proof of Claim 2:Case 1: Suppose the �rst event occurs, i.e. two super edges at level l � 1 are traversed by a pebble andduring the entire time of their traversal, there is another pebble contained in the same copy of G (~
0; ~�l),but not contained in these two super edges. Consider one of these two super edges traversed and let
Qhl�1;~�li;�hl�1;~�li� be the con�guration of the JAG at the beginning of this traversal. The number of timesteps, starting in this con�guration, until some copy of G (~
0) is traversed (clearly the super edge in question)is de�ned to be T �l� 1;
~
0 ; ~�l; ~�0� ; Qhl�1;~�li;�hl�1;~�li� and the number of pebbles \used" in this traversal isde�ned to be p�l� 1;
~
0; ~�l; ~�0� ; Qhl�1;~�li;�hl�1;~�li�. Abbreviate these to T [l� 1; ~�l] and p[l� 1; ~�l]. It will alsobe useful to use T 0[l� 1; ~�l] to denote the time interval during which this super edge is traversed and to useT 0[l; ~�l] to denote the time interval during which the entire line of
y swatters G (~
0; ~�l) is traversed. The\cost" of the traversal of the super edge is de�ned to behp[l� 1; ~�l]T [l� 1; ~�l]:This is at leastw[l� 1; ~�l] = minhQ;�ihp�l� 1;
~
0; ~�l; ~�0� ;Q;�� T �l� 1;
~
0; ~�l; ~�0� ; Q;��:which is the minimal cost of traversing any super edge when the helper has pre-set the JAG con�gurationhQ;�i to minimize the cost. Solving for the traversal time givesT [l� 1; ~�l] � w[l� 1; ~�l]h�p�l� 1; ~�l�:The next step is to bound the number of pebbles p[l� 1; ~�l] \used" to traverse this super edge. Theintuition is as follows. The JAG has p[l; ~�l] pebbles available to traverse a copy of G (~
0; ~�l). If it leaves apebble as a marker in the lth level and traverses a sequence of switchable edges with the other p[l; ~�l] � 1pebbles, then only p[l; ~�l]�1 pebbles are available for the traversal of these super edges G (~
0). More formally,we want to prove that p[l� 1; ~�l] � p[l; ~�l] � 1. To do this, we must bound the minimum number of copiesof G (~
0) in G�~
0; ~�l; ~�0� that contain pebbles (number of markers), during the traversal of this super edge.By de�nition,p[l; ~�l] = maxT2T 0[l; ~�l] [p+ 1� (# copies of G (~
0; ~�l) containing pebbles at time T)] :Therefore, minT2T 0 [l� 1; ~�l] [# copies of G (~
0; ~�l) containing pebbles at time T] � p � p[l; ~�l]+ 1:We know that during the time interval T 0[l� 1; ~�l], one of the copies of G (~
0; ~�l) contains two copies of G (~
0)(super edges) that contain pebbles. Therefore,minT2T 0[l� 1; ~�l] [# copies of G (~
0) containing pebbles at time T] � p� p[l; ~�l]+ 1+1and, therefore, p[l� 1; ~�l] � p[l; ~�l] � 1. From this we can bound the time of this super edge's traversal tobe T [l� 1; ~�l] � w[l� 1; ~�l]h�p�l; ~�l�+1. Because the �rst event occurred, this occurred twice during disjoint15

intervals in time. Hence, the time required for the �rst event to occur can be taken to be at least thesum of the times for the two super edges to be traversed, without over counting time steps. Therefore,2�w[l� 1; ~�l]h�p�l; ~�l�+1 time steps are required.Case 2: Suppose the second event occurs and Lj2Ei ��hl;ii�j = 1. This event involves traversing up anddown the handle. The handle contains h2 super edges. Therefore, at least h super edges are traversed.These traversals must occur during disjoint intervals of time, because a super edge along the handle must becompletely traversed, before the next super edge along the handle is entered. The maximum of number ofpebbles p[l� 1; ~�l] that can be used to traverse each of these copies of G (~
0) is p[l; ~�l]. Even if this number isused, the traversal time for each is T [l� 1; ~�l] � w[l� 1; ~�l]h�p�l; ~�l�. Therefore, the time to traverse h superedges is at least w[l� 1; ~�l]h�p�l; ~�l�+1.Case 3: Suppose the second event occurs and Lj2Ei ��hl;ii�j = 0. Without loss of generality, assume thatthe pebbles entered the ith
y swatter from the (i � 1)st
y swatter through the shl;ii distinguished node.The pebbles then traverse up the handle through a sequence of switches speci�ed by Ei and back down thehandle to a distinguished node. Because Lj2Ei ��hl;ii�j = 0, the pebbles do not make it to the distinguishednode thl;ii, but arrive back at the shl;ii node. How do we know that the pebbles traverse back up and downthe handle a second time? By the de�nition of i 62 S1, the JAG must \continue on" to traverse into thei + 1st
y swatter. Hence, they must traverse up and down the handles a second time. The two traversalsup and down the handle take at least 2� w[l� 1; ~�l]hp�l; ~�l�+1 time steps.Using this claim, we can bound the total cost w[l; ~�l] (and time T [l; ~�l]) for the JAG to traverse a lineof
y swatters G (~
0; ~�l).w[l; ~�l] = hp�l; ~�l�T [l; ~�l]� hp�l; ~�l� � 24 Xi2[1::d]�(S0[S1)8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;w[l� 1; ~�l]h�p�l; ~�l�+135 :This can now be compared with the cost to the parity game de�ned above. By de�nition of the game,the number of questions asked per game instance on input ~�l isc~�l = 1d Xi2[1::d]8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;� 1d 242jS0 [S1j + Xi2[1::d]�(S0[S1)8<: 1 if Mj2Ei [�i]j = 12 otherwise 9=;35 :By Claim 1, jS0 [S1j � 2p+ 1. This gives thatw[l; ~�l] � w[l� 1; ~�l] � h� (dc~�l � 4p� 2)If ~�l were such that w[l� 1; ~�l] � W [l� 1] and c~�l � 1:5� �, thenw[l; ~�l] � W [l� 1]� h� (d(1:5� �)� 4p� 2) = W [l]It follows thatPr~�l [w[l; ~�l] < W [l]] � Pr~�l [c~�l < 1:5� �] + Pr~�l [w[l� 1; ~�l] < W [l� 1]] :16

11 Completing the ProofThe �nal step is to prove the theorem.Theorem 10 For every constant z � 2, and every helper-JAG algorithm for st-traversal that uses p �129z lognlog logn pebbles and q � 2logz n states and whose traversal time on input G (~�1; :::; ~�L) is Th~�1;...;~�Li,Prh~�1;...;~�Li hTh~�1;...;~�Li < n� 2 129z log nlog log n i � 2� 2�0:05 logz n:Proof of Theorem 10: Fix any constant z � 2 and consider a helper-JAG algorithm that uses p �129z lognlog logn pebbles and q � 2logz n states. The number of bits of help given by the helper JAG to set theinitial con�guration is the space of the JAG which is b = p logn+log q � 129z log2 nlog logn+logz n = (1+o(1)) logz n.Consider the parity game with the bits of help from the helper being b = (1 + o(1)) logz n, the lengthof the vector ~�i being r = 8, the number of game instances being d = 60 logz n, and the error tolerance being� = 0:1. By Lemma 1,Pr~� [c~� < 1:5� �] � 2b � e�(2�2�2�r+1)d= 2(1+o(1)) logz n � e�(2(:1)2�2�8+1)60 logz n� 2�0:054logz nDe�ne the line of
y swatter graphs such that the number of switches per
y swatter graph is r = 8,the length of the handle is h = 10r0:05 = 1600, and number of
y swatters in the line is d = 60 logz n. Then, thenumber of vertices in G (~�1; :::; ~�L) is n � [(h+ 10r)d]L = [1:05hd]L and L � lognlog(1:05hd) � lognz log logn+O(1) .Corollary 2 bounds the time Th~�1;...;~�Li for the helper-JAG to traverse input G (~�1; :::; ~�L).Prh~�1;...;~�Li hTh~�1;...;~�Li < [h� (d(1:5� �) � 4p� 2)]L h�p+1i� L� Pr~� [c~� < 1:5� �]� lognz log logn+ O (1) � 2�0:054 logz n � 2� 2�0:05logz n:This bound on the time can be computed to be[h� (d(1:5� �) � 4p� 2)]L � h�p+1� n[1:05hd]L � [(1:4� o(1))hd]L � h�p+1� n� �1:4� o(1)1:05 �L � h�p� n� 20:415 log nz log log n+O(1) � 2� log(1600)� 129z log nlog log n� n� 2 129z log nlog log nThe proof of Theorem 1 follows from Theorem 10 using Yao [25] and Lemma 2.12 The Pseudo Random Walk GameThe st-connectivity lower bound in Theorem 1 on the recursive
y swatter graphs reveals to the JAG everytime in reaches the bottom of the handle whether it has reached the node shl;ii or the node thl;ii. In reality,17

however, the JAG does not have access to this information. My belief in fact is that the JAG quickly loosestrack of where the pebble is located in the line of
y swatter graphs. In e�ect, I believe that the pebbleperforms a \pseudo random walk" on the line. In this section, I de�ne a game that characterizes this idea.A lower bound on this game would give the desired lower bound for st-connectivity of n2�o(1). The game isde�ned as follows.Game 1 The parameters of the game are d, r, and ~W (ideally r is a constant, but it could be as much aslog d and ideally ~W = d2�� but it could be as little as 2d). The game consists of a player and a randomlychosen input, both of which direct a pebble walking pseudo randomly on a line of length d. First, the playeroutputs a �xed sequence of vectors ~
 = h
1;
2; . . .i 2 [f0; 1gr]�. The vector
t is used at time t. Then theinput is chosen. It is a sequence of vectors ~� = h�1; �2; . . . ; �di 2 (f0; 1gr�f0rg)d that is chosen uniformlyat random. The vector �i is associated with the ith node in the path.At every time step t, the pebble is located at some node i in the line and has a direction of travelfrom f!; g. Initially, the pebble is at node 0 with direction !. The transition depends on �i �
t =Lj2[1::r] [�i]j ^ [
t]j. If this dot product is 1 then the pebble takes a step in the direction that it is travelingin. If the dot product is 0 then the pebble turns around before taking a step. The following table lists thepossibilities. �i �
t = 1 �i �
t = 0!i !i + 1 i� 1 i i � 1 !i+ 1Consider a �xed player speci�cation ~
. If the pebble ever returns to node 0 then the pebble stops andthe player looses. Otherwise, let W~� be the number of time steps for the pebble to reach node d when theinput is ~�. The goal of the player is to move the pebble quickly from node 0 to node d. Our goal is to provethat no matter what the player does, for a random input, the pebble will almost always require at least ~Wstep, i.e. we win if 8~
 Pr~� (W~� < ~W) � 2�d� :The fact that the player loses if the pebble ever returns to node 0 is not in itself signi�cant. Thegame could equivalently be de�ned so that the pebble bounces at node 0 back to node 1 or that the line isextended in both direction. What is signi�cant about this part of the de�nition is that the player does notinteract at all with the game. He outputs the vectors ~
 = h
1;
2; . . .i at the beginning of the game withoutany information about the input ~�.I think that a constant r 2 O(1) random bits per node is su�cient. In Theorem 1, it is 8. This is largeenough so that f0; 1gr�f0rg is not signi�cantly far from f0; 1gr. On the other hand, maybe more randombits may help us. However, we have reasons to believe that having r > logd can only help the player.Lemma 4 For r 2 O(1) and ~W = d2��, the player can win.Proof of Lemma 4: For a purely random walk on a line, Pr~�(W~� < d2��) � 2�d� : The player can easilybe given to match this bound by outputting a random sequence of ~
.My conjecture is that the player in this random-walk game cannot do signi�cantly better than by outputtinga random sequence of ~
.Conjecture 1 For some r 2 [8::: logd] and for some ~W 2 [d1+�:::d2��], the player must lose.Lemma 1 e�ectively proves this conjecture for r = 8 and ~W = 2d. The following theorem states the JAGresult. 18

Theorem 3 Suppose that Conjecture 1 is true, i.e. the pebble in Game 1 almost always takes d! time stepsto traverse a line of length d, for some ! 2 [1 + �:::2 � �]. It follows that for every constant z > 2, theexpected time to solve undirected st-connectivity on a JAG with p � �2 logn2z log logn pebbles and q � 2logz n statesis at least n!(1�2�).The proof reduces st-traversal of recursive
y swatter graphs by a helper-JAG to the pseudo randomwalk game. This reduction requires quite a di�erent proof than the one presented here. It has not beenincluded because it is slightly more di�cult and because a lower bound on the pseudo random walk gamehas not been obtained.References[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov�asz, and C. Racko�. Random walks, universal traver-sal sequences, and the complexity of maze problems. In 20th Annual Symposium on Foundations ofComputer Science, pages 218{223, San Juan, Puerto Rico, October 1979. IEEE.[2] Greg Barnes, Uriel Feige. Short random walks on graphs. In Proceedings of the Twenty Fifth AnnualACM Symposium on Theory of Computing, pages 728{737, San Diego, CA, May 1993.[3] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space, polynomialtime algorithm for directed s-t connectivity. In Proceedings, Structure in Complexity Theory, SeventhAnnual Conference, pages 27{33, Boston, MA, June 1992. IEEE.[4] Greg Barnes and Je� Edmonds. Time-space lower bounds for directed st-connectivity on JAG models. In34th Annual Symposium on Foundations of Computer Science, pages 228{237, Palo Alto, CA, November1993.[5] P. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa. Time-space tradeo�s for undirectedgraph connectivity. In 31st Annual Symposium on Foundations of Computer Science, pages 429{438,St. Louis, MO, October 1990. IEEE. Full version submitted for journal publication.[6] Piotr Berman and Janos Simon. Lower bounds on graph threading by probabilistic machines. In 24thAnnual Symposium on Foundations of Computer Science, pages 304{311, Tucson, AZ, November 1983.IEEE.[7] A. Borodin, W. L. Ruzzo, and M. Tompa. Lower bounds on the length of universal traversal sequences.Journal of Computer and System Sciences, 45(2):180{203, October 1992.[8] Allan Borodin. Structured vs. general models in computational complexity. L'EnseignementMath�ematique, XXVIII(3-4):171{190, July-December 1982. Also in [16, pages 47{65].[9] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal. Trading space for time in undirected s-tconnectivity. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,pages 543{549, Seattle, WA, May 1989.[10] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical resistanceof a graph captures its commute and cover times. In Proceedings of the Twenty First Annual ACMSymposium on Theory of Computing, pages 574{586, Seattle, WA, May 1989.[11] S. A. Cook and C. W. Racko�. Space lower bounds for maze threadability on restricted machines. SIAMJournal on Computing, 9(3):636{652, August 1980.[12] Je� Edmonds. Time-Space Lower Bounds for Undirected and Directed st-Connectivity on JAG Models.PhD thesis, Department of Computer Science, University of Toronto, August 1993.19

[13] Je� Edmonds. Time-space trade-o�s for undirected st-connectivity on a JAG. In Proceedings of theTwenty Fifth Annual ACM Symposium on Theory of Computing, pages 718{727, San Diego, CA, May1993.[14] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In 30th Annual Symposium onFoundations of Computer Science, pages 248{253, Research Triangle Park, NC, October 1989. IEEE.[15] Je� D. Kahn, Nathan Linial, Noam Nisan, and Michael E. Saks. On the cover time of random walkson graphs. Journal of Theoretical Probability, 2(1):121{128, January 1989.[16] Logic and Algorithmic, An International Symposium Held in Honor of Ernst Specker, Z�urich, February5{11, 1980. Monographie No. 30 de L'Enseignement Math�ematique, Universit�e de Gen�eve, 1982.[17] Noam Nisan, Endre Szemer�edi, and Avi Wigderson. Undirected connectivity in O(log1:5 n) space. In33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, PA, October 1992. IEEE.[18] C. K. Poon. A sublinear space, polynomial time algorithm for directed st-connectivity on the JAGmodel. Manuscript.[19] Steven Rudich. personal communication.[20] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal ofComputer and System Sciences, 4(2):177{192, 1970.[21] W. J. Savitch. Maze recognizing automata and nondeterministic tape complexity. Journal of Computerand System Sciences, 7(4):389{403, 1973.[22] N. A. Spencer. John Wiley and Sons, Inc., 1992.[23] R. E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal on Computing, 1(2):146{160, June 1972.[24] A. Wigderson. The complexity of graph connectivity.[25] A. C. Yao. Probabilistic computations: Toward a uni�ed measure of complexity. In 18th AnnualSymposium on Foundations of Computer Science, pages 222{227, Providence, RI, October 1977. IEEE.
20

