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the measure can be the number of values outputted. However, when the output is a singlebit, it is harder to say for each point in the computation, how much \progress" the algorithmhas made towards deciding this one bit. The weakness of the JAG of not being able toquickly access all of the nodes provides us with the required measure of progress. Progressis simply the number of \hard" nodes that have been accessed.Our intuition into why randomly accessing the vertices is not useful is that if the al-gorithm bounces around the graph and collects local information about the neborhood ofeach node, then the model will not have enough space to store enough useful informationand will be unable to put this information together to decide stcon.As evidence that having random access to the vertices might be useful, there are twoalgorithms for undirected s-t connectivity, Barnes and Ruzzo's [?] and Nisan et al.'s [?],that seem to require such power. Both algorithms repeatedly �nd sets of connected verticesand \coalesce" each set into a single representative. On the other hand, it seems likely thatthe coalescing scheme used by these two algorithms is only useful in undirected graphs,where \connected to" is an equivalence relation. Therefore, it is not clear that accessing allvertices would be useful when implementing JAG algorithms for (directed) stcon.The standard JAG model also does not allow a pebble to travel backward along adirected edge. In fact, the JAG has no easy access to the indegree of a node. On the otherhand, on a general model, even if the input representation of the directed graph lists foreach node the out edges but not the in edges, such operations could be done in linear time.Therefore a reasonable strengthening of the JAG model would be to allow it to specify anincoming edge via a labeling of these edges and then to move backwards along the edge.Not being able to traverse backwards along an edge provably does weaken the model.The 
(log2 n= log logn) space bound for stcon [?,?,?] exploits just this fact. They showthat in their graphs (which are trees) pebbles get \stuck" in dead end paths and hence haveto jump a considerable distance back to be able to restart again. The fact that the modelis too weak is demonstrated by the fact that a general model can solve stcon on trees withonly O(logn) space.The stack version of the JAG was de�ned in response to this complaint by allowingthe model to push onto a stack the nodes traversed by a pebble and to back up along thistraversed path by popping the stack. Clearly this model can traverse trees with only aconstant number of pebbles, i.e. O(logn) space.Before discussing the Stack JAG further, let us consider whether the model could bestrengthened further. What the Stack JAG is unable to do is to traverse forward down somepath and then to traverse backwards along edges up a di�erent path. Our intuition is thatsuch an operation is not useful for determining whether a strictly forward directed pathexists between s and t. (See Section ?? for a counter example to this intuition). At �rstour intuition also told us that proving such a lower bound could on such a model could notbe that much harder. However, this second intuition is false. Being able to do this would2



give the JAG (within a polynomial factor in time) the power of the branching program [?].This is proved using a variation on Theorem 7 in Beame et al. [?]. The idea is that bymoving backwards along edges, one can treat the graph as an undirected graph and, using auniversal traversal sequence [?], visit any vertex in polynomial time. Like the strong jumpoperation, this implies the JAG can then simulate a branching program. Because of thepolynomial blow up in time needed by the transformation, a ST = n2= logn lower bound ina backward moving JAG would say nothing about a general model of computation. Hence,this is an interesting open problem. The problem is similar to (but maybe slightly easierthan) proving this trade o� for undirected stcon. (Again see Section ??).Now let us consider the Stack JAG. In [?], it was de�ne as follows. The Stack NNJAGis given the additional power of a number of stack pebbles. Such a pebble is de�ned tohave a stack of nodes associated with it. Whenever the pebble walks along a directed edge,the node is pushed onto its stack. The model is also allowed to pop the pebble's stack,which has the e�ect of moving the pebble backward along the path that it took gettingthere. (This does not allow a pebble to move backwards along arbitrary directed edges butit is a good start.) When a stack pebble jumps to the location of another stack pebble hisstack is replaced with a copy of the other pebble's stack. When it jumps to a non-stackpebble, its stack is emptied. The model is not charged for the space used by the stacks.The paper [?] considers both the case in which there are only a constant number of stackpebbles and the case in which all the pebbles are. They prove their bounds on such aprobabilistic Stack NNJAG.Let us consider why the model does not charged for the space used by the stacks. Forupper bounds, it would be fair to charge logn bits of space for each node on a stack.However, if this is done the Stack JAG is no stronger than a regular JAG. The regular JAGcan simulate the stacks by dropping, jumping to, and picking up pebbles. Hence, the Stackmodel only becomes interesting when no space is charged for the Stacks. Since we are doinglower bounds, de�ning such a powerful model only makes the bounds stronger.This paper generalizes the Stack model only slightly. However, this di�erence turns outto be signi�cant. Let us call it a Stack0 JAG. In this model, a stack pebble is not requiredto push a node when it walks and edge nor is it required to copy the other pebbles stackwhen it jumps. Instead, it does these things only when it likes.It is not di�cult to see that the proofs of both Theorems ?? and ?? carry over easilyto Stack0 JAGs. The proofs only charge a time step each time a pebble enters a tree (ortooth) and for reaching the bottom of a path. They do not charge for the pebbles gettingback up. They also give away for free the information as to whether or not two pebbles arecontained in the same tree (tooth). Hence, the following two Corollaries are true.Corollary 1 Any Stack0 JAG that solves stcon on graphs with n vertices using p pebblesrequires time 
 � n2p log2(n=p)�. 3



Corollary 2 Any Stack0 JAG that solves stcon on graphs with n vertices and m edgesusing p pebbles requires time 
(mn 12 =p 12 ).Let us compare the Stack0 JAG and the Stack NNJAG and the corresponding lowerbound techniques. The Stack NNJAG bound [?] points out that the maximum number ofnodes that a stack pebble can push onto its stack is the length of the longest directed pathin the input graph. Hence they bound this length and in some cases limit the number ofstack pebbles to be a constant, there by bounding the amount of space that is given awayin the stacks for free to either O(S) or O(S2). Then they observe that increasing the spacein their NNJAG lower bound by this extra amount does not change the asymptotics of theresult.In contrast, a Stack0 NNJAG is much too powerful of a model. In fact, it can solve(directed) stcon with O(n2) time and O(logn) space. The algorithm used is depth �rstsearch. A constant number of pebbles are able to traverse a spanning tree of the graphin linear time in the usual way by pushing and popping onto the stack the vertices alongthe path to the root. All that is required is to prevent the algorithm from cycling byremembering which nodes have been seen before. However, this requires n bits of \space".The Stack0 NNJAG can \store" a vector ~l 2 f0; 1g� by choosing two nodes v0 and v1 andpushing the sequence of these two nodes onto the stack in the order speci�ed by the bits of~l. The ith bit of ~l can be recalled and modi�ed by popping the nodes from one stack whilepushing them onto another, stopping at the required bit. This requires only O(logn) statesto count the number of nodes pushed and popped and linear time per memory access.The bounds in this paper hold for the Stack0 JAG, even when there is no limit on thenumber of nodes pushed onto the Stack. The main reason that the lower bound adversarywas able to not charge space for the stacks is that she already only charges for the pebbles.Recall that the states are free. The reason that she can do this is that the proofs assumethat the JAG remembers everything that it has ever known. The key is that a JAG onlycan learn for each time step which pebbles are on the same node. In Theorem ??, the JAGlearns nothing since pebbles NEVER meet unless they have traversed exactly the samepath. In Theorem ??, the JAG learns as little as possible. This is done by the adversaryplaying the partition game with the JAG to decide when the pebbles should meet and whenthey should not.2 Undirected S-T Graph ConnectivityLike (directed) stcon, undirected graph s-t connectivity (ustcon) is of interest. Timespace tradeo�s as high as those found in [?] cannot be obtained here, because it can be solvedprobabilistically with a trade o� of S � T 2 m1:5n:5 logO(1)n [?,?]. (Even a deterministicJAG can use its non-uniformity to produce a universal traversal sequence [?].)4



The current JAG lower bound [?] for ustcon allows only O � lognlog logn� pebbles and onlygives T 2 n � 2
 log nlog log n . The journal version of the paper presents a fun open problem, asolution to which would give the desired lower bound of n2�o(1) for ustcon with this numberof pebbles. However, the problem seems to be hard. It is unlikely that this technique willbe able to prove a lower bound with the number of pebbles increased beyond logn, becausea pebble is required for each depth of recursion of the graph and a graph with n nodescannot be constructed with more than log2 n levels of recursion. As said, the current paperis the �rst to prove a bound with an arbitrary number of jumping pebbles.Another direction to pursue is to try to prove a lower bound for ustcon on a graph thatis similar to the comb graph but with undirected edges. There are a number of problemswith trying to extend the proof techniques that are used in this paper to undirected graphs.The �rst issue is that on an undirected version of the comb graph, pebbles would be able totrivially travel from t backwards to s. This problem can be solved by have in two identicalcopies of the graph connected at the t nodes. The new question is whether s and s0 areconnected. The advantage of this is that all pebbles then are placed on one of the s nodes.Another problem is that the JAG can di�erentiate between the teeth by learning the degreesof their top nodes. However, a comb graph could be given for which these degrees are allthe same. This would require a lower bound on the partition game when the input isguaranteed to be a partition of the m connecting edges into � parts of equal sides. This isdoable. A third problem arises from the labels on the edges from the tops of the teeth tothe back nodes. In fact, the following is a 3 pebble, linear time deterministic algorithm forundirected comb graphs.For each back node vimove two pebbles P1 and P2 to vimove P1 into tooth connected to vimove P1 back up to the back nodes through the edge labeled 1.If P1 �nds P2 thenwe know that the edged connected to vi has label 1move P1 back into the tooth,down to the bottom,look for node tend ifend forEvery tooth is connected to some back node vi via the edge labeled 1. Therefore, everytooth will be traversed once and only once. Actually the same algorithm works for anylayered graph. 5



The following kluge �xes the above problem and gives a TS1=2 > n3=2 time space tradeo� for JAGs on undirected multi-graphs of high degree. Though the proof uses the formalde�nition of a JAG, it unfairly goes against the spirit of the de�nition. It depends heavilyon having multiple edges between nodes and uses a funny quark of the model. Speci�callysuppose there are two edges from u to v and from both u and v they are labeled 1 and 2.Then there is no way of the model knowing whether one edge is labeled 1 on both ends orone is labeled 1 2 and the other 2 1. The way we get around the above algorithm is to nothave the back of the comb. The graph has an s note and � teeth. There are m=� edgesfrom s to the top of each of the tooth. The edges up from the top of the tooth are labeled[1::m=�]. If a pebble traverses up from the top of a tooth it learns nothing. Why? Becauseit always arrives at node s.||||||||||||||Hi Greg, I hope that you are doing �ne.You were conserned about the stack proof. You could well be right. But I dont yet seeany faults in it. I thought of yet another model that is stronger than the stack model.The JAG+ model: - JAG - arbitary number of states. - Each move it speci�es a pebbleand an arbitrary long sequence of edge labeles. The pebble is moved in one step to the nodeat the end of the sequence.This is stronger than any STACK JAG. The nodes have no names. Hence the stackstores only a list of time steps. Popping the stack moves the pebble to the node that it wason at the time step popped.The JAG+ model with it arbitary many states can remember for each pebble and fortime step the path from s to the node the pebble was at on this time step. It can alsoremeber any stack of time steps. It can also move a pebble to such a time step by jumpingit to s and moving it down the sequence.I think the JAG+ model is simple enough that it can be de�ned at the beginning wherethe JAG is de�ned. Then the STACK JAG can simply be mensioned in reference to theEdmPoon paper.What do you think?Je�3 Open ProblemsThe obvious open problems are to decrease the gap between the upper and the lower boundsfor stcon on the Stack' JAG and the Stack NNJAG models and to prove any bound on astronger model.When the space is S = n1��, the gap is given by T = 2O(log2 n) [?] vs T = 2
( log2 nlog log n ) [?].The log logn factor could be gotten rid of. When the space is S = O(n logn), the bounds6



are tight, i.e. T = O(m) for depth �rst search and S 12T = 
(m(n logn) 12 ) given here. Whenthe space is just slightly sublinear there is again a gap, probably caused by the mn in theT = 2O(log2(n=S))�mn upper bound. This could be tightened as well.Ultimately, one would like to prove lower bounds for stcon like those in this paper andlike Edmonds and Poon's on a general model of computation. Any nontrivial bounds forgeneral models would be a step in this direction. As argued in Section ??, a more modestgoal would be to add features to the JAG or NNJAG to make it more general (as Poonadded node names to the JAG to devise the NNJAG [?]) and to prove the same boundson these more general models. Section ?? mentioned two areas in which the JAG seemslimited compared to a general model, and showed that some obvious solutions to theseproblems, such as strong jumps or the ability to move backwards along edges, make a JAGas strong as a Turing machine. Can one devise a weaker version of these operations andprove lower bounds on a JAG with such an operation? In particular, can one prove a boundsimilar to Edmonds and Poon's on the Stack JAG, and can one devise a weaker operationthan strong jumping that allows one to implement the algorithms of Barnes and Ruzzo [?]and Nisan et al. [?] on a JAG?AcknowledgmentsWe would like to thank Faith Fich for her extensive support, and Paul Beame, Al Borodin,Russell Impagliazzo and Hisao Tamaki for their helpful comments and suggestions.An earlier version of some of this work appears in Edmonds' PhD thesis [?].References[AKLLR70] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lov�asz, and C. W. Racko�. Randomwalks, universal traversal sequences, and the complexity of maze problems. In 20th AnnualSymposium on Foundations of Computer Science, pages 218{223, San Juan, Puerto Rico,Oct. 1979. IEEE.[BBRS92] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, polyno-mial time algorithm for directed s-t connectivity. In Proceedings, Structure in ComplexityTheory, Seventh Annual Conference, pages 27{33, Boston, MA, June 1992. IEEE.[BBRS95] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A sublinear space, poly-nomial time algorithm for directed s-t connectivity. To appear in SIAM Journal onComputing, 1995. Preliminary version [?].7
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