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1 Stack JAGs and Other JAG models

Although JAGs are a powerful structured model for s-t connectivity, they are not a general
model and there are complaints about the model. Hence, a goal is to define a stronger
model on which a lower bound can be proved. However, even defining an intermediate
model between the NNJAG model and the branching program seems hard. For example,
allowing the model to move a pebble to an arbitrary node or to the next node in some
fixed ordering would give the power of branching programs. Within a polynomial factor
in time, so does allowing it to move pebbles backwards along any directed edge [?]. This
section defines a model that addresses some of these issues. It is called a Stack JAG and
it was simultaniously defined in [?]. Their bounds were proved on the Stack NNJAG. Here
we define a provably stronger version of this stack property than that used by them. The
proofs in this paper easily go through with this stronger model.

The standard JAG model is not allowed to move a pebble to an arbitrary node. In
fact, it can only access vertices that have been walked to from s or from ¢ and vertices that
are disjoint from s and ¢ can never be reached. On the other hand, adding this strength
makes the model the same as a branching program simply by the definitions of the models.
Alternatively, one could allow the JAG to strong jump. Here the vertices are put in some
arbitrary order and a pebble is allowed to jump from its current vertex to the next vertex
in the order. Clearly this adds at most a factor of n onto the time of a branching program.
Moreover, Savitch [?] shows that such a machine is equivalent to a Turing machine with no
blow up in time for the purposes of solving s-t connectivity.

The difficulty in proving lower bounds on a general model of computation is that of
defining a good measure of progress. When the computation problem requires many outputs,

*Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. E-mail
address: gsbarnes@plg.uwaterloo.ca Portions of this work were performed while the author was at the
Max-Planck-Institut fur Informatik, Saarbricken, Germany.

'nternational Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, California 94704-1198.
E-mail address: edmonds@icsi.berkeley.edu; Home Page: http://www.icsi.berkeley.edu/~edmonds.
Portions of this work were performed while the author was at the University of Toronto, Canada.



the measure can be the number of values outputted. However, when the output is a single
bit, it is harder to say for each point in the computation, how much “progress” the algorithm
has made towards deciding this one bit. The weakness of the JAG of not being able to
quickly access all of the nodes provides us with the required measure of progress. Progress
is simply the number of “hard” nodes that have been accessed.

Our intuition into why randomly accessing the vertices is not useful is that if the al-
gorithm bounces around the graph and collects local information about the neborhood of
each node, then the model will not have enough space to store enough useful information
and will be unable to put this information together to decide sTCON.

As evidence that having random access to the vertices might be useful, there are two
algorithms for undirected s-t connectivity, Barnes and Ruzzo’s [?] and Nisan et al.’s [?],
that seem to require such power. Both algorithms repeatedly find sets of connected vertices
and “coalesce” each set into a single representative. On the other hand, it seems likely that
the coalescing scheme used by these two algorithms is only useful in undirected graphs,
where “connected to” is an equivalence relation. Therefore, it is not clear that accessing all
vertices would be useful when implementing JAG algorithms for (directed) sTCON.

The standard JAG model also does not allow a pebble to travel backward along a
directed edge. In fact, the JAG has no easy access to the indegree of a node. On the other
hand, on a general model, even if the input representation of the directed graph lists for
each node the out edges but not the in edges, such operations could be done in linear time.
Therefore a reasonable strengthening of the JAG model would be to allow it to specify an
incoming edge via a labeling of these edges and then to move backwards along the edge.

Not being able to traverse backwards along an edge provably does weaken the model.
The Q(log? n/loglogn) space bound for sTcon [?,2,?] exploits just this fact. They show
that in their graphs (which are trees) pebbles get “stuck” in dead end paths and hence have
to jump a considerable distance back to be able to restart again. The fact that the model
is too weak is demonstrated by the fact that a general model can solve STCON on trees with
only O(logn) space.

The stack version of the JAG was defined in response to this complaint by allowing
the model to push onto a stack the nodes traversed by a pebble and to back up along this
traversed path by popping the stack. Clearly this model can traverse trees with only a
constant number of pebbles, i.e. O(logn) space.

Before discussing the Stack JAG further, let us consider whether the model could be
strengthened further. What the Stack JAG is unable to do is to traverse forward down some
path and then to traverse backwards along edges up a different path. Our intuition is that
such an operation is not useful for determining whether a strictly forward directed path
exists between s and . (See Section ?? for a counter example to this intuition). At first
our intuition also told us that proving such a lower bound could on such a model could not
be that much harder. However, this second intuition is false. Being able to do this would



give the JAG (within a polynomial factor in time) the power of the branching program [?].
This is proved using a variation on Theorem 7 in Beame et al. [?]. The idea is that by
moving backwards along edges, one can treat the graph as an undirected graph and, using a
universal traversal sequence [?], visit any vertex in polynomial time. Like the strong jump
operation, this implies the JAG can then simulate a branching program. Because of the
polynomial blow up in time needed by the transformation, a ST = n?/logn lower bound in
a backward moving JAG would say nothing about a general model of computation. Hence,
this is an interesting open problem. The problem is similar to (but maybe slightly easier
than) proving this trade off for undirected sTcON. (Again see Section ?7).

Now let us consider the Stack JAG. In [?], it was define as follows. The Stack NNJAG
is given the additional power of a number of stack pebbles. Such a pebble is defined to
have a stack of nodes associated with it. Whenever the pebble walks along a directed edge,
the node is pushed onto its stack. The model is also allowed to pop the pebble’s stack,
which has the effect of moving the pebble backward along the path that it took getting
there. (This does not allow a pebble to move backwards along arbitrary directed edges but
it is a good start.) When a stack pebble jumps to the location of another stack pebble his
stack is replaced with a copy of the other pebble’s stack. When it jumps to a non-stack
pebble, its stack is emptied. The model is not charged for the space used by the stacks.
The paper [?] considers both the case in which there are only a constant number of stack
pebbles and the case in which all the pebbles are. They prove their bounds on such a
probabilistic Stack NNJAG.

Let us consider why the model does not charged for the space used by the stacks. For
upper bounds, it would be fair to charge logn bits of space for each node on a stack.
However, if this is done the Stack JAG is no stronger than a regular JAG. The regular JAG
can simulate the stacks by dropping, jumping to, and picking up pebbles. Hence, the Stack
model only becomes interesting when no space is charged for the Stacks. Since we are doing
lower bounds, defining such a powerful model only makes the bounds stronger.

This paper generalizes the Stack model only slightly. However, this difference turns out
to be significant. Let us call it a Stack’ JAG. In this model, a stack pebble is not required
to push a node when it walks and edge nor is it required to copy the other pebbles stack
when it jumps. Instead, it does these things only when it likes.

It is not difficult to see that the proofs of both Theorems ?? and 7?7 carry over easily
to Stack” JAGs. The proofs only charge a time step each time a pebble enters a tree (or
tooth) and for reaching the bottom of a path. They do not charge for the pebbles getting
back up. They also give away for free the information as to whether or not two pebbles are
contained in the same tree (tooth). Hence, the following two Corollaries are true.

Corollary 1 Any Stack’ JAG that solves STCON on graphs with n vertices using p pebbles

requires time §Q (m).



Corollary 2 Any Stack JAG that1 sollves STCON on graphs with n vertices and m edges
using p pebbles requires time Q(mnz [p2).

Let us compare the Stack’ JAG and the Stack NNJAG and the corresponding lower
bound techniques. The Stack NNJAG bound [?] points out that the maximum number of
nodes that a stack pebble can push onto its stack is the length of the longest directed path
in the input graph. Hence they bound this length and in some cases limit the number of
stack pebbles to be a constant, there by bounding the amount of space that is given away
in the stacks for free to either O(S) or O(5?). Then they observe that increasing the space
in their NNJAG lower bound by this extra amount does not change the asymptotics of the
result.

In contrast, a Stack’ NNJAG is much too powerful of a model. In fact, it can solve
(directed) sTcoN with O(n?) time and O(logn) space. The algorithm used is depth first
search. A constant number of pebbles are able to traverse a spanning tree of the graph
in linear time in the usual way by pushing and popping onto the stack the vertices along
the path to the root. All that is required is to prevent the algorithm from cycling by
remembering which nodes have been seen before. However, this requires n bits of “space”.

The Stack’ NNJAG can “store” a vector [ € {0, 1}* by choosing two nodes vy and v; and
pushing the sequence of these two nodes onto the stack in the order specified by the bits of
[. The ith bit of [ can be recalled and modified by popping the nodes from one stack while
pushing them onto another, stopping at the required bit. This requires only O(logn) states
to count the number of nodes pushed and popped and linear time per memory access.

The bounds in this paper hold for the Stack’” JAG, even when there is no limit on the
number of nodes pushed onto the Stack. The main reason that the lower bound adversary
was able to not charge space for the stacks is that she already only charges for the pebbles.
Recall that the states are free. The reason that she can do this is that the proofs assume
that the JAG remembers everything that it has ever known. The key is that a JAG only
can learn for each time step which pebbles are on the same node. In Theorem ??, the JAG
learns nothing since pebbles NEVER meet unless they have traversed exactly the same
path. In Theorem ??, the JAG learns as little as possible. This is done by the adversary
playing the partition game with the JAG to decide when the pebbles should meet and when
they should not.

2 Undirected S-T Graph Connectivity

Like (directed) sTcon, undirected graph s-t connectivity (USTCON) is of interest. Time
space tradeoffs as high as those found in [?] cannot be obtained here, because it can be solved
probabilistically with a trade off of 5 -7 € m'*n-*log®Mn [2,?]. (Even a deterministic
JAG can use its non-uniformity to produce a universal traversal sequence [?].)
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The current JAG lower bound [?] for usTcon allows only O ( ) pebbles and only

gives T € n X QQlolﬁog_n. The journal version of the paper presents a fun open problem, a
solution to which would give the desired lower bound of n2~°(!) for usTcoN with this number
of pebbles. However, the problem seems to be hard. It is unlikely that this technique will
be able to prove a lower bound with the number of pebbles increased beyond log n, because
a pebble is required for each depth of recursion of the graph and a graph with n nodes
cannot be constructed with more than log, n levels of recursion. As said, the current paper
is the first to prove a bound with an arbitrary number of jumping pebbles.

Another direction to pursue is to try to prove a lower bound for USTCON on a graph that
is similar to the comb graph but with undirected edges. There are a number of problems
with trying to extend the proof techniques that are used in this paper to undirected graphs.
The first issue is that on an undirected version of the comb graph, pebbles would be able to
trivially travel from ¢ backwards to s. This problem can be solved by have in two identical
copies of the graph connected at the ¢ nodes. The new question is whether s and s’ are
connected. The advantage of this is that all pebbles then are placed on one of the s nodes.
Another problem is that the JAG can differentiate between the teeth by learning the degrees
of their top nodes. However, a comb graph could be given for which these degrees are all
the same. This would require a lower bound on the partition game when the input is
guaranteed to be a partition of the m connecting edges into y parts of equal sides. This is
doable. A third problem arises from the labels on the edges from the tops of the teeth to
the back nodes. In fact, the following is a 3 pebble, linear time deterministic algorithm for
undirected comb graphs.

For each back node v,
move two pebbles P, and P, to v;
move P; into tooth connected to v;
move Py back up to the back nodes through the edge labeled 1.
If P, finds P, then
we know that the edged connected to v; has label 1
move P; back into the tooth,
down to the bottom,
look for node ¢t
end if

end for

Every tooth is connected to some back node v; via the edge labeled 1. Therefore, every
tooth will be traversed once and only once. Actually the same algorithm works for any
layered graph.



The following kluge fixes the above problem and gives a T'51/2 > n3/2 time space trade
off for JAGs on undirected multi-graphs of high degree. Though the proof uses the formal
definition of a JAG, it unfairly goes against the spirit of the definition. It depends heavily
on having multiple edges between nodes and uses a funny quark of the model. Specifically
suppose there are two edges from u to » and from both w and v they are labeled 1 and 2.
Then there is no way of the model knowing whether one edge is labeled 1 on both ends or
one is labeled 1 2 and the other 2 1. The way we get around the above algorithm is to not
have the back of the comb. The graph has an s note and y teeth. There are m/x edges
from s to the top of each of the tooth. The edges up from the top of the tooth are labeled
[1..m/x]. If a pebble traverses up from the top of a tooth it learns nothing. Why? Because
it always arrives at node s.

Hi Greg, I hope that you are doing fine.

You were conserned about the stack proof. You could well be right. But I dont yet see
any faults in it. I thought of yet another model that is stronger than the stack model.

The JAGH+ model: - JAG - arbitary number of states. - FEach move it specifies a pebble
and an arbitrary long sequence of edge labeles. The pebble is moved in one step to the node
at the end of the sequence.

This is stronger than any STACK JAG. The nodes have no names. Hence the stack
stores only a list of time steps. Popping the stack moves the pebble to the node that it was
on at the time step popped.

The JAG+ model with it arbitary many states can remember for each pebble and for
time step the path from s to the node the pebble was at on this time step. It can also
remeber any stack of time steps. It can also move a pebble to such a time step by jumping
it to s and moving it down the sequence.

I think the JAG+ model is simple enough that it can be defined at the beginning where
the JAG is defined. Then the STACK JAG can simply be mensioned in reference to the
EdmPoon paper.

What do you think?

Jefl

3 Open Problems

The obvious open problems are to decrease the gap between the upper and the lower bounds
for sTcon on the Stack” JAG and the Stack NNJAG models and to prove any bound on a
stronger model.
. 1— . . O(log2 Q(m)
When the space is § = n' =, the gap is given by T = 20008 %) [2] vs T' = 2*{foglozn) [?].
The log log n factor could be gotten rid of. When the space is § = O(nlogn), the bounds



are tight, i.e. 7" = O(m) for depth first search and S3T = Q(m(nlog n)%) given here. When
the space is just slightly sublinear there is again a gap, probably caused by the mn in the
T = 20008’ (n/9))y upper bound. This could be tightened as well.

Ultimately, one would like to prove lower bounds for sTcon like those in this paper and
like Edmonds and Poon’s on a general model of computation. Any nontrivial bounds for
general models would be a step in this direction. As argued in Section 7?7, a more modest
goal would be to add features to the JAG or NNJAG to make it more general (as Poon
added node names to the JAG to devise the NNJAG [?]) and to prove the same bounds
on these more general models. Section ??7 mentioned two areas in which the JAG seems
limited compared to a general model, and showed that some obvious solutions to these
problems, such as strong jumps or the ability to move backwards along edges, make a JAG
as strong as a Turing machine. Can one devise a weaker version of these operations and
prove lower bounds on a JAG with such an operation? In particular, can one prove a bound
similar to Edmonds and Poon’s on the Stack JAG, and can one devise a weaker operation

than strong jumping that allows one to implement the algorithms of Barnes and Ruzzo [?]
and Nisan et al. [?] on a JAG?
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