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as it is complete for NSPACE(logn) under logspace reductions. Both stcon and the correspond-ing problem for undirected graphs, ustcon, are hard for DSPACE(logn) as any problem solvabledeterministically in logarithmic space can be reduced to either problem. (See Lewis and Papadim-itriou [LP82] and Savitch [Sav70].) Thus, showing that there is no deterministic logarithmic spacealgorithm for stcon would separate the classes DSPACE(logn) and NSPACE(logn), while devisingsuch an algorithm would prove that DSPACE(f(n)) = NSPACE(f(n)) for any space-constructiblefunction f(n) 2 
(logn) [Sav70]. Stcon is also a candidate problem for separating the classes ofSC and NC [Joh90]. Below we mention the previous works that are most relevant to our paper.For more information on graph connectivity, we refer the reader to the beautiful survey paper byWigderson [Wig92].1.1 Previous worksThe most common algorithms for st-connectivity, breadth- and depth-�rst search run in optimaltime O(m + n) and use O(n logn) space. At the other extreme, Savitch [Sav70] provided analgorithm that uses O(log2 n) space and requires time exponential in its space bound (i.e., timenO(logn)). Tompa [Tom82] showed that stcon cannot be solved in polynomial time and sub-linear space simultaneously by the repeated squaring method. However, Barnes et al. [BBRS92]gave a polynomial time algorithm for stcon that uses space S 2 n=2�(plogn), providing the �rstpolynomial time, sub-linear space algorithm. This shows that the repeated squaring method is toorestricted. In fact, their algorithm implies a general time-space upper bound of T 2 2O(log2(n log nS ))�n3 for S 2 
(log2 n).A natural question is whether the upper bounds of Savitch and Barnes et al. are tight. Unfor-tunately, proving non-trivial lower bounds for natural decision problems on any general model ofcomputation, such as Turing machines and branching programs appears to be beyond the reach ofcurrent techniques. Thus, it is natural to consider structured computational models [Bor82] whosebasic operations are based on the structure of the input, as opposed to being based on the bitsin the input's encoding. A natural structured model for stcon is the \jumping automaton forgraphs", or JAG, introduced by Cook and Racko� [CR80]. A JAG moves a set of pebbles on thegraph. There are two basic operations | moving a pebble along a directed edge in the graph,and jumping a pebble from its current location to the node occupied by another pebble. Althoughthe JAG model is structured, it is powerful enough to simulate most known algorithms for stconand related problems. For example, depth-�rst and breadth-�rst search, random walks [AKL+79]and the algorithms of Savitch and Barnes et al. can all be simulated on a JAG, see [CR80]and [Poo96]. To the authors' knowledge, all known deterministic or probabilistic algorithms for di-rected stcon are implementable on a JAG. However, it is not clear how a nondeterministic JAG cansimulate Immerman's and Szelepcs�enyi's O(logn)-space algorithm for directed st-nonconnectivity2



(stcon) [Imm88, Sze88]. This motivated Poon [Poo93] to introduce the more general Node-NamedJAG (NNJAG) model, an extension of the JAG where the computation is allowed to depend onthe names of the nodes on which the pebbles are located. Using this added power, Poon [Poo93]showed how to simulate the Immerman / Szelepcs�enyi algorithm on a nondeterministic NNJAG.Cook and Racko� [CR80] proved a lower bound of 
(log2 n= log logn) on the space requiredfor a JAG to compute stcon. Within the log logn factor, this is tight with Savitch's algorithm.Berman and Simon [BS83] extended this result to the probabilistic JAG model. More precisely,they showed that any probabilistic JAG that solves stcon within 2logO(1) n expected time requires
(log2 n= log log n) space. Their probabilistic JAG is allowed to 
ip a coin in each step and is ableto solve stcon with 1-sided error using O(logn) space and O(nn) expected time, see Gill [Gil77]. Inthe following, we will refer to such a probabilistic machine as a coin-
ipping machine. Poon [Poo93]further generalized the bound showing that S 2 
( log2 nlog logn+log logT ) for any coin-
ipping probabilisticNNJAG with space S and expected time T .Regarding the time-space tradeo�, there are many lower bounds proved for ustcon on var-ious weaker variants of the JAG model [BBR+90, BRT92, CR80]. Edmonds [Edm93b] was the�rst to prove a time-space lower bound for ustcon on the regular JAG model (with boundedspace). All these results apply to (directed) stcon, which contains ustcon as a special case.However, ustcon appears to be easier than stcon both in terms of space and time-space com-plexity. For example, Nisan et al. [NSW92] showed that ustcon can be solved in O(log1:5 n) spaceon a deterministic Turing machine. There is also a randomized O(logn) space, polynomial timealgorithm (by Aleliunas et al. [AKL+79]) and a deterministic O(log2 n) space, polynomial timealgorithm (by Nisan [Nis92]) for this problem. Although it is not known whether the algorithms in[NSW92, Nis92] can be simulated on a JAG or NNJAG, ustcon can indeed be solved in O(logn)space and polynomial time on a JAG due to the existence of polynomial length universal traversalsequences [AKL+79]. Thus one cannot hope to get super-polynomial time lower bounds for stconby establishing similar bounds for ustcon.The �rst nontrivial lower bound explicitly for stcon was given by Barnes and Edmonds [BE93].They showed that ST 2 
(n2= logn) on the JAG model. In fact their result was proved on a morepowerful variant of JAG called many states, big step JAG which, unlike an ordinary JAG, is capableof traversing trees in O(logn) space. Using a proof technique completely di�erent from [BE93],Edmonds [Edm93a] showed that S1=3T 2 
(n4=3) on the NNJAG model. These results still do notyield super-polynomial lower bounds on time no matter how small S is. In view of this large gapbetween the upper and lower bounds and the fact that the Barnes et al. algorithm was obtainedby combining several rather simple ideas, it seemed that further improvements to the upper boundwere quite possible. 3



1.2 New resultsRather surprisingly, in a preliminary version of this paper by Edmonds and Poon [EP95], a lowerbound of T 2 2
(log2(n log nS )= log logn)�(nS= logn)1=2 is obtained. This implies that super-polynomialrunning time is necessary to solve the problem whenever S is smaller than (n logn)=2!(plogn�log logn).The bound also nearly matches the upper bound of T 2 2O(log2(n log nS )) � n3 (which is super-polynomial for S 2 (n logn)=2!(plogn)) by Barnes et al. [BBRS92]. Here, by a more careful choiceof parameters and a tighter analysis, we prove that for any � > 0, a probabilistic NNJAG with2-sided error, using space S 2 O(n1��), requires expected time T 2 2
(log2(n=S)), matching theupper bound of [BBRS92].In this paper, we de�ne an S-space probabilistic NNJAG as a distribution of S-space deter-ministic NNJAGs. Hence the probabilistic NNJAG must use time T 2 2O(S) or else it will cycle.From this fact and the time-space tradeo�, we obtain the �rst tight space lower bound of 
(log2 n)on a probabilistic NNJAG with 2-sided error. No tight space lower bound was previously knowneven for the more restricted JAG model. On the other hand, a coin-
ipping probabilistic JAG orNNJAG (as de�ned in [BS83, Poo93]) can run usefully for up to 22O(S) expected time. As mentionedbefore, it can solve stcon with O(logn) space and O(nn) expected time. Thus, one can only provea time-space lower bound on this coin-
ipping model. Since a coin-
ipping probabilistic NNJAGwith space S and time T can be simulated on our probabilistic NNJAG using time T and spaceS + logT , our result is valid on the coin-
ipping model for S 2 
(log2 n) (since logT 2 O(S)).For space S 2 O(log2 n), our result still implies a lower bound of T 2 2
(log2 n) on the coin-
ippingmodel. However, for S 2 O( log2 nlog logn), Poon [Poo93] gives a stronger lower bound of T 2 2(2
(log2 n=S)).For example, when S 2 O(logn), his result implies that T 2 2nc , for some constant c > 0.This paper borrows a lot of techniques from [Edm93a]. The bound is proved for the probabilisticNNJAG model by transforming the machine into a structured branching program, and applyinga progress argument introduced by Borodin et al. [BFK+81] and also used in many proofs oftime-space tradeo� lower bounds, including [BC82, Bea91, BFMadH+87, Yao88]. Roughly, theargument is that for every short path of the computation, the probability that lots of progress ismade, conditional on the fact that this computation path is followed, is less than 2�S (with spaceS there are at most 2S di�erent such sub-computations). Our proof, however, is complicated bythe fact that this is not true for some \lucky" computation paths and hence a number of newtechniques are required to overcome this. In addition, the argument is applied recursively yieldinga substantially greater lower bound than what would be possible without recursion. We note thatsimilar recursive techniques have also been used in [CR80, BS83, Yao88, Edm93b, Poo93].4



1.3 Organization of this paperWe �rst de�ne the NNJAG model in Section 2. In Section 3, we give the statement of our mainresult and its corollaries. In Sections 4 and 5, we describe the families of graphs used to defeat theNNJAG. In Section 6, we de�ne a notion of progress for an NNJAG on such families of graphs. InSection 7, we enhance and stylise the NNJAG model to simplify our proof. Sections 8 to 12 containthe technical proof of the lower bound. Section 8 contains the proof of an inductive statement,Lemma 8.3, from which our main result follows. The proof makes forward references to Lemma 8.1and Lemma 8.2 which are proved in Sections 10 to 12, and in Section 9 respectively. Section 13gives the conclusion and some open problems.2 The NNJAG modelA (deterministic) NNJAG [Poo93] J is a �nite state automaton with p distinguishable pebbles, qstates and a transition function �. The transition function � can depend non-uniformly on thesize, n, of the input graph and the values of p; q can be functions of n. The input to J is a triple(G; s; t) where G is an n-node graph containing nodes s and t. For every node in G, its out-edgesare labelled with consecutive integers starting at 0. The nodes in G are also labelled from 0 up ton� 1. We de�ne the instantaneous description (id) of J as the pair (Q;�) where Q is the currentstate and � is a mapping of pebbles to nodes, specifying the current location of each pebble in thegraph. When J is in id (Q;�), the transition function � determines the next move for J basedon (1) the state Q and (2) the mapping �. A move is either a walk or a jump. A walk (P; i; Q0)consists of moving pebble P along the edge labelled i that comes out of the node �(P ) and thenassuming state Q0. (If there is no such edge, the pebble just remains on the same node.) A jump(P; P 0; Q0) consists of moving pebble P to the node �(P 0) and then assuming state Q0. The NNJAGJ is initialized to state Q0 with all its pebbles on node s. It is said to accept an input (G; s; t) ifit enters an accepting state on this input. An NNJAG solves stcon for n-node graphs if for everyinput (G; s; t) where G is an n-node directed graph, it accepts the input if and only if there is adirected path from s to t in G. We de�ne the space used by the NNJAG as p logn + log q, i.e. asthe number of bits needed to specify an id. The time used is the number of moves it has made.For simplicity, we assume that the labels of nodes s and t are always �xed (say, as 0 and n � 1respectively). Hence s and t are not part of the input.A probabilistic NNJAG J is de�ned as a distribution on deterministic NNJAGs. On a giveninput, it �rst chooses probabilistically a deterministic NNJAG from the distribution and thenruns this deterministic NNJAG on the input. The space used is taken as the maximum over allthe deterministic NNJAGs in the distribution and the expected (worst case) time is the expected(worst case) running time over the distribution. We say that J solves stcon with 2-sided error if5



for every input (G; s; t), the probability of J entering an accepting state is at least 3=4 when thereis a path from node s to t, and at most 1=4 otherwise.3 Statement of ResultsOur main result is the following.Theorem 3.1 If J is a probabilistic NNJAG that solves stcon on n-node graphs while takingexpected time T and using space S, then T 2 2
(log2(n=S)) when S 2 O(n1��), where � > 0, andT 2 2
(log2(n log nS )= log logn) � (nS= logn)1=2 otherwise.The proof of Theorem 3.1 follows by applying \Yao's lemma" [Yao77] to the following theorem.Theorem 3.2 For any �, � > 0 there is a distribution D on n-node graphs such that1. PrG2D [G 2 stcon ] = 1=2, and2. for any deterministic NNJAG using space S 2 O(n1��) and (worst case) time T 62 2
(log2(n=S)),or S 2 !(n1��) and T =2 2
(log2(n log nS )= log logn)) � (nS= logn)1=2PrG2D [J is correct on input G ] < 12 + 2�:Proof of Theorem 3.1: Theorem 3 of [Yao77] states that for any randomized algorithmJ that has probability of error at most � and any input distribution D, the expected time of Jon the worst case input is at least half of the average time of the best deterministic algorithmthat errs with probability at most 2� on random input chosen from D. By Theorem 3.2, thelatter quantity is at least T � (1 � 2� � 12 � 2�) where T 2 2
(log2(n=S)) for S 2 O(n1��) andT 2 2
(log2(n log nS )= log logn) � (nS= logn)1=2 otherwise. Putting � as some constant less than 14 � �and since S 2 O(n1��), for some � > 0, we get the required lower bound on a probabilistic NNJAGthat errs with probability at most �.Theorem 3.2 is strong enough to yield an optimal space lower bound for the deterministic NNJAGmodel, as an immediate corollary.Corollary 1 Any probabilistic NNJAG that solves stcon requires 
(log2 n) space.Proof: Once the deterministic NNJAG to be used is chosen from the distribution the probabilisticNNJAG becomes deterministic. Hence, while using space at most S, the NNJAG cannot take morethan 2O(S) steps without going into an in�nite loop. If an NNJAG J uses space S =2 
(log2 n) then,for su�ciently large n, the number of steps it can take is smaller than the lower bound implied byTheorem 3.2 and the result follows. 6



4 Layered GraphsFrom now on, we let � be a �xed positive constant. A (d; x; f)-layered graph, �rst de�ned in [BE93],is a graph consisting of d layers, each containing x nodes. The jth node in layer i is denoted by(and named) uhi;ji. (Hence, the Node Named JAG always knows the location of a pebble in termsof i; j.) Every node has at most f out-going edges to some (not necessarily distinct) nodes in thenext layer. Here, we will set f = �((n logn=S)1=2) for S 2 O(n1��) and f = 2 otherwise.Let D = d80 logn= log fe (so that fD � n80). Note that D is constant with respect to n ifS 2 O(n1��) and D 2 �(logn) otherwise. The distribution B(x) is a distribution on (D; x; f)-layered graphs. Each graph G 2 B(x) will have x=2 hard paths (to be de�ned shortly) of length Dand is obtained as follows. In each layer i, except the top layer, we pick (without replacement) asequence of x=2 nodes, uniformly at random. Let us denote the jth node picked as vhi;ji. (It is thenode uhi;j0i for some j 0.) These nodes are called the hard nodes. The remaining x=2 nodes in thatlayer are called the easy nodes. For layer 1, we choose the sequence of nodes uh1;1i; uh1;2i; : : : ; uh1;x=2ias the sequence of hard nodes. We shall put in edges so that if an NNJAG walks a pebble D � 1steps starting from a hard node in the top layer, it is di�cult for the pebble to be on a hard nodewhen it reaches layer D.First, the hard nodes are connected by the edges (vhi;ji; vhi+1;ji) for each i 2 [1::D� 1] and eachj 2 [1::x=2]. The path from vh1;ji to vhD;ji is called the jth hard path. The nodes vh1;ji and vhD;jiare called the root and goal of the jth hard path respectively. Thus, there are x=2 hard paths, roots,and goals in G. The edge labels are chosen independently and uniformly from [0::f � 1]. Thus,for each root r the vector of edge labels on the hard path rooted at r, denoted by ~̀r, is chosenuniformly at random from [0::f � 1]D�1.For each layer i 2 [1::D�1], each hard node vhi;ji will have another f�1 out-going edges and eacheasy node will have f out-going edges. The destinations of these edges are chosen independently(with replacement) at random from the set of easy nodes in layer i+ 1. In this way, the in-degreeof each hard node is kept to one.5 Recursively Layered GraphsSet � = �(( n3Slogn)1=4) for S 2 O(n1��) and � = �(( nSlogn)1=2) otherwise. Set K = b log(n=(4�))log 2D c.Thus K 2 �(log(n lognS )) for S 2 O(n1��) and K 2 �(log(n lognS )= log logn) otherwise. Moreover,K � logn since S � log n. We �rst construct, recursively, K + 1 distributions H0;H1; : : : ;HK onlayered graphs where Hk is a distribution on (Dk; 2k�; f)-layered graphs. Each such graph has �super goals. In addition, for k > 0, each graph in Hk has Dk�12k�1� hard paths of length D eachone with a goal. Our input distribution D of n-node graphs in Theorem 3.2 is formed by adding afew nodes and edges to each graph in HK . 7



The distribution H0 contains only one graph which is simply a layer of � isolated nodes. Thesenodes are the super goals. For k > 0, a graph G in Hk is formed as follows. We choose a graphG0 from Hk�1 and replace each layer i of G0 with a graph Gi chosen from B(2k�). Note that eachGi has 2k�=2 = 2k�1� hard paths and each layer of G0 has the same number of nodes. We identifythe jth hard path of Gi (i.e., the path from vh1;ji to vhD;ji of Gi) with the jth node in layer i (i.e.,uhi;ji) of G0. Every edge that goes into uhi;ji of G0 will now go into vh1;ji of Gi and every edge thatgoes out of uhi;ji of G0 will go out of vhD;ji of Gi. The easy nodes in Gi are not connected to anynode outside Gi.Since G is uniquely determined by G0 and G1; : : : ; GDk�1 (and vice-versa), we often denote G asa tuple hG1; G2; : : : ; GDk�1 ;G0i. The graph G0 is called the collapsed graph of G, denoted by C(G).The set of hard paths (respectively, roots and goals) of G is the union of all the sets of hard paths(respectively, roots and goals) in G1; G2; : : : ; GDk�1 . Hence G has Dk�12k�1� hard paths (and thesame number of roots and goals) in total. The � super goal nodes in G are the goal nodes of the �hard paths in GDk�1 , representing the � super goal nodes in G0 2 Hk�1. Note that the super goalsare on the bottom level of G and they are associated with the � nodes in the graph from H0. Theedges within each of the Gis are called the base edges of G. The other edges, i.e., those connectingthe Gis, are in 1-1 correspondence with the edges in the collapsed graph C(G) of G and hence theyare called the collapsed edges. Note that graphs in H1 have base edges but not collapsed edges,and the graph in H0 does not have any edge at all.Figure 1 shows a graph G 2 Hk on the right and on the left its collapsed graph C(G) 2 Hk�1and the symbol for a base graph in B(2k�). We rearranged the nodes so that all the hard nodes inthe Gis appear on the left half.For each k 2 [0::K], we obtain a distribution Gk by adding to each graph in Hk the followingauxiliary nodes and edges (see Figure 2):(A1) a directed path (s = w1; w2; : : : ; w2k�) with w1 = s and for each j 2 [1::2k�], an edge fromwj to uh1;ji of G,(A2) the isolated node t,(A3) a special isolated node, referred to as the lost node.(A4) a number of isolated nodes so that the total number of nodes in the graph is exactly n.The lost node is introduced for technical reasons that will become clear in Section 7. Theseauxiliary nodes and edges are �xed for each graph G 2 Gk. Hence for k > 0, G can still bespeci�ed by a tuple hG1; G2; : : : ; GDk�1;G0i where G1; : : : ; GDk�1 are in B(2k�) and G0 is in Hk.The collapsed graph of G, denoted by C(G), is the graph G0 augmented with the auxiliary nodesand edges needed to form a graph in Gk�1 from a graph in Hk�1. Thus C(G) is in Gk�1. Notethat excluding the nodes added in (A4), each graph in Gk consists of a (Dk; 2k�; f)-layered graph,8
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a path with 2k� nodes, the node t and the lost node. These add up to a total of (2D)k�+ 2k�+ 2� 4(2D)k� � n nodes for k � K by our choice of � and K. Hence, we are not adding a negativenumber of nodes in (A4). Finally, the distribution D of Theorem 3.2 is de�ned as follows. Firstchoose a graph G0 2 GK and then uniformly at random choose one of the � super goals in G0 asthe special node. With probability 1=2 connect the special node to the isolated node t to form agraph G. Clearly, PrG2D [G 2 stcon ] = 1=2.6 De�ning ProgressConsider the computation of an NNJAG J on input G. We will analyse the progress of J duringdi�erent phases of the computation. In the following de�nition, a subcomputation A refers toa sequence of moves taken by the NNJAG starting from certain id (Q;�). Once we recast anNNJAG as a branching program in Section 7, one can think of A as a sub-branching program.De�nition 1 For any subcomputation A and any input G 2 Gk, wA(G) is the number of di�erentgoals in G that were pebbled (i.e., reached by a pebble) at any time during A. Similarly, w�A(G) isthe number of super goals in G that were pebbled during A.Note that when A begins, some pebbles may already be sitting on a goal node. These goals will becounted as progress in wA(G). However, there can be at most S= logn such progress. The followinglemma shows why reaching the other goals is di�cult for an NNJAG.Lemma 6.1 If at some step T 0, a particular hard path does not contain any pebble, and at somelater step T 00, a pebble arrives at the goal of this path then each edge in that path must be traversedby some pebble between step T 0 and T 00.Proof: Observe that every node on a hard path has in-degree one and in the NNJAG model apebble can arrive at a node only if the node is already occupied by some pebble or if it walks tothe node.We point out that it is not neccessary for a general computation model to �nd out the hard pathbefore it can inspect the edge connections of the associated goal node. This is the only signi�cantdi�erence between a general model and an NNJAG that we will employ in our proof.Recall that an input G = hG1; : : : ; GDk�1;G0i 2 Gk consists of the collapsed graph G0 2 Gk�1and the base graphs G1; : : : ; GDk�1 2 B(2k�). The NNJAG has to learn both the structure of thebase graphs and that of the collapsed graph. Obviously, wA(G) measures how much A has learntabout the base graphs. The following lemma shows that wA(G) is also a good estimate of thenumber of di�erent collapsed edges traversed during a subcomputation A.Lemma 6.2 The number of di�erent collapsed edges of an input graph G 2 Gk that can be traversedduring a subcomputation A of an NNJAG is at most f � wA(G).10



Proof: An NNJAG can traverse an edge (u; v) only if there is a pebble on node u before thetraversal. If the edge is a collapsed edge, u must be a goal. Since every goal has out-degree at mostf , pebbling one such node allows the NNJAG to traverse at most f di�erent collapsed edges.Lemma 8.3, to follow, uses lemmata 6.1 and 6.2 recursively to prove that it is hard for anNNJAG to reach the � super goal nodes. Roughly speaking, the argument goes as follows: Supposewe have proved that it is hard to visit the super goals of graphs chosen from Gk�1 within time Tk�1.Consider a graph G = hG1; : : : ; GDk�1;G0i in Gk and an NNJAG J with time Tk. We will prove,using Lemma 6.1, that for any input G0 2 Gk�1, it is hard for J to visit many goals in the graphsG1; : : : ; GDk�1 2 B(2k�) within time Tk. In particular, Lemma 6.2 implies that no more than Tk�1di�erent edges in G0 are traversed. To conclude the argument, we show that J is e�ectively anNNJAG trying to reach, within time Tk�1, the super goals for graphs chosen from Gk�1, which isdi�cult by the inductive assumption.It should be pointed out that J can traverse the same edge many times (which is naturalas J cannot remember the result of too many edge traversals with limited space). Therefore,we cannot directly claim that J runs in Tk�1 time on inputs from Gk�1. For this reason, wemeasure the time of an NNJAG using the s-height, hA(), of the corresponding branching programA. Precise de�nitions of s-height will be given in Section 7. Here, we just state that an NNJAGrunning in time T will have hA(G) � T for any G. Thus Lemma 8.3 will imply that if J is anNNJAG that uses space S 2 O(n1��) and time T =2 2
(log2(n=S)) or space S 2 !(n1��) and timeT =2 2
(log2(n log nS )= log logn) � (nS= logn)1=2, then for any � > 0, PrG2D [w�J(G) > �� ] < �. Below weshow how Theorem 3.2 follows from this last statement.Proof of Theorem 3.2: Choose G 2 D. Recall that this can be done by choosing Ga 2 GK andthen choosing one of its � supergoals to be special, uniformly at random. Let Gb be the same asGa except with an edge from the special node to t. Then G is uniformly chosen to be Ga or Gb.If Ga is such that w�J(Ga) > ��, i.e., J reaches a lot of super goals, then assume that J gives thecorrect answer on G. From Lemma 8.3, the probability of this event is less than �. If J pebbles atmost �� super goals, then the probability that J pebbles the special node is at most � because theNNJAG cannot tell that a super goal is special unless it pebbles it. Finally, if J does not pebble thespecial node it cannot learn whether there is an edge from the special node to t. Therefore, in thiscase, the computations on Ga and Gb are the same and hence the probability of giving the correctanswer for G is 1=2. Thus, the probability of giving the right answer for G is less than 1=2 + 2�.7 An NNJAG as a Branching ProgramWe will introduce a variant of the NNJAG model which we call the pebble location redundantNNJAGmodel. The reason for this is that while the new model maintains all the power of an NNJAG it11



helps us prove a collapsing lemma. In particular, we shall see that it is helpful to construct a pebblelocation redundant NNJAG J 0 for graphs in Gk�1 from a pebble location redundant NNJAG J forgraphs in Gk. We call this the \collapsing" of J to J 0.An NNJAG is said to be pebble location redundant if the current state always determines thecurrent location of all the pebbles and, hence, the state alone is su�cient to specify the id of theNNJAG. More formally, this means that there is a function b� such that if the NNJAG is in stateQ, then b�(Q) speci�es the locations of all the pebbles. As a �rst step in getting a pebble locationredundant NNJAG we enhance a standard NNJAG as follows. First, we allow it to jump a pebbleto the lost node (which is isolated), and for any j 2 [1::2k�] to the nodes wj and uh1;ji. We callsuch a jump a node-jump. Note that in the standard NNJAG model a pebble can only jump to(the node occupied already by) another pebble. Also, we modify a step to be taken from an id(Q;�) by the NNJAG to consist of the following substeps:(Substep 1) Based on (Q;�), it either walks a pebble P along the edge with a speci�ed label`, or it node-jumps a pebble P . It can also choose not to move any pebble. Let �1 specifythe new pebble locations.(Substep 2) Based on (Q;�) and �1, it performs a (possibly empty) sequence of pebble-to-pebble jumps and then assumes some state Q0.The intuition supporting these modi�cations is that a sequence of moves of a standard NNJAG canbe viewed as a sequence of \macro steps", each of which starts with a walk, followed by a (possiblyempty) sequence of jumps. Each such jump causes the standard NNJAG to enter a unique next id.Intuitively, the NNJAG \learns" about the input only by taking walking steps. Each macro stepcan be performed in one step in the enhanced model. It follows that a time lower bound on thisnew model implies the same lower bound on the number of walking steps on the original model.For any NNJAG J (modi�ed as above) with p pebbles, q states and T time, we can constructa pebble location redundant NNJAG J 0 so that for any possible id (Q;�) of J , J 0 will have astate hQ;�i. In this state, J 0 will perform the same action as J does on id (Q;�).1 Thus, thepebble location redundant NNJAG J 0 will have p pebbles and q � np states, hence using spacelog(q � np) + p logn = log q + 2p logn which is at most twice the space of J . Moreover, it uses nomore time than J .To be able to discuss subcomputations of the NNJAG better it is convenient to recast theNNJAG as an r-way branching program [BC82] (de�ned below). While, though, an r-way branching1Note that in general, a standard NNJAG cannot be made pebble location redundant because if the move takenfrom an id (Q1;�1) is a walk, the new pebble location, �2, will depend on the input graph. Hence the NNJAGcannot know which new state Q2 to move to so that b�(Q2) = �2. In contrast, in the modi�ed NNJAG, the pebblelocation, �2, after substep 2 is uniquely determined by (Q1;�1) and �01. Hence it is possible for the NNJAG tochoose a state Q2 so that b�(Q2) = �2. 12



program is a general model of computation the branching program we will examine has \structure",imposed by lemmata 6.1, 6.2 regarding NNJAG computations.A branching program is a directed acyclic graph with a designated source node and a numberof sink nodes. Each sink node in the graph is labelled with either accept or reject and each non-sinknode is labelled with an input variable. Furthermore, for each possible value of the input variablethat labels a non-sink node, there is a unique out-edge from this non-sink node, labelled with thatvalue. Hence the out-degree of the graph is at most r, where r is the maximum number of di�erentvalues possible for an input variable. A sub-branching program is simply a subgraph rooted at somenode.The nodes in this graph represent the possible states of the machine's memory. In particular,the source node represents the initial memory state. In each step the machine queries an inputvariable, depending on the current state of its memory, and then changes its memory to anotherstate based on the value returned. Which variable to query and which state to go to, on eachpossible outcome, are speci�ed by the graph. It is easy to see that for every input, there will be aunique path in the graph from the source node to a sink node. We call such a path the computationpath followed by the input. We say that a branching program accepts an input if and only if thecomputation path followed by the input leads to a sink node labelled with accept.Consider an arbitrary (pebble location redundant) NNJAG J that uses space S, takes timeT and takes inputs from a distribution of n-node graphs with out-degree f . The correspondingbranching program A has a row of con�guration nodes for each of the time steps t 2 [1 : : :T ]. Eachrow has 2S con�guration nodes (Q;�; t), one for each NNJAG id (Q;�). For every id (Q;�) of J andtime step t, there will be a con�guration vertex (Q;�; t) in A. The con�guration vertex (Q0;�0; 1),where (Q0;�0) is the start id of J , is taken as the start vertex of A. For each accept id (Qa;�a)of J , (Qa;�a; 1); (Qa;�a; 1); : : : ; (Qa;�a; T ) are accept con�guration vertices in A. Likewise forthe reject ids. The input variables labelling the con�guration vertices of A are the variables Xhu;`iwhere u 2 [0::n� 1] is a node name and ` 2 [0::f � 1] is an edge label. The variable Xhu;`i willhave value v if there is an edge (u; v) labelled with ` in the input graph and the value \unde�ned"if there is no such edge. Thus, if in id (Q;�) the �rst substep of J walks a pebble from node ualong the edge with label `, the con�guration vertex (Q;�; t) in A will be labelled with the variableXhu;`i. Furthermore, the vertex will have a directed edge labelled with v to con�guration vertex(Q0;�0; t+ 1) if for some input graph, Xhu;`i = v (i.e., the queried edge has destination v) and thesubsequent jumps taken in the second substep by J bring the machine to the id (Q0;�0). If J doesnot walk any pebble in the �rst substep, the con�guration vertex will not get any label and willhave only one unlabelled out-edge pointing to some con�guration vertex (Q0;�0; t + 1) dependingon the second substep of J .Note that the branching programA so constructed is levelled in the sense that each con�guration13



vertex can be assigned a level number so that edges from level i only go to level i+ 1. Moreover,all the rows in A are identical as the transition function of the (deterministic) NNJAG does notdepend on time. Therefore, the number of distinct sub-branching programs of a �xed height is atmost 2S .Finally, we introduce a variant of branching programs called sectioned branching programs. Abranching program is said to be sectioned if its vertices are partitioned into sections so that theout-edges of a vertex in section i can only go to vertices in section i or i+1. Thus each computationpath will go through each section at most once.De�nition 2 A branching program A is properly sectioned for an input G if it queries at most3fSlogn di�erent edges of G in each section. If A is properly sectioned for G then its s-height on G,denoted by hA(G), is 3fSlogn times the number of sections A contains; otherwise, hA(G) is in�nite.Note that a set of queries to the same edge of the input graph within a section is only chargedas one query in the s-height measure. The branching program de�ned earlier can be viewed asa sectioned branching program with T= 3fSlogn sections, each of which queries at most 3fSlogn di�erentinput edges. Moreover, on every input G, A will have s-height T = (T= 3fSlogn)� 3fSlogn .8 Proof OutlineIn the rest of this paper, a directed edge from u to v with label ` will be denoted by the triplehu; `; vi. Also, by G(O) we denote the distribution obtained by selecting those graphs in G thatsatisfy a condition O. We will derive Lemma 8.3 by induction. Before doing so, we present twolemmata that are central to the proof of that inductive statement. The �rst one mainly concernstraversing base edges of graphs in Gk. It bounds the probability of a machine making a lot ofprogress within a short period of time.Lemma 8.1 (Main Lemma) Let A be any sectioned sub-branching program derived from somepebble location redundant NNJAG with at most S= logn pebbles. Then for any k 2 [1::K],PrG2Gk [wA(G) � 3S= logn and hA(G) � �=8 ] < 2�2S :The intuition behind Lemma 8.1 is as follows. Recall that wA(G) is the number of goals thatget pebbled. We \give away" one such node for each of the (at most) S= logn pebbles. WhenhA(G) � �=8, A queries at most �=8 di�erent edges in G. Consider the probability of pebblingthe goal corresponding to an arbitrary root r, assuming that the hard path rooted at r does notcontain any pebble initially. There are fD�1 possibilities for the vector, ~̀r, of edge labels on thishard path. To remind us of its dependency on G, let us use the symbol ~̀r(G) instead of ~̀r in thefollowing. An NNJAG can move a pebble down from r following some vector ~̀ 2 [0::f � 1]D�114



of edge labels, hoping that ~̀ = ~̀r(G). For G drawn from Gk, this probability is f�(D�1). TheNNJAG can dynamically choose ~̀ based on the names of the nodes on the path it has traced sofar. However, this will not be a lot of help as the name of the nodes on the hard path are chosenrandomly. Recall that fD � n80. Since � 2 O(n), it follows that fD�1 � �=8. Clearly, by queryingat most �=8 di�erent edges in the input graph, the NNJAG cannot try many di�erent ~̀s. Hencethe probability of having at least one of them being successful is small.On the other hand, the NNJAG can eliminate some of the possibilities it needs to consider, bydetecting \collisions of edges" and hence increase the probability it succeeds. For example, whenit learns that two di�erent edges have the same destination node v, it learns that this node v isnot on the hard path since its in-degree is bigger than one. Hence, any path continuing from nodev need not be traversed. However, within �=8 steps, the probability that an edge traversed bythe NNJAG collides with some other traversed edge can be shown to be at most 1=4. (Intuitively,the probability is �=82k�=2 � 1=8. For the simplicity of the proof, we argue in Section 11 that thisprobabilty is at most 1/4.) By analyzing a variant of branching processes, we can show that theprobability of eliminating a large number of vectors ~̀ 2 [0::f � 1]D�1 in this way, is small. In otherwords, with high probability, the NNJAG still has a lot of possible ~̀s to try out. This discussionconsiders only a single root. When there are many roots, we need to take care of the dependenciesamong them before we can apply some Cherno�-type bounds. The detailed analysis and proof ofLemma 8.1 comprises Sections 10, 11 and 12.The second lemma concerns the traversal of collapsed edges of graphs in Gk. Let E be a �xedset of Dk�1 base graphs G1; : : : ; GDk�1 2 B(2k�) (we call such a set of graphs a complete set)and Gk(E) be the distribution of Gk conditioned on these �xed graphs. The lemma relates thecomputation of a pebble location redundant NNJAG J on inputs in Gk(E) to that of a faster (interms of s-height) pebble location redundant NNJAG J 0 on inputs in Gk�1. For any complete set Eof base graphs, de�ne a function CE from nodes in G 2 Gk(E) to nodes in C(G) 2 Gk�1 as follows:CE(v) = 8>><>>:wi; if v = wi for some i 2 [1::2k�1�]uhi;ji; if v is on the jth hard path in Gilost; otherwise.Note that the function is well-de�ned because for an input G 2 Gk(E), whether a node v is ahard node, an easy node or an auxiliary node is �xed. For any pebble mapping � for graphs inGk(E), denote by CE(�) the pebble mapping �0 for graphs in Gk�1 such that for any pebble P ,�0(P ) = CE(�(P )).Lemma 8.2 (Collapsing Lemma) Let k be any integer in [1::K], J be any pebble location re-dundant NNJAG with p pebbles and q states, and E any complete set of base graphs. There existsa corresponding pebble location redundant NNJAG J 0 with the same number of pebbles and states15



such that for any G 2 Gk(E), J is in id (Q;�) in some step on input G if and only if J 0 is in id(Q;CE(�)) in the same step on input C(G) 2 Gk�1.Note that J and J 0 use the same space. Moreover, J traverses a collapsed edge hu; `; vi in G ifand only if J 0 traverses the corresponding edge hCE(u); `; CE(v)i in C(G), and J accepts G if andonly if J 0 accepts C(G). The proof of Lemma 8.2 is given in Section 9. Having stated lemmata 8.1,8.2 we are ready to state and prove the following inductive statement.Lemma 8.3 For any � > 0 and any k 2 [0::K], if Tk = ���� logn24fS �k and A is a sectioned branchingprogram with no more than Tk=( 3fSlogn ) sections, derived from a pebble location redundant NNJAG Jwhich uses at most space S, then PrG2Gk [w�A(G) > �� and hA(G) � Tk ] � k2�S < �.Proof of Lemma 8.3:(Base Case) When k = 0, the branching program A can query at most T0 = �� di�erent edges.Hence it cannot discover more than �� super goals.(Inductive Step) Assume that the lemma is true for k� 1. Consider a sectioned branching programA having at most Tk= 3fSlogn sections derived from some pebble location redundant NNJAG J with atmost S space. Suppose, for the sake of contradiction, that PrG2Gk [w�A(G) > �� and hA(G) � Tk ]> k2�S . We will show that in this case there exists some sectioned branching program A0 with atmost Tk�1= 3fSlogn sections corresponding to some pebble location redundant NNJAG J 0 using at mostS space such that PrG02Gk�1 [w�A0(G0) > �� and hA0(G0) � Tk�1 ] > (k � 1)2�S . This contradictsthe inductive hypothesis.We break A into at most Tk�1= 3fSlogn slices so that slice i consists of section i(Tk=Tk�1) to section(i+1)(Tk=Tk�1)� 1, inclusive. (So each slice contains Tk=Tk�1 = � logn24fS sections.) Let F be the setof G 2 Gk such that hA(G) � Tk and at least one sub-branching program bA, which lies completelywithin a slice, has w bA(G) � 3S= logn. Since hA(G) being �nite implies that bA is properly sectionedfor G, h bA(G) � (Tk=Tk�1)( 3fSlogn) = �=8.Consider the maximal sub-branching program bA which lies completely within slice i and isrooted at the node through which G �rst enters slice i. There are at most 2S such sub-branchingprograms in A. Combining this fact with Lemma 8.1, we have PrG2Gk [G 2 F ] < 2�S . There-fore, PrG2Gk [w�A(G) > �� and hA(G) � Tk and G =2 F ] > (k � 1)2�S . Let us choose a completeset E of base graphs so that PrG2Gk(E) [w�A(G) > �� and hA(G) � Tk and G =2 F ] > (k � 1)2�S :By Lemma 8.2, we can construct from the pebble location redundant NNJAG J , another pebblelocation redundant NNJAG J 0 that runs on Gk�1 with the same number of pebbles and states as J .From J 0, we can construct a sectioned branching program A0 with at most Tk�1= 3fSlogn sections; onesection for each of the slices of A. This is done by putting a con�guration vertex of A0 in section16



i if and only if the corresponding2 con�guration vertex of A is in slice i. In A, edges only go fromvertices in slice i to vertices in slice i or i+1. Therefore, in A0, edges only go from vertices in sectioni to vertices in section i or i+ 1. Hence, this is a legal way of partitioning the vertices of A0 intosections. Now, consider an arbitrary graph G 2 Gk(E)�F . At most 3Slogn progress is made in theunique maximal sub-branching program that G passes through in each slice of A. By Lemma 6.2,each such sub-branching program can query at most 3fSlogn di�erent collapsed edges in G. Henceeach corresponding sub-branching program in A0 queries at most 3fSlogn di�erent edges in C(G).Therefore, A0 is properly sectioned for C(G), for all G 2 Gk(E)�F . Since A has Tk�1= 3fSlogn slices,A0 has the same number of sections. It follows that hA0(C(G)) � Tk�1, for all G 2 Gk(E)�F . SinceC(G) is chosen independent of the Gis, the distribution Gk(E) is isomorphic to the distributionGk�1. Therefore, PrC(G)2Gk�1 [w�A0(C(G)) > �� and hA0(C(G)) � Tk�1 ]� PrG2Gk(E) [w�A0(C(G)) > �� and G =2 F ]= PrG2Gk(E) [w�A(G) > �� and G =2 F ]� PrG2Gk(E) [w�A(G) > �� and hA(G) � Tk and G =2 F ]> (k � 1)2�S:For k = K the above inductive statement implies that any deterministic pebble location redundantNNJAG which uses at most S space and takes O(TK) time, will pebble more than �� super goalswith probability less than K2�S . Recall that TK = ���� logn24fS �K . For S 2 O(n1��), we set f =�((n logn=S)1=2), � = �((n3S= logn)1=4) and K = �(log(n lognS )). Hence TK = 2
(log2(n log nS )) �(n3S= logn)1=4 = 2
(log2(n=S)). For S 2 !(n1��), we set f = 2, � = �((nS= logn)1=2) and K =�(log(n lognS )= log logn). Thus, we get TK = 2
(log2(n log nS )= log logn)� (nS= logn)1=2. For big enoughn, K2�S < �, since K � logn and S � logn. Thus, if J is an NNJAG that uses space S and timeT =2 
(TK) then for any � > 0, PrG2D [w�J(G) > �� ] < �.Note that for S 2 O(n1��), the input graph has out-degree f = �((n logn=S)1=2) which isnon-constant. We can convert the graphs of out-degree f into graphs of out-degree 2 by replacingeach node with a binary tree of size O(f). This blows up the number of nodes by a factor of f .Hence our lower bound becomes T 2 2
(log2(n=fS)) = 2
(log2(n=S)) where n is the number of nodesin the out-degree 2 graph.2There is a 1-1 correspondence between states of J and J 0. It is not hard to see that there is also a 1-1 correspon-dence between con�guration vertices of A and A0. 17



9 Collapsing an NNJAGLemma 8.2 Let k be any integer in [1::K], J be any pebble location redundant NNJAG with p pebblesand q states, and E any complete set of base graphs. There exists a corresponding pebble locationredundant NNJAG J 0 with the same number of pebbles and states such that for any G 2 Gk(E), Jis in id (Q;�) in some step on input G if and only if J 0 is in id (Q;CE(�)) in the same step oninput C(G) 2 Gk�1.Proof: J 0 will have the same set of states as J . Let b� be the function that maps the states of Jto its pebble locations. We shall prove, by induction on the number of steps taken, that if J is instate Q in step t on input G 2 Gk(E) then J 0 is in the same state in step t on input C(G) 2 Gk�1and CE(b�(Q)) speci�es the locations of its pebbles in that step. This proves the claim. Initially, Jand J 0 are at state Q0. Both b�(Q0) and CE(b�(Q0)) specify that all pebbles are on node s.Assume that at step t, J is in state Q on input G, and at the same step, J 0 is in state Q onC(G) and its pebble locations are speci�ed by CE(b�(Q)). The move of J 0 will be determined bythe move of J . For the �rst substep there are three cases.(Case 1) If J does nothing then J 0 also does nothing.(Case 2) If J walks pebble P along the edge with label ` then there are 3 subcases depending onthe node u that P was on.(2a) If u is the lost node or the node wj for some j 2 [1::2k�] then the destination, v, of Pis �xed and CE(v) is either the lost node, the node uh1;ji or wj+1. Hence J 0 node-jumpspebble P to CE(v).(2b) If u is a hard node in layer D of some Gi (i.e., u is a goal node) then the out-edges ofu are collapsed edges. In this case, J 0 walks pebble P along edge `.(2c) If u is not a goal node and not an auxiliary node then the destination, v, is �xed for allG 2 Gk(E). If CE(u) 6= CE(v) then u must be a hard node and v must be an easy node.Hence J 0 node-jumps pebble P to CE(v) which is the lost node. If CE(u) = CE(v), thenJ 0 does nothing.(Case 3) If J node-jumps pebble P to node v then v must be either the lost node or wj or uh1;ji forsome j 2 [1::2k�]. Hence CE(v) is either the lost node, wj or uh1;ji for some j 2 [1::2k�1�].J 0 just node-jumps pebble P to CE(v).Let �1 be the pebble locations of J after the �rst substep and let J assume state Q0 in thesecond substep. In its second substep, J 0 performs the same sequence of pebble-to-pebble jumpsas in the second substep of J and then assumes state Q0 if and only if its pebble locations after the�rst substep is CE(�1). 18



Let us check that in all the above cases, the pebble locations of J 0 after the �rst substep isindeed CE(�1). By the inductive hypothesis pebble P of J 0 was on node CE(u) before the �rstsubstep while pebble P of J was on node u. Since J only moves pebble P from node u to v in the�rst substep, we just need to show that J 0 moves P from node CE(u) to CE(v) in the �rst substep.This is obviously true in all the above cases, except (2b). In Case (2b), hu; `; vi is a collapsed edgein G. By the de�nitions of Gk and Gk�1, hCE(u); `; CE(v)i is an edge in C(G). Hence pebble P ofJ 0 will be on node CE(v) after the �rst substep. It follows that J 0 will also assume state Q0 in thesecond substep. Moreover, in the second substep, J changes the pebble locations from �1 to b�(Q0)by pebble-to-pebble jumps. By construction, J 0 will also change the pebble locations from CE(�1)to CE(b�(Q0)).10 Proof of the Main LemmaLemma 8.1 Let A be any sectioned sub-branching program derived from some pebble location re-dundant NNJAG with at most S= logn pebbles. Then for any k 2 [1::K],PrG2Gk [wA(G) � 3S= logn and hA(G) � �=8 ] < 2�2S :Proof: Recall that every G 2 Gk consists of Dk�1 graphs, G1, G2,..., GDk�1 chosen independentlyfrom B(2k�), a graph G0 chosen from Hk�1 and some �xed auxiliary nodes and edges. Each Gi has2k�1� roots. Therefore there are (2D)k�1� roots. Recall as well that wA(G) denotes how manyof the (2D)k�1� goals have been discovered and that hA(G) is a measure of the number of edgesqueried.Our proof will concentrate on the traversing of the base edges in G. We assume that G0 is �xedand known to A. Hence the probability is only over the graphs G1; : : : ; GDk�1 2 B(2k�). Let Bkbe the distribution f hG1; : : : ; GDk�1i j G1; : : : ; GDk�1 2 B(2k�) g. We allow the machine to queryany variable Xhu;`i if u is a node in the top layer of a Gi. Moreover, each time a variable Xhu;`i isqueried, the followings are returned: (1) the value, v, of Xhu;`i, (2) whether v is a goal node, andif so, (3) its corresponding root node. With these changes, we can assume that the machine doesnot query any collapsed edge as there is no need.Also, we modify A so that it has the following properties. (1) A is a decision tree (i.e. it willnot forget the answer to any previous query), (2) A will not repeat any previous query, (3) eachcomputation path 
 in A queries at most �=8 di�erent (base) edges and discovers at most 3S= logndi�erent goal nodes. (If 
 queries more than �=8 di�erent edges, we will cut it right after it queriesthe (�=8)th one. Similarly, if 
 discovers more than 3S= logn di�erent goal nodes, we will cut itright after it discovers the (3S= logn)th one.) It is clear that the modi�cations will not decreasethe probability stated in the lemma. With all the above assumptions and modi�cations , we justneed to show that PrG2Bk [wA(G) � 3S= logn ] � 2�2S .19



Just before A starts, each of the S= logn pebbles may already be part way down a hard path oreven on a goal node. To simplify the analysis, we assume that the goals of those hard paths thatcontain pebbles initially, will be discovered by A. There are at most S= logn such goals. To pebblethe remaining goals, we know, by Lemma 6.1, that the entire hard path must be traversed by theNNJAG. In other words, every edge in the hard path has to be queried by A. Let w0A(G) be thenumber of roots such that every edge on its hard path in G has been queried by A. To prove thelemma, it su�ces to show that PrG2Bk [w0A(G) � 2S= logn ] < 2�2S .Consider an arbitrary computation path 
 in A. It can be speci�ed by the sequence of baseedges, E
 , it has queried and the sequence of node names, R
 , specifying whether a goal nodeis discovered in each step (and if applicable, its corresponding root). For example, suppose 
queries the variable Xhu;`i which has the value v and then the variable Xhu0;`0i which has the valuev0. Suppose v is not a goal but v0 is the goal node of root r then E
 = (hu; `; vi ; hu0; `0; v0i) andR
 = (0; r) (assuming no root has name 0).When 
 is the computation path followed on input G we will say that \G follows 
". (It mightbe useful to think of G as being \processed" by A along 
.) First, let us understand what we candeduce about ~̀r(G), the sequence of edge labels on the hard path in G rooted at r, given thatG 2 Bk(E
). (Note that G may not actually follow 
 as it might not agree with R
 .) We say that anode v is a collision node with respect to E
 if E
 contains two distinct edges hu; `; vi and hu0; `0; viwith the same destination v. Since v has in-degree at least two, it is known to be an easy node.In general, we can classify ~̀ 2 [0::f � 1]D�1 according to 
 and r as follows. Suppose we traceout a path through the edges in E
 , starting at the root r and following the sequence of edge labels~̀ until the next edge to be taken is not contained in E
. Then one of the following three possibilitieswill occur.1. The path passes through some collision node with respect to E
 .2. The path reaches layer D without passing through any collision node with respect to E
 .3. The path stops before reaching layer D and does not pass through any collision node withrespect to E
 .We de�ne Yh
;ri and Zh
;ri to contain the vectors ~̀ 2 [0::f � 1]D�1 such that when the aboveprocedure is applied, the second and third outcomes occur, respectively.Claim 1 For any computation path 
 in A, any input graph G 2 Bk(E
), and any root r, ~̀r(G) 2Yh
;ri [ Zh
;ri.Proof: For any ~̀ =2 Yh
;ri [ Zh
;ri and any input G 2 Bk(E
), the path from the root r labelledwith ~̀ in G contains a collision node. Since collision nodes have in-degree at least two in E
 , theydo not lie on the hard path. Therefore, ~̀r(G) 6= ~̀.20



De�nition 3 For any computation path 
 and any G 2 Bk(E
), Progh
;ri(G) is de�ned as therandom variable indicating that all the edges in the hard path in G rooted at r are mentioned in E
.Obviously, Progh
;ri(G) is true if ~̀r(G) 2 Yh
;ri, and false if ~̀r(G) 2 Zh
;ri. If G actually follows
 and Progh
;ri(G) is true then the goal of root r is discovered. Let yh
;ri = jYh
;rij and zh
;ri =jZh
;rij. Brie
y, the probability that Progh
;ri(G) is true, given that G 2 Bk(E
) is approximatelyyh
;riyh
;ri+zh
;ri , because all ~̀ 2 Yh
;ri [ Zh
;ri have about the same probability to be chosen as ~̀r(G).Let D0 = D=8. We say that root r is a high collision root with respect to the computation path
 if yh
;ri+ zh
;ri � fD0 . Otherwise, we say that it is a low collision root with respect to 
. We saythat 
 is a high collision computation if there are at least S= logn high collision roots with respectto 
. Otherwise, we say that it is a low collision computation. Let C be the set of all high collisioncomputation paths. ThenPrG2Bk �w0A(G) � 2Slogn �� X
2CPrG2Bk [G follows 
 ] +X
 =2CPrG2Bk �w0A(G) � 2Slog n and G follows 
 �� SUM 1 + SUM 2 :By Claim 2 in Section 11, SUM 1 is at most 2�3S . Consider SUM 2. If both events \w0A(G) �2S= logn" and \G follows 
" occur, there exist at least 2S= logn roots r such that Progh
;ri(G) istrue, i.e., all the edges on the hard path rooted at r in G are in E
. For 
 =2 C, at least S= logn ofthese are low collision roots with respect to E
 .De�nition 4 For any computation path 
 and any G 2 Bk(E
), w00
(G) is de�ned as the numberof roots r such that r is a low collision root with respect to 
 and Progh
;ri(G) is true.Then, SUM 2 � X
 62CPrG2Bk �w00
(G) � Slogn and G follows 
 � :Since \G follows 
" implies \G 2 Bk(E
)",SUM 2 � X
 62CPrG2Bk �w00
(G) � Slogn and G 2 Bk(E
) �� max
 62C PrG2Bk �w00
(G) � Slogn j G 2 Bk(E
) ��X
 62CPrG2Bk [G 2 Bk(E
) ] :We claim that for each graph G 2 Bk, there are at most 26S di�erent computation paths 
 forwhich G satis�es E
 . To see this, observe that every computation path 
 in A queries at most�=8 di�erent base edges and discovers at most 3S= logn di�erent goal nodes, each having at mostn name choices for its corresponding root. Hence there are at most � �=83S= logn� � n3S= logn � 26S21



di�erent sequences R
. If there were more than 26S di�erent computation paths 
s such that Gsatis�es E
, then there exists two di�erent computation paths 
 and 
 0 such that R
 = R
0 and Gsatis�es both E
 and E
0 . For 
 and 
 0 to be di�erent, there must be an edge hu; `; vi in E
 and anedge in hu; `; v0i in E
0 such that v 6= v0. Then G cannot satisfy both E
 and E
0 , a contradiction.Hence our claim follows. From this claim, we have P
 62C PrG2Bk [G 2 Bk(E
) ] � 26S and thus,SUM 2 � max
 =2C PrG2Bk �w00
(G) � Slog n j G 2 Bk(E
) �� 26SClaim 4 of Section 12 shows that PrG2Bk hw00
(G) � S= logn j G 2 Bk(E
) i is at most 2�9S for any
 in A. In conclusion, SUM 1 + SUM 2 � 2�3S + 2�9S+6S� 2�3S+1� 2�2S ;where all inequalities hold for big enough n. Hence Lemma 8.1 (Main Lemma) follows.11 Bounding SUM1This section bounds the �rst sum, SUM 1, at the end of the proof for Lemma 8.1 (Main Lemma).Claim 2 P
2C PrG2Bk [G follows 
 ] � 2�3S.Proof: We �rst de�ne two games called the edge-collision game and the branching-process game.Let Sed and Sbr be the random variables indicating the success of each game, respectively. We shallshow that P
2C PrG2Bk [G follows 
 ] � Pr [Sed ] � Pr [Sbr ] � 2�3S .11.1 The Edge-Collision GameThe edge-collision game is de�ned as follows. Dk�1 graphs G1; G2; : : : ; GDk�1 are chosen randomlyand independently from B(2k�). The player is informed of the hard path of each root in each Gi.He then queries edges of the Gis one at a time. When the player queries an edge, he speci�es hu; `i,where u is a node and ` 2 [0::f � 1] is an edge label. The destination node v of the edge hu; `; vi isthen revealed to the player. Based on the result of the previous queries, he chooses the next edgeto query. He is allowed to query at most �=8 edges in total.The aim of the player is to minimize the number of leaves of certain trees associated with thequeried edges. To be precise, let E be the sequence of base edges of the input graph G that theplayer has queried during the game. Recall that in Section 10 a node v is called a collision node22



with respect to E if it is the destination of more than one edge in E. Here in this game, each edgein E will be in one of two conditions: alive or dead. An edge is said to be dead if its destinationnode is (1) a collision node or (2) the source of a previously queried edge. Otherwise, it is alive.We shall construct from E a collection of f -ary trees by taking the following steps.(Step 1) If E does not contain a path from any root r to a node v then delete v from G (alongwith all its in/out-edges),(Step 2) Delete all the nodes (along with their in/out-edges) that are proper descendents in Eof the destinations of the dead edges. The dead edges and their destinations are kept. Theremaining edges in E that are alive are called the y-edges and their destination nodes arecalled the y-nodes . Each such node has a unique path from some root to it and that pathcontains no dead edges. Hence, the y-edges form a collection of disjoint f -ary trees.(Step 3) \Fill up" the above trees so that each node has exactly f outgoing edges. More precisely,for each y-node that does not have exactly f outgoing edges (counting the dead edges), addthe missing edges and attach to each such edge a complete f -ary tree, of appropriate depth,such that its leaves are at layer D. The nodes and edges that are added in this way arereferred to as the z-nodes and the z-edges . They do not correspond to actual nodes andedges in the input graph G. Note that each z-node also has a unique path from some root toit and that path contains no dead edges.We shall measure the performance of the game player by two sets of parameters. They are somewhatsimilar to yh
;ri, zh
;ri de�ned in Section 10. De�ne ~yr and ~zr (the performance parameters) as thenumber of y and z-nodes at layer D, that are descendents of the root node r. Again, a root r issaid to be a high collision root if ~yr + ~zr � fD0 , where D0 = D=8 as de�ned in Section 10. The goalof the player is to create as many high collision roots as possible. More precisely, the player winsif there are more than S= logn high collision roots. Let Sed be the indicator variable of this event.Note that the edge-collision game player can query whatever edges queried by A, and henceensure that E
 � E where E
 and E are the set of edges queried by A and the game playerrespectively. Consider the conditions for a root to be a high collision one. In A, a root r is a highcollision root with respect to E
 if yh
;ri+ zh
;ri � fD0 , i.e., the number of vectors ~̀2 Yh
;ri[Zh
;riis small. If a vector ~̀ 2 [0::f � 1]D�1 is not in Yh
;ri [ Zh
;ri, then the path obtained by following~̀ from r must contain a collision node in E
 . The same node will also be a collision node in theedge-collision game provided E
 � E . It follows that a high collision root in the A will also be ahigh collision root in the game. Therefore, P
2C PrG2Bk [G follows 
 ] � Pr [Sed ].23



11.2 The Branching-Process GameBefore we introduce the branching process game we introduce some machinery that will be usefulin bounding its probability of success.Consider a rooted, complete, f -ary tree of depth d. We allow every edge of such a tree to dieindependently of all other edges with a �xed probability �. A node u is said to be alive if and onlyif no edge along the unique path from the root to u is dead. If Zi denotes the number of alivevertices at level i then the sequence Z0 = 1; Z1; : : : ; Zi; : : : forms a branching process [AN72]. Wewill be interested in the distribution of the number of alive vertices with depth d, i.e. the randomvariable Zd. The expected number of alive children for an alive node is (1� �)f and the expectedvalue of Zd is ((1� �)f)d. More precisely, the generating function for the o�spring distribution inthis branching process is g(x) = (�+ (1� �)x)f (i.e., the probability that a node has i out-edgesthat do not die is the coe�cient of xi in g(x)). A well-known fact is that if (1 � �)f > 1 thenPr [Zd = 0 ] = �, where � is the unique x 2 (0; 1) such that g(x) = x. Moreover � = g0(�) < 1. Thefollowing lemma states that the probability that Zd is much smaller than its expected value is notmuch greater than the probability it is zero.Lemma 11.1 [Pip92] If (1� �)f > 1 then for ~d 2 [1; : : : ; d] such that d� ~d!1 and d!1,Pr hZd � ((1� �)f) ~d i � � + O(�d�~d):In the branching process game we will consider a variant of the above trees, as de�ned inSection 11.1, with depth D and out-degree f . For these trees, the variation lies in the existence ofa �xed path from the root to some leaf whose edges are guaranteed to survive; all other edges dieindependently with probability 1=4. Such a tree is said to wither if it has at most fD0 alive leaves.We want to bound the probability, �, that this happens.To allow for a uniform treatment we �rst convert the f -ary trees to binary ones when f > 2.In particular, if f > 2 then f = O(n�), for some � > 0, and hence we can assume that f is a powerof 2. Thus, we replace each node v and its f edges/children with a complete binary tree Tv ofdepth log f , i.e. with f leaves. If v is not on the path that is guaranteed to survive then all theedges in Tv die independently, with probability 1=4. Otherwise, the edges along a unique path ofTv (the one corresponding to the edge guaranteed to live) are guaranteed to survive while the restdie independently with probability 1=4. It is easy to see, inductively, that for any set of nodes atdepth i log f , i = 0 : : :D, in the resulting binary tree, the probability of being alive is no more thanthat of the corresponding nodes at depth i in the f -ary tree. Moreover, D = d80 logne= log f , forall f , and hence it will su�ce to prove the bound for f = 2 (D = d80 logne.)24



Let vi be the node at depth i which is on the path whose edges are guaranteed to survive andlet v0i be the sibling of vi. Let �0 be the probability that for all vi, i 2 [1::2D=3], either v0i is deador v0i is alive but the subtree rooted at v0i, Tv0i , has at most fD0 alive nodes, at depth D. Clearly,� � �0. Each Tv0i , is a complete binary tree of depth D � i where every edge dies with probability1=4. For � = 1=4 and f = 2, we have � = 1=9 and � = 1=2. As D tends to in�nity with n and Tv0ihas depth at least D=3, we can apply Lemma 11.1 to bound the probability that Tv0i has fewer thanfD0 alive nodes at depth D (given that v0i is alive) by 1=9+O((1=2)D�i�D0). Thus, the probabilitythat Tv0i has at most fD0 alive leaves at depth D is no more than 1=4 + 1=9 + O((1=2)D�i�D0) �1=4 + 1=9 + O((1=2)D=3�D0) = � < 1=2, since D0 = D=8, D = d80 logne and n can be arbitrarilylarge. Since the 2D=3 subtrees grow independently, we get � � �0 � �2D=3 2 O(n�5).In the branching process game in our graph we say that the root r of a tree as above is a highcollision root if the tree rooted at r withers. Since there are at most n roots the expected numberof high collision roots is � � n� � 2 O(n�4). Let Sbr be the random variable indicating the eventthat there are more than S= logn high collision roots. As each tree grows independently of theothers, we can apply the Cherno� bound and prove thatPr [Sbr ]= Pr � number of high collision roots �� S� logn�� �� 2�( Slog n )(log( S� log n )�log e):Since � 2 O(n�4), Pr [Sbr ] � 2�3S .11.3 Branching-Process Game vs Edge-Collision GameThis subsection proves the second inequality mentioned in the proof of Claim 2.Lemma 11.2 The success of the edge-collision game is probabilistically dominated by the successof the branching processes game, i.e. Pr [Sed ] � Pr [Sbr ].Proof: The edge-collision game starts by randomly choosing the graphs G1; G2; : : : ; GDk�1 inB(2k�). For each i 2 [1::Dk�1], the �rst step in choosing Gi according to the distribution B(2k�)is to randomly partition the 2k� nodes at each layer into 2k�=2 easy nodes and 2k�=2 hard nodesand to choose the hard path rooted at each root r. This information is revealed to the player. Theedges in these paths correspond to the edges in the branching process game that are guaranteed tolive.The next step in choosing Gi according to the distribution B(2k�) is to choose for every re-maining edge its destination among the 2k�=2 easy nodes at the next layer. This only needs to bedone for those edges queried by the player. For each i 2 [1::Dk�1], for each layer d 2 [1::D], andfor each � 2 [1::�8 ], de�ne the variable vhi;d;�i to uniformly and independently take on a value from25



[1::2k�2 ]. Suppose that the player is querying hu; `i where u is a node at layer d in the graph Gi andthis is the � th query to easy edges at this layer in this graph. Then the variable vhi;d;�i 2 [1::2k�2 ]speci�es the other endpoint of edge hu; `i among the 2k�=2 easy nodes at the next layer.Consider the edge hu; `i queried at time t for some t 2 [1::�=8]. Before this query, we do notknow in advance which edges will be queried after time t because the player is able to choose themdynamically based on the result of the current one. However, the random variables vhi;d;�i do tell usthe resulting destinations of all the edges queried or to be queried. Together with the knowledge ofthe source of edges queried before time t, we can tell whether the current edge will die. Speci�cally,suppose hu; `i is the � th edge queried at layer d in Gi. Then it will die if either (1) there is anotherquery at this layer � 0 2 [1::�8 ] with the same destination, i.e. vhi;d;�i = vhi;d;� 0i for some � 0 6= � or(2) the destination is the source of some edge queried before time t.In order to compare the success probability of the edge-collision game and the branching-processgame, let us �rst de�ne random variables that will indicate which edges die in the branching-processgame. For each root r in each of the graphs Gi, there is a corresponding root in the branching-process game. Consider the complete f -ary tree of height D rooted at such a root r. A speci�cedge in this tree can be speci�ed by a string ~̀ 2 [0::f � 1]�. For each such edge, let xhr;~̀i 2 f0; 1gbe the random variable indicating whether this edge dies. If the edge is one of the edges that areguaranteed to live in the branching-process game, i.e., the �xed hard path in the input graph, thenPr � xhr;~̀i � = 0. Otherwise, Pr � xhr;~̀i � = 1=4 independent of the other x variables.Now consider a �xed algorithm for the edge-collision game. For each intermediate time stept 2 [0::�=8], we de�ne the tth game as follows. The game starts with t time steps of the �xedalgorithm for the edge-collision game. Let Et be the resulting base edges queried. We want theseedges to die in the tth game if and only if they die in the edge-collision game. As previouslymentioned, the edge associated with vhi;d;�i is dead if and only if (1) there is another query at thislayer � 0 2 [1::�8 ] with the same destination, i.e. vhi;d;�i = vhi;d;� 0i, or (2) the destination, i.e. vhi;d;�i,is the source of an edge queried before time t. In (1), the query associated with vhi;d;� 0i can occureither before or after time step t. Either way, we consider the edge associated with vhi;d;�i dead.Given which edges in Et have died, the set Et can be transformed, as described in Steps (1) to (3)in Section 11.1, into a collection of f -ary trees made up of y-nodes and y-edges (the living ones),z-nodes and z-edges as well as some collision nodes and dead edges. The tth game is completed bycompleting the branching process on the z-edges. Namely, each such edge will live or die accordingto the corresponding random variable xhr;~̀i 2 f0; 1g. A node u in the resulting collection of treesis said to be alive if all the edges on the path from the root of the tree to u are alive. A root issaid to be a high collision root if it has at most fD0 living nodes in layer D. The tth game succeedsif there are more than S= logn high collision roots. Let St be the random variable indicating thesuccess of the game. 26



Observe that the 0th game is simply the branching-process game and hence Sbr = S0. The(�=8)th game di�ers from the edge-collision game only in that in the edge-collision game all thez-nodes/edges added in Step 3 are treated as alive while in the (�=8)th game some of the z-edgesmay die according to the xhr;~̀i variables. The additional children at layer D only hurt the edge-collision game player. Therefore, Pr hS(�=8) i � Pr [Sed ]. What remains to prove is that for everyt 2 [1::�=8], Pr [St�1 ] � Pr [St ].Let ~V(<t) specify a possible computation up to and including the (t� 1)st query. It will specifythe values of t � 1 of the vhi;d;�i variables. Which of them are speci�ed will depend dynamicallyon the computation. The computation ~V(<t) will also specify the set of queried edges in the graphEt�1 and the next query hu; `i made by the player. Let the node u be on layer d of Gi and thequery be the � th one at this layer in this graph.Let us consider the following cases. In the �rst case, Et�1 does not contain a unique path withno dead edges from a root to u. In this case, the descendant nodes and edges of node u will bedeleted from the y-node tree, both in the (t� 1)st game and in the tth game. Hence, whether thisedge dies has no e�ect on either game. In the second case, hu; `i is on a hard path and for bothgames, the edge is guaranteed to live.In the third case, Et�1 contains a unique path with no dead edges from a root to u and hu; `i isnot on a hard path. Let r and ~̀ specify the root and the labels in this path. In the (t�1)st game,whether the edge from hu; `i dies is speci�ed by the variable xhr;~̀i 2 f0; 1g. In the tth game, thedestination of the edge from hu; `i is speci�ed by the variable vhi;d;�i. Consider one setting ~V(>t) ofall the vhi0 ;d0;� 0i variables other than those set by ~V(<t) and other than the variable vhi;d;�i. Consideras well one setting ~X( 6=t) of all the x variables other than xhr;~̀i.Compare Pr hSt�1 ��� ~V(<t); ~V(>t); ~X( 6=t) i and Pr hSt ��� ~V(<t); ~V(>t); ~X( 6=t) i. In both cases, theprobability is only over the values of vhi;d;�i and xhr;~̀i. Everything else is �xed by ~V(<t), ~V(>t) and~X( 6=t). For every value of vhi;d;�i and xhr;~̀i, which edges die before time step t and which die aftertime step t is the same for both the (t � 1)st and the tth game. The only change in the game iswhether or not the edge from hu; `i dies. In the (t � 1)st game, this edge dies with probabilityPr � xhr;~̀i ��� ~V(<t); ~V(>t); ~X( 6=t) � = 1=4. In the tth game, this edge dies if there exists a � 0 2 �1::�8 �(� 0 6= �) for which vhi;d;�i = vhi;d;� 0i or vhi;d;�i is equal to the source of an edge queried before time t.~V(<t) and ~V(>t) �x at most �8 � 1 di�erent values of the variables vhi;d;� 0i and at most t� 1 � �8 � 1di�erent values as the sources. The value for vhi;d;�i is chosen uniformly from [1::2k�2 ]. Therefore,the probability that vhi;d;�i collides with one of these � 2(�8 � 1) values given ~V(<t), ~V(>t), ~X( 6=t) isat most 1=4. Having a smaller probability of this edge dying can only hurt the tth game player.We can conclude thatPr hSt�1 ��� ~V(<t); ~V(>t); ~X( 6=t) i � Pr hSt ��� ~V(<t); ~V(>t); ~X( 6=t) i27



and hence Pr [St�1 ]= X~V(<t);~V(>t); ~X( 6=t) Pr hSt�1 ��� ~V(<t); ~V(>t); ~X( 6=t) i� Pr h ~V(<t); ~V(>t); ~X( 6=t) i� X~V(<t);~V(>t); ~X( 6=t) Pr hSt ��� ~V(<t); ~V(>t); ~X( 6=t) i� Pr h ~V(<t); ~V(>t); ~X( 6=t) i= Pr [St ] :12 Bounding SUM 2This section bounds the second sum at the end of the proof of Lemma 8.1. It su�ces to show thatPrG2Bk hw00
(G) � S= logn j G 2 Bk(E
) i � 2�9S . The event w00
(G) � S= logn happens when atleast S= logn of the low collision roots r have Progh
;ri(G) true. If for every root r, Progh
;ri(G)were true with a �xed probability independent of the other roots, then we could apply the Cherno�bound directly. However, there are indeed dependencies among di�erent roots. Fortunately if eachevent has a low probability of success no matter what outcomes of the other events have, then bythe following lemma from Edmonds [Edm93a] the Cherno� bound still holds.Lemma 12.1 (Lemma 14 of [Edm93a]) Let R be the set of roots. For each r 2 R, let x̂r 2 f 0; 1gbe the random variable indicating the success of the rth trial. For each r 2 R and O 2 f 0; 1gR�f r g,let Zhr;Oi = Pr [ x̂r = 1 j O ], where O indicates that the other trials have the stated outcomes. Iffor every r and every possible outcome of the other trials O, Zhr;Oi � �, then for every � > 1,Pr [Pr2R x̂r � 2��jRj ] � 2�0:38��jRj.Proof: Let X̂ = Pr2R x̂r. To bound Pr h X̂ � 2��jRji, we will consider a sequence of randomvariables, xr, r 2 R, de�ned as follows: for x1, we choose uniformly at random �1 2 [0; 1] and setx1 = 1 i� �1 � Pr [ x̂1 = 1 ]. In general, if we have set x1 = a1; : : : ; xi = ai, we choose uniformly atrandom �i+1 2 [0; 1] and set xi+1 = 1 i� �i+1 � Pr [ x̂i+1 = 1 j x̂1 = a1 ^ � � � ^ x̂i = ai ]. Clearly,the sequences x̂r and xr are identically distributed and Pr [xr = 1 ] � �, for all r 2 R:Consider now a sequence of random variables yr de�ned by yr = 1 i� �r � �, r 2 R where �ris as above. By construction, xr � yr for all r 2 R. Hence, if X = Pr2R xr and Y = Pr2R yr,then X � Y . Moreover Y is the sum of jRj independent Boolean random variables. Applying theCherno� bound we get that for � > 1,Pr h X̂ � 2��jRji = Pr [X � 2��jRj ] � Pr [Y � 2��jRj ] � 2�0:38��jRj :28



In Claim 3, we �rst show that the probability of Progh
;ri(G) being true is small for low collisionroots r. Then we will apply the above lemma in Claim 4 to get the desired bound for the secondsum.Claim 3 For any computation path 
 in A, any root r and any subset O of roots indicating forwhich roots r0 other than r, Progh
;r0i(G) is true,PrG2Bk hProgh
;ri(G) j G 2 Bk(E
) and O i � 43 yh
;riyh
;ri + zh
;riProof: Let us consider a �xed 
 and r. Recall that ~̀r(G) is the random variable indicating thevector of edge labels on the hard path rooted at r in graph G drawn from Bk and that ~̀r(G) 2Yh
;ri [ Zh
;ri. Recall as well that Progh
;ri(G) is true if and only if ~̀r(G) 2 Yh
;ri. We shall dropthe subscripts in Yh
;ri, Zh
;ri, yh
;ri, zh
;ri, ~̀r(G), Progh
;ri(G) and E
 when there is no confusion.We shall also write PrG2Bk [ � j G 2 Bk(E
) ] as Pr [ � j E ]. Note thatPr [Prog(G) j E and O ]= Pr [Prog(G) j E and O ]Pr [Prog(G) j E and O ] + Pr [:Prog(G) j E and O ]= P~̀2Y Pr h ~̀(G) = ~̀ j E and O iP~̀2Y Pr h ~̀(G) = ~̀ j E and O i+P~̀2Z Pr h ~̀(G) = ~̀ j E and O iLet ~̀y be the vector in Y that maximizes Pr h ~̀(G) = ~̀ j E and O i over ~̀ 2 Y and let ~̀z be thevector in Z that minimizes Pr h ~̀(G) = ~̀ j E and O i over ~̀2 Z. The above probability is at mosty � Pr h ~̀(G) = ~̀y j E and O iy � Pr h ~̀(G) = ~̀y j E and O i+ z � Pr h ~̀(G) = ~̀z j E and O i= yy + Pr[ ~̀(G)=~̀zjE and O ]Pr[ ~̀(G)=~̀y jE and O ] � zWhat remains to be proven is thatPr h ~̀(G) = ~̀z j E and O iPr h ~̀(G) = ~̀y j E and O i � 34Let Ny(G) and Nz(G) be respectively the set of edges on the path with label ~̀y and ~̀z fromroot r in G. Let H(G) be the random variable specifying the hard path rooted at r in G, i.e. boththe nodes and the labels ~̀(G). The fact that ~̀y 2 Y means that the path following the edge labelsin ~̀y is totally contained in E. Therefore, Ny(G) is equal to some �xed value Ny determined by E.Then the statements ~̀(G) = ~̀y and ~̀(G) = ~̀z are equivalent to H(G) = Ny and H(G) = Nz(G)29



respectively. The possible values Nz for the random variable Nz(G) (i.e. the path in G rooted at rwith edge labels ~̀z) can be divided into two sets. Let Nz 2 Az if and only if some edge hu; `; vi inNz has the same destination with a di�erent edge hu0; `0; v0i in E, i.e., v = v0 but hu; `i 6= hu0; `0i. Inthis case, Nz cannot be the hard path. That is, for Nz 2 Az , Pr [H(G) = Nz j E and O ] = 0. Nowconsider an Nz =2 Az . Given that G contains E [ Nz and satis�es O, we argue that it is equallylikely for H(G) to be Ny or Nz . To see this, �rst observe that O does not a�ect how H(G) canbe chosen because O is a condition on the hard paths of roots other than r. Secondly, both �xedpaths Ny and Nz are contained in E [Nz, started from root r. Furthermore, neither Ny nor Nzcontains any collision node with respect to E [ Nz. By symmetry, it is equally likely for Ny andNz to be chosen as H(G). Hence,Pr [H(G) = Ny j Nz(G) = Nz and E and O ]= Pr [H(G) = Nz j Nz(G) = Nz and E and O ]Note as well that \H(G) = Nz" implies \Nz(G) = Nz". Therefore,Pr [H(G) = Ny and Nz(G) = Nz j E and O ]= Pr [H(G) = Nz and Nz(G) = Nz j E and O ]= Pr [H(G) = Nz j E and O ]The above ratio then becomesPr h ~̀(G) = ~̀z j E and O iPr h ~̀(G) = ~̀y j E and O i= PNz =2Az Pr [H(G) = Nz j E and O ]Pr [H(G) = Ny j E and O ]= PNz =2Az Pr [H(G) = Ny and Nz(G) = Nz j E and O ]Pr [H(G) = Ny j E and O ]= Pr [Nz(G) =2 Az j H(G) = Ny and E and O ]The input distribution Bk �rst chooses the hard paths. Then every other edges is added indepen-dently at random. If Nz(G) is not a hard path, at each level i 2 [2::D], its node is chosen from the2k�=2 easy nodes at this level. A su�cient condition for Nz(G) not to be in Az is that for all itsedges not �xed by E, their destinations do not collide with any node mentioned in E. Let hi bethe number of nodes mentioned in E at level i that Nz(G) must avoid. It follows thatPr [Nz(G) =2 Az j H(G) = Ny and E and O ]� �i2[2::D](1� hi2k�=2)� 1� Pi2[2::D] hi2k�=2 � 1� 2 � �=82k�=2 � 3430



because Pi2[2::D] hi � �=8 as E contains at most �=8 di�erent edges and each edge involves 2nodes.Claim 4 For any computation path 
 in A,PrG2Bk hw00
(G) � S= logn j G 2 Bk(E
) i � 2�9S :Proof: Recall that w00
(G) is the number of roots r in G such that r is a low collision root withrespect to 
 and Progh
;ri(G) is true. Hence, the expected value � of w00
(G) isXlow collision roots rPrG2Bk hProgh
;ri(G) j G 2 Bk(E
) iand by Claim 3, � � Xlow collision root r 43 � yh
;riyh
;ri + zh
;ri� 43Plow collision root r yh
;rifD0� �6 � fD0 ;as Pr yh
;ri � �=8 (at most �=8 di�erent edges are queried by 
.) Since � 2 O(n) and fD0 � n10,we have � 2 O(n�9). By Lemma 12.1,PrG2Bk �w00
(G) � Slogn j G 2 Bk(E
) �� 2�( Slog n )(log( S� log n )�log e)� 2�9S :13 ConclusionWe have proven that any 2-sided probabilistic NNJAG solving the st-connectivity problem for n-node graphs in (expected) time T using space S must have T 2 2
(log2(n=S)) when S 2 O(n1��),for some � > 0, and T 2 2
(log2(n log nS )= log logn) � (nS= logn)1=2 for general S 2 O(n logn). Thisgreatly improves the previous bounds of ST 2 
(n2= logn) by Barnes and Edmonds [BE93] andS1=3T 2 
(n4=3) by Edmonds [Edm93a]. Moreover, the bound is tight for S 2 n1�
(1). As acorollary, we also obtained a space lower bound of 
(log2 n) on a probabilistic NNJAG. No suchtight lower bound was known before even in the more restricted JAG model.31



An obvious open problem is to close the gap between the upper and lower bounds when S =2n1�
(1). However, the major open problem is to prove similar lower bounds on a general model ofcomputation. To acheive that, one possible approach is to start with a JAG/NNJAG-like modeland add more and more power, pushing our way towards the ultimate model of the branchingprogram. A major complaint to a JAG or NNJAG is its restricted access to the inputs. As pointedout in Etessami and Immerman [EI94], the space lower bounds of [CR80, BS83, Poo93] are provenon a tree. However, it is easy for a RAM to solve stcon on trees in O(logn) space. All it needs todo is to walk a \pebble" from node t backward and see if it hits node s.In response to this, we de�ne a model called the Stack NNJAG that can solve stcon for treesin O(logn) space and yet on this model we can still prove the same time-space lower bound. In thismodel, there is a constant number of stack pebbles in addition to those regular pebbles. Each stackpebble has a stack which can remember the path that it has traversed since its last jump. Moreprecisely, all the pebbles, whether the regular or the stack ones, are initially on node s. The stackof each stack pebble is empty initially. Whenever a stack pebble walks along an edge (u; v), thenode u is pushed onto the stack. Whenever a stack pebble jumps to another pebble P 0, it emptiesits stack. If P 0 is also a stack pebble, then P copies the stack of P 0 to its own stack. A stack pebblecan also backtrack along the path, i.e., to move to the node v if v is the top of the stack and thenpop the stack. Note that the pebble is not allowed to visit any arbitrary node. Any node reachableby a stack pebble must be reachable from s by a directed path. The space for storing the stacks isgiven for free.To prove the time-space lower bound, observe that the height of the graph used in our paper isO(p(n logn)=S). If p(n logn)=S � S= logn, each stack can only store at most O(S= logn) nodes.Since a Stack NNJAG has a constant number of Stack pebbles, it can be simulated by a normalNNJAG with at most �(S= logn) extra pebbles. The extra pebbles simply jump to and remainon each node that a stack pebble reaches. This increases the space used by the algorithm by atmost �(S). If p(n logn)=S � S= logn, then S � n1=3 logn. In this case, the bound we have for anormal NNJAG is T = 2
(log2 n). Now observe that the height of each stack is at most the height ofthe graph, i.e., at most O(pn logn). Hence any Stack NNJAG with space S can be simulated by anormal NNJAG with space O(S +pn logn) 2 O(pn logn). Hence the same lower bound applies.Note that the Stack NNJAG model seems to be incomparable with a branching program becauseof the way we charge the space. Also, de�ning an intermediate model between the NNJAG modeland branching program seems hard. For example, allowing the model to move a pebble to anarbitrary node or to the next node in some �xed ordering would give the power of branchingprograms. Within a polynomial factor of time and constant factor of space, so does allowing it tomove pebble backwards along any directed edge [BBR+90]. The idea is that one can treat the graphas undirected and using a universal traversal sequence [AKL+79], visit any vertex in polynomial32
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