
REMOVING RAMSEY THEORY:LOWER BOUNDS WITH SMALLER DOMAIN SIZEJe� EdmondsDepartment of Computer ScienceUniversity of TorontoToronto, Ontario, Canada M5S 1A4Abstract: Boppana [B89] proves a lower bound separating the PRIORITY and the COMMON PRAMmodels that is optimal to within a constant factor. However, an essential ingredient in his proof is a problemwith an enormously large input domain. In this paper, I achieve the same lower bound with the improvementthat it applies even when the computational problem is de�ned on a much more reasonably sized inputdomain. My new techniques provide a greater understanding of the partial information a processor learnsabout the input. In addition, I de�ne a new measure of the dependency that a function has on a variableand develop new set theoretic techniques to replace the use of Ramsey theory (which had forced the domainsize to be large).1 IntroductionRamsey Theory has been extremely useful in proving lower bounds for problems de�ned on hugeinput domains. (e.g, [B89]). Given a �xed algorithm, the input domain is restricted so that thegiven algorithm, when run on the restricted domain, falls within a simpler class of algorithms (e.g,the class of comparison based algorithms). A lower bound is then proved on the time required tosolve the problem using an algorithm from this simpler class. If the initial input domain is toosmall, then this technique fails because a restriction of the input domain with the desired propertiesmight not exist.It is important to obtain lower bounds for problems de�ned on small domains. Such lowerbounds can provide a deeper understanding into what can and cannot be done by the model.Sometimes, when a problem is restricted to a small domain, the time required to solve it strictlydecreases. For example, consider the problem of �nding the maximum element of a set of n numbers.This problem has time complexity �(log logn) on PRIORITY or COMMON PRAM for generalinputs [FMW86], but when the elements composing the input are restricted to lie within the range[1::nk], it can be done in O(k) time [FRW88].The parallel random access machine (PRAM) is a natural model of parallel computationthat is used both for algorithm design and for obtaining lower bounds. On this model, processorscommunicate with one another via shared memory. During each time step, each processor is ableto write to one memory cell and read from another. We are interested in how quickly the processorsare able to gain information. For lower bounds, the processors are allowed to do an unboundedamount of computation between communication steps and each memory cell is allowed to hold avalue of unbounded size. This is not unreasonable, because in real computers a communicationstep takes thousands of CPU cycles and transfers large blocks of data. Besides, this assumptiononly makes the lower bound stronger.The two models considered in this paper, PRIORITY and COMMON, are both concurrentread concurrent write (CRCW) PRAMs, which di�er only in the way they resolve write con
icts.If a number of processors concurrently write to the same cell, then on PRIORITY, the processor1

with the highest priority (i.e. lowest index) of those writing to a cell is able to write his value. OnCOMMON, the algorithm must guarantee that if a concurrent write occurs, then all the processorswriting to the cell at this time must write the same value.A tight lower bound of �(logn) has been obtained on the time to compute the OR of n bitson a concurrent read exclusive write (CREW) PRAM [CDR86]. As well, PRIORITY (and henceCOMMON) with nO(1) processors requires � (log n= log logn) time steps to compute the PARITYof n bits [BH87]. However, neither of these methods appears to be useful in di�erentiating betweendi�erent the write con
ict resolution methods used in PRIORITY and COMMON.A number of simulations of PRIORITY by COMMON have been obtained. [K88] gave aconstant time general simulation of PRIORITY on COMMON which requires the number of pro-cessors to increase from p = n to p = n2, where n is the length of the input. This was improved[FRW88] to p = n1+� and later [CDHR88] to p = n logn. When both models have p = n processors,[FRW88-2] show that the one step of PRIORITY can be simulated in O (log n= log logn) time stepson COMMON. [B89] and [R] independently showed how these algorithms could be combined givinga tradeo� between n and p.Fich, Meyer auf der Heide, and Wigderson [FMW86] �rst separated the models using theElement Distinctness problem, a problem closely related to sorting. An input hx1; : : : ; xni 2 [1::d]nis said to be element distinct if each variable xi has a distinct value. In other words, for alli; j 2 [1::n], if i 6= j then xi 6= xj . This problem can be solved in constant time on PRIORITY withn processors. With this number of processors, [FMW86] proved a
 (log log log n) lower bound onCOMMON. The lower bound was later improved to
 �plog n� by Ragde, Steiger, Szemer�edi, andWigderson [RSSW88] and to ��np lognlog(np logn)� by Boppana [B89], matching to within a constantfactor the upper bound that follows the simulation of PRIORITY by COMMON. In addition,Boppana proves that if the number of memory cells is bounded as the input domain grows, thenElement Distinctness takes just as long to solve on the PRIORITY model as on the COMMONmodel. In the present paper, I prove the same lower bounds. Theorem 1 is a lower bound forthe PRIORITY model with bounded memory and Theorem 2 is a lower bound for the COMMONmodel with unbounded memory. The di�erence between these results a the previous ones is thatthe results in [RSSW88] and [B89] require the input domain to be huge, namely the n variablestake on values in the range [1::d], where d is a huge tower of exponentials, while in the presentpaper, the results are proved with a much smaller domain, namely d 2 22
(n). Most importantly,the new techniques presented provide a greater understanding of the power of concurrent writeshared memory in parallel computation.All the lower bound results mentioned use the adversarial argument. The following is anoutline of this technique with an emphasis on what is done di�erently within this paper. Given a�xed algorithm, if an insu�cient number of time steps have been performed, the adversary �nds ainput that should be accepted and one that should be rejected which are indistinguishable to, say,processor P1 (i.e., P1 is in the same state on both of these inputs at the end of the computation).It is a reasonable restriction to require processor P1 to know the solution, because if any otherprocessor knew the answer, he could tell P1 in one extra time step.The adversary need not choose these two inputs until the end of the computation. Instead,she maintains a set of inputs Dt that are still being considered until time t. The actions that eachprocessor takes during time step t depend on the input selected from this restricted domain Dt.The adversary, however, has de�ned this domain Dt to have the property that, when restricted to2

inputs from this domain, the actions of each processor for time t depends on only a small subset ofthe input variables. The adversary is then able to consider these actions as functions of these inputvariables. These functions, however, may be quite complex. Therefore, the adversary restricts theinput domain further to a subdomain Dt+1 � Dt on which all these functions have a more simplestructure. This simple structure ensures, among other things, that the actions of each processor attime t + 1 depend only on a small, but slightly larger, subset of the input variables. This processcontinues one time step at a time.It is sometimes more intuitive to consider what each processor \knows" about the input, thanit is to consider the set of inputs Dt. When a processor is in a particular state, he is formally saidto know a fact if it is true for every input such that on this input the processor is in the statein question and the input is still considered possible (i.e. it is in Dt). Some of the informationknown by a processor is said to be �xed. By this, I mean that, for all inputs considered possibleby the adversary (i.e. in Dt), this information is true. At time t, the processor may choose to takesome action because of this �xed knowledge. Because these facts are true over all inputs consideredpossible, the action is performed on all of these inputs. We will say that the actions of the processordo not depend on such �xed information, but only on non-�xed information. Each time step, theprocessor gains more non-�xed information. The adversary will choose some information to revealto all of the processors. Revealing information amounts to restricting the input domain Dt to thoseinputs consistent with the information. The purpose of doing this is two fold. Revealing informationthat a processor already knows makes this information �xed. Hence, his actions would no longerdepend on this information. Revealing information that a processor does not know (intuitively theconvex hull of his knowledge) can make it possible to de�ne more succinctly what he does in factknow. This paper provides a better understanding of the knowledge gained by the processors.[FMW86] showed that processors are essentially only able to gain knowledge in two ways.Processors gain one of the types of knowledge by reading the values written by other processors. Inthis way, a processor is able to learn the values of 2t variables in t time steps. In log n time steps, heis able to learn the entire input and can then compute the answer to any problem in one additionaltime step. The other type of knowledge is gained by learning about the interactions between theprocessors. (For example, n processors can compute the OR of n boolean variables in one timestep by having each processor write to cell 1 if and only if his variable has the value 1.) Whena processor reads a value from a cell, he is said to interact with one of the processors who wrotethis value. Which cell a processor reads or writes to at time t is de�ned by an addressing functionthat maps each input to the memory cell addressed. Instead of speaking of the two processorsinteracting, it is often easier to speak of their addressing functions interacting.Because it is hard to pin down howmuch an individual processor knows about the interactions,it is helpful for the adversary to reveal all the interactions to all of the processors. However, the cellat which an interaction occurs is not included in this information. To understand how much relevantinformation the processors gain from this, it is important to understand the di�erence between twoaddressing functions accessing the same cell and these two addressing functions interacting. Forexample, if one addressing function maps the values of a variable x� in a 1-1 way to memory cellsand another uses the same mapping except with the value of x�, then they access the same cell ifand only if x� = x� . If it is known that these addressing functions interacted, then it is known thatthey accessed the same cell and hence that x� = x�. The known optimal algorithms for ElementDistinctness use this fact. On the other hand, if many processors write concurrently to a cell,then a reader \interacts" with no more than one of them. Therefore, knowing that two addressingfunctions have not interacted does not necessarily imply that they have accessed di�erent cells.3

Hence, x� and x� may or may not be equal.When the number of memory cells is bounded as in Theorem 1, the adversary can �x theinteractions between the addressing functions by making all of them constant. Each addressingfunction can be made constant by reducing the input domain by a factor proportional to thememory size. However, if the number of memory cells is unbounded as in Theorem 2, then thiscannot always be done without revealing the entire input. In this case, the adversary has four otherways of �xing the interactions between addressing functions. The �rst method �nds a subdomainof inputs on which the addressing functions that depend on exactly the same set of variables areeither equal or disjoint. Hence, they either always interact or never interact. (See Lemma 4.)The second method ensures that if two addressing functions depend on di�erent sets of vari-ables, then there is a variable on which one depends heavily and on which the other is constant. Itfollows that these functions access the same cell on only a small proportion of the inputs. Theseinputs can be removed later. [FMW86], [RSSW88], and [B89] restrict the domain so that the ad-dressing functions are either constant or 1-1. This paper de�nes b-varying which is a more generalmeasure of the dependency a function has on a variable and is interesting in its own right. (SeeLemma 5.)Unlike the �rst two methods, the third method to ensure that two addressing functions do notinteract does not ensure that they access di�erent cells. If more than one processor concurrentlywrote to the same cell on the COMMON model, then by the de�nition of the model, they mustall write the same value. Later, when a processor reads this cell, the adversary chooses one ofthe writers and reveals that the reader read from this writer. The reader would have no way ofknowing whether or not any other processor also wrote to the cell. In this way, the adversaryhas freedom to choose which processors interact. In fact, di�erent readers might be chosen tointeract with di�erent writers, even if they all accessed the same cell. (See Lemma 6.) Note thaton the PRIORITY model, this is not possible. Each processor reading a cell reads from and, hence,interacts with a speci�c processor: the one with the highest priority.The �nal method uses a re�nement of the element distinctness graph introduced in [FMW86].As mentioned above, it is possible that two addressing functions access the same cell if and only if apair of variables have the same value. If no other processor writes to this cell (see the third method),then the adversary must reveal whether or not they have accessed the same cell. This informationis recorded by covering the edge between these two variables in the element distinctness graph. Theadversary ensures that these addressing functions do not interact by not allowing these variablesto be equal. (See Lemma 6.) Graph theoretic techniques prove that if an insu�cient number oftime steps have been performed, then some edge fx�; x�g remains uncovered. (See Lemma 7.) Itwill follow that no processor knows whether or not these variables are equal.The adversaries in [RSSW88] and in [B89] use multi-variable Ramsey Theory at each timestep to reduce the domain to a sub-cube Sn of inputs (where S � [1::d]). This has the e�ect ofrevealing how the processor interact, but it also restricts the domain a great deal. Thus, the initialdomain must be very large. In this paper, the adversary's subdomain of inputs does not form asymmetric sub-cube as before, but is allowed to be a more general subset. The subdomain of inputsis described using a new representation of the set of possible processor states. This set of statesis restricted as information is revealed (�xed) and is expanded as the processors gain informationthat has not been �xed.Interesting new combinatorial techniques are developed to obtain and maintain the desiredproperties. As well, without the symmetry on the addressing functions and on the domain imposed4

in [FMW86], [RSSW88], and [B89], processors are able to learn partial information about whethera particular pair of variables has the same value. I extend the notion of the element distinctnessgraph used in these papers and use it to record this partial information.The remainder of this paper is organized as follows. Section 2 proves the lower bound forElement Distinctness on PRIORITY with bounded memory. Section 3 proves the lower boundon COMMON with unbounded memory. Lemmas 4, 5, 6, and 7 used in Section 3 are proved insections 4, 5, 6, and 7. Some open problems are given in Section 8.2 PRIORITY PRAMs with Bounded MemoryTheorem 1 If d > m2(1+�)n, where � > 0 is a constant, then Element Distinctness de�ned on theinput domain [1::d]n requires
�np lognlog(np logn)� time steps on a PRIORITY PRAM with p processorsand m memory cells.Before proving this theorem, some de�nitions are presented.After only one time step on a PRAM, the state of a processor can depend on the value ofevery input variable (e.g, if the processors compute the OR function). Part of this information canbe gained by knowing which cells other processors did or did not write to. If the input domainis restricted so that the cells addressed by each processor are �xed, then the set of possible statesthat a processor can be in is greatly restricted. An algorithm is said to be (D; t)-oblivious if, foreach processor, the cells that it addresses during the �rst t steps are the same for all inputs in D.If an algorithm is oblivious, then at time t in the computation, for each processor, there isa small set of variables on which the processor's state might depend. Boppana [B89] proved thatsuch sets must have the property that they could be formed by t steps of a p processor mergingmachine. The sets of variables Vh1;ti; : : : ;VhP;ti � fx1; : : : ; xng are said to have this property ifthere exists a set VhP;t0i for each processor P 2 [1::p] and intermediate time step t0 2 [0::t� 1] suchthat VhP;0i contains a single variable for each P and for each t0 2 [1::t], VhP;t0i is either VhP;t0�1i plusone extra variable or is the union of VhP;t0�1i and VhP 0;t00i for some other processor P 0 2 [1::p] andsome previous time step t00 2 [0::t0 � 1].Claim 1 If a PRAM algorithm is (D; t)-oblivious then for each processor P , there is a �xed setof inputs variables VhP;ti such that, for inputs in D, the state of P at the end of step t is uniquelydetermined by the values of these variables. Furthermore, the sets of variables Vh1;ti; : : : ;VhP;ti havethe property that they could be formed by t steps of a p processor merging machine.Proof of Claim 1: For time t = 0, the set VhP;0i is de�ned to contain only the variable initiallyassigned to processor P . Because the cells addressed by the processors are �xed, it is �xed whichcell processor P reads at time t. It is also �xed whether or not the cell had been previously writtento. If not and if the cell initially contained the value of a variable, then the variable learned isadded to VhP;ti. If the cell had been written to, then the last time step tw 2 [1::t] in which the cellwas written to is also �xed. Let Pw be the processor with the highest priority of those who wroteto the cell at time tw . De�ne VhP;ti to be the union of VhP;t�1i and VhPw;twi. Inductively, processorP 's state can only depend on the values of the variables in VhP;ti.5

Consider a (D; t)-oblivious algorithm. Processor P is said to see the variables in the set VhP;tiat time t. The adversary �nds a partition �1t , �2t ; : : : ; �qtt of the input variables fx1; : : : ; xng withthe property that no processor sees more than one variable per part �it. (If necessary, the adversarygives processors the values of more variables so that each sees the exactly one variable per part).A part �it of the partition is referred to as a subproblem. In the inputs considered, twovariables will have the same value only if they are in the same subproblem. In order to provethat this entire input is element distinct, it is necessary to prove that each of these subproblemsis element distinct. This is di�cult for the processors to do if each only sees one variable persubproblem. This notion was introduced by Ragde et al. [RSSW88].A vantage point is any sequence of variables V = Dxj1 ; : : : ; xjqtE such that xji 2 �it foreach i 2 [1::qt]. Thus, a vantage point contains exactly one variable from each of the subproblemsand the order of the variables is speci�ed by the �xed ordering of the subproblems. Note that thevariables VhP;ti seen by processor P at time t form a vantage point if the variable are appropriatelyordered. Hence, VhP;ti is referred to as the vantage point from which the processor sees the input.The notion of de�ning ordered tuples of variables was introduced by Ragde et al. [RSSW88]. Thisidea is extended in the next de�nition.The view of an input hv1; : : : ; vni seen from the vantage point Dxj1 ; : : : ; xjqtE is the sequenceDvj1 ; : : : ; vjqtE of the values of the variables that occur in the vantage point. The view seen fromVhP;ti is said to be the view seen by processor P at time t. By Claim 1, the state of the processorat the end of time t is uniquely determined by the view that he sees. The adversary maintains aset of views St 2 [1::d]qt to be used as a set of objects, each representing a state that a processorcould be in. An example is given in Figure 1. Processor P1's vantage point is VhP1;ti = hx2; x3; x6iand P2's is VhP2;ti = hx1; x3; x5i. Then, on the input h7; 3; 5; 0; 2; 4; 8i, processor P1 sees the viewh3; 5; 4i and P2 sees h7; 5; 2i. A key point is that the same view can be used to represent theVantage Point of P1 x2 x3 x6Vantage Point of P2 x1 x3 x5Subproblems � x1 x2 x3 x4 x5 x6 x7Speci�c Input 7 3 5 0 2 4 8View Seen by P1 3 5 4View Seen by P2 7 5 2Figure 1: The View Seen by a Processorstate of each of the processors. However, being in the state represented by a particular view meanssomething di�erent for each processor. In the above example, the view h3; 5; 4i is seen by P1 onthe input h7; 3; 5; 0; 2; 4; 8i and by P2 on the input h3; 1; 5; 9; 4; 6; 4i.Any set of views St can be expanded into the set of inputs such that, for each vantage point,the view seen is contained in St. Each vantage point is considered, even if no processor has it. Moreformally, the set of inputs is de�ned to beExpand (St) = n hv1; : : : ; vni j 8 vantage points V = Dxj1 ; : : : ; xjqtE (i.e.8i 2 [1::qt]; xji 2 �it);the view Dvj1 ; : : : ; vjqtE is contained in St o :6

The inputs Dt = Expand (St) are those considered possible by the adversary. By considering onlythese inputs, the adversary can ensure that every processor sees a view contained in St, and henceis in one of the allowed states.The proof of Theorem 1 uses an adversarial argument. Formally, an adversary is de�ned tobe a function that maps a complete description of a PRIORITY PRAM algorithm running in timeT 2 o�np lognlog(np logn)� to two inputs � and �0, one element distinct and the other not, such thatprocessor P1 is in the same state on both inputs after T steps of the given algorithm. To completethis task, the adversary de�nes the following constructs, for each time step t � T ,� a set of views St � [1::d]qt,� a partition �1t , �2t ; : : : ; �qtt of the input variables,with the following properties:1. The given PRAM algorithm is (Dt; t)-oblivious, where Dt = Expand (St).2. For each processor P , the vantage point VhP;ti contains exactly one variable from each �it.3. The entropy of the partition �1t ;�2t ; : : : ;�qtt is at most �L �9p logpn �+ 3� t,where L(x) = (x+ 1) log2(x+ 1)� x log2(x).4. jStj � dqtm2p(2qt�2) (i.e., St � [1::d]qt is a large fraction of all possible views).At the end of the induction, the �nal set of views ST is expanded into a set of inputs DT . Thefollowing properties must hold:5. qT < n.6. jDT j � dnm2p (2n�2) .Entropy is de�ned as follows. Uniformly at random choose a variable x 2 fx1; : : : ; xng. The entropyH (�) = Pi2[1::qt]�Pr �x 2 �it� log2Pr �x 2 �it� is the expected number of bits to specify which ofthe sets �it that x is contained in.Initially, with t = 0, every processor sees at most one variable. Therefore, it is su�cient tohave only one subproblem �10 (i.e., q0 = 1) and the initial set of views is S0 = f1; 2; : : : ; dg.Hence, the entropy is 0, the size bound jS0j � d1 is met, and D0 contains all dn inputs.Inductively, suppose that the adversary has de�ned these constructs for time step t � 1 sothat the induction hypothesis hold. The adversary then de�nes these constructs for time step t byrestricting the set of views St�1, re�ning the partition �t�1, and then expanding the set of views.2.1 The Restricting StageTo construct St, the adversary constructs Soblivioust�1 from St�1. By Claim 1, on inputs in Dt�1 thestate of each processor at the end of step t� 1 depends only on his view. Therefore, for every view7

in St�1 and for every processor, there is a unique cell that the processor writes to at time t whenseeing the view and a unique cell that he reads. In all, each view in St�1 speci�es 2p cells to beaddressed. There are onlym cells; hence, there arem2p addressing possibilities. The adversary �xesone possibility that is used for at least jSt�1jm2p of the views and lets Soblivioust�1 � St�1 be this subsetof views. In order to be able to refer to them latter, de�ne Address (w; P; t) and Address (r; P; t)to be the cells addressed for writing or reading.2.2 The Re�nement StageThe subproblems need to be repartitioned. There are �ve requirements of the new partition �1t ,�2t ; : : : ; �qtt . To satisfy condition (2), it must have the property that no processor sees more thanone variable from each part. It must be a re�nement of the previous partition �1t�1, �2t�1; : : : ;�q(t�1)t�1 . Its entropy must meet the bound required for condition (3). For technical reasons, it isnecessary that at least one of the subproblems �1t�1, �2t�1; : : : ; �q(t�1)t�1 is repartitioned. Finally, werequire for condition (5) that, after T time steps, the number of parts qT is strictly less than n.The proof that such a partition exists appears in Boppana's paper [B89], but is not presented here.Here, I will simply draw the connections between what is done there and what is done here.Boppana's Lemma 3.5 in [B89] proves a lower bound on the time for a merging machine withp processors to sort n variables. Processor P knows the order of the variables in VhP;ti. Therefore,the input must agree with the partial order on the variables that is the union of all the total ordersof the variables in each VP . Boppana maintains a layering of this partial order. This consists ofa mapping l from the n variables to qt layers such that for each i 2 [1::qt], the variables l�1(i)in the ith layer are incomparable in the partial order. More to our purposes, this partitioning ofthe variables into layers has that property that no processor knows the value of more than onevariable in any one layer. In other words, we can let �it = l�1(i) and this partition will meet our�rst requirement. Boppana's leveling l is always a re�nement of the previous leveling. Therefore,this partition meets our second requirement. The third requirement bounds the entropy of thepartition �1t ;�2t ; : : : ;�qtt . Boppana ensures that this third requirement is met by maintaining theproperty that the entropy of the leveling, and hence of the partition, is at most �L �9p log pn �+ 3� t,where L(x) = (x + 1) log2(x + 1) � x log2(x). The technical requirement is easy. For reasonablealgorithms, each part will be repartitioned into many new subproblems. However, if this is not thecase, then the adversary can repartition one of the parts anyway. Finally, Boppana ensures thatqT < n. His lower bound on the time required for the merging machine to sort is
�np lognlog(np logn)�.In other words, if T 2 o�np lognlog(np logn)�, then the merging machine does not know the total orderingon the variables. This means that Boppana's layering does not have each variable in its own layer.Therefore, qT < n. It follows that this partition meets our requirements.2.3 The Expanding StageDuring time step t, a processor can learn the values of more variables. Hence, the view a processorsees at time t�1 is a subsequence of his view at time t. As well, a larger number of views are neededto represent the larger number of states in which he may be in. To accommodate these two needs,the adversary expands the set of views Soblivioust�1 , to form a larger set St of longer views. Notethat, even though the set of views St gets larger each time step, the set of inputs Dt = Expand (St)8

keeps getting smaller.The adversary ensures that St only contains views which are considered by all of the processorsto be consistent with their knowledge. A processor, after reading a memory cell, considers a viewto be consistent if both the part of the view that he saw before the read and the part of the viewthat the writer saw are consistent. (See Figure 2.) To be careful, a view is included in St if, forevery vantage point from time t� 1, the subview is contained in Soblivioust�1 . Note that some of thesevantage points are not held by any processor. De�neSt = n D v1;1; : : : ; v1;�1; v2;1; : : : ; v2;�2; : : : ; vq(t�1);1; : : : ; vq(t�1);�q(t�1) E ���for each k1 2 [1::�1]; k2 2 [1::�2]; : : : ; kq(t�1) 2 [1::�q(t�1)];the subview D v1;k1 ; v2;k2; : : : ; vq(t�1);kq(t�1) E is contained in Soblivioust�1 o :For i 2 [1::q(t�1)], �i is the number of new subproblems into which the subproblem �it�1 is repar-titioned. For k 2 [1::�i], vi;k is the value that the view assigns to the kth new subproblem �i;kt .In the example in Figure 2, the processor Pr does not see a variable from the newly partitionedsubproblem �4t . The adversary could reveal the value of a variable from this set to Pr adding thevariable to the set VhPr ;ti of those seen by Pr . At any rate, the adversary has complete freedom tochoose the value (here 0) that is at this index in the view seen by Pr.Old Subproblems �1t�1 �2t�1 �3t�1Repartitioned Subproblems �1t �2t �3t �4t �5t �6t �7tSubview Seen by Pr 3 5 4Subview Seen by Pw 7 5 2View Seen by Pr 7 3 5 0 2 4 8Figure 2: Expanding the Set of Views2.4 St is largeIn order to make calculating the size of St easier, the subproblems �1t�1; : : : ;�q(t�1)t�1 will be reparti-tioned one at a time. Consider expanding a set Spre � [1::d]q of views into the set Sexp � [1::d]q+��1in order to repartition the subproblem �it�1 into � new subproblems.Let Vh~u;~u0i = fv j h~u; v; ~u0i 2 Spreg be the set of values for the ith component that are consis-tent with ~u in the �rst i�1 components and ~u0 in the last q�i components. Then Spre = S<~u;~u0> ~u�Vh~u;~u0i � ~u0. It follows that Sexp = S<~u;~u0> ~u � �Vh~u;~u0i�� � ~u0 = S<~u;~u0> � h~u; v1; : : : ; v�; ~u0i j vk 2Vh~u;~u0i for each k 2 [1::�] 	.Lemma 1 If jSprej � dqme , then jSexpj � dq+��1me� .Proof of Lemma 1: Ph~u;~u0i jVh~u;~u0ij has the �xed value jSprej. Therefore, by convexity, theexpression jSexpj =Ph~u;~u0i jVh~u;~u0ij� is minimized when Vh~u;~u0i is the same size for each h~u; ~u0i. There9

are at most dq�1 di�erent choices for h~u; ~u0i. Therefore, jSexpj � dq�1 � jSpre jdq�1 �� � dq�1� dqmedq�1�� �dq+��1me� .Lemma 2 jStj � dqtm2p(2qt�2) .Proof of Lemma 2: By condition (4) for step t � 1,jSt�1j � dq(t�1)m2p(2q(t�1)�2) and jSoblivioust�1 j � jSt�1jm2p = dq(t�1)m2p(2q(t�1)�1) :Applying Lemma 1 for each of the q(t�1) subproblems givesjStj � dqtm2p(2q(t�1)�1)�1�2:::�q(t�1)Since 2q� � 2q+��1 for � � 1 and qt = q(t�1) + (�1 � 1) + : : : + (�q(t�1) � 1), it follows that2q(t�1)�1�2 : : : �q(t�1) � 2qt. Furthermore, the technical condition on the re�nement of the subprob-lems is that at least one of the subproblems is partitioned. The ensures that �1�2 : : : �q(t�1) � 2.Thus (2q(t�1) � 1) �1�2 : : : �q(t�1) � (2qt � 2) and jStj � dqtm2p(2qt�2) .2.5 The PRAM Algorithm Is (Dt; t)-ObliviousLet Dt = Expand (St). Then condition (1) for step t is satis�ed.Lemma 3 The PRAM algorithm is (Dt; t)-oblivious.Proof of Lemma 3: Let Doblivioust�1 = Expand �Soblivioust�1 �. The �rst step is to prove thatDt � Doblivioust�1 . Let � 2 Dt. By the de�nition of Dt, every view ~vt seen on input � is contained inSt. By the de�nition of ~vt � St, every subview ~vt�1 of ~vt is contained in Soblivioust�1 . It follows thatevery subview ~vt�1 seen on input � is contained in Soblivioust�1 . Therefore, � 2 Doblivioust�1 . Similarly,Doblivioust�1 � Dt�1 follows easily from Soblivioust�1 � St�1.By condition (1) for step t � 1, the PRAM algorithm is (Dt�1; t � 1)-oblivious. BecauseDt � Dt�1, the algorithm is (Dt; t � 1)-oblivious. Hence, we only need to prove that the cellsaccessed at time t are independent of the input in Dt. Let � 2 Dt, and consider processor P .Because � 2 Dt � Doblivioust�1 , the view seen by processor P at time t � 1 is contained in Soblivioust�1 .Hence, it follows from the de�nition of Soblivioust�1 that processor P accesses the cells Address (w; P; t)and Address (r; P; t) at time t. This is true for every processor.2.6 DT is LargeThis completes the induction for time step t. It remains to show that if the total number of steps isT 2 o�np lognlog(np logn)� then the bound on jDT j for condition (6) is satis�ed. Re�ne the subproblems�1T ; : : : ;�qTT into the n singleton sets and expand the set of views ST as before forming the set oflong views S�. Each expanded view in S� assigns a value to each variable and hence completelyspeci�es an input. Comparing the de�nitions for DT and S� will reveal that DT = S�. Lemma 2gives that jDT j = jS�j � dnm2p (2n�2) . 10

2.7 ConclusionFrom these constructs, it is easy to �nd inputs � and �0 2 DT such that � is element distinct and�0 is not. The total number of inputs that are not element distinct inputs is at most �n2�dn�1. Thisis strictly less than dnm2p (2n�2) , the number inputs in DT , when d > �n2�m2p (2n�2). It follows thatthere exists an element distinct input � 2 DT .Since qT < n, there is a subproblem �iT containing two di�erent variables: x� and x� . Afterstep T , processor P1 sees at most one of these variables, say x� 62 VhP1;T i. Let v be the value ofx� for �. Form the input �0 from � by changing the value of x� to v so that �0 is not elementdistinct. From the de�nition of DT , it follows easily that �0 2 DT . By Claim 1, on inputs � and�0, the state of P1 at the end of step T depends only on the �xed set of input variables VhP1;T i seenby him. P1 does not see x� and therefore cannot distinguish between � and �0, which only di�ersin the value x�.3 COMMON PRAMs with Unbounded MemoryTheorem 2 If d � 22(1+�)n, then Element Distinctness de�ned on the input domain [1::d]n requires��np lognlog(np logn)� time steps on a COMMON PRAM with p processors and an unbounded numberof memory cells.With an unbounded number of memory cells, Element Distinctness can be solved in constant timeon the PRIORITY model. Therefore, this theorem provides a separation between the PRIORITYand COMMON models.The proof uses an adversary argument similar to the previous proof. As in that proof, a keyconcept is the vantage point VhP;ti = Dxj1 ; : : : ; xjqtE seen by processor P at time t. In this proofthere is another key concept. This is the addressing functions used by the processors and which ofthese functions interact. For a more detailed overview of the proof, see the Introduction, Section 1.Fix a COMMON PRAM algorithm. For each processor P and time step t, the algorithmde�nes the addressing functions fwhP;ti and f rhP;ti : [1::d]n ! N which specify the cells that P on input� writes into and reads from at time t. Let Fwritet be the collection of addressing functions usedby the p processors for writing during time t and Fwrite[1::t] to be the collection of addressing functionsused during the time interval [1::t]. Similarly, de�ne F readt ; F read[1::t] ; and F[1::t] = F read[1::t] [Fwrite[1::t] .Even if the addressing functions fwhP;ti and fwhP 0;t0i happen to be the same function [1::d]n ! N, theywill be considered as separate objects in the collection Fwrite[1::t] so that when needed we can refer tothe unique processor and time step in which the addressing function was used. The subscript hP; tiwill be dropped as in fw , when the processor and the time step are irrelevant to the discussion athand.Given the addressing functions F[1::t], one can determine how the processors interact on anyinput,during the time interval [1::t]. Here t � T is our current place in the induction. Consider aninput � 2 [1::d]n and a read function fr 2 F read[1::t] . Associated with these is the cell c read and thetime step at which the read occured. By considering all the write addressing functions in Fwrite[1::t] , we11

can determine the last time step t0 that this cell was written to. Let �alg[1::t] (�; fr) � Fwritet0 denotethe set of write addressing functions that simultaneously wrote to the cell c at time t0. If the cellc read by fr is blank, then the set of write addressing functions �alg[1::t] (�; fr) is de�ned to be theempty set.The processors using the write addressing functions in the set �alg[1::t] (�; fr) simultaneouslywrite to the same cell. Therefore, by the rules of the COMMON model, all of these processorsmust write the same value. When the processor using fr reads this value, he need not be awareof more than one of these writers. Hence, the read function fr is said to interact with only oneof the write functions in the set �alg[1::t] (�; fr). The adversary is able to choose which of these writefunctions it will be. The adversary restricts the input domain to a subdomain D in order to �xwhich write function each read function interacts with. Let �[1::t] : F read[1::t] ! Fwrite[1::t] [fmissg besome �xed function chosen by the adversary. An algorithm is said to be (D; t;�[1::t])-obliviousif for all fr 2 F read[1::t] , either it is the case that for all � 2 D, �[1::t] (fr) 2 �alg[1::t] (�; fr) or it is thecase that �[1::t] (fr) = miss and for all � 2 D, �alg[1::t] (�; fr) = ;. We say that on inputs in D, theinteractions in the computation up until time step t are consistent with �[1::t].Claim 2 If a PRAM algorithm is (D; t;�[1::t])-oblivious, then for each processor P there is a �xedset of inputs variables VhP;ti (vantage points) such that for inputs in D, the state of P at the endof step t is uniquely determined by the values of these variables. Furthermore, the sets of variablesVhP1;ti; : : : ;VhPp;ti have the property that they could be formed by t steps of a p processor mergingmachine.Proof of Claim 2: The proof depends heavily on the de�nition of the COMMON model. Whena set of processors simultaneously writes to the same cell, they must all write the same value.Therefore, the information written must be contained in the intersection of the knowledge of thesewriters. In the lower bound, when a processor reads this value using the addressing function fr, theadversary reveals to the reader the identity of one of the processors that wrote the value and revealsall of the information that this processor has, i.e. the value of the variables seen by the processorindicated by �[1::t] (fr). The reader is unable to discern any additional information from the read.For example, the processor cannot determine whether or not any other processor simultaneouslywrote to the same cell as well. For more details see the proof of Claim 1.As in the proof of Theorem 1, the adversary maintains a set of views St which are used torepresent the states of the processors. However, in the proof of Theorem 2, the algorithm mightnot be oblivious on the input domain Dt = Expand (St). There may be some bad inputs on whichthe addressing functions do not interact in the �xed way that they should. Instead, the adversarymaintains the set of such bad inputs Bad[1::t] � Expand (St) and proves that this set is not too big.Consider an addressing function f 2 F[1::t]. Suppose that processor P addresses using thisfunction at time t. By Claim 2, when restricted to inputs in Dt � Bad[1::t], the state of theprocessor, and hence the function depends only on the values of the variables in the vantage pointVhP;ti = Dxj1 ; : : : ; xjqtE. Because Dt = Expand (St), the possible tuples of values for this sequenceof variables are the views in St. Therefore, the input domain for f can be considered to be the setSt when viewed as a set of values for the variables in VhP;ti. It is interesting to observe that for adi�erent addressing function, the input domain will also be considered to be St, but for a di�erenttuple of variables. 12

The previous papers [FMW86], [RSSW88], and [B89] restrict the input domain to a subdomainDt such that for each of the addressing functions f and each of the variables xj , either f depends ina 1-1 way on xj or it does not depend on this variable at all. This is is an unreasonable requirementwhen the input domain is small, because such a subdomain might not exist. Instead, I de�ne a moregeneral measure of the dependency a function has on a variable. The precise de�nition of b-varyingis de�ned in Section 4.1. The extent to which the function varies is parameterized by the integerb. My adversary maintains a set of views St and, for each addressing function f 2 F[1::t], a set ofvariables X (f) � VhP;ti. The required condition is that when viewing St as the input domain, f isbt-varying with respect to each variable in X (f) for some integer bt and is completely independentof the other variables. One problem that might arise is that an addressing function from an earliertime t0 might be bt0-varying on the set of views St0. However, the same function might varyingmuch less on the current set of views St, i.e. is only b-varying for b considerably smaller than bt0.To handle this problem, bt is set to be a rapidly decreasing function of t ending with bT being setto be the �nal value needed. Because bt is set to be considerable smaller than bt0 , the adversary canmaintain the property that all the function are at least bt-varying with respect to the variables inX (f) on the set of views St. This has the added bene�t of ensuring that the set of variables X (f)does not change from one time step to the next.The adversary classi�es each read-write pair of addressing functions hfr; fwi 2 F read[1::t] �Fwrite[1::t]based on the sets of variables X (fr) and X (fw) on which they depend. The functions in the pair aresaid to be similar if X (fr) = X (fw). They are said to be fx�; x�g-covering if X (fr)� X (fw) =fx�g and X (fw)�X (fr) = fx�g. Otherwise, they are said to be unrelated.Similar pairs of functions access their cells based on mutual information and hence know apriori whether or not they will access the same cell. fx�; x�g-covering pairs could be used by theCOMMON algorithm as follows. One of the functions addresses cells in a 1-1 way with the valueof x�. The other uses the same mapping except that it uses the variable x� in place of x�. Thereader learns whether or not x� = x� by learning whether or not fr and fw access the same cell.Unrelated pairs do not seem to help the algorithm in any way.The adversary is able choose which interactions �[1::t] : F read[1::t] ! Fwrite[1::t] [fmissg that shewants between the addressing functions and then reveals this information to the processors. Theinput domain is restricted to those inputs on which these interactions occur. Similar pairs ofaddressing functions depend on the same set of variables X (fr) = X (fw), so how these pairsinteract partitions the set of views St. If follows that the adversary is able to �x the interactionsbetween these function to those that reduces St the least. In contrast, the adversary always willreveal that the fx�; x�g-covering and the unrelated pairs do not interact. The set Bad[1::t] of inputsmentioned above are de�ned to be those on which fx�; x�g-covering or unrelated pairs do interact.Because Bad[1::t] is de�ned in this way, saying that the algorithm is (Dt�Bad[1::t]; t;�[1::t])-obliviouse�ectively only states that on the inputs in Dt, the similar pairs of addressing functions interact asrevealed.As implied, there are two types of bad inputs, Badunrelated[1::t] and Badfx�;x�g�covering[1::t] �Bad[1::t]. If, on input �, a pair hfr; fwi of unrelated addressing functions access the same cell,i.e. fr (�) = fw (�), then this input is in Badunrelated[1::t] . On the other hand, the adversary allowsfx�; x�g-covering pairs of addressing functions to access the same cell, even though the adversarymust ensure that they do not interact. For example, fr and fw might access the same cell, butthe reader might not read the value written by fw , i.e. fw 62 �alg[1::t] (�; fr), because the value wasoverwritten or written after the read. For a more complex second example, suppose that fr does13

read the value written by fw . Suppose as well that there is another write function f 0w that writesto this cell at the same time as fw , i.e. both fw and f 0w are in �alg[1::t] (�; fr). If f 0w is similar to fr,then the adversary can ensure that fr interacts with f 0w , i.e. choose �[1::t] (fr) = f 0w . In this case,the interactions are still consistent with �[1::t], because the functions in the fx�; x�g-covering pairhfr; fwi do not interact. However, if fw 2 �alg[1::t] (�; fr) and there is no write function in �alg[1::t] (�; fr)that is similar to fr, then the input � is said to be in Badfx�;x�g�covering[1::t] .Formally the adversary maintains, for each time step t, the following constructs:� A set of \views", St � [1::d]qt,� A partition �1t , �2t ; : : : ; �qtt of the input variables,� A function �[1::t] : F read[1::t] ! Fwrite[1::t] [fmissg specifying the interactions,From these the following constructs are derived:� For each addressing function f 2 F[1::t], the set of variable X (f) � VhP;ti � fx1; : : :xng onwhich the function depends.� The function Type specifying the type of every read-write pair of addressing functions. Specif-ically, for each fr 2 F read[1::t] and fw 2 Fwrite[1::t] ,{ if X (fr) = X (fw) then Type (fr ; fw) = similar;{ if X (fr)� X (fw) = fx�g and X (fw)�X (fr) = fx�g for x�; x� 2 �itthen Type (fr; fw) = fx�; x�g-covering;{ otherwise Type (fr; fw) = unrelated.� The set of inputs:{ Badunrelated[1::t] = (� ����� 9fr 2 F read[1::t] and fw 2 Fwrite[1::t] such thatType (fr; fw) = unrelated and fr (�) = fw (�)).{ Badfx�;x�g�covering[1::t] = 8>>>>><>>>>>:� ����������� 9fr 2 F read[1::t] and fw 2 Fwrite[1::t] such thatType (fr ; fw) = fx�; x�g-covering; fw 2 �alg[1::t] (�; fr) ;and there are no write functions in �alg[1::t] (�; fr)that are similar to fr 9>>>>>=>>>>>;.{ Badcovering[1::t] = [8x�; x� 2 �it,i 2 [1::qt] Badfx�;x�g�covering[1::t] .{ Bad[1::t] = Badunrelated[1::t] [Badcovering[1::t] .The conditions inductively maintained are the following:1. The PRAM algorithm is (Dt �Bad[1::t]; t;�[1::t])-oblivious, where Dt = Expand (St).14

2. For each processor P , the vantage point VhP;ti contains exactly one variable from each �it.3. The entropy of the partition �1t ;�2t ; : : : ;�qtt is at most �L �9p logpn �+ 3� t.4. jStj � dqtb(pn)2T (2qt�2) where b = 2(npT)2 and T is the total time for the algorithm.5. On the domain St, each addressing function f 2 F[1::t] is independent of the variables not inX (f) and is bt-varying with respect to x 2 X (f), where bt = b(pn)[T�t+2] and b = 2(npT)2.6. For each fr 2 F read[1::t] , if �[1::t] (fr) = fw , then Type (fr; fw) = similar.At the end of the induction, the �nal set of views ST is expanded into a set of inputs. Because thereare additional complications, a set of inputs DiT is formed for each subproblem �iT . The followingproperties must hold:7. The PRAM algorithm is (DiT �Bad[1::T]; T;�[1::t])-oblivious.8. The number of parts in the partition �1T ;�2T ; : : : ;�qTT is at most qT < n0:1.9. jDiT j � dnb(pn)2T 2n , where b = 2(npT)2.10. On the domain DiT , each addressing function f 2 F[1::T] is independent of the variables notin X (f) and is b-varying with respect to x 2 X (f), where b = 2(npT)2.11. The set of inputs DiT are balanced in the following sense. For each subproblem �iT , i 2 [1::qT],let �i = ���iT ��, � = Pj2[1::i�1] ����jT ���, and �0 = Pj2[i+1::qT] ����jT ���. For each ~u 2 [1::d]� and each~u0 2 [1::d]�0, de�ne V ih~u;~u0i � [1::d] to be the set of values such that the set of inputs decomposesas DiT = S<~u;~u0> ~u � �V ih~u;~u0i��i � ~u0. The set of inputs DiT are balanced in the sense thateach nonempty Vh~u;~u0i has the same �xed size, i.e. 9z; 8 h~u; ~u0i ; jVh~u;~u0ij 2 f0; zg.3.1 The Main Steps of the ProofIn the introduction, I list four ways in which the adversary restricts the input domain to �xthe interactions between the addressing functions are �xed. The four methods correspond to thefollowing four lemmas. Lemma 4 uses techniques similar to those used in Theorem 1 to handlethe similar pairs of addressing functions. Lemma 5 handles the unrelated pairs. Lemmas 6 and 7handle the fx�; x�g-covering pairs. Below, the lemmas are stated and, from them, Theorem 2 isproved. The proofs to Lemmas 4, 5, 6, and 7 are found in Sections 4, 5, 6, 7 respectively.Lemma 4 There exists an adversary function whose input is a complete description of a COM-MON PRAM algorithm that runs in time T 2 o�np lognlog(np logn)� and whose output consists of thesets of inputs DiT , the partition �1T , �2T ; : : : ; �qTT of the input variables, and the function �[1::T]specifying the interactions, such that the conditions (7-11) are met.The proof inductively maintains the conditions (1) and (6) for each time step, by restricting andexpanding the set of views St. 15

After Lemma 4, the next step for the adversary is to ensure that there are not too manyinputs in Badunrelated[1::T] . Lemma 5 proves this by producing a su�cient number of inputs that arenot in this bad set. The proof uses that fact that the unrelated pairs of addressing functions areb-varying on di�erent sets of variables.Lemma 5 also ensures that, for many pairs of variables fx�; x�g, the processors have notgained too much information about whether or not x� = x� . In the case that the two variables arecontained in di�erent subproblems �iT , this cannot be done, because some processor might see bothof the variables. On the other hand, if the variables are in the same subproblem, then no processorsees both of them. This would lead us to believe that no processor knows whether they have thesame value. However, besides knowing the values of the variables in VP;T , each processor also knowshow the addressing functions interacted. This information may have provided the processors withpartial information about whether or not x� = x�. Lemma 5 proves that learning the interactionsbetween the similar and the unrelated pairs does not completely reveal this information. The lemmadoes this by demonstrating for each pair of variables fx�; x�g, one element distinct input and oneinput in which x� = x� , on which the iterations between the similar and the unrelated pairs ofaddressing functions are as revealed by the adversary. Ideally, there would be a single elementdistinct input � and for each pair of variables, the non-element distinct input would di�er from� only in the two variables fx�; x�g in question. The lemma accomplishes this, except that theremay be a di�erent element distinct input �i for each subproblem �iT .Lemma 5 Given the above constructs for time T , there exists, for each subproblem �iT , i 2 [1::qT],an element distinct input �i and there exists, for each pair of variables fx�; x�g contained in thesubproblem �iT , a non-element distinct input �ix�=x�=vi such that: �ix�=x�=vi assigns the value vito the variables x� and x� and is the same as �i on every other variable; the processors interactaccording to �[1::t] on the input �i; and if �ix�=x�=vi 62 Badfx�;x�g�covering[1::T] , then the same is trueon this input.After Lemma 5, what remains is to determine for which pairs of variables fx�; x�g the processors candi�erentiate between �i and �ix�=x�=vi by knowing how the fx�; x�g-covering pairs interact. Thisis done by considers the \element distinctness" graph on vertex set fx1; : : : ; xng and by coveringthe edge fx�; x�g if the corresponding inputs can be di�erentiated. The next lemma uses graphtheoretic constructs to characterize those edges covered. The unde�ned terms will be de�ned inSection 6.Lemma 6 There exists a \collection of labeled tuple systems" n�A[tw::T] � Btw ;Btw� j tw 2 [1::T]othat cover the edge fx�; x�g if �ix�=x�=vi 2 Badfx�;x�g�covering[1::T] . In addition, Pi jAij � pT 2 andPi jBij � pT .The key now is to �nd an uncovered edge. The proof uses entropy techniques and combines theideas from Fredman and Koml�os, Ragde et al. [RSSW88], and Boppana [B89].Lemma 7 There exists a pair of variables fx�; x�g, such that: x� and x� are contained in thesame subproblem �iT for some i 2 [1::qT]; the edge fx�; x�g is not covered by the collection oflabeled tuple systems; and neither variables are seen by processor P1, i.e. x�; x� 62 VhP1;T i.16

Theorem 2 follows easily from these lemmas. Let fx�; x�g be an edge with the properties stated inLemma 7. From Lemmas 5 and 6, it follows that all the addressing functions interact as revealedby the adversary on the inputs �i and �ix�=x�=vi . Hence, by Claim 2, the state of P1, for these twoinputs, at the end of step T depends only on the �xed set of input variables VhP1;T i seen by him.P1 does not see x� or x� and therefore cannot distinguish between the inputs �i and �ix�=x�=vi ,which di�er only on these variables. Therefore, on these inputs, P1 is unable to determine whetheror not the input is element distinct.4 Induction on Time StepsLemma 4 There exists an adversary function whose input is a complete description of a COMMONPRAM algorithm that runs in time T 2 o�np lognlog(np logn)� and whose output consists of the sets ofinputs DiT , the partition �1T , �2T ; : : : ; �qTT of the input variables, and the function �[1::T] specifyingthe interactions, such that the conditions (7-11) are met.Inductively, suppose that the adversary has de�ned the above constructs for time step t� 1. First,the adversary restricts the set of views to the subset Svaryingt�1 � St�1 on which the addressingfunctions in Ft are (pt+ 1)pbn2bt-varying. Then, the set of views is restricted further to Ssimilart�1 �Svaryingt�1 so that each similar pair interacts in an oblivious way. Finally, the set Ssimilart�1 is expandedto St. On this new set of views, each addressing function f 2 F[1::t] is still bt-varying with respectto the variables in X (f).4.1 The Varying PropertyThe b-varying property is a general measure of the dependency a function has on a variable. Letf be an addressing function with the view VhP;ti =
xj1 ; : : : ; xjq� and let xjl be a variable withinthis view. The addressing function f is said to be b-varying with respect to the variable xjl onthe set of views S if and only if Indf;xjlS � jSjb , where Indf;xjlS is the size of the largest subset of Son which f is independent of xjl . If f is b-varying with respect to every variable in X (f) � VhP;tiand is independent of the other variables, then f is simply said to be b-varying.The following construction of such a largest subset is not necessary for the proof, but it mayprovide some insight into the de�nition of b-varying. To temporarily simplify the notation, considera function f that depends on the variables hy1; : : : ; yqi that is de�ned on a domain S. We constructas follows a set, INDf;y1S , that is a largest subset of S on which f is independent of the variable y1.For each setting ~u of hy2; : : : ; yqi, f must address a �xed cell on the subdomain INDf;y1S in orderto be independent of y1. Consider the univariate function f(y1; ~u). The possible values for y1 are� vj
 v; ~u � 2 S 	. Partition these values according to which cell is addressed. Let Cf;y1S (~u) be thecell addressed by the largest number of values. The function Cf;y1S (y2; : : : ; yq) is independent of y1,but may depend on the variables hy2; : : : ; yqi. Let INDf;y1S = j �
 v; ~u � 2 S j f(v; ~u) = Cf;y1S (~u) 	 j.A diagram of this construction is given in �gure 3. There is a column for each ~u and a row for eachv. Each entry speci�es the output of f (eg. c; d; e) on the input
 v; ~u � 2 S. For each column, thevalues v are partitioned according to which cell is addressed and the largest such block is marked.Note that output of f need not be the same for di�erent columns. The union of the marked areasis a maximum subset INDf;y1S � S on which f is independent of y1.17

1 b

d

c

d
e

c c

c

c b

other variables

y Figure 3: b-varying4.2 Obtaining the Varying PropertyConsider the cells addressed by the processors during time step t on inputs from the domainDt�1�Bad[1::t]. By condition (1) and by Claim 2, the state of processor P at the end of step t� 1is uniquely determined by the values of the variables in the vantage point VhP;t�1i. In other words,the view in St�1 seen by the processor determines which cell is addressed at time t. This de�nes acollection of 2p new addressing functions Ft de�ned on the domain St�1.The adversary �nds a subset Svaryingt�1 � St�1 of the views on which these new addressingfunctions in Ft are (pt+1)pbn2bt-varying. This is done by restricting the set, once for each function-variable pair. A function-variable pair hf; xjli is found for which the function is neither independentnor (pt + 1)pbn2bt-varying with respect to the variable on the current set of views. The set isreduced to the largest subset on which the function is independent of the variable. Then anothersuch function-variable pair is found and the set is reduced further. Because each set is a subsetof the previous sets, once a function is independent of a variable, it remains independent. Theprocess stops when no more such function-variable pairs exist. Let Svaryingt�1 be the resulting setof views. On this set, for each addressing function in Ft and each variable, the function is either(pt+ 1)pbn2bt-varying with respect to the variable or independent of it.How much does the set get reduced? Consider a set S. Recall that Indf;xjlS is the size of thelargest subset of S on which f is independent of xjl . The set of views is reduced to such a subset.Because f is not (pt + 1)pbn2bt-varying with respect to xjl , we know that the size of this largestsubset is greater than jSj(pt+1)pbn2 bt . There are at most 2p addressing functions in Ft and each ofthese depends on at most 2t variables. Therefore, the set will be reduced in this way no more than2p2t times. We can conclude that Svaryingt�1 > jSt�1j[(pt+1)pbn2bt]2p2t .4.3 Ensuring that Similar Pairs Interact as RevealedThe following lemma ensures that condition (1) is true for time step t.Lemma 4.1 If the PRAM algorithm is (Expand �Svaryingt�1 ��Bad[1::t�1]; t� 1;�[1::t�1])-oblivious,then there exists a set of views Ssimilart�1 � Svaryingt�1 such that jSsimilart�1 j � jSvaryingt�1 j(pt+1)p and a �[1::t] fortime t such that the PRAM algorithm is (Expand �Ssimilart�1 �� Bad[1::t]; t;�[1::t])-oblivious.18

Proof of Lemma 4.1: Consider an input � 2 Expand �Svaryingt�1 ��Bad[1::t] and any addressingfunction fr 2 F readt . By the de�nition of Badt = Badunrelatedt [Badcoveringt , either �alg[1::t] (�; fr)contains a write addressing function that is similar to fr or �alg[1::t] (�; fr) is empty. In the �rst case,de�ne �0[1::t] (�; fr) to be the write addressing function from fw�alg[1::t] (�; fr) that that is similar tofr. If there is more than one possibility for fw, break the tie by choosing the one used by theprocessor of highest priority. In the second case, let �0[1::t] (�; fr) = miss.Let ~v 2 Svaryingt�1 be the view seen by the processor P using fr on input �. We now prove thatif �0[1::t] (�; fr) = fw , then �0[1::t] (�0; fr) = fw for every �0 2 Expand �Svaryingt�1 ��Bad[1::t] on whichP sees the same view ~v. Suppose by contradiction, that �0[1::t] (�; fr) = fw, and �0[1::t] (�0; fr) = f 0w.By the de�nition of �0[1::t], fr is similar to both fw and to f 0w. Therefore, X (fr) = X (fw) = X (fw0). The view ~v speci�es the values of the variables in X (fr) � VhP;t�1i. Hence, ~v speci�es the cellsaddressed by fr , fw and fw0 . On input �, the addressing functions fr; fw and f 0w access cells sothat fr reads from fw . Therefore, the same thing happens on input �0, proving the claim. Thee�ect of the claim is that, the function �00[1::t] (~v; fr) = �0[1::t] (�; fr) is well de�ned.De�ne Ssimilart�1 to be the largest subset of Svaryingt�1 on which �00[1::t] (~v; fr) is independent of ~vfor each fr 2 F readt . There are p such read functions fr and the range of �00[1::t] (~v; fr) is at mostjFwrite[1::t] [fmissg j � pt + 1. Therefore, jSsimilart�1 j � jSvaryingt�1 j(pt+1)p . The adversary chooses �[1::t] (fr)= �00[1::t] (~v; fr) for these views ~v.The following example will demonstrate why this technique does not work for non-similarpairs. Suppose that there is only one subproblem �1 = fx1; x2g and that the set of views isSvaryingt�1 = f1; 2g. Suppose that fr and fw both address cell c1 when they see the view 1 and c2when seeing 2. Finally, suppose that fr and fw are not similar: X (fr) = fx1g and X (fw) = fx2g.The domain of inputs consistent with the views is Expand �Svaryingt�1 � = f11; 12; 21; 22g. Theproblem is that on the inputs 11 and 22, fr and fw address the same cell, while on the inputs 12and 21 they access di�erent cells. Hence, whether they access the same cell does not depend onsimply one view.4.4 Keeping Functions Varying during the Restriction StageLemma 4.2 The addressing functions in Ft are bn2bt-varying on the set Ssimilart�1 .Proof of Lemma 4.2: Consider any addressing function f 2 Ft and any variable xjl 2 X (f).Recall that Indf;xjlSsimilart�1 is the size of the largest subset of Ssimilart�1 on which f is independent ofxjl . Clearly, Indf;xjlSsimilart�1 � Indf;xjlSvaryingt�1 , because Ssimilart�1 � Svaryingt�1 . Furthermore, Indf;xjlSvaryingt�1 �jSvaryingt�1 j(pt+1)pbn2 bt because f is (pt + 1)pbn2bt-varying with respect to xjl on the set Svaryingt�1 . Finally,because jSvaryingt�1 j(pt+1)p � jSsimilart�1 j, we can conclude that Indf;xjlSsimilart�1 � jSsimilart�1 jbn2 bt . Therefore, f is bn2bt-varying with respect to xjl on the set Ssimilart�1 . 19

Lemma 4.3 The addressing functions in F[1::t�1] are bn2bt-varying on the set Ssimilart�1 .Proof of Lemma 4.3: First recall that jSsimilart�1 j � jSvaryingt�1 j(pt+1)p � jSt�1j(pt+1)p[(pt+1)pbn2 bt]2p2t= bn2 jSt�1j[(pt+1)pbn2]2p2t+1 [bt]2p2t . Because generously (pt+1)pbn2 � b(pn)2 � b(pn)[T�t+2] = bt and t 2 o(logn),it follows that jSsimilart�1 j � bn2 jSt�1jb4p2t+1t � bn2 jSt�1jbpn�1t . Finally, bt�1 = bpnt gives jSsimilart�1 j � bn2 btjSt�1jbt�1 .Consider any addressing function f 2 F[1::t�1] and any variable xjl 2 X (f). Clearly, Indf;xjlSsimilart�1 �Indf;xjlSt�1 , because Ssimilart�1 � St�1. Furthermore, Indf;xjlSt�1 � jSt�1jbt�1 because f is bt�1-varying withrespect to xjl on the set St�1. From above, we have jSt�1j � bt�1bn2 bt jSsimilart�1 j. It follows thatIndf;xjlSsimilart�1 � jSsimilart�1 jbn2bt . We can conclude that f is bn2bt-varying with respect to xjl on the setSsimilart�1 .4.5 The S Expanding StageThe subproblems �1t�1; : : : ; �qt�1t�1 are re�ned as was done in Theorem 1, Section 2.2. Then, the setof views Ssimilart�1 is expanded to form the larger set St of longer views. The new di�culty is how theexpanding e�ects the varying property. To simplify the process, the subproblems are repartitionedone at at time, expanding Ssimilart�1 each time.As done in Section 2.4, consider expanding a set Spre � [1::d]q of views into the set Sexp �[1::d]q+��1 while repartitioning the subproblem �it�1 into � new subproblems. For each settingh~u; ~u0i 2 [1::d]q�1, the subset of longer views ~u � �Vh~u;~u0i� � ~u0 � Spre is expanded into the subsetof views ~u� �Vh~u;~u0i�� � ~u0 � Sexp. If for some of the settings of h~u; ~u0i, the set of values Vh~u;~u0i ismuch larger than for the other settings, than the corresponding set of views would expand into farmore views than for the other settings. In such a case, I will say that the set of views Spre expandsunevenly.The problem with Spre expanding unevenly is the following. Suppose that the functions inF[1::t] are b0-varying on the views Spre. As this set of views expands, the cells addressed by afunction f do not change and the subsets of Spre on which f is independent of a variable xjl remainintact. However, if the set does not expand evenly, then one of these subsets Indf;xjlSpre may expandtoo much in proportion to the rest. In this case, f may no longer be b0-varying.The solution to this problem is to �rst �nd a subset Sbal � Spre of the views such that eachnonempty Vh~u;~u0i has the same size, i.e. 9z; 8 h~u; ~u0i ; jVh~u;~u0ij 2 f0; zg. It follows from the nextlemma that a set of size jSbalj � jSprejbn exists with this property. If the addressing functions arebnb0-varying on Spre then they will be at least b0-varying on the set Sbal. This new set, Sbal, is thenexpanded exactly as was done in Theorem 1 to form Sexp. Because it expands evenly, the functionsare still b0-varying on Sexp.4.6 Forming the Balanced Set Sbal 20

Lemma 4.4 Suppose that du 2 [1::d], for each u 2 [1::dq�1]. Let A = Pu du and suppose thatA � dqB . Then there exists values n0 and d0 such that there are at least n0 indexes u for whichdu � d0 and for which n0d0 = A2 ln(B).Proof of Lemma 4.4: Without loss of generality, assume that the du are sorted in decreasingorder. Suppose that for all u 2 [1::dq�1], du < A2 lnB 1u . ThenXu du < Xu2[1::b A2d lnB c]d+ Xu2[b A2d lnB c+1::dq�1] A2 lnB 1u� A2 lnB + A2 lnB Z dq�1A2d lnB 1u �u= A2 lnB �1 + ln �dq�1�� ln� A2d lnB��� A2 lnB �1 + ln �dq�1�� ln�dqB �+ ln (2 lnB) + ln (d)�= A2 lnB [1 + ln (B) + ln (2 lnB)] < A:This contradicts the fact that Pu du = A. It follows that there exists an index u0 2 [1::dq�1] forwhich du0 � A2 lnB 1u0 and that for all u 2 [1 : : :u0], du is at least this size. Then, n0 = u0 andd0 = A2 lnB 1u0 meet the requirements.Using this lemma, we are now able to de�ne the subset Sbal � Spre. For u 2 [1::dq�1], let du =���Vh~u;~u0i���, where h~u; ~u0i is the uth vector in [1::d]q�1. Recall that Vh~u;~u0i = fv 2 [1::d] j h~u; v; ~u0i 2 Spreg.Therefore, du � d and Pu du = jSprej � dqB for some B. Applying Lemma 4.4 gives the statedvalues n0 and d0. For each Vh~u;~u0i that is no smaller than d0, let V 0h~u;~u0i be an arbitrary subsetof Vh~u;~u0i of size d0. For those Vh~u;~u0i which are smaller than d0, let V 0h~u;~u0i = ;. Finally, letSbal = Sh~u;~u0i ~u� V 0h~u;~u0i � ~u0. Note that jSbalj = n0d0 = jSprej2 lnB .4.7 The Size of StRecall that Ssimilart�1 � Svaryingt�1 � St�1 is found and Lemma 4.3 shows that jSsimilart�1 j � bn2 btjSt�1jbt�1� jSt�1jbt�1 . Plugging in bt = b(pn)[T�t+2] for t � 1, gives jSsimilart�1 j � jSt�1jb(pn)2T�n2 . By condition (4),jSt�1j � dq(t�1)b(pn)2T (2q(t�1)�2) . Therefore, jSsimilart�1 j � dq(t�1)b(pn)2T (2q(t�1)�1)�n2 .This set of views is expanded as the subproblems �1t�1; : : : ; �qt�1t�1 are re�ned one at a time.Suppose that Spre is the set of views before one of the subproblems is re�ned and that jSprej � dqbe .Lemma 4.4 gives that jSbalj = jSprej2 lnB � dqbe 2 lnB and Lemma 1 gives that jSexpj � dq+��1(be 2 lnB)� .The �rst step is to bound B for each such re�nement. When the �rst subproblem is expanded,Spre is the set Ssimilart�1 . Hence, B is such that jSprej = jSsimilart�1 j = dq(t�1)B . Hence, 2 lnB =2 ln �b(pn)2T(2q(t�1)�1)�n2�. Because b = 2(npT)2, T � logn, and q � n2 , it follows that 2 lnB � bn.When re�ning the remaining subproblems �2t�1; : : : ; �qt�1t�1 , B is larger. However, it is easy to seethat for each re�nement the bound 2 lnB � bn holds.21

Therefore, if jSprej � dqbe , then jSbalj � jSprejbn � dqbe+n and jSexpj � dq+��1b[e+n]� . Applying thisfor each of the q(t�1) subproblems proves that if the pre-expanded set Ssimilart�1 is no smaller thandq(t�1)be , then the expanded set St is no smaller than dqtb[:::[[e+n]�1+n]�2:::+n]�q(t�1) � dqtb[e+nq(t�1)]�1�2:::�q(t�1) .It follows that jStj � dqtb[(pn)2T (2q(t�1)�1)�n2+nq(t�1)]�1�2:::�q(t�1) � dqtb(pn)2T (2q(t�1)�1)�1�2:::�q(t�1) . By thetwo claims used in Lemma 2, this size is no smaller than dqtb(pn)2T (2qt�2) , meeting the bound forcondition (4).4.8 Keeping Functions Varying during the Expanding StageBy Lemmas 4.2 and 4.3, the addressing functions in F[1::t] are bn2bt-varying on the input domainSsimilart�1 . In Section 4.5, Ssimilart�1 is expanded into St. For condition (5), we require that theaddressing functions in F[1::t] be bt-varying on St. The di�culty is that the views in St are longertuples of values than those in Ssimilart�1 � St�1. Hence, for St, the addressing functions need to beconsidered to be functions on a larger list of variables. The additional variables are seen by theprocessor at the end of time step t, but not at the end of time step t� 1. Hence, the functions inF[1::t] will not actually depend on these extra variables. In fact, each function f will still be varyingwith respect to each of the variables in its �xed set X (f) and independent of the other variables.To be more precise, recall that at the end of time step t � 1, processor P sees the variablesVhP;t�1i consisting of one variable from each of the subproblems �1t�1; : : : ;�qt�1t�1 ; the views in Ssimilart�1assign a value to each of these variables; it is on these values that the state of the processor, hence itsaddressing functions, depends. In Section 4.5, the subproblems �1t�1; : : : ; �qt�1t�1 are re�ned one at atime. A view in the intermediate set Sbal � Spre assigns a value to each of the current subproblems.Each of the addressing functions in F[1::t] is considered to be a function on one variable from eachof these current subproblems.Lemma 4.5 If the addressing functions in F[1::t] are b0-varying on Sbal, then they are still b0-varyingon the expanded set Sexp.Proof of Lemma 4.5: Suppose that after some of the subproblems are re�ned, the current listof subproblems is �1; : : : ;�q. Suppose as well that the subproblem �i is currently being re�nedinto the smaller subproblems �i;1; : : : ;�i;�. As this is done, Sbal is expanded into the larger setof longer views Sexp. Consider any addressing function f 2 F[1::t]. Let bf and ef be the sameaddressing function as f except considered as a function on the domains Sbal and Sexp. Theviews in Sbal assign a value to each of the subproblems �1; : : : ;�q and in this way bf is a functionon the variables fxj1 ; : : : ; xjqg, where xjl 2 �l for each l 2 [1::q]. The views in Sexp assign avalue to each of the subproblems �1; : : : ; �i�1; �i;1; : : : ;�i;�; �i+1; : : : ; �q and in this way ef isa function on the variables fxj1 ; : : : ; xji�1 ; z(i;1); : : : ; z(i;k�1); xji ; z(i;k+1); : : : ; z(i;�); xji+1 ; : : : ; xjqg,where k is such that xji 2 �i;k � �i and z(i;k0) 2 �i;k0 for the other k0 2 [1::�]. Note that f doesnot depend on the z(i;k0) variables. Hence, for every value of the z variables, bf �xj1 ; : : : ; xjq� =ef � xj1 ; : : : ; xji�1 ; z(i;1); : : : ; z(i;k�1); xji; z(i;k+1); : : : ; z(i;�); xji+1 ; : : : ; xjq �.Let l 2 [1::q]. If xjl 62 X (f), then by the assumption of the lemma, bf is constant on Sbalwith respect xjl . It is not hard to see that ef is then also constant on Sexp with respect to xjl . Aswell, z(i;l) 62 X (f) and bf is independent of this variable. Finally, suppose that xjl 2 X (f). By the22

assumption of the lemma, bf is b0-varying with respect to xjl on Sbal. Our goal is to prove that efis b0-varying with respect to xjl on the expanded set Sexp. There are two cases, namely l = i andl 6= i. Because the proofs of these two cases are similar, we will only prove the second case.As before, we use v's to denote the values assigned to the repartitioned subproblems and u'sto denote the values assigned to the other subproblems. Speci�cally, let vji denote the value ofthe expanded variable xji on which f depends and ~v the values of
 z(i;1); : : : ; z(i;k�1); z(i;k+1); : : : ;z(i;�) �. Let ujl denote the value of the variable xjl with respect to which ef must be b0-varyingand ~u the values of
 xj1 ; : : : ; xjl�1 ; xjl+1 ; : : : ; xji�1 ; xji+1 ; : : : ; xjq �. Using this notation, we candecompose Sbal and Sexp as done before.De�ne Vhujl ;~ui = fvji j
 vji ; ujl; ~u � 2 Sbalg. Then Sbal = Sujl ;~u n
 vji ; ujl ; ~u � j vji 2Vhujl ;~ui o and Sexp = Sujl ;~u n
 vji ; ~v; ujl ; ~u � j vji 2 Vhujl ;~ui and ~v 2 �Vhujl ;~ui���1 o. Because Sbalwas formed using Lemma 4.4, we know that jVhujl ;~uij = d0 for each hujl ; ~ui and hence jSbalj =Pujl ;~u ���Vhujl ;~ui��� = n0d0 and jSexpj =Pujl ;~u ���Vhujl ;~ui���� = n0d0� = d0��1jSbalj.The next step of the proof is to prove that Indef;xjlSexp � d0��1Indbf;xjlSbal , where Indbf;xjlSbal is the sizeof the largest subset of Sbal on which bf is independent of �jl and Indef;xjlSexp is the size of the largestsubset of Sexp on which ef is independent of �jl .Fix some subset of Sexp on which ef is independent of xjl of the maximum size Indef;xjlSexp .Because ef is independent of xjl on this subset, it is well de�ned to de�ne the function eC(vji ; ~v; ~u) =ef(vji ; ~v; ujl ; ~u) to be the cell addressed on this subset. Recall that bf(vji ; ujl ; ~u) = ef(vji ; ~v; ujl; ~u).Hence, we can de�ne bC(vji ; ~u) = eC(vji ; ~v; ~u). Consider the subset of Sbal on which bf accesses thecell speci�ed by bC. bf is independent of xjl on this subset. Hence, the size of this set is no morethan Indbf;xjlSbal . To prove Indef;xjlSexp � d0��1Indbf;xjlSbal , what remains is to compare the sizes of these twosubsets of views.Indef;xjlSexp = ��� nhvji ; ~v; ujl ; ~ui 2 Sexp j ef(vji ; ~v; ujl ; ~u) = eC(vji ; ~v; ~u)o ���= �����hvji ; ~v; ujl; ~ui j vji 2 Vhujl ;~ui; ~v 2 �Vhujl ;~ui���1 ; and bf(vji ; ujl; ~u) = bC(vji ; ~u)�����= Xujl ;~u ���nvji j vji 2 Vhujl ;~ui and bf(vji ; ujl; ~u) = bC(vji ; ~u)o��� ���Vhujl ;~ui�����1= d0��1 Xujl ;~u ���nvji j hvji ; ujl; ~ui 2 Sbal and bf(vji ; ujl; ~u) = bC(vji ; ~u)o���= d0��1 ������ [ujl ;~unhvji ; ujl ; ~ui 2 Sbal j bf(vji ; ujl; ~u) = bC(vji ; ~u)o������ � d0��1Indbf;xjlSbalWe can now complete the proof. By the statement of the lemma, bf is b0-varying with respectto xjl on Sbal. Therefore, by de�nition, Indbf;xjlSbal � jSbaljb0 . If follows that Indef;xjlSexp � d0��1Indbf;xjlSbal �23

d0��1 jSbaljb0 = jSexpjb0 . This proves that ef is b0-varying with respect to xjl on Sexp.We now are able to obtain condition (5).Lemma 4.6 The addressing functions in F[1::t] are bt-varying on the set St.Proof of Lemma 4.6: By Lemmas 4.2 and 4.3, the addressing functions in F[1::t] are bn2bt-varyingon the input domain Ssimilart�1 . Consider a functions f 2 F[1::t] and a variable xjl 2 X (f). Supposethat before one of the subproblems �1t�1; : : : ; �qt�1t�1 is re�ned, f is bnb0-varying with respect to xjlon Spre. Hence, by de�nition, Indf;xjlSpre � jSprejbnb0 . Lemma 4.4 found the balanced subset of viewsSbal � Spre such that jSprejbn � Sbal. It follows that Indf;xjlSbal � Indf;xjlSpre � jSprejbnb0 � jSbaljb0 and that fis b0-varying with respect to xjl on Sbal. Lemma 4.5 then proves that f is b0-varying with respectto xjl on Sexp. The conclusion is that the re�ning of one subproblem looses at most a factor of bnin the amount the functions vary. Hence, re�ning all qt subproblems looses at most a total factorof (bn)qt � bn2 . The addressing functions in F[1::t] are bn2bt-varying on the initial pre-expanded setSsimilart�1 . Therefore, they are still bt-varying on the �nal expanded set St.4.9 The �nal sets of inputs DiTThe above steps complete all the induction hypothesis for time step t. This is repeated until time�nal time step T . Note, in order to satisfy condition (8), qT < n0:1, the computation needs tobe stopped sooner than was done in Theorem 1. Since the time bound is logarithmic in n, thise�ects the time by only a constant factor. What remains is to form the sets of inputs DiT satisfyingconditions (7-11).As done in Section 2.6, the set of inputs is formed by re�ning the subproblems �1T ; : : : ;�qTTinto the n singleton sets and expanding the �nal set of views ST to form the set of longer views.These longer views are in fact inputs, because they assign a value to each of the variables. However,as done in Section 4.5, the subproblems are re�ned one at a time. Each time a subproblem �jT isre�ned, the set of views Spre is restricted to a subset Sbal and then this balanced set of views isexpanded to form Sexp. Because of these balancing steps, the set of viewsninputs obtained dependson the order in which the subproblems �1T ; :::;�qTT are re�ned. For each of the subproblems �iT ,let DiT be the set of inputs formed from ST by re�ning the subproblems in an order in which �iT isre�ned last.By condition (1), the PRAM algorithm is (Expand (ST) � Bad[1::T]; T;�[1::t])-oblivious. Be-cause DiT � Expand (ST), it follows that the PRAM algorithm is (DiT�Bad[1::T]; T;�[1::t])-oblivious.The calculations in Section 4.7 give that jDiT j � dnb(pn)2T 2n .By condition (5), the addressing functions F[1::T] are bT -varying on the domain ST , wherebT = b(pn)[T�T+2] � 2n2b. It follows by the same proof as in Lemma 4.6 that these functions areb-varying on the domain DiT .Because DiT is the set inputs formed when the subproblem �iT has been repartitioned last,it follows that the sets V ih~u;~u0i associated with variables xji 2 �iT are balanced before this lastrepartitioning. It follows that each nonempty Vh~u;~u0i has the same �xed size.This completes all of the induction hypothesis. 24

5 Handling the Unrelated PairsLemma 5 Given the above constructs for time T , there exists, for each subproblem �iT , i 2 [1::qT],an element distinct input �i and there exists, for each pair of variables fx�; x�g contained in thesubproblem �iT , a non-element distinct input �ix�=x�=vi such that: �ix�=x�=vi assigns the value vito the variables x� and x� and is the same as �i on every other variable; the processors interactaccording to �[1::t] on the input �i; and if �ix�=x�=vi 62 Badfx�;x�g�covering[1::T] , then the same is trueon this input.Proof of Lemma 5: For each �nal subproblem �iT , i 2 [1::qT], consider the set of inputsDiT = S<~u;~u0> ~u � �V ih~u;~u0i��i � ~u0, constructed in Lemma 4. Randomly, choose the input �iuniformly from this set. Let ~u 2 [1::d]� be the values assigned by �i to the variables contained in[j2[1::i�1]�jT and let ~u0 2 [1::d]�0 be the values assigned to those in [j2[i+1::qT]�jT . V ih~u;~u0i is theset values v such that ~u � �V ih~u;~u0i��i � ~u0 is a subset of the input domain DiT . Randomly choosethe value vi from this set V ih~u;~u0i. For each pair of variables fx�; x�g in the subproblem �iT , let�ix�=x�=vi be the input that is identical to �i, except for the variables x� and x� which have thevalue vi. Clearly, the inputs � �ix�=x�=vi j x�; x� 2 �iT 	 are all contained within the domain DiT .For each of the requirements of Lemma 5, a sub-lemma below proves that it is with smallprobability that the inputs chosen do not meet the requirement. Summing these probabilities,we get that the total probability is strictly less than 1 that one of these bad properties occurs.Therefore, there exists a choice for �i and vi for which none of these things happen. Fix such achoice for each subproblem.Lemma 5.1 The probability that the input �i is not element distinct is very small.Proof of Lemma 5.1: The size jDiT j � dnb(pn)2T 2n given in condition (9) is much larger than thenumber �n2�dn�1 of non-element distinct inputs when d � 22(1+�)n .Lemma 5.2 The probability is no more than (pT)2b that �i 2 Bad[1::T]. Because b = 2(npT)2 thisprobability is very small.Proof of Lemma 5.2: Consider any read-write unrelated or covering pair fr and fw. Becausethere are at most (pT)2 such read-write pairs, it is su�cient to prove that this pair accesses thesame cell on no more than jDiT jb of the inputs in DiT . Because X (fr) 6= X (fw), there must existsome variable xk on which only one of the functions depends. Without loss of generality, assumethat fr, but not fw , depends on the variable xk. The cell accessed by fw is independent of xk.Therefore, the set of bad inputs on which fr accesses the same cell as fw forms a subdomain of DiTon which the function fr is independent of xk. Because fr is b-varying with respect to xk on thedomain DiT , this subdomain is no larger than jDiT jb .Lemma 5.2 proved that the addressing functions fr and fw do not access the same cell onmost inputs in DiT . The goal of the next lemma is to prove that the same is true for most non-element distinct inputs. More precisely, consider some pair of variables fx�; x�g 2 �iT . Lemma 5.3proves that if fr and fw are not a fx�; x�g-covering pair, then they do not access the same cell on25

most inputs in DiT for which x� = x�. Note that this lemma might not be true if fr and fw are afx�; x�g-covering pair, i.e. X (fr)� X (fw) = fx�g and X (fw)� X (fr) = fx�g. For example, if fraddresses memory with the value of x� using a 1-1 mapping and fw uses the same mapping exceptwith the value of x� , then they access the same cell if and only if x� = x� .Lemma 5.3 If �i and vi are chosen at random as described, then the probability is no morethan (npT)2b that there exists a pair of variables x�; x� 2 �iT such that the input �ix�=x�=vi iscontained in Badunrelated[1::T] [S8x0�;x0�2�it;fx0�;x0�g6=fx�;x�gBadfx�;x�g�covering[1::T] . Because b = 2(npT)2this probability is less than 12 .Proof of Lemma 5.3: Consider any pair of variables x�; x� 2 �iT and any read-write unrelatedor covering pair fr and fw which is not a fx�; x�g-covering pair. Because there are at most n2variable pairs and (pT)2 read-write pairs, it is su�cient to prove that fr and fw access the samecell on the input �ix�=x�=vi for no more than a 1b fraction of the choices for �i and vi.The pair fr and fw are not similar, (i.e. X (fr) � X (fw) = ; and X (fw) � X (fr) = ;) andare not fx�; x�g-Covering Pairs, (i.e. X (fr)�X (fw) = fx�g and X (fw)�X (fr) = fx�g). Becausex� and x� are contained in the same subproblem, it is neither the case that both x� and x� arecontained in X (fr) nor both in X (fw). Therefore, there are two remaining cases.Case 1 There exists another variable xk (not the same variable as x� or x�) on which one, butnot both, of the two functions depends, (i.e. xk is contained in either X (fr) � X (fw) or inX (fw)�X (fr))Case 2 One of the functions fr or fw depends on one of the variables x� (or x�), however, the otherfunction depends on neither of them.For case 1, assume without loss of generality that fr, but not fw , depends on xk . As well, fr cannotdepend on both x� and x�. Without loss of generality, assume that it does not depend on x�. Iffr tries to mimic fw using the value of x� instead of x� so that they access the same cell if andonly if x� = x�, then adjusting the value of xk will change the cell addressed by fr but not byfw . Because fr is b-varying with respect to xk, fw will manage to mimic fw on no more than a 1bfraction of the inputs.Case 1 will now be broken into two sub-case depending on whether xk is contained in thesubproblem �iT . Besides di�erences in notation, the case 1.1 and 1.2 di�er very little. However, tobe formal they are both included.Case 1.1 xk 2 �iT :Recall ~u 2 [1::d]� denotes the values assigned by �i to the variables contained in [j2[1::i�1]�jT and~u0 2 [1::d]�0 denotes the values assigned to those in [j2[i+1::qT]�jT . Let v�, v�, and vk denote thevalues assigned by �i to the variables x�; x�; xk 2 �iT and �nally let ~v denote the values assignedto the remaining variables in �it. The probability space that we are considering is a random choicefor �i = h~u; v�; v�; vk; ~v; ~u0i 2 DiT and a random choice for vi 2 V ih~u;~u0i. The size of this samplespace is���n
~u; v�; v�; vk; ~v; ~u0� 2 DiT ; vi 2 V ih~u;~u0i o��� = Xh~u;~u0i ���n
~u; v�; v�; vk; ~v; ~u0� 2 DiT o�������V ih~u;~u0i��� :26

By condition (11), each nonempty Vh~u;~u0i has the same �xed size d0. Hence, this amount can befactored out, giving that the size of the sample space is d0jDiT j:The set of bad
�i; vi� samples for which fr and fw access the same cell on the input �ix�=x�=viis n
~u; v�; v�; vk; ~v; ~u0� 2 DiT ; vi 2 V ih~u;~u0i j fr(~u; vi; vi; vk; ~v; ~u0) = fw(~u; vi; vi; vk; ~v; ~u0) o :We will transform this set into a subdomain of DiT on which the function fr is independent of thevalue vk of the variable xk . Two di�cult changes are required to complete the transformation: theinput to which fr and fw are applied much be transformed from a non-element distinct input to ageneral input from DiT and because n+1 di�erent values are being considered, a d must be factoredout. Because fr does not depend on x� , it follows that fr will access the same cell whether x�is set to have the same value vi which x� is set to or to a di�erent value v� . More precisely,fr(~u; vi; vi; vk; ~v; ~u0) = fr(~u; vi; v�; vk; ~v; ~u0). We cannot do the same trick for fw , because it mightdepend on x�. However, we do not really need to consider the function fw itself. Instead, de�ne C0to be a function, such that, for every value v� 2 [1::d], C 0(~u; vi; v�; vk; ~v; ~u0) = fw(~u; vi; vi; vk; ~v; ~u0).Note that even if fw depends on the value of x� , the function C0 does not. This can be carried astep further by noting that C0 is independent of the value vk of xk because fw is. Therefore, de�neC to be such that, for every value vk 2 [1::d], C(~u; vi; v�; ~v; ~u0) = C 0(~u; vi; v�; vk; ~v; ~u0). This givesthat the number of bad
�i; vi� samples is���n
~u; v�; v�; vk; ~v; ~u0� 2 DiT ; vi 2 V ih~u;~u0i j fr(~u; vi; v�; vk; ~v; ~u0) = C(~u; vi; v�; ~v; ~u0) o���It remains to remove the extra factor of d. It is interesting that the value v� is factored out,instead of the vi as might have been expected.= Xh~u;~u0i ����n v�; v�; vk; vi 2 V ih~u;~u0i; ~v 2 �V ih~u;~u0i��i�3 j fr(~u; vi; v�; vk; ~v; ~u0) = C(~u; vi; v�; ~v; ~u0) o����= jV ih~u;~u0ij Xh~u;~u0i ����n v� ; vk; vi 2 V ih~u;~u0i; ~v 2 �V ih~u;~u0i��i�3 j fr(~u; vi; v�; vk; ~v; ~u0) = C(~u; vi; v�; ~v; ~u0) o����= d0 ���n
~u; vi; v�; vk; ~v; ~u0� 2 DiT j fr(~u; vi; v�; vk; ~v; ~u0) = C(~u; vi; v�; ~v; ~u0) o���This last set is a subdomain of DiT on which the function fr is independent of the value vk of thevariable xk. Because fr is b-varying with respect to xk, it follows that this subdomain is no largerthan jDiT jb . We can conclude that the number of such bad
�i; vi� samples is no more than d0 jDiT jb ,which is no more than a 1b fraction of the sample space.Case 1.2 xk 62 �iT :With out loss of generality, assume that xk 2 [j2[i+1::qT]�jT and let uk denote the value assignedby �i to xk and let ~u00 2 [1::d]�0�1 denotes the values assigned to the remaining variables in[j2[i+1::qT]�jT . Using this notation, the size of this sample space is���n
~u; v�; v�; ~v; uk; ~u00� 2 DiT ; vi 2 V ih~u;~u0i o��� = d0jDiT j:The size of the set of bad
�i; vi� samples for which fr and fw access the same cell on the input�ix�=x�=vi is 27

���n
~u; v�; v�; ~v; uk; ~u00� 2 DiT ; vi 2 V ih~u;uk;~u00i j fr(~u; vi; vi; ~v; uk; ~u00) = fw(~u; vi; vi; ~v; uk; ~u00) o���= ���n
~u; v�; v�; ~v; uk; ~u00� 2 DiT ; vi 2 V ih~u;uk ;~u00i j fr(~u; vi; v�; ~v; uk; ~u00) = C(~u; vi; v�; ~v; ~u00) o���= Xh~u;uk ;~u00i ����n v�; v�; vi 2 V ih~u;uk ;~u00i; ~v 2 �V ih~u;uk ;~u00i��i�2 j fr(~u; vi; v�; ~v; uk; ~u00) = C(~u; vi; v�; ~v; ~u00) o����= jV ih~u;uk ;~u00ij Xh~u;uk ;~u00i ����n v� ; vi 2 V ih~u;uk ;~u00i; ~v 2 �V ih~u;uk;~u00i��i�2 j fr(~u; vi; v�; ~v; uk; ~u00) = C(~u; vi; v�; ~v; ~u00) o����= d0 ���n
~u; vi; v�; ~v; uk; ~u00� 2 DiT j fr(~u; vi; v�; ~v; uk; ~u00) = C(~u; vi; v�; ~v; ~u00) o���This completes case 1. The proof of case 2 is very similar. Because neither function depends onx� , its value can be adjusted to either be equal to x� or not.6 The Element Distinctness GraphWhat remains is to determine for which pairs of variables fx�; x�g the processors can di�erentiatebetween �i and �ix�=x�=vi by knowing how the fx�; x�g-covering pairs interact. This is done byconsiders the \element distinctness" graph G on vertex set fx1; : : : ; xng and by covering the edgefx�; x�g if the corresponding inputs can be di�erentiated. Lemma 6 uses graph theoretic constructsto characterize those edges covered.Tuples and systems of tuples are de�ned in [RSSW88] to cover the edges fx�; x�g of theelement distinctness graph for which the PRAM has learned that x� 6= x�. A tuple is a sequence ofvariables
 xj1 ; : : : ; xjqT �, one for each subproblem
 �1T ; : : : ;�qTT �, (i.e. a vantage point). Unlikein [RSSW88], in the present paper, the PRAM may have gained partial information about whetherx� = x� . Therefore, the concept of a tuple needs to be extended. A labeled tuple is the same asbefore, except now each variable is labeled with a memory cell c 2 R. For each addressing functionf 2 F[1::T], the adversary forms the labeled tuple Tf as follows. Let V =
 xj1 ; : : : ; xjqT � be thevantage point of the processor using f . For each i 2 [1::qT], let �ixji=vi be the same input as �iexcept that xji = vi. De�ne ci to be the cell f ��ixji=vi� addressed by f on this input. The labeledtuple associated with the addressing function f is Tf =
 (xj1 ; c1); (xj2 ; c2); : : : ; (xjqT ; cqT) �.The edges of the element distinctness graph are covered by pairs of labeled tuples. We saythat the pair of labeled tuples (Tfr ; Tfw) covers the edge fx�; x�g of G, if there exists a coordinatei 2 [1::qT] such that the variable in the ith coordinate of Tfr is x� and of Tfw is x� and for each ofthe other coordinates the variable in Tfr and in Tfw are the same. In addition, the label of x� inTfr must be the same as the the label of x� in Tfw .For example, Tfr = h(x1; c8); (x2; c4); (x�; c); (x4; c9)i andTfw = h(x1; c4); (x2; c3); (x�; c); (x4; c8)i cover the edge fx�; x�g.Lemma 6.1 Suppose that fr and fw form a fx�; x�g-Covering Pair of addressing functions. Ifthese functions access the same cell c on the input �ix�=x�=vi , then the pair of labeled tuples(Tfr ; Tfw) covers the edge fx�; x�g. 28

Proof of Lemma 6.1: Because X (fr)�X (fw) = fx�g and X (fw)�X (fr) = fx�g, the variablesin the two labeled tuples will be the same, except for x� and x� . Because these two variables arein the same subproblem, the order of the variables in the two tuples will be the same. In addition,because x� 62 X (fr), fr(�ix�=vi) = fr(�ix�=x�=vi) = c. Similarly, fw(�ix�=vi) = fw(�ix�=x�=vi) = c.Therefore, the label of x� in Tfr and of x� in Tfw are both the same cell c.The most obvious way to proceed is to cover the edge fx�; x�g of the element distinctnessgraph G if there exists addressing functions fr 2 F read[1:::T] and fw 2 Fwrite[1:::T] such that the associatedpair of labeled tuples (Tfr ; Tfw) covers the edge. The problem with this technique, however, is thatif this were done, every edge of G could be covered in one time step on both the PRIORITY and onthe COMMONmodel. This is in fact is the essence of the constant time PRIORITY algorithm. Thesolution, as stated before, is that the adversary does allow the fx�; x�g-covering pairs of addressingfunctions to access the same cell as long as she can ensure that they do not interact.A labeled tuple system (A;B) is a pair of sets of labeled tuples. It is important forthe graph theoretic result that the sets A and B are disjoint. The system is said to cover theedge fx�; x�g if there exists labeled tuples TA 2 A and TB 2 B such that the pair (TA; TB)covers the edge. The adversary forms a labeled tuple system for each time step tw 2 [1::T]. LetA[tw::T] = fTfr j fr 2 F read[tw:::T]g and Btw = fTfw j fw 2 Fwritetw g. Note that Pi jAij � pT 2 andPi jBij � pT . The sets A[tw::T] and Btw might not be disjoint. Therefore, the twth labeled tuplesystem is de�ned to be �A[tw::T] � Btw ;Btw�. We are now ready to prove the main lemma of thissection.Lemma 6 If �ix�=x�=vi 2 Badfx�;x�g�covering[1::T] , then the collection of labeled tuple systemsn�A[tw::T] � Btw ;Btw� j tw 2 [1::T]o covers the edge fx�; x�g. Note as well that Pi jAij � pT 2and Pi jBij � pT and that the tuples have length qT .Proof of Lemma 6: Suppose that �ix�=x�=vi 2 Badfx�;x�g�covering[1::T] . Then, by de�nition, thereexists addressing functions fr 2 F read[1::T] and fw 2 Fwrite[1::T] such that: Type (fr; fw) = fx�; x�g-coveringand fw 2 �alg[1::t] ��ix�=x�=vi ; fr�. In addition, there are no write functions in �alg[1::t] ��ix�=x�=vi ; fr�that are similar to fr . Recall that �alg[1::t] ��ix�=x�=vi ; fr� contains the set of write functions fromwhich fr reads on this input.Because fr reads from fw on input �ix�=x�=vi , they must access the same cell on this input.Therefore, by Lemma 6.1, the pair of tuples (Tfr ; Tfw) covers the edge fx�; x�g. In addition,Tfr 2 A[tw::T] and Tfw 2 Btw , for some time step tw . Therefore, to show that the edge fx�; x�g iscovered by the tuple system �A[tw::T] � Btw ;Btw�, it is su�cient to show that Tfr 62 Btw .Suppose by contradiction that Tfr 2 Btw . Then, by de�nition of Btw , there exists a writeaddressing function fhit 2 Fwritetw used during time step tw which contributes the labeled tupleTfr . Because fr and fhit contribute the same labeled tuple, they must depend on the same set ofvariables, i.e. X (fr) = X (fhit), and hence must be similar. In addition, both functions give thesame label to x�, so they must access the same cell on the input �ix�=vi and therefore on �ix�=x�=vi .It follows that fw and fhit write to the same cell during time step tw . To conclude, if fw is containedin �alg[1::t] ��ix�=x�=vi ; fr�, then so is fhit. This contradicts the fact that there are no write functionsin �alg[1::t] ��ix�=x�=vi ; fr� that are similar to fr. 29

7 Graph TheoryLemma 7 There exists a pair of variables fx�; x�g, such that: x� and x� are contained in thesame subproblem �iT for some i 2 [1::qT]; the edge fx�; x�g is not covered by the collection of labeledtuple systems n�A[tw::T] � Btw ;Btw� j tw 2 [1::T]o; and neither variables are seen by processor P1,i.e. x�; x� 62 VhP1;T i.Another combinatorial object is required. A semi-partition � = h�1; : : : ; �ri of a set V =fx1; : : : ; xng is a set of disjoint subsets of V . Boppana thinks of it as a partial function from V to[1::r]. The semi-partition covers the edge fx�; x�g if x� and x� are contained in di�erent subsets�1; : : : ; �r. Note that this forms a complete multipartite graph. The size of � is j�j = Pi j�ij.The entropy of � is de�ned as follows. Uniformly at random choose a variable x from Si2[1::r] �i.The entropy H (�) = Pi2[1::qt]�Pr [x 2 �i] log2 Pr [x 2 �i] = �Pi j�ijj�j log2 � j�ijj�j � is the expectednumber of bits to specify which of the sets �i that x is contained in. The cost of � is de�ned inthe same way except that x is randomly chosen from V , giving cost (�) = j�jjV jH (�). The size ofa collection of semi-partitions is the sum of the individual sizes and the cost of the collection isthe sum of the individual costs. A useful result due to Fredman and Koml�os (1984) says that if acollection of semi-partitions covers the complete graph on n vertices then the cost of the collectionis at least log2 n. (For another proof, see K�orner (1986).)In order to prove Lemma 7, we cover all the unacceptable edges of G with four collections ofsemi-partitions, ��;�V ;�hA;Bi; and �E . If by contradiction there is no uncovered edge, then thesum cost of these collections is at least log2 n. It is su�cient then to show that if the cost of ��;�V ;or �hA;Bi is at least :1 log2 n or if the cost of �E is at least :7 log2 n, then T 2
�np lognlog(np logn)�.Note that the subproblems
�1T ; : : : ;�qTT � themselves form a semi-partition. This is denoted��. If fx�; x�g is not covered by this semi-partition then x� and x� are contained in the samesubproblem �iT . j��j = jV j. Therefore, cost (��) = H (��). condition (3) bounds the entropyH (��). As stated in Section 2, Boppana proves that if H (��) is at least :1 log2 n, than T is asrequired.In order to ensure that x�; x� 62 VhP1;T i, we use the semi-partition DVhP1;T i; V � VhP1;T iE andform a collection of semi-partitions to cover all the edges in the clique VhP1;T i. The entropy of anyrandom variable that takes on only two values is at most 1. Hence, the cost of DVhP1 ;T i; V � VhP1 ;T iEis at most 1. By condition (8), ���VhP1;T i��� = qT < n0:1. The result by Fredman and Koml�os is tightso there is a collection with cost log2 �n0:1� = 0:1 log2 n that covers the clique.What remains is forming two collections of semi-partitions, �hA;Bi and �E , that cover theedges covered by the collection of labeled tuple systems n�A[tw::T] � Btw ;Btw� j tw 2 [1::T]o.Lemma 4.1 Given a collection of labeled tuple systems T = fhAi;Bii j i 2 [1::r]g with tuples oflength at most q, there exists a collection of semi-partitions �hA;Bi = fhAi; Bii j i 2 [1::r0]g thatcovers all the edges covered by T except for the edges in a set E of size qpn log (jT j) jT j + jT j2pn .Furthermore, Pi jAij �Pi jAij and Pi jBij �Pi jBij.As q becomes larger, this bound becomes weaker. It is conjectured that the bound remains thesame regardless of the length of the tuples. 30

The proof of this lemma is taken from [RSSW88]. In that setting the tuples are not labeled.However, the fact that the tuples are labeled does not e�ect the proof at all.Proof of Lemma 4.1: Initially, let �hA;Bi and E be empty. Each labeled tuple system hAi;Bii 2T will add a number of semi-partitions to �hA;Bi and a number of edges to E. A pair of labeledtuples is said to be a covering pair if they cover an edge. We say that hAi;Bii is sparse if it containsat most jAijjBijpn covering pairs. If it is not sparse, then there exists some tuple � 2 Ai, which formsa covering pair with at least jBijpn tuples in Bi. Since � is a tuple of length at most q, there is somecoordinate p such that at least jBijqpn tuples in Bi di�er from � only in position p and have the samelabel on this coordinate. Let A0i be the subset (including �) of Ai with this property and B0i be thesubset of Bi. Let A be the set of vertices occurring at position p in the tuples of A0i and similarlyB of B0i. The label of these vertices are all same and hence can be removed. Therefore, hA;Bi is asemi-partition which covers the same edges as the labeled tuple system hA0i;B0ii.We remove A0i from Ai and B0i from Bi. We have not accounted for edges covered by pairsof tuples between A0i and Bi � B0i or between B0i and Ai � A0i. But any tuple in Bi � B0i covers atmost one edge with tuples in A0i, for it can di�er from a tuple in A0i only in a coordinate p0 6= p andtuples in A0i have the same variable in position p0 and di�erent variables in position p. Similarly,any tuple in Ai � A0i covers at most one edge with tuples in B0i. Thus we have neglected at mostjAij+ jBij edges. These are added to E.If hAi;Bii is not yet sparse, we repeat the process. Each time, we shrink Bi by at least afactor of � = 1� 1qpn . In at most log 1� (jBij) iterations, hAi;Bii becomes sparse (note that an emptytuple system is sparse). The total number of pairs we have added to E is log 1� (jBij)(jAij+ jBij) �qpn log(jBij)(jAij + jBij). When hAi;Bii becomes sparse, we simply add to E the edges coveredby this system. This adds at most jAijjBijpn more edges. When this process is completed, it is clear thatPi jAij �Pi jAij andPi jBij �Pi jBij. Furthermore, jEj �Pi hqpn log(jBij)(jAij+ jBij) + jAi jjBijpn i �qpn log (jT j) jT j+ jT j2pn .The next step is to form a collection of semi-partitions �E that cover the edges in E. Boppana,Lemma 3.4 [B89], proves that every graph with n vertices and jEj edges has a coloring with entropyof at most log2 �� jEjn + 1� e�. The semi-partition �E is formed by putting together vertices with thesame color. The edges of E are guaranteed to be covered by �E , because they are bi-chromatic. ByLemma 6, Pi jAij � pT 2 and Pi jBij � pT . Therefore, jT j =Pi jAij+ jBij � 2pT 2. If p � n logn,then the lower bound in Theorem 2 becomes
(1). Therefore, assume p � n log n. If T > logn,then Theorem 2 follows. Therefore, assume that T � logn. By condition (8), the tuples havelength qT < n0:1. Therefore, by Lemma 4.1, jEj � qpn log (jT j) jT j+ jT j2pn � n1:6. The cost of �Eis equal to its entropy, which is less than log2 �� jEjn + 1� e� � 0:7 logn.What remains is to bound the cost of the collection of semi-partitions �hA;Bi. Ragde et.al. [RSSW88], Boppana [B89], and I have di�erent ways of doing this. Ragde et. al. use thefact that Pi jAij + jBij � 2pT 2 and that H (hAi; Bii) � 1 to conclude that cost ��hA;Bi� =Pi jhAi ;BiijjV j H (hAi; Bii) � 2pT 2n (1). This gives the weaker result of T 2
�qnp log n�. Boppanauses a semi-partition with T parts and of size 2pT . The cost of this is at most 2pTn (logT), whichgive the required T . My method uses that fact that the semi-partitions are unbalanced, namely31

that the sets Ai are bigger than the sets Bi. Generally this is the case since Lemma 6 gives thatPi jAij � pT 2 and Pi jBij � pT . I will show that unbalanced semi-partitions are not able to coveredges e�ectively.As a �rst step of this proof, consider the situation in which jAij = T jBij, for each i.Given this situation, the entropy is easy to compute. H (hAi; Bii) = � jAijjAi j+jBij log2 � jAi jjAij+jBij� �jBijjAij+jBij log2 � jBijjAi j+jBij� = � TT+1 log2 � TT+1�� 1T+1 log2 � 1T+1�. Note that � log2 � TT+1� � 1T . There-fore,H (hAi; Bii)� 1T+1+ log2(T+1)T+1 � 2 log2(T)T . It follows that cost ��hA;Bi� =Pi jhAi ;BiijjV j H (hAi; Bii) ��2pT 2n ��2 log2 TT � = 4 pnT log2 T . Therefore, if cost ��hA;Bi� is more than :1 log2 n, then T 2
�np lognlog(np logn)�.This bounds cost ��hA;Bi� under the assumption that jAij = T jBij, for each i. The nextlemma proves that cost ��hA;Bi� is maximized when this assumption is true.Lemma 4.2 C = Pi jAij+jBijjV j H (hAi; Bii) is maximized when the semi-partitions are as balancedas possible, i.e. jAij = T jBij, for each i.Proof of Lemma 4.2: For each i 2 [1::r0], let ci = jAij+ jBij, �i = jAi jci , and 1� �i = jBijci . Thefollowing notation will be helpful. Let h(x) = x log2(x) + (1 � x) log2(1 � x). Substituting theseinto the equation gives C = �Pi cin [�i log2(�i) + (1� �i) log2(1� �i)] = �Pi cin h(�i). The claimis that this is maximized when all the �i have the same value. Suppose that C is maximized withthe values �1; : : : ; �r0 and suppose by way of contradiction, that there are indexes j; k 2 [1::r0] forwhich �j 6= �k. Keep everything �xed except for �j and �k. This givesC = �cjn h(�j) + �ckn h(�k) + Xi 62fj;kg�cin h(�i) anddCd�j = �cjn h0(�j) + �ckn h0(�k)d�kd�j + 0Since Pi jAij = pT 2 and ci�i = jAij, we can conclude that �k = jAk jck = pT 2�cj�j�Pi62fj;kg ci�ickand that d�kd�j = �cjck . Therefore, setting dCd�j to zero gives �h0(�j) + h0(�k) = 0. Because h0(x) =log2(x) � log2(1 � x), it follows that, log2(�j) � log2(1 � �j) = log2(�k) � log2(1 � �k): Thisgives log2(�j � �j�k) = log2(�k � �j�k) and �j � �j�k = �k � �j�k. We can concluded that C ismaximized when �j = �k .We can conclude that the costs of the four collections of semi-partitions ��;�V ;�hA;Bi; and�E are less than either :1 log2 n or :7 log2 n. Therefore, these semi-partitions cannot cover all theedges of the element distinctness graph G. Hence, an edge exists meeting the requirements ofLemma 7. .As proved in Section 3.1, the Lemmas 4, 5, 6, and 7 together prove Theorem 2. Let fx�; x�gbe an edge with the properties stated in Lemma 7. From Lemmas 5 and 6, it follows that all theaddressing functions interact as revealed by the adversary on the inputs �i and �ix�=x�=vi . Hence,by Claim 2, the state of P1, for these two inputs, at the end of step T depends only on the �xed setof input variables VhP1;T i seen by him. P1 does not see x� or x� and therefore cannot distinguishbetween the inputs �i and �ix�=x�=vi , which di�er only on these variables. Therefore, on these32

inputs, P1 is unable to determine whether or not the input is element distinct.8 Open ProblemsFinding lower bounds for Element Distinctness when de�ned on even smaller domains is still open.For example, nothing is known when the variables take on values up to n2. It is also open whetherPRIORITY and COMMON can be separated when the number of memory cells is bounded.AcknowledgmentsI would like to thank my supervisor, Faith Fich, for her inspiration and guidance. I would also liketo thank my Paul Beame, Toni Pitassi, and an unknown referee for their useful comments.References[B89] R. B. Boppana, \Optimal Separations Between Concurrent-Write Parallel Machines," Proc.21st ACM Symposium on Theory of Computing, pp. 320-326, 1989.[BH87] P. Beame and J. Hastad, \Optimal bounds for decision problems on the CRCW PRAM,"Proc. 19th ACM Symposium on Theory of Computing, pp. 83-93, 1987.[CDHR88] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, \E�cient simulations betweenconcurrent-read concurrent-write PRAM models," 13th Symp. Math. Found. Comp. Sci., Lec-ture Notes in Comp. Sci. vol. 324, Springer-Verlag, pp. 231-239, 1988.[CDR86] S. A. Cook, C. Dwork, and R. Reischuk, \Upper and lower bounds for parallel randomaccess machines without simultaneous writes," SIAM J. Comp. vol. 15, pp. 87-97, 1986.[FMRW85] F. E. Fich, F. Meyer Auf Der Heide, P. L. Ragde, and A. Wigderson, \One, Two, ...In�nity: Lower Bounds for Parallel Computation," Proc. 17th ACM Symposium on Theory ofComputing, pp. 48-58, 1985.[FMW86] F. E. Fich, F. Meyer Auf Der Heide, and A. Wigderson, \Lower bounds for parallelrandom-access machines with unbounded shared memory," Advances in Computing Research.,vol. 4, pp. 1-15, 1986.[FRW88] F. E. Fich, P. L. Ragde, and A. Wigderson, \Relations Between Concurrent-Write Modelsof Parallel Computation," SIAM J. Comp., vol. 17, pp. 606-627, 1988.[FRW88-2] F. E. Fich, P. L. Ragde, and A. Wigderson, \Simulations among concurrent-writePRAMs," Algorithmica 3, pp. 43-52, 1988.[FK84] M. Fredman and J. Koml�os, \On the size of separating systems and families of perfect hashfunctions," SIAM J. Alg. Disc. Meth. 5, 61-68, 1984.[K88] L. Kucera (1982), \Parallel computation and con
icts in memory access," Inf. Proc. Letters,vol. 14, pp. 93-96, 1988. 33

[R] P. L. Ragde, \Processor-Time Tradeo�s in PRAM Simulations," to appear in J. Comput. Syst.Sciences.[RSSW88] P. L. Ragde, W. L. Steiger, E. Szemer�edi, and A. Wigderson, \The parallel complexityof element distinctness is
((logn) 12)," SIAM J. Disc. Math., vol. 1, pp. 399-410, 1988.

34

