REMOVING RAMSEY THEORY:
LOWER BOUNDS WITH SMALLER DOMAIN SIZE

Jeflf Edmonds
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada M5S 1A4

Abstract: Boppana [B89] proves a lower bound separating the PRIORITY and the COMMON PRAM
models that is optimal to within a constant factor. However, an essential ingredient in his proof is a problem
with an enormously large input domain. In this paper, I achieve the same lower bound with the improvement
that it applies even when the computational problem is defined on a much more reasonably sized input
domain. My new techniques provide a greater understanding of the partial information a processor learns
about the input. In addition, I define a new measure of the dependency that a function has on a variable
and develop new set theoretic techniques to replace the use of Ramsey theory (which had forced the domain

size to be large).

1 Introduction

Ramsey Theory has been extremely useful in proving lower bounds for problems defined on huge
input domains. (e.g, [B89]). Given a fixed algorithm, the input domain is restricted so that the
given algorithm, when run on the restricted domain, falls within a simpler class of algorithms (e.g,
the class of comparison based algorithms). A lower bound is then proved on the time required to
solve the problem using an algorithm from this simpler class. If the initial input domain is too
small, then this technique fails because a restriction of the input domain with the desired properties
might not exist.

It is important to obtain lower bounds for problems defined on small domains. Such lower
bounds can provide a deeper understanding into what can and cannot be done by the model.
Sometimes, when a problem is restricted to a small domain, the time required to solve it strictly
decreases. For example, consider the problem of finding the maximum element of a set of n numbers.
This problem has time complexity ©(loglogn) on PRIORITY or COMMON PRAM for general
inputs [FMWS86], but when the elements composing the input are restricted to lie within the range
[1..n%], it can be done in O(k) time [FRWSS].

The parallel random access machine (PRAM) is a natural model of parallel computation
that is used both for algorithm design and for obtaining lower bounds. On this model, processors
communicate with one another via shared memory. During each time step, each processor is able
to write to one memory cell and read from another. We are interested in how quickly the processors
are able to gain information. For lower bounds, the processors are allowed to do an unbounded
amount of computation between communication steps and each memory cell is allowed to hold a
value of unbounded size. This is not unreasonable, because in real computers a communication
step takes thousands of CPU cycles and transfers large blocks of data. Besides, this assumption
only makes the lower bound stronger.

The two models considered in this paper, PRIORITY and COMMON, are both concurrent
read concurrent write (CRCW) PRAMs, which differ only in the way they resolve write conflicts.
If a number of processors concurrently write to the same cell, then on PRIORITY, the processor

with the highest priority (i.e. lowest index) of those writing to a cell is able to write his value. On
COMMON, the algorithm must guarantee that if a concurrent write occurs, then all the processors
writing to the cell at this time must write the same value.

A tight lower bound of ©(logn) has been obtained on the time to compute the OR of n bits
on a concurrent read exclusive write (CREW) PRAM [CDRS86]. As well, PRIORITY (and hence
COMMON) with P processors requires © (logn/loglogn) time steps to compute the PARITY
of n bits [BH87]. However, neither of these methods appears to be useful in differentiating between
different the write conflict resolution methods used in PRIORITY and COMMON.

A number of simulations of PRIORITY by COMMON have been obtained. [K88] gave a
constant time general simulation of PRIORITY on COMMON which requires the number of pro-
cessors to increase from p = n to p = n?, where n is the length of the input. This was improved
[FRWSS] to p = !¢ and later [CDHRS8] to p = nlog n. When both models have p = n processors,
[FRWS88-2] show that the one step of PRIORITY can be simulated in O (log n/loglogn) time steps
on COMMON. [B89] and [R] independently showed how these algorithms could be combined giving
a tradeoff between n and p.

Fich, Meyer auf der Heide, and Wigderson [FMWR6] first separated the models using the
Element Distinctness problem, a problem closely related to sorting. An input (z1,...,2,) € [1..d]"
is said to be element distinct if each variable z; has a distinct value. In other words, for all
i,7 € [L..n],if i # j then 2; # x;. This problem can be solved in constant time on PRIORITY with
n processors. With this number of processors, [FMWS86] proved a € (logloglog n) lower bound on
COMMON. The lower bound was later improved to Q (y/log n) by Ragde, Steiger, Szemerédi, and

Wigderson [RSSW88] and to © (%ﬁggg—n)) by Boppana [B89], matching to within a constant
P

factor the upper bound that follows the simulation of PRIORITY by COMMON. In addition,
Boppana proves that if the number of memory cells is bounded as the input domain grows, then
Element Distinctness takes just as long to solve on the PRIORITY model as on the COMMON
model. In the present paper, I prove the same lower bounds. Theorem 1 is a lower bound for
the PRIORITY model with bounded memory and Theorem 2 is a lower bound for the COMMON
model with unbounded memory. The difference between these results a the previous ones is that
the results in [RSSW88] and [B89] require the input domain to be huge, namely the n variables
take on values in the range [1..d], where d is a huge tower of exponentials, while in the present
paper, the results are proved with a much smaller domain, namely d € 22" Most importantly,
the new techniques presented provide a greater understanding of the power of concurrent write
shared memory in parallel computation.

All the lower bound results mentioned use the adversarial argument. The following is an
outline of this technique with an emphasis on what is done differently within this paper. Given a
fixed algorithm, if an insufficient number of time steps have been performed, the adversary finds a
input that should be accepted and one that should be rejected which are indistinguishable to, say,
processor Py (i.e., Py is in the same state on both of these inputs at the end of the computation).
It is a reasonable restriction to require processor P; to know the solution, because if any other
processor knew the answer, he could tell P; in one extra time step.

The adversary need not choose these two inputs until the end of the computation. Instead,
she maintains a set of inputs D; that are still being considered until time ¢. The actions that each
processor takes during time step ¢ depend on the input selected from this restricted domain D;.
The adversary, however, has defined this domain D; to have the property that, when restricted to

inputs from this domain, the actions of each processor for time ¢ depends on only a small subset of
the input variables. The adversary is then able to consider these actions as functions of these input
variables. These functions, however, may be quite complex. Therefore, the adversary restricts the
input domain further to a subdomain D;11 C D; on which all these functions have a more simple
structure. This simple structure ensures, among other things, that the actions of each processor at
time t + 1 depend only on a small, but slightly larger, subset of the input variables. This process
continues one time step at a time.

It is sometimes more intuitive to consider what each processor “knows” about the input, than
it is to consider the set of inputs D;. When a processor is in a particular state, he is formally said
to know a fact if it is true for every input such that on this input the processor is in the state
in question and the input is still considered possible (i.e. it is in D;). Some of the information
known by a processor is said to be fixed. By this, I mean that, for all inputs considered possible
by the adversary (i.e. in D;), this information is true. At time ¢, the processor may choose to take
some action because of this fixed knowledge. Because these facts are true over all inputs considered
possible, the action is performed on all of these inputs. We will say that the actions of the processor
do not depend on such fixed information, but only on non-fized information. FEach time step, the
processor gains more non-fixed information. The adversary will choose some information to reveal
to all of the processors. Revealing information amounts to restricting the input domain D, to those
inputs consistent with the information. The purpose of doing this is two fold. Revealing information
that a processor already knows makes this information fixed. Hence, his actions would no longer
depend on this information. Revealing information that a processor does not know (intuitively the
convex hull of his knowledge) can make it possible to define more succinctly what he does in fact
know. This paper provides a better understanding of the knowledge gained by the processors.

[FMW&86] showed that processors are essentially only able to gain knowledge in two ways.
Processors gain one of the types of knowledge by reading the values written by other processors. In
this way, a processor is able to learn the values of 2! variables in ¢ time steps. In log n time steps, he
is able to learn the entire input and can then compute the answer to any problem in one additional
time step. The other type of knowledge is gained by learning about the interactions between the
processors. (For example, n processors can compute the OR of n boolean variables in one time
step by having each processor write to cell 1 if and only if his variable has the value 1.) When
a processor reads a value from a cell, he is said to interact with one of the processors who wrote
this value. Which cell a processor reads or writes to at time ¢ is defined by an addressing function
that maps each input to the memory cell addressed. Instead of speaking of the two processors
interacting, it is often easier to speak of their addressing functions interacting.

Because it is hard to pin down how much an individual processor knows about the interactions,
it is helpful for the adversary to reveal all the interactions to all of the processors. However, the cell
at which an interaction occurs is not included in this information. To understand how much relevant
information the processors gain from this, it is important to understand the difference between two
addressing functions accessing the same cell and these two addressing functions interacting. For
example, if one addressing function maps the values of a variable z, in a 1-1 way to memory cells
and another uses the same mapping except with the value of 23, then they access the same cell if
and only if z, = zg. If it is known that these addressing functions interacted, then it is known that
they accessed the same cell and hence that x, = zg. The known optimal algorithms for Element
Distinctness use this fact. On the other hand, if many processors write concurrently to a cell,
then a reader “interacts” with no more than one of them. Therefore, knowing that two addressing
functions have not interacted does not necessarily imply that they have accessed different cells.

Hence, z, and x5 may or may not be equal.

When the number of memory cells is bounded as in Theorem 1, the adversary can fix the
interactions between the addressing functions by making all of them constant. Each addressing
function can be made constant by reducing the input domain by a factor proportional to the
memory size. However, if the number of memory cells is unbounded as in Theorem 2, then this
cannot always be done without revealing the entire input. In this case, the adversary has four other
ways of fixing the interactions between addressing functions. The first method finds a subdomain
of inputs on which the addressing functions that depend on exactly the same set of variables are
either equal or disjoint. Hence, they either always interact or never interact. (See Lemma 4.)

The second method ensures that if two addressing functions depend on different sets of vari-
ables, then there is a variable on which one depends heavily and on which the other is constant. It
follows that these functions access the same cell on only a small proportion of the inputs. These
inputs can be removed later. [FMWS86], [RSSW88], and [B89] restrict the domain so that the ad-
dressing functions are either constant or 1-1. This paper defines b-varying which is a more general
measure of the dependency a function has on a variable and is interesting in its own right. (See
Lemma 5.)

Unlike the first two methods, the third method to ensure that two addressing functions do not
interact does not ensure that they access different cells. If more than one processor concurrently
wrote to the same cell on the COMMON model, then by the definition of the model, they must
all write the same value. Later, when a processor reads this cell, the adversary chooses one of
the writers and reveals that the reader read from this writer. The reader would have no way of
knowing whether or not any other processor also wrote to the cell. In this way, the adversary
has freedom to choose which processors interact. In fact, different readers might be chosen to
interact with different writers, even if they all accessed the same cell. (See Lemma 6.) Note that
on the PRIORITY model, this is not possible. Each processor reading a cell reads from and, hence,
interacts with a specific processor: the one with the highest priority.

The final method uses a refinement of the element distinctness graph introduced in [FMW86].
As mentioned above, it is possible that two addressing functions access the same cell if and only if a
pair of variables have the same value. If no other processor writes to this cell (see the third method),
then the adversary must reveal whether or not they have accessed the same cell. This information
is recorded by covering the edge between these two variables in the element distinctness graph. The
adversary ensures that these addressing functions do not interact by not allowing these variables
to be equal. (See Lemma 6.) Graph theoretic techniques prove that if an insufficient number of
time steps have been performed, then some edge {z,, 23} remains uncovered. (See Lemma 7.) It
will follow that no processor knows whether or not these variables are equal.

The adversaries in [RSSW88] and in [B89] use multi-variable Ramsey Theory at each time
step to reduce the domain to a sub-cube S™ of inputs (where S C [1..d]). This has the effect of
revealing how the processor interact, but it also restricts the domain a great deal. Thus, the initial
domain must be very large. In this paper, the adversary’s subdomain of inputs does not form a
symmetric sub-cube as before, but is allowed to be a more general subset. The subdomain of inputs
is described using a new representation of the set of possible processor states. This set of states
is restricted as information is revealed (fixed) and is expanded as the processors gain information
that has not been fixed.

Interesting new combinatorial techniques are developed to obtain and maintain the desired
properties. As well, without the symmetry on the addressing functions and on the domain imposed

in [FMWS86], [RSSWS88], and [B89], processors are able to learn partial information about whether
a particular pair of variables has the same value. I extend the notion of the element distinctness
graph used in these papers and use it to record this partial information.

The remainder of this paper is organized as follows. Section 2 proves the lower bound for
Element Distinctness on PRIORITY with bounded memory. Section 3 proves the lower bound
on COMMON with unbounded memory. Lemmas 4, 5, 6, and 7 used in Section 3 are proved in
sections 4, 5, 6, and 7. Some open problems are given in Section 8.

2 PRIORITY PRAMs with Bounded Memory

2(1+e)n

Theorem 1 Ifd > m , where € > 0 is a constant, then Element Distinciness defined on the

log n) time steps on a PRIORITY PRAM with p processors

input domain [1..d]" requires %W

and m memory cells.

Before proving this theorem, some definitions are presented.

After only one time step on a PRAM, the state of a processor can depend on the value of
every input variable (e.g, if the processors compute the OR function). Part of this information can
be gained by knowing which cells other processors did or did not write to. If the input domain
is restricted so that the cells addressed by each processor are fixed, then the set of possible states
that a processor can be in is greatly restricted. An algorithm is said to be (D, t)-oblivious if, for
each processor, the cells that it addresses during the first ¢ steps are the same for all inputs in D.

If an algorithm is oblivious, then at time ¢ in the computation, for each processor, there is
a small set of variables on which the processor’s state might depend. Boppana [B89] proved that
such sets must have the property that they could be formed by ¢ steps of a p processor merging
machine. The sets of variables V- Vipyy © {x1,...,2,} are said to have this property if
there exists a set Vip 1y for each processor P € [1..p] and intermediate time step ¢’ € [0..t — 1] such
that V(py contains a single variable for each P and for each ' € [1..t], Vp 1y is either Vip,i_qy plus
one extra variable or is the union of Vipy_1y and Vips iy for some other processor P’ € [1..p] and
some previous time step ¢ € [0..t' — 1].

Claim 1 If @ PRAM algorithm is (D,t)-oblivious then for each processor P, there is a fived set
of inputs variables Vpy such that, for inputs in D, the state of P at the end of step t is uniquely
determined by the values of these variables. Furthermore, the sets of variables Vi 4y, ..., Vipyy have
the property that they could be formed by t steps of a p processor merging machine.

Proof of Claim 1: For time ¢ = 0, the set V(pgy is defined to contain only the variable initially
assigned to processor P. Because the cells addressed by the processors are fixed, it is fixed which
cell processor P reads at time ¢. It is also fixed whether or not the cell had been previously written
to. If not and if the cell initially contained the value of a variable, then the variable learned is
added to Vypyy. If the cell had been written to, then the last time step #,, € [1..t] in which the cell
was written to is also fixed. Let P, be the processor with the highest priority of those who wrote
to the cell at time ¢,,. Define V(p;y to be the union of Vip, 1y and Vip, ;. Inductively, processor
P’s state can only depend on the values of the variables in Vipyy.

Consider a (D, t)-oblivious algorithm. Processor P is said to see the variables in the set Vipy
at time ¢. The adversary finds a partition II}, II7, ..., II}* of the input variables {z1,...,x,} with
the property that no processor sees more than one variable per part II;. (If necessary, the adversary
gives processors the values of more variables so that each sees the exactly one variable per part).

A part II} of the partition is referred to as a subproblem. In the inputs considered, two
variables will have the same value only if they are in the same subproblem. In order to prove
that this entire input is element distinct, it is necessary to prove that each of these subproblems
is element distinct. This is difficult for the processors to do if each only sees one variable per
subproblem. This notion was introduced by Ragde et al. [RSSWS8S].

A vantage point is any sequence of variables V = <xj1, .. .,qut> such that z; € ITé for
each 7 € [1..q;]. Thus, a vantage point contains exactly one variable from each of the subproblems
and the order of the variables is specified by the fixed ordering of the subproblems. Note that the
variables V(p) seen by processor P at time ¢ form a vantage point if the variable are appropriately
ordered. Hence, V(p) is referred to as the vantage point from which the processor sees the input.
The notion of defining ordered tuples of variables was introduced by Ragde et al. [RSSW88]. This
idea is extended in the next definition.

The view of an input (vy,...,v,) seen from the vantage point <xj1, .. .,qut> is the sequence

<vj1 . .,vth> of the values of the variables that occur in the vantage point. The view seen from
V(P is said to be the view seen by processor P at time {. By Claim 1, the state of the processor
at the end of time ¢ is uniquely determined by the view that he sees. The adversary maintains a
set of views &; € [1..d]% to be used as a set of objects, each representing a state that a processor
could be in. An example is given in Figure 1. Processor P’s vantage point is Vip, 1y = (x2, 23, T6)
and P’s is Vip, sy = (21, 23,25). Then, on the input (7,3,5,0,2,4,8), processor P sees the view
(3,5,4) and P sees (7,5,2). A key point is that the same view can be used to represent the

Vantage Point of Py X9 T3 Tg
Vantage Point of P, X1 T3 T
Subproblems 11 T1 To T3 X4 Ts e X7
Specific Input 7T 3 5 0 2 4 8
View Seen by Py 3 5 4
View Seen by P, 7 5 2

Figure 1: The View Seen by a Processor

state of each of the processors. However, being in the state represented by a particular view means
something different for each processor. In the above example, the view (3,5,4) is seen by P on
the input (7,3,5,0,2,4,8) and by Pz on the input (3,1,5,9,4,6,4).

Any set of views S; can be expanded into the set of inputs such that, for each vantage point,
the view seen is contained in &;. Each vantage point is considered, even if no processor has it. More
formally, the set of inputs is defined to be

FEzpand (S;) = { (v1,...,v,) | V vantage points V = <xj1,...,qut> (i.eVie [l.g],z; € Hi),

the view <vj1, .. .,vth> is contained in &; } .

The inputs Dy = Exzpand (S;) are those considered possible by the adversary. By considering only
these inputs, the adversary can ensure that every processor sees a view contained in &;, and hence
is in one of the allowed states.

The proof of Theorem 1 uses an adversarial argument. Formally, an adversary is defined to

be a function that maps a complete description of a PRIORITY PRAM algorithm running in time

T €o(2—1%8") to two inputs ® and ®’, one element distinct and the other not, such that
p log(Z logn)

processor Py is in the same state on both inputs after T steps of the given algorithm. To complete

this task, the adversary defines the following constructs, for each time step ¢t < T,

e a set of views §; C [1..d]%,

e a partition IT}, T2, ..., [} of the input variables,
with the following properties:

1. The given PRAM algorithm is (D, ¢)-oblivious, where Dy = Eapand (S¢).

2. For each processor P, the vantage point Vip;y contains exactly one variable from each IL%.

3. The entropy of the partition II}, 117, ... II?* is at most (L (gplnﬂ) + 3) t,
where L(z) = (z 4+ 1)logy(z + 1) — a log,(z).

4. |8 > L) (i.e., 8 C[1..d]% is a large fraction of all possible views).

m2p(29t -2

At the end of the induction, the final set of views St is expanded into a set of inputs Dy. The
following properties must hold:

5. gr < n.

d’ﬂ
6. |DT| Z 2p (27-2)

Entropy is defined as follows. Uniformly at random choose a variable @ € {zy,...,2,}. The entropy
H(IT) = 3 icp.qq —Pr [z € TT}] log, Pr [z € TI}] is the expected number of bits to specify which of
the sets II} that x is contained in.

Initially, with ¢t = 0, every processor sees at most one variable. Therefore, it is sufficient to

have only one subproblem II} (i.e., go = 1) and the initial set of views is Sy = {1, 2, ..., d}.
Hence, the entropy is 0, the size bound |Sp| > % is met, and Dy contains all d" inputs.

Inductively, suppose that the adversary has defined these constructs for time step t — 1 so
that the induction hypothesis hold. The adversary then defines these constructs for time step t by
restricting the set of views S;_q, refining the partition 1I;_;, and then expanding the set of views.

2.1 The Restricting Stage

To construct S, the adversary constructs SPP0v9%s from S;_;. By Claim 1, on inputs in D;_; the
state of each processor at the end of step t — 1 depends only on his view. Therefore, for every view

in §;_1 and for every processor, there is a unique cell that the processor writes to at time ¢ when
seeing the view and a unique cell that he reads. In all, each view in &;_1 specifies 2p cells to be
addressed. There are only m cells; hence, there are m?? addressing possibilities. The adversary fixes
one possibility that is used for at least ffé;;' of the views and lets Stoflf”ous C S;_1 be this subset

of views. In order to be able to refer to them latter, define Address(w, P,t) and Address(r, P,t)
to be the cells addressed for writing or reading.

2.2 The Refinement Stage

The subproblems need to be repartitioned. There are five requirements of the new partition II7,
I2,..., II¥. To satisfy condition (2), it must have the property that no processor sees more than
one variable from each part. It must be a refinement of the previous partition II]_;, TIZ_,,...,
H;J(_tl_l). Its entropy must meet the bound required for condition (3). For technical reasons, it is

necessary that at least one of the subproblems I} ,, IT7_,,..., H;J(_tl_l) is repartitioned. Finally, we
require for condition (5) that, after 7" time steps, the number of parts ¢r is strictly less than n.
The proof that such a partition exists appears in Boppana’s paper [B89], but is not presented here.
Here, I will simply draw the connections between what is done there and what is done here.

Boppana’s Lemma 3.5 in [B89] proves a lower bound on the time for a merging machine with
p processors to sort n variables. Processor P knows the order of the variables in Vip . Therefore,
the input must agree with the partial order on the variables that is the union of all the total orders
of the variables in each Vp. Boppana maintains a layering of this partial order. This consists of
a mapping [from the n variables to ¢ layers such that for each i € [1..¢;], the variables [71(z)
in the /" layer are incomparable in the partial order. More to our purposes, this partitioning of
the variables into layers has that property that no processor knows the value of more than one
variable in any one layer. In other words, we can let IT} = [71(7) and this partition will meet our
first requirement. Boppana’s leveling [is always a refinement of the previous leveling. Therefore,
this partition meets our second requirement. The third requirement bounds the entropy of the
partition II7,I1Z, ..., II7*. Boppana ensures that this third requirement is met by maintaining the
property that the entropy of the leveling, and hence of the partition, is at most (L (9’&%) + 3) t,
where L(z) = (2 + 1)logy(a + 1) — 2 log,(2). The technical requirement is easy. For reasonable

algorithms, each part will be repartitioned into many new subproblems. However, if this is not the
case, then the adversary can repartition one of the parts anyway. Finally, Boppana ensures that

qr < n. His lower bound on the time required for the merging machine to sort is {2 %bgg%).
P

In other words, if T € o [2—198"__)} then the merging machine does not know the total ordering
p log(Zlogn)
on the variables. This means that Boppana’s layering does not have each variable in its own layer.

Therefore, g7 < n. It follows that this partition meets our requirements.

2.3 The Expanding Stage

During time step ¢, a processor can learn the values of more variables. Hence, the view a processor
sees at time ¢ —1 is a subsequence of his view at time ¢. As well, a larger number of views are needed
to represent the larger number of states in which he may be in. To accommodate these two needs,
the adversary expands the set of views S¢PUvous to form a larger set S; of longer views. Note
that, even though the set of views S; gets larger each time step, the set of inputs D, = Fapand (S;)

keeps getting smaller.

The adversary ensures that S; only contains views which are considered by all of the processors
to be consistent with their knowledge. A processor, after reading a memory cell, considers a view
to be consistent if both the part of the view that he saw before the read and the part of the view
that the writer saw are consistent. (See Figure 2.) To be careful, a view is included in S; if, for
every vantage point from time ¢ — 1, the subview is contained in S7iV%s Note that some of these
vantage points are not held by any processor. Define

§
S = { < vl’l, .. .,vl’él, vz’l, .. .,v2’52, .. ,,vq(t—l)vl7 .. ,wq(t—l)’ qt—1) > ‘
for each ky € [1..61], k2 € [1..82], ... kg, € [1.8g,_,],
: k
the subview < Ul’kl,?]z’k2, . pI=1)Rge 1) > is contained in Soblwzous }

For 7 € [1..q(t_1)] é; is the number of new subproblems into which the subproblem II}_, is repar—

titioned. For k € [1..§;], v** is the value that the view assigns to the k' new subproblem Ht
In the example in Figure 2, the processor P, does not see a variable from the newly partitioned
subproblem II}. The adversary could reveal the value of a variable from this set to P, adding the
variable to the set Vip, ;y of those seen by P,. At any rate, the adversary has complete freedom to
choose the value (here 0) that is at this index in the view seen by P,

Old Subproblems H%_l H%_l Hf’_l
Repartitioned Subproblems I 12 7 1} m; 1us Iy
Subview Seen by P. 3 5 4
Subview Seen by P, 7 5 2

View Seen by P. 7T 3 5 0 2 4 8

Figure 2: Expanding the Set of Views

2.4 &, is large

In order to make calculating the size of S; easier, the subproblems I .. .,H;J(_tl_l) will be reparti-
tioned one at a time. Consider expanding a set S?¢ C [1..d]? of views into the set $&”7 C [1..d]7+*~!

in order to repartition the subproblem II_; into § new subproblems.

Let Vigany = {v | (@, v, @) € SP"°} be the set of values for the ith component that are consis—

tent with 4 in the first i—1 components and @’ in the last g—i components. Then S?"¢ = Uczas @

1)
Vig,iry X 4. Tt follows that SP = Uz @ X (V({[ﬂ/)) X U = Uczz.zr> { (@, v1,...,05,°) | v €
Vig,zy for each k € [1..6] }.

Lemma 1 If |SP¢| > £ then |S°oP| > d:zé_l
Proof of Lemma 1: " &y [Vigan| has the fixed value [S#7¢|. Therefore, by convexity, the
expression |S“F| = 37 any [Via,ary |5 is mmlmlzed when Vz) is the same size for each (@, @'). There

re|\ & at \ ¢
are at most d?7! different choices for (&, @'). Therefore, |S*P| > d97} (';?:—_1') > 11 (C{;—fl) >
5—
e

49t
Lemma 2 |S;| > ()

Proof of Lemma 2: By condition (4) for step ¢ — 1,
d4(t—1)

Se-1| d9(t—1)
m2p(2701 —2) o

oblivious
and |SZ37 2 25 ap(2 1)

|Se—1] >

Applying Lemma 1 for each of the g;_y) subproblems gives

ddt

|St| Z q¢_
mzp(z (t 1>—1)5152.

Saea)

Since 276 < 29t5=1 for § > 1 and ¢, = G-y + (6 = 1)+ ... + (6%_1) — 1), it follows that
29(t=1) 4165 . . .6%_1) < 2%, Furthermore, the technical condition on the refinement of the subprob-
lems is that at least one of the subproblems is partitioned. The ensures that 61d,...0 > 2.

CUg(t—1)
Thus (2960 = 1) 618 .6y, < (2 = 2) and |8)] > — L W

Y(t—1) = (29t —2)

2.5 The PRAM Algorithm Is (D,,?)-Oblivious
Let Dy = Expand (S;). Then condition (1) for step ¢ is satisfied.
Lemma 3 The PRAM algorithm is (Dy,t)-oblivious.

Proof of Lemma 3: Let Dvevs = Ezpand (Stoflf”ous). The first step is to prove that

D; C folf”ious. Let ® € D;. By the definition of Dy, every view #; seen on input ® is contained in
S;. By the definition of ¥; C S;, every subview ¥;_; of % is contained in Stoflf”ous. It follows that
every subview #;_; seen on input @ is contained in S Vs, Therefore, ® € DPiviovs Similarly,
Dgﬁl{”ws C D;_q follows easily from Stoflf”ous C S;_1.

By condition (1) for step ¢t — 1, the PRAM algorithm is (D;_q,t — 1)-oblivious. Because
Dy C Dy_1, the algorithm is (D4, ¢ — 1)-oblivious. Hence, we only need to prove that the cells
accessed at time t are independent of the input in D;. Let ® € D;, and consider processor P.
Because ® € D; C DPivious the view seen by processor P at time ¢ — 1 is contained in SPbhvious,
Hence, it follows from the definition of SP?4V7% that processor P accesses the cells Address (w, P,t)
and Address(r, P,t) at time ¢. This is true for every processor. ll

2.6 Dr is Large

This completes the induction for time step ¢. It remains to show that if the total number of steps is

Tco (%bg@%) then the bound on |D7| for condition (6) is satisfied. Refine the subproblems
P

Y., ..., II4¥ into the n singleton sets and expand the set of views Sy as before forming the set of
long views S.. Fach expanded view in S, assigns a value to each variable and hence completely
specifies an input. Comparing the definitions for Dy and S, will reveal that Dy = S.. Lemma 2
gives that |Dr| = |S.| > 4

2p (27=2) -

10

2.7 Conclusion

From these constructs, it is easy to find inputs ® and ®’ € Dy such that ® is element distinct and
®’ is not. The total number of inputs that are not element distinct inputs is at most (5)d"~*. This
is strictly less than %, the number inputs in D7, when d > (g)mzp (2"=2) 1t follows that
there exists an element distinct input ® € Dr.

Since gy < n, there is a subproblem Hép containing two different variables: z, and zg. After
step T', processor Py sees at most one of these variables, say x5 ¢ V(p,). Let v be the value of
z, for ®. Form the input &’ from @ by changing the value of 23 to v so that ®’ is not element
distinct. From the definition of Dy, it follows easily that ® € Dy. By Claim 1, on inputs ® and
®’, the state of P; at the end of step 7" depends only on the fixed set of input variables Vip,) seen
by him. P; does not see 25 and therefore cannot distinguish between ® and @', which only differs
in the value z;. W

3 COMMON PRAMs with Unbounded Memory

Theorem 2 Ifd > 22(1+6)n, then Element Distinctness defined on the input domain [1..d])" requires

C] (%bg&%) time steps on a COMMON PRAM with p processors and an unbounded number
r

of memory cells.

With an unbounded number of memory cells, Element Distinctness can be solved in constant time
on the PRIORITY model. Therefore, this theorem provides a separation between the PRIORITY
and COMMON models.

The proof uses an adversary argument similar to the previous proof. As in that proof, a key
concept is the vantage point Vipyy = <xj1,...,qut> seen by processor P at time ¢. In this proof

there is another key concept. This is the addressing functions used by the processors and which of
these functions interact. For a more detailed overview of the proof, see the Introduction, Section 1.

Fix a COMMON PRAM algorithm. For each processor P and time step ¢, the algorithm
defines the addressing functions f&”;t) and f(TPt) : [1..d]" — N which specify the cells that P on input

® writes into and reads from at time #. Let "¢ be the collection of addressing functions used

by the p processors for writing during time ¢ and]—"[7"1”7“%6 to be the collection of addressing functions

used during the time interval [1..t]. Similarly, define F7*¢,]—"ﬁf%ﬁl, and Jpy 4 =]—"[Tle‘ﬁl U]:[7“1”%6
Even if the addressing functions f&”;t) and fZ“]U;/) happen to be the same function [1..d]" — N, they

will be considered as separate objects in the collection]—"[7“1”7“;{6 so that when needed we can refer to

the unique processor and time step in which the addressing function was used. The subscript (P,)
will be dropped as in f,,, when the processor and the time step are irrelevant to the discussion at

hand.

Given the addressing functions JF; 4, one can determine how the processors interact on any
input,during the time interval [1..7]. Here ¢t < T' is our current place in the induction. Consider an

input ® € [1..d]" and a read function f,. €]—"[Tle‘ﬁl Associated with these is the cell ¢ read and the

time step at which the read occured. By considering all the write addressing functions in fﬁfﬁe, we

11

fallgt] ((I)v fr) - fﬁ}nte denote

the set of write addressing functions that simultaneously wrote to the cell ¢ at time ¢'. If the cell

c read by f. is blank, then the set of write addressing functions Fﬁl.%] (®, f-) is defined to be the

can determine the last time step ¢’ that this cell was written to. Let T

empty set.

The processors using the write addressing functions in the set F?I%] (®, f,) simultaneously

write to the same cell. Therefore, by the rules of the COMMON model, all of these processors
must write the same value. When the processor using f, reads this value, he need not be aware
of more than one of these writers. Hence, the read function f, is said to interact with only one

of the write functions in the set Fﬁl.%] (®, f-). The adversary is able to choose which of these write
functions it will be. The adversary restricts the input domain to a subdomain D in order to fix
which write function each read function interacts with. Let T’y 4 :]—"[Tle‘ﬁl —]—"[7“1”7“;{6 U {miss} be
some fixed function chosen by the adversary. An algorithm is said to be (D,t,I'[; _4)-oblivious

if for all f, € fﬁfiﬁl, either it is the case that for all ® € D, I'ty 4(f;) € Fﬁl.%] (®, f-) or it is the
alg

case that I'y 4 (f-) = miss and for all € D, F[l..t] (®, f;) = 0. We say that on inputs in D, the
interactions in the computation up until time step ¢ are consistent with I'ry 4.

Claim 2 If a PRAM algorithm is (D,t, 1’y 4)-oblivious, then for each processor P there is a fived
set of inputs variables Vp (vantage points) such that for inputs in D, the state of P at the end
of step t is uniquely determined by the values of these variables. Furthermore, the sets of variables
Vip tys - - -2 Vip, 1y have the property that they could be formed by t steps of a p processor merging
machine.

Proof of Claim 2: The proof depends heavily on the definition of the COMMON model. When
a set of processors simultaneously writes to the same cell, they must all write the same value.
Therefore, the information written must be contained in the intersection of the knowledge of these
writers. In the lower bound, when a processor reads this value using the addressing function f,, the
adversary reveals to the reader the identity of one of the processors that wrote the value and reveals
all of the information that this processor has, i.e. the value of the variables seen by the processor
indicated by I'yy 4 (fr). The reader is unable to discern any additional information from the read.
For example, the processor cannot determine whether or not any other processor simultaneously
wrote to the same cell as well. For more details see the proof of Claim 1. ll

As in the proof of Theorem 1, the adversary maintains a set of views &; which are used to
represent the states of the processors. However, in the proof of Theorem 2, the algorithm might
not be oblivious on the input domain D; = Ezpand (S;). There may be some bad inputs on which
the addressing functions do not interact in the fixed way that they should. Instead, the adversary
maintains the set of such bad inputs Badp 4 C EFrpand (S;) and proves that this set is not too big.

Consider an addressing function f € F[; 4. Suppose that processor P addresses using this
function at time ¢. By Claim 2, when restricted to inputs in D; — Bady; 4, the state of the
processor, and hence the function depends only on the values of the variables in the vantage point
Vipty = <$]‘1) .,qut>. Because D; = Fapand (S;), the possible tuples of values for this sequence
of variables are the views in §;. Therefore, the input domain for f can be considered to be the set
St when viewed as a set of values for the variables in Vipy. It is interesting to observe that for a
different addressing function, the input domain will also be considered to be &;, but for a different
tuple of variables.

12

The previous papers [FFMW86], [RSSW88], and [B89] restrict the input domain to a subdomain
Dy such that for each of the addressing functions f and each of the variables x;, either f depends in
a 1-1 way on z; or it does not depend on this variable at all. This is is an unreasonable requirement
when the input domain is small, because such a subdomain might not exist. Instead, I define a more
general measure of the dependency a function has on a variable. The precise definition of b-varying
is defined in Section 4.1. The extent to which the function varies is parameterized by the integer
b. My adversary maintains a set of views S; and, for each addressing function f € F[; 4, a set of
variables X'(f) C Vip,ty- The required condition is that when viewing &; as the input domain, f is
b;-varying with respect to each variable in X'(f) for some integer b; and is completely independent
of the other variables. One problem that might arise is that an addressing function from an earlier
time t’ might be by-varying on the set of views Sy. However, the same function might varying
much less on the current set of views &, i.e. is only b-varying for b considerably smaller than by.
To handle this problem, b; is set to be a rapidly decreasing function of ¢ ending with by being set
to be the final value needed. Because b; is set to be considerable smaller than by, the adversary can
maintain the property that all the function are at least bs-varying with respect to the variables in
X(f) on the set of views S;. This has the added benefit of ensuring that the set of variables X'(f)
does not change from one time step to the next.

The adversary classifies each read-write pair of addressing functions (f,, f.,) €]:[Tle‘ﬁl X]:[7“1”%6
based on the sets of variables X'(f,) and X'(f,,) on which they depend. The functions in the pair are
said to be similar if X(f,) = X(f,). They are said to be {z,,23}-covering if X(f,) — X(f,) =
{z,} and X(f,) — X(f.) = {z}. Otherwise, they are said to be unrelated.

Similar pairs of functions access their cells based on mutual information and hence know a
priori whether or not they will access the same cell. {z,,zg}-covering pairs could be used by the
COMMON algorithm as follows. One of the functions addresses cells in a 1-1 way with the value
of z,. The other uses the same mapping except that it uses the variable z3 in place of z,. The
reader learns whether or not z, = zg by learning whether or not f, and f,, access the same cell.
Unrelated pairs do not seem to help the algorithm in any way.

The adversary is able choose which interactions I'ry 4 :]—"[Tle‘ﬁl —]—"[7"1”7“%6 U {miss} that she
wants between the addressing functions and then reveals this information to the processors. The
input domain is restricted to those inputs on which these interactions occur. Similar pairs of
addressing functions depend on the same set of variables X(f,) = X(f.), so how these pairs
interact partitions the set of views &;. If follows that the adversary is able to fix the interactions
between these function to those that reduces S; the least. In contrast, the adversary always will
reveal that the {z,, zg}-covering and the unrelated pairs do not interact. The set Bad[; 4 of inputs
mentioned above are defined to be those on which {z,, 23}-covering or unrelated pairs do interact.
Because Badpy 4 is defined in this way, saying that the algorithm is (D; — Bad[y. 4,1, I'y..4)-oblivious
effectively only states that on the inputs in Dy, the similar pairs of addressing functions interact as
revealed.

As implied, there are two types of bad inputs, Badﬁ?ﬁelated and Bad[{fﬁiixﬁ}_mvermg C

Bad; 4. If, on input @, a pair (f;, f,,) of unrelated addressing functions access the same cell,

ie. f, (®) = f, (®), then this input is in Badﬁ?ﬁelated. On the other hand, the adversary allows

{24, zg}-covering pairs of addressing functions to access the same cell, even though the adversary
must ensure that they do not interact. For example, f, and f, might access the same cell, but

the reader might not read the value written by f,, i.e. fi, € Fﬁ%] (®, f,), because the value was
overwritten or written after the read. For a more complex second example, suppose that f. does

13

read the value written by f,. Suppose as well that there is another write function f! that writes

to this cell at the same time as f,, i.e. both f,, and f/ are in Fﬁl.%] (®, f,). If f), is similar to f,
then the adversary can ensure that f. interacts with f),, i.e. choose I'y 4 (f,) = f,- In this case,

the interactions are still consistent with I';; 4, because the functions in the {z,,zs}-covering pair

alg] (®, f-) and there is no write function in F[llgt] (®, f)

that is similar to f,, then the input ® is said to be in Bad[{lﬁjxﬁ} covermg‘

(fr, fw) do not interact. However, if f,, € I'

Formally the adversary maintains, for each time step ¢, the following constructs:

o A set of “views”, §; C [1..d]#
o A partition II}, IIZ, ..., II{* of the input variables,

e A function I'y 4 :]—"[Tle‘ﬁl —]—"[7"1”7“?6 U {miss} specifying the interactions,

From these the following constructs are derived:

o Lor each addressing function f € Fy g, the set of variable X'(f) C Vipyy C {z1,...2,} on
which the function depends.

e The function T'ype specifying the type of every read-write pair of addressing functions. Specif-
ically, for each f, €]—"Tead and f, € fwmise’

— it X(f,) = X(fy) then T'ype (f, fu) = similar;

— if X(fr) - X(fw) = {xa} and X(fw) - X(fr) = {xﬁ} for Ta,Tg € Hi
then Type (f;, fu) = {za,vs}-covering;
— otherwise Type (f,, fu) = unrelated.

e The set of inputs:

Baginrelated _ [g 37 € f”“d and f, €]—"w”fe such that
-4l a Type (fT,fw) = unrelated and f, (®) = f,, (P)

f, €]:Tead and f, €]:w”fe such that
Type (frvfw) — {xomxﬁ} COVeI’mg fw € Falg ((I) fr);

and there are no write functions in F[1g (<I> fr)

d{xa,xﬁ}—covering _

Bady; o

that are similar to f.

B covering {Za,zp}— covermg
B“dp..t] U Ba d[n

Ve, 28 € 1T,

Badp 4 = Badﬁ%elated U Badﬁ(.).vﬂering‘

The conditions inductively maintained are the following:
L. The PRAM algorithm is (D; — Badpy 4,1, 'y, ¢)-oblivious, where D; = Fapand (S;).

14

2. For each processor P, the vantage point Vip;y contains exactly one variable from each IT.
3. The entropy of the partition II}, 1%, ..., II¥ is at most (L (gplnﬂ) + 3) t.

4. |8 > —Fe— where b = 2(npT)? and T is the total time for the algorithm.

p(pm)2T (2% —2)
5. On the domain &;, each addressing function f € FJ; 4 is independent of the variables not in

X(f) and is by-varying with respect to @ € X'(f), where b; = b= and b = 2(npT)?.

6. For each f, € f”“il if U'p.q(fr) = fuw, then Type (f,, fu) = similar.

At the end of the induction, the final set of views St is expanded into a set of inputs. Because there
are additional complications, a set of inputs D% is formed for each subproblem II*%.. The following
properties must hold:

7. The PRAM algorithm is (D% — Badyy 11, T, Ty q)-oblivious.

8. The number of parts in the partition 1%, 113, ... I[# is at most ¢r < n%!.

9. | D] > b(pn)dm, where b = 2(npT)%.

10. On the domain D T, each addressing function f € F[; 77 is independent of the variables not
in X(f) and is b-varying with respect to x € X'(f), where b = 2(npT).

11. The set of inputs D% are balanced in the following sense. For each subproblem HT, i € [l..q7],
let &; |H 6 =jen ‘H yand 6" = 3 cpiingp) (1 ‘ For each @ € [1..d)° and each
€ [1..d]7, define V< n € [1 .d] to be the set of values such that the set of inputs decomposes

as Di Z
ha

@,
.) : X u'. The set of inputs i are balanced in the sense that

the same fixed size, i.e. 32, V(@, @), [Viza| € {0,2}.

<u ! >
each nonempty Vg iy

1'[
as t

3.1 The Main Steps of the Proof

In the introduction, I list four ways in which the adversary restricts the input domain to fix
the interactions between the addressing functions are fixed. The four methods correspond to the
following four lemmas. Lemma 4 uses techniques similar to those used in Theorem 1 to handle
the similar pairs of addressing functions. Lemma 5 handles the unrelated pairs. Lemmas 6 and 7
handle the {z,,2g}-covering pairs. Below, the lemmas are stated and, from them, Theorem 2 is
proved. The proofs to Lemmas 4, 5, 6, and 7 are found in Sections 4, 5, 6, 7 respectively.

Lemma 4 There exists an adversary function whose input is a complete description of a COM-

MON PRAM algorithm that runs in time T € o (%log(loﬂ%ggn)) and whose output consists of the
r

sets of inputs D Y., the partition 1LY, 3., ..., 15 of the input variables, and the function NI
specifying the interactions, such that the conditions (7-11) are met.

The proof inductively maintains the conditions (1) and (6) for each time step, by restricting and
expanding the set of views ;.

15

After Lemma 4, the next step for the adversary is to ensure that there are not too many
inputs in Bad%l.%elated. Lemma 5 proves this by producing a sufficient number of inputs that are
not in this bad set. The proof uses that fact that the unrelated pairs of addressing functions are
b-varying on different sets of variables.

Lemma 5 also ensures that, for many pairs of variables {z,,23}, the processors have not
gained too much information about whether or not z, = z3. In the case that the two variables are
contained in different subproblems ép, this cannot be done, because some processor might see both
of the variables. On the other hand, if the variables are in the same subproblem, then no processor
sees both of them. This would lead us to believe that no processor knows whether they have the
same value. However, besides knowing the values of the variables in Vp 1, each processor also knows
how the addressing functions interacted. This information may have provided the processors with
partial information about whether or not z, = x3. Lemma 5 proves that learning the interactions
between the similar and the unrelated pairs does not completely reveal this information. The lemma
does this by demonstrating for each pair of variables {z,, 23}, one element distinct input and one
input in which z, = 23, on which the iterations between the similar and the unrelated pairs of
addressing functions are as revealed by the adversary. Ideally, there would be a single element
distinct input ® and for each pair of variables, the non-element distinct input would differ from
¢ only in the two variables {z,, 25} in question. The lemma accomplishes this, except that there
may be a different element distinct input ®° for each subproblem Hi;p.

Lemma 5 Given the above constructs for time T, there exists, for each subproblem Hép, i € [l..q7],
an element distinct input ®° and there exists, for each pair of variables {x,, 23} contained in the
subproblem 11y, a non-element distinct input D= p=u; such that: A — the value v;
to the variables x, and xg and is the same as ®° on every other variable; the processors interact

according to I'yy 4 on the input &' and if B! ¢ Bad[{faﬁﬁ}_covermg, then the same is true

Ta=Tz=v;
on this input.

After Lemma 5, what remains is to determine for which pairs of variables {x,, 23} the processors can

differentiate between ®° and (I)gvazx;s:vi by knowing how the {z,, 23}-covering pairs interact. This
is done by considers the “element distinctness” graph on vertex set {zy,...,2,} and by covering

the edge {z,,2g} if the corresponding inputs can be differentiated. The next lemma uses graph
theoretic constructs to characterize those edges covered. The undefined terms will be defined in
Section 6.

Lemma 6 There exists a “collection of labeled tuple systems” {(A[tw..T] — Btw,Btw) | ty € [1..T]}

that cover the edge {v,, x5} if q’éa:%mi € B(ld[{ﬁlﬁﬁ}_cavemng. In addition, Y, |A;| < pT? and
> |Bil < pT.

The key now is to find an uncovered edge. The proof uses entropy techniques and combines the
ideas from Fredman and Komlés, Ragde et al. [RSSW88], and Boppana [B89].

Lemma 7 There exists a pair of variables {z, 25}, such that: x, and xg are contained in the
same subproblem 1y for some i € [l..qr]; the edge {x,,x5} is not covered by the collection of
labeled tuple systems; and neither variables are seen by processor Py, i.e. &, 23 ¢ Vi, 1)

16

Theorem 2 follows easily from these lemmas. Let {z,, 23} be an edge with the properties stated in
Lemma 7. From Lemmas 5 and 6, it follows that all the addressing functions interact as revealed
by the adversary on the inputs ®' and @éa:%:w. Hence, by Claim 2, the state of Py, for these two
inputs, at the end of step T" depends only on the fixed set of input variables Vip, 1y seen by him.
Py does not see z, or x5 and therefore cannot distinguish between the inputs ®* and @;a:xﬁzvi,
which differ only on these variables. Therefore, on these inputs, P is unable to determine whether

or not the input is element distinct.

4 Induction on Time Steps

Lemmad4 There exists an adversary function whose input is a complete description of a COMMON

PRAM algorithm that runs in time T € o %bg@%) and whose output consists of the sets of
r

inputs Di;p, the partition 1%, 1%, ..., 4T of the input variables, and the function L. specifying
the interactions, such that the conditions (7-11) are met.

Inductively, suppose that the adversary has defined the above constructs for time step ¢t — 1. First,

the adversary restricts the set of views to the subset Sff;ymg C &;_1 on which the addressing

functions in F; are (pt + 1)%”2 bi-varying. Then, the set of views is restricted further to SF7Her C
S;UV g0 that each similar pair interacts in an oblivious way. Finally, the set S§77%" is expanded
to ;. On this new set of views, each addressing function f € Fpy g is still b;-varying with respect

to the variables in X'(f).

4.1 The Varying Property

The b-varying property is a general measure of the dependency a function has on a variable. Let

J be an addressing function with the view Vip, = <$j1,...,qu> and let z;, be a variable within
this view. The addressing function f is said to be b-varying with respect to the variable z; on
J Ve

the set of views § if and only if Inds’x“ < %, where Indg ' is the size of the largest subset of S
on which f is independent of z;,. If f is b-varying with respect to every variable in X'(f) C Vipy
and is independent of the other variables, then f is simply said to be b-varying.

The following construction of such a largest subset is not necessary for the proof, but it may
provide some insight into the definition of b-varying. To temporarily simplify the notation, consider
a function f that depends on the variables (y1,...,y,) that is defined on a domain S. We construct
as follows a set, INDé’yl, that is a largest subset of & on which f is independent of the variable y;.
For each setting @ of (ya,...,¥,), f must address a fixed cell on the subdomain INDf;yl in order
to be independent of y;. Consider the univariate function f(y;,). The possible values for y; are
{v] (v,@) €8 }. Partition these values according to which cell is addressed. Let CL¥ () be the
cell addressed by the largest number of values. The function Cf;’yl (y2,...,Yq) is independent of yy,
but may depend on the variables (yz,...,y,). Let IND‘J;’Z"1 ={{v,@)eS| f(v,0) = Cf;’yl({[) H-
A diagram of this construction is given in figure 3. There is a column for each @ and a row for each
v. Each entry specifies the output of f (eg. ¢,d,e) on the input (v,%) € S. For each column, the
values v are partitioned according to which cell is addressed and the largest such block is marked.
Note that output of f need not be the same for different columns. The union of the marked areas

is a maximum subset IND‘J;’y1 C § on which f is independent of ;.

17

C
— ~ ==
nite € b
c b
other variables

Figure 3: b-varying

4.2 Obtaining the Varying Property

Consider the cells addressed by the processors during time step ¢ on inputs from the domain
Di—1 — Bady, 4. By condition (1) and by Claim 2, the state of processor P at the end of step ¢ — 1
is uniquely determined by the values of the variables in the vantage point V(p;_1y. In other words,
the view in §;_; seen by the processor determines which cell is addressed at time ¢. This defines a
collection of 2p new addressing functions F; defined on the domain S;_;.

The adversary finds a subset Sff;ymg C S;_1 of the views on which these new addressing

functions in F; are (pt+ 1)pb”2 bs-varying. This is done by restricting the set, once for each function-
variable pair. A function-variable pair (f, z;) is found for which the function is neither independent
nor (pt + 1)pb”2bt—varying with respect to the variable on the current set of views. The set is
reduced to the largest subset on which the function is independent of the variable. Then another
such function-variable pair is found and the set is reduced further. Because each set is a subset
of the previous sets, once a function is independent of a variable, it remains independent. The
process stops when no more such function-variable pairs exist. Let §/*["" be the resulting set
of views. On this set, for each addressing function in F; and each variable, the function is either
(pt + 1)pb”2 bs-varying with respect to the variable or independent of it.

f7x]l

How much does the set get reduced? Consider a set §. Recall that Indg ' is the size of the

largest subset of § on which f is independent of x;,. The set of views is reduced to such a subset.
Because f is not (pt + 1)pb”2 b;-varying with respect to x;, we know that the size of this largest
5]
(pt+1)Pb7? b,
these depends on at most 2¢ variables. Therefore, the set will be reduced in this way no more than

2p2! times. We can conclude that Sff;ymg > [S1—1] 53T -

[(rrtyeinng]

subset is greater than . There are at most 2p addressing functions in F; and each of

4.3 Ensuring that Similar Pairs Interact as Revealed

The following lemma ensures that condition (1) is true for time step ¢.

Lemma 4.1 If the PRAM algorithm is (Expand (Sff;ymg) — Badp 4_q),t — 1, T’y 4-1))-0blivious,

|$varying

then there exists a set of views S;"7e" C SV such that |SF77er| > RCESIE

time t such that the PRAM algorithm is (Fxpand (Stsf{b”“) — Badp 4,1, T} q)-oblivious.

and a Iy g for

18

Proof of Lemma 4.1: Consider an input ® € Expand (Swwmg) — Badp 4 and any addressing

function f, € F7°¢. By the definition of Bad; = Bad?nrelated U Badfovermg, either Fﬁl.%] (®, f)
contains a write addressing function that is similar to f, or F?lg (®, f-) is empty. In the first case,
define FE (®, f-) to be the write addressing function from fwfalg] (®, f,) that that is similar to
fro If there is more than one possibility for f%, break the tie by choosing the one used by the
processor of highest priority. In the second case, let Ffl..t] (®, f,) = miss.

Let ¥ € Smwmg be the view seen by the processor P using f, on input ®. We now prove that
if F’ (<I> fr) = fw, then Ffl..t] (', f.) = fu, for every &' € Fapand (Smwmg) — Badpy 4 on which
P sees the same view ¥. Suppose by contradiction, that Ffl..t] (®, fr) = fu,and Ffl..t] (@, fr) = fl,.
By the definition of FEI..t]’ fr is similar to both f,, and to f/. Therefore, X (f.) = X (fu) = X (fur)
. The view @ specifies the values of the variables in X' (f,) C Vipi—1y- Hence, U specifies the cells
addressed by f., f, and f,. On input ®, the addressing functions f., f, and f! access cells so
that f, reads from f,. Therefore, the same thing happens on input ®’, proving the claim. The
effect of the claim is that, the function I'y (7, f;) =Ty (@, f;) is well defined.

Define S§milar 6 he the largest subset of SY*7¥" on which 't (¥, /) is independent of &
for each f, € F/°*. There are p such read functions f, and the range of Ffll..t] (¥, f,) is at most

|Svaryzng

| Frge U {missy| < pt + 1. Therefore, |SPFH| > Zisasy-

FE’“ (7, f,) for these views ¥. Il

The adversary chooses I'y ¢ (/)

The following example will demonstrate why this technique does not work for non-similar
pairs. Suppose that there is only one subproblem II; = {zy,22} and that the set of views is
8§41V = {1,2}. Suppose that f, and f, both address cell ¢; when they see the view 1 and ¢y
when seeing 2. Finally, suppose that f. and f, are not similar: X(f,) = {21} and X(f,) = {z2}.
The domain of inputs consistent with the views is Expand (Swwmg) = {11,12,21,22}. The

problem is that on the inputs 11 and 22, f. and f,, address the same cell, while on the inputs 12
and 21 they access different cells. Hence, whether they access the same cell does not depend on
simply one view.

4.4 Keeping Functions Varying during the Restriction Stage

Lemma 4.2 The addressing functions in F; are b be-varying on the set SEpilar

Proof of Lemma 4.2: Consider any addressing function f € F; and any variable z; € X'(f).
Recall that Indf’ o

zmzlar

is the size of the largest subset of S77'*" on which f is independent of

Clearly, Indf’x“ < Ind’" because Sgimilar C SV - Fyrthermore Ind’?

zqmlar Svaryzng? — = — 9 Sviz;yzng

Zj,- S
Svaryzng .
W because f is (pt + 1)Pb™ by-varying with respect to z;, on the set S:a;ymg. Finally,
p n
varyzng
f7 T

because (;;_1'_71)13 < |Sgrmilar| we can conclude that Indg

varying with respect to x; on the set Sff{b”“?“_ []

|$ zmzlar|

< =2
12 by

stmelar =

. Therefore, f is b by

19

Lemma 4.3 The addressing functions in FJ;_4_1) are b’ be-varying on the set SPPT,

|Svaryzng

(pt+1)P

Se—1]
T (ptA1)P[(pt41)Pbn? by

Proof of Lemma 4.3: First recall that |SF77¢e| >

2p2t

b IS (s
= [(ptﬂ)pbnz%;fll[b peprt . Because generously (pt-|—1)pbn < plem? <y _ g and e ollog).
it follows that |[Sgvrilar| > b7 |S e | > b RS Finally, b_y = b’ gives |Ssimilar| > M

— b4p2t+1 — pP™ 1 - — be—1
t t

Consider any addressing function f € F[; ;_q)and any variable z;, € X'(f). Clearly, Indf’fi,l”lar
—1

In df’ ” , because S“m”‘” C 8;_1. Furthermore, Indf’ ” < % because f is b;_y-varying with

respect to x; on the set S;_;. From above, we have |St_1| bt 1 |S“m”‘”|. It follows that
, S zmzlar . .

In df fi}”m < | b" , We can conclude that f is b bs-varying Wlth respect to x; on the set

szmzlar
Similar |

4.5 The S Expanding Stage

The subproblems IT}_;, ..., II{*7" are refined as was done in Theorem 1, Section 2.2. Then, the set
Sgimilar is expanded to form the larger set S; of longer views. The new difficulty is how the

expanding effects the varying property. To simplify the process, the subproblems are repartitioned
Stsiqﬂlar

of views

one at at time, expanding each time.

As done in Section 2.4, consider expanding a set §P"¢ C [1..d]? of views into the set S¢P C
[1..d]7*t5~1 while repartitioning the subproblem IIi_, into ¢ new subproblems. For each setting

(it,@') € [1..d]77!, the subset of longer views @ X (V(ﬂ’ﬂ’)) x 4" C 8P is expanded into the subset

of views 1 x (V({[1—;/>) i' C §°P. If for some of the settings of (i, @'), the set of values Viz gy is
much larger than for the other settings, than the corresponding set of views would expand into far
more views than for the other settings. In such a case, I will say that the set of views SP"¢ expands
unevenly.

The problem with §P"¢ expanding unevenly is the following. Suppose that the functions in
Fl..q are b'-varying on the views SP7°. As this set of views expands, the cells addressed by a
function f do not change and the subsets of S?° on which f is independent of a variable z; remain
intact. However, if the set does not expand evenly, then one of these subsets Indéfﬂel may expand
too much in proportion to the rest. In this case, f may no longer be b¥'-varying.

The solution to this problem is to first find a subset S** C §P"¢ of the views such that each
nonempty Vg gy has the same size, i.e. 32, V(4,4@"), Vgay| € {0,2}. It follows from the next

lemma that a set of size |S*| > |$b—"| exists with this property. If the addressing functions are
b™b'-varying on SP™¢ then they will be at least b’-varying on the set S**. This new set, S, is then
expanded exactly as was done in Theorem 1 to form $¢*P. Because it expands evenly, the functions
are still b’-varying on SP.

4.6 Forming the Balanced Set S*

20

IN

Lemma 4.4 Suppose that d,, € [1..d], for each u € [1..d97Y]. Let A = 3, dy and suppose that
A > %q. Then there exists values n' and d' such that there are al least n' indexes u for which

d, > d" and for which n'd = 211;%B)'

Proof of Lemma 4.4: Without loss of generality, assume that the d,, are sorted in decreasing
order. Suppose that for all u € [1..d?71], d, < 21’33 % Then

A 1
d,, d —
2o < DL At) gy
vell. |57, 5] w€ll szl +1-de!]
A A T
< — 6
- 21nB+21nB/A U “
2dIn B

A A
_ g-1Y) _
T 9mB [Hln (d) In <2dlnB)]

dq
9—13) _ —
< 21HB[1+1n(d) ln<B)—|—ln(21nB)—|—ln(d)
A
= 2111B[1—|—111(B)—|—1n(21nB)]<A.

This contradicts the fact that >, d, = A. It follows that there exists an index u’ € [1..d?"!] for

which d, > ﬁ% and that for all w € [1...4/], d, is at least this size. Then, n’ = u' and

d = ﬁ% meet the requirements. ll

Using this lemma, we are now able to define the subset §** C §7"¢. For u € [1..d9"], let d, =

‘V(l—;ﬂ/) , where (@, ii') is the u'* vectorin [1..d]?"!. Recall that Vigary = {v € [1..d] | {@,v,4d") € SP}.
Therefore, d, < d and), d, = |SP"¢| > %q for some B. Applying Lemma 4.4 gives the stated

values n’ and d’. For each Vig,@y that is no smaller than d', let V/<,a*7,a*l> be an arbitrary subset

of Vigay of size d’. Tor those Viz gy which are smaller than d', let V'(zzy = 0. Finally, let

8P = Uggrany @ X V' g,y X @' Note that |8"] = n'd’ = 5L

4.7 The Size of S;

. . : . . n2
Recall that Spipiler € P4V C 8,_y is found and Lemma 4.3 shows that |SFi7¢er| > B belSia| ZZ'_‘?‘”
|S

> b:—j' Plugging in b, = 6@ for ¢ > 1, gives |Sgimilar| > ISl By condition (4),

i . = pen)2T—n2"
d (t—1) imil d (t—1)
|Si—1| > P (T) Therefore, |Simier| > Ty

This set of views is expanded as the subproblems II}_;, ..., II}'7" are refined one at a time.

Suppose that SP"¢ is the set of views before one of the subproblems is refined and that |SP"¢| > z—z.

3 bal| _ [SP7°] d4 . qat+é—1
Lemma 4.4 gives that |$**| = S35 > =95 and Lemma 1 gives that |S®7| > G amBY

The first step is to bound B for each such refinement. When the first subproblem is expanded,

SPre is the set SF7ler. Hence, B is such that |SP™¢| = |SFipier| = dq(];_n' Hence, 2In B =
21n (b(p”)2T(2q(t_1)_1)_”2). Because b = 2(npT)?, T < logn, and ¢ < %, it follows that 2In B < b".
When refining the remaining subproblems I1Z_,,..., II{'7', B is larger. However, it is easy to see

that for each refinement the bound 21n B < 6™ holds.

21

. re 55— . .
Therefore, if |SP™¢| > Z—Z, then |S*!| > |$§—n| > bedfn and |§¢P| > Z[q;—n];. Applying this
for each of the g(;_;) subproblems proves that if the pre-expanded set S#imilar is no smaller than
JUt—1) . d4t d9t
;= then the expanded set S; is no smaller than (G e D LD oy > G TR

It follows that |S;| > a2 > d% . By the

bl:(pn)2T(2q(t_1)—1)—n2+nq(t_1)]51(52...5q(t_1) - b(pn)2T(2q(t_1)—1)51(52...5q(t_1)
two claims used in Lemma 2, this size is no smaller than ; d

p(pn)?T (2% —2) 7
condition (4).

meeting the bound for

4.8 Keeping Functions Varying during the Expanding Stage

By Lemmas 4.2 and 4.3, the addressing functions in JF; 4 are b bs-varying on the input domain
Sgmiar - In Section 4.5, S§7e" is expanded into S;. For condition (5), we require that the
addressing functions in JF; 4 be b;-varying on S;. The difficulty is that the views in S; are longer
tuples of values than those in Sff{b”“ C S;_1. Hence, for &, the addressing functions need to be
considered to be functions on a larger list of variables. The additional variables are seen by the
processor at the end of time step t, but not at the end of time step ¢t — 1. Hence, the functions in
Jhi..q will not actually depend on these extra variables. In fact, each function f will still be varying
with respect to each of the variables in its fixed set X'(f) and independent of the other variables.

To be more precise, recall that at the end of time step t — 1, processor P sees the variables

V(p,t—1) consisting of one variable from each of the subproblems Il ,,..., ' the views in Sgimilar
assign a value to each of these variables; it is on these values that the state of the processor, hence its
addressing functions, depends. In Section 4.5, the subproblems II}_,,..., II}'7" are refined one at a

time. A view in the intermediate set S** C §P"¢ assigns a value to each of the current subproblems.
Each of the addressing functions in Fy;_ 4 is considered to be a function on one variable from each
of these current subproblems.

Lemma 4.5 I[f the addressing functions in F 4 are b -varying on S, then they are still b'-varying
on the expanded set SF.

Proof of Lemma 4.5: Suppose that after some of the subproblems are refined, the current list
of subproblems is II',..., 119, Suppose as well that the subproblem II? is currently being refined
into the smaller subproblems IT%', ..., II%°. As this is done, 8" is expanded into the larger set
of longer views §°F. Consider any addressing function f € JF[; 4. Let f and f be the same
addressing function as f except considered as a function on the domains S and S°*P. The

views in S* assign a value to each of the subproblems II', ... TI7 and in this way fis a function
on the variables {z;,...,x; }, where z; € II' for each [€ [l..g]. The views in S assign a
value to each of the subproblems II*,..., II*"%, %Y, ... TI%%, II*FY, ..., II? and in this way]7 is
a function on the variables {&j,..., %1, 2(i1) > 2(6,k=1)s Tjss Z(ik41) -+ > 2(0,6)> Tiigrs -2 Tig)s
where k is such that z; € 1I** C II* and Z(i k) € 1% for the other &’ € [1..6]. Note that f does
not depend on the z(;. variables. Hence, for every value of the z variables, f (95j17---795jq) =
f(Thisenen Thi g5 Z(i1)0 0+ o2 2(ik—1)s Tggs Z(i kA1)« =9 Z(,6)s Lhigrs -2 Lig)

Let [€ [1..q]. If z;, ¢ X (f), then by the assumption of the lemma, fis constant on §*
with respect x;. It is not hard to see that f is then also constant on S°*? with respect to z;. As
well, z;) € X' (f) and f is independent of this variable. Finally, suppose that z; € A'(f). By the

22

assumption of the lemma, fis b'-varying with respect to z;, on Sb. Our goal is to prove that]7
is b’-varying with respect to z; on the expanded set 7. There are two cases, namely [= ¢ and
[# i. Because the proofs of these two cases are similar, we will only prove the second case.

As before, we use v’s to denote the values assigned to the repartitioned subproblems and u’s
to denote the values assigned to the other subproblems. Specifically, let v;, denote the value of
the expanded variable z;, on which f depends and ¥ the values of { Z(i1)s - e s F(ih=1)s Z(ikt1)s e - o
2(4,6)). Let uj, denote the value of the variable z; with respect to which f must be b'-varying
and 4 the values of (aj,,..., ¢j,_,, Tjiprrees Tgisgy Tjigroe-ey Tjg). Using this notation, we can
decompose §** and S°P as done before.

Define V<u]l,{[> = {vji | <v]ivu]lvﬁ> € Sbal}' Then 8P = Uu]l,{[{<v]ivu]lvﬁ> | vj; €
§—-1
exrp __ - . - bal
V<) } and §° = Uu”,a‘{ (v, Uyu;, @) | vj, € V<) and v € (V<“szﬁ>) } Because &

Ug, U Ugy U

was formed using Lemma 4.4, we know that |V< 4>| = d' for each (uj,, %) and hence |S*¥| =

Y|V 'd’ and |§7P| = 3 = n/d"” = d'" 7| Shel).

N
Ugy U

(uy)| =7 Viu,,)
f7 Ji

The next step of the proof is to prove that Indéiﬁ < dq- IIndsbal , where Indf ot

svar’ 18 the size

’Jl

of the largest subset of S** on which f is independent of yx;, and Indsemp is the size of the largest
subset of P on which f is independent of y;,.

Fix some subset of §¢P on which f is independent of z; of the maximum size Indéiﬁ

Because f is independent of x; on this subset, it is well defined to define the function C(v] LU, 0) =

f(v;,, %, uj, @) to be the cell addressed on this subset. Recall that f(v]l,u]l,u) = f(v]l,v wj,, U).
Hence, we can define C(vj,, @) = C(vj,, %, @). Consider the subset of §** on which f accesses the
cell speciﬁed by C. fis independent of z;, on this subset. Hence, the size of this set is no more

than Indsbal . To prove Indf;’eﬁpl < d°in dj;’bajll, what remains is to compare the sizes of these two
subsets of views.

fa . . -
Indsgfjpl = ‘{<vji,v,u]‘l,u>686xp|f(vji,v,u]'l,u)— v]z” }‘

‘{<”ji7777 u;, @) | vj, € V<u]l,17f>7 v e (v<ujl,a‘>)) , and f(”]m“]zv i) = é(vhv)H

R R 51
= 2 [€ Vg and Fliin) = Gl D,
ujl,ﬂf
51 > fl i g it
= d Z H?in | ()i uj,, @) € S and fojisug, @) = C(vj“u)}‘
ujl,ﬂf

= U (o @ € 87| oy @) = Clug)} < ¢ 1l

ujl,u

We can now complete the proof. By the statement of the lemma, fis b'-varying with respect

z;, on §*. Therefore, by definition, Indf;b?ll < |$ 1T follows that Indf;’em]pl <d®'rn dj;b?ll <

to

23

d/5_1 |$bal| |$e.rp|

g = This proves that f is b’-varying with respect to z;, on 7. l

We now are able to obtain condition (5).
Lemma 4.6 The addressing functions in JJ; g are by-varying on the set S;.

Proof of Lemma 4.6: By Lemmas 4.2 and 4.3, the addressing functions in F7; 4 are b bi-varying

on the input domain S§77"?". Consider a functions f € Fl1.4q and a variable z; € A (f). Suppose

that before one of the subproblems II}_,, ..., II{"7" is refined, f is b"b'-varying with respect to z;,

on S§P"°. Hence, by definition, Indf;’prjel < |‘Z:b,|. Lemma 4.4 found the balanced subset of views

St € 87 such that 57l < §bal It follows that Indlyy < Tndfyt < B2l < IS and that f
is b’-varying with respect to z;, on S Lemma 4.5 then proves that f is b’-varying with respect
to x5, on $°P. The conclusion is that the refining of one subproblem looses at most a factor of 6"
in the amount the functions vary. Hence, refining all ¢; subproblems looses at most a total factor
of (b™)# < b**. The addressing functions in Fp;_, are b bs-varying on the initial pre-expanded set

Sgimilar - Therefore, they are still by-varying on the final expanded set S;. H

4.9 The final sets of inputs D

The above steps complete all the induction hypothesis for time step ¢t. This is repeated until time
final time step 7. Note, in order to satisfy condition (8), gy < n%!, the computation needs to
be stopped sooner than was done in Theorem 1. Since the time bound is logarithmic in n, this
effects the time by only a constant factor. What remains is to form the sets of inputs 1[satisfying
conditions (7-11).

As done in Section 2.6, the set of inputs is formed by refining the subproblems II}., ..., II%
into the n singleton sets and expanding the final set of views St to form the set of longer views.
These longer views are in fact inputs, because they assign a value to each of the variables. However,
as done in Section 4.5, the subproblems are refined one at a time. Each time a subproblem II7. is
refined, the set of views SP"¢ is restricted to a subset S and then this balanced set of views is
expanded to form S$¢“P. Because of these balancing steps, the set of views\inputs obtained depends
on the order in which the subproblems I}, ..., II#¥ are refined. For each of the subproblems r;p,
let DZ be the set of inputs formed from St by reﬁnmg the subproblems in an order in which HT is
reﬁned last.

By condition (1), the PRAM algorithm is (Fxpand (St) — Badpy 77, T, 4)-oblivious. Be-
cause D% C Expand (St), it follows that the PRAM algorithm is (D%—Bad[lnT], T, Ty q)-oblivious.
The calculations in Section 4.7 give that |D%| >

n

b(p")2T on *

By condition (5), the addressing functions F; 7] are by-varying on the domain Sy, where
br = ppm) =T+ > 27°h. Tt follows by the same proof as in Lemma 4.6 that these functions are
b-varying on the domain D%.

Because D is the set inputs formed when the subproblem HZ has been repartitioned last,
it follows that the sets V %1) associated with variables z; € HT are balanced before this last

repartitioning. It follows that each nonempty V(g zy has the same fixed size.

This completes all of the induction hypothesis. Il

5 Handling the Unrelated Pairs

Lemma b Given the above constructs for time T, there exists, for each subproblem Hép, i € [l..q7],
an element distinct input ®° and there exists, for each pair of variables {x,, 23} contained in the
subproblem 1I';, a non-element distinct input D= p=u; such that: A — the value v;
to the variables x, and xg and is the same as ®° on every other variable; the processors interact

according to I'yy 4 on the input &' and if B! ¢ Bad[{faﬁﬁ}_covermg, then the same is true

Ta=Tz=v;
on this input.

Proof of Lemma 5: For each final subproblem H%", i € [l..gr], consider the set of inputs
. . 5 - .
Dy = U<1-;71;‘/> € X (V(Zﬁ,a")) x !, constructed in Lemma 4. Randomly, choose the input &

uniformly from this set. Let @ € [1..d]° be the values assigned by ®' to the variables contained in
Usept..i—1)Ily and let @ € [1..d]"" be the values assigned to those in Usefitt..gp 7 V(i ary is the

17:7
. 5 .
set values v such that 4 x (VZ{[17’)) X @' is a subset of the input domain D%. Randomly choose

the value v; from this set Vi. ... For each pair of variables {z,,z3} in the subproblem II%., let
{(@,a") 8 T

P! be the input that is identical to ®¢, except for the variables z, and xg which have the

Ta=Tg=v;
7

value v;. Clearly, the inputs { D= p=; | 24,25 € 115 } are all contained within the domain Di..

For each of the requirements of Lemma 5, a sub-lemma below proves that it is with small
probability that the inputs chosen do not meet the requirement. Summing these probabilities,
we get that the total probability is strictly less than 1 that one of these bad properties occurs.
Therefore, there exists a choice for ® and v; for which none of these things happen. Fix such a
choice for each subproblem. H

Lemma 5.1 The probability that the input ®° is not element distinct is very small.

Proof of Lemma 5.1: The size |D5| > Wn)dzir;w given in condition (9) is much larger than the

number (3)d"~! of non-element distinct inputs when d > 22"

Lemma 5.2 The probability is no more than @ that ®' € Badpy 1) Because b = 2(npT)? this
probability is very small.

Proof of Lemma 5.2: Consider any read-write unrelated or covering pair f, and f,,. Because
there are at most (pT')? such read-write pairs, it is sufficient to prove that this pair accesses the
same cell on no more than @ of the inputs in D%. Because X(f.) # X(f,), there must exist
some variable zj on which only one of the functions depends. Without loss of generality, assume
that f., but not f,, depends on the variable z;. The cell accessed by f, is independent of xy.
Therefore, the set of bad inputs on which f, accesses the same cell as f,, forms a subdomain of Di;p

on which the function f, is independent of z;. Because f, is b-varying with respect to z; on the
domain D%, this subdomain is no larger than @. [

Lemma 5.2 proved that the addressing functions f, and f,, do not access the same cell on
most inputs in D%. The goal of the next lemma is to prove that the same is true for most non-

element distinct inputs. More precisely, consider some pair of variables {z,, 23} € Hép. Lemma 5.3
proves that if f, and f, are not a {z,,zg}-covering pair, then they do not access the same cell on

25

most inputs in Di;p for which z, = zg. Note that this lemma might not be true if f. and f,, are a
{24, zg}-covering pair, i.e. X(f,) — X (fy) = {zo} and X(fy,) — X(f,) = {25}. For example, if f,
addresses memory with the value of z,, using a 1-1 mapping and f,, uses the same mapping except
with the value of 25, then they access the same cell if and only if z., = z3.

Lemma 5.3 If ® and v; are chosen at random as described, then the probability is no more

than —(npr)2 that there exists a pair of variables x,,r5 € Hi such that the input <I>l, S s
: . unrelated , {za,z5}—cCOVETING _ 9
contained in Badp ' U va,wl,:@eHi’{x&%}#{xmxﬁ} Badp, . Because b = 2(npl’)

. o . 1
this probability is less than 3.

Proof of Lemma 5.3: Consider any pair of variables z,,z3 € Hép and any read-write unrelated
or covering pair f, and f, which is not a {z,,zs}-covering pair. Because there are at most n?
variable pairs and (pT)2 read-write pairs, it is sufficient to prove that f. and f, access the same

cell on the input ¢ _ =z g=v; fOr no more than a I fraction of the choices for ®' and v;.

The pair f, and f, are not similar, (i.e. X(f,) — X(fw) = 0 and X(f,) — X(f,) = 0) and
are not {z,, zg}-Covering Pairs, (i.e. X(f,) — X (fw) = {2o} and X(fy,) — X(f,) = {23}). Because
To and zg are contained in the same subproblem, it is neither the case that both z, and zg3 are
contained in X'(f,) nor both in X'(f,). Therefore, there are two remaining cases.

Case 1 There exists another variable zj (not the same variable as z, or zg) on which one, but
not both, of the two functions depends, (i.e. xj is contained in either X(f,) — X'(fu) or in

X(fw) - X(fr))

Case 2 One of the functions f, or f,, depends on one of the variables z, (or xz), however, the other
function depends on neither of them.

For case 1, assume without loss of generality that f,., but not f,,, depends on z;. As well, f, cannot
depend on both z, and z3. Without loss of generality, assume that it does not depend on zg. If
f» tries to mimic f,, using the value of z, instead of x5 so that they access the same cell if and
only if z, = zg, then adjusting the value of z; will change the cell addressed by f, but not by
fw. Because f, is b-varying with respect to z, f,, will manage to mimic f,, on no more than a %

fraction of the inputs.

Case 1 will now be broken into two sub-case depending on whether z is contained in the
subproblem II%. Besides differences in notation, the case 1.1 and 1.2 differ very little. However, to
be formal they are both included.

Case 1.1 zj, € Hép:

Recall i€ [1 .d]°® denotes the values assigned by ®° to the variables contained in Ujelt.im 1]Hj and

€ [1. d] denotes the values assigned to those in Ujeli+1. qT]HT Let v,, vg, and v, denote the
Values assigned by ®° to the variables z,, xg,) € Il and finally let ¥ denote the values assigned
to the remaining variables in II{. The probability space that we are considering is a random choice
for & = (i, Vo, V8, Uk, U, W) € Dl;p and a random choice for v; € V(iﬂ’,ﬂ”)' The size of this sample
space is

H <ﬁ,va,vﬁ,vk,i,ﬁ’>€DT, ?JZEV{“—[H = Z H U, 0o, 03, Uk, U, 4 EDT H ‘

(@,d")

26

By condition (11), each nonempty Vig,ay has the same fixed size d'. Hence, this amount can be
factored out, giving that the size of the sample space is d’'|D%|.

7
Ta=Tg=v;

The set of bad <<I>i, v;) samples for which f, and f,, access the same cell on the input @
is

{ <?_[7 Uaﬂfﬁﬂfkﬂ77 ﬁ/> € D%“v vy € V(Z{L{[/) | fr(ﬁv i, Vi, Uk, U, ﬁ/) = fw(ﬁv Vi, Vi, Uk, U, ﬁ/) } .

We will transform this set into a subdomain of Di;p on which the function f. is independent of the
value vy of the variable zj. Two difficult changes are required to complete the transformation: the
input to which f,. and f, are applied much be transformed from a non-element distinct input to a
general input from D4 and because n+ 1 different values are being considered, a d must be factored
out.

Because f, does not depend on zg, it follows that f, will access the same cell whether zg
is set to have the same value »; which z, is set to or to a different value vg. More precisely,
fr(d, v, 5,08, 0,0) = fo(W, 05,08, vk, T, @). We cannot do the same trick for f,,, because it might
depend on z3. However, we do not really need to consider the function f, itself. Instead, define C’
to be a function, such that, for every value vg € [1..d], C'(@, v;, vg, v, ¥, @) = f,(4, v, v, v5, T, 4.
Note that even if f,, depends on the value of 25, the function C’ does not. This can be carried a
step further by noting that C’ is independent of the value vy of x;, because f, is. Therefore, define
C' to be such that, for every value vy, € [1..d], C(4,v;, vg, 0, d') = C'(&,v;, vg, vy, ¥,4d). This gives
that the number of bad <<I>i, v;) samples is

[{ (@, ve 03, 00, 5,) € Dy, 01 € Vigay | S, 05, 05,00, 5, @) = C(i, v, 05,5,) |

It remains to remove the extra factor of d. It is interesting that the value v, is factored out,
instead of the v; as might have been expected.

. . §;—3 N oo N o
= Z { Vars U8, Ok U5 € Vig gy, T € (V(Zﬂ’,ﬂ”)) | fr(d, v, 05, vk, 0, 4) = C(4, vi, v, 0, 4) }‘

(@,a")

= [Viz.a| (Z

@,

8

{ Vg, Vg, V5 € V(iﬁﬁ’)’ ve (Vzﬁ7ﬁ/>) | fr(d, v, 05, vk, 0, 4") = C(4, v, v, 0, 4) }‘

=d

{ <67 vivvﬁvvkvﬁv ﬁ/> € D%" | f”/’(ﬁ7 vivvﬁvvkvﬁv ﬁ/) = C(ﬁv vivvﬁviv ﬁ/) }‘

This last set is a subdomain of Di;p on which the function f. is independent of the value v of the
variable 2. Because f, is b-varying with respect to xy, it follows that this subdomain is no larger
than @. We can conclude that the number of such bad <<I>i, v;) samples is no more than d’@,
which is no more than a % fraction of the sample space.

Case 1.2 zy ¢ 11j:

With out loss of generality, assume that z; € Uje[i—|—1..qT]H%r and let up denote the value assigned
by ®' to zp and let @7 € [1..d]5/_1 denotes the values assigned to the remaining variables in

UjE[i-I—l..qT]H%“' Using this notation, the size of this sample space is

H (i, voy, 03, Ty up, @) € Dip, v; € V@ﬂ’) H = d'|Dk|.
The size of the set of bad <<I>i,vi> samples for which f, and f, access the same cell on the input
d! is

Ta=Tg=v;

27

‘{ <67 vavvﬁviv Uk,?_[”> € D%"v v; € V(Z{[,uk,{[”) | f”/’(ﬁ7 vivviviv ukvﬁ”) = fw(ﬁv vivviviv Uk,ﬁ”) }‘

- H <ﬁ’ Vo, Vg U, uk7ﬁ”> €Dy, vi € V(Zfl,ukﬂ?") | f(, v, vg, U, Uka?_[//) = C(4, Vi, VG, U, ﬁ”) H

- ¥

(’LT,’U,k 7’&://>

= Vigugam! 2

(’LT,’U,k 7’&://>

= d/ ‘{ <ﬁ7 vivvﬁviv ukvﬁ”> € ’D% | fT(ﬁv vivvﬁviv ukvﬁ”) = C(ﬁv vivvﬁviv ﬁ//) }‘

. . §;—2
i — 7 — — = — . — =/
{ Vars U35 Vi € Vig o anys UE (V@ukﬂ@) | fo (4, 05,08, 0, ug, @) = C(4, v, 08, 0,4") }‘

i — i — — AN - pa—y
{ 03,0 € Vig, anys U € (V(ﬂ’,uk,ﬂ’”)) | fo (4, 05,08, 0, ug, @) = C(4, v, 08,0, 4") }‘

This completes case 1. The proof of case 2 is very similar. Because neither function depends on
x 3, its value can be adjusted to either be equal to z, or not. H

6 The Element Distinctness Graph

What remains is to determine for which pairs of variables {z,, 23} the processors can differentiate

between ®' and (I)gvazx;s:vi by knowing how the {z,,zg}-covering pairs interact. This is done by
considers the “element distinctness” graph G on vertex set {xy,...,2,} and by covering the edge

{24, za} if the corresponding inputs can be differentiated. Lemma 6 uses graph theoretic constructs
to characterize those edges covered.

Tuples and systems of tuples are defined in [RSSWS8S8] to cover the edges {z,,zg} of the
element distinctness graph for which the PRAM has learned that z, # z3. A tuple is a sequence of
variables { z;,,.. .), one for each subproblem (IT}.,...,II%"), (i.e. a vantage point). Unlike
in [RSSWRS], in the present paper, the PRAM may have gained partial information about whether
r4 = 3. Therefore, the concept of a tuple needs to be extended. A labeled tuple is the same as
before, except now each variable is labeled with a memory cell ¢ € R. For each addressing function
J € Fp.1), the adversary forms the labeled tuple 7y as follows. Let V = <xj1,...,quT) be the
vantage point of the processor using f. For each i € [1..¢7], let ®} be the same input as ®°

T, =5
except that z;, = v;. Define ¢; to be the cell f (q)éj:vi) addressed by f on this input. The labeled

tuple associated with the addressing function fis Ty = ((2j,,¢1), (2j,,¢2)s -+ o5 (T, ¢q))-

The edges of the element distinctness graph are covered by pairs of labeled tuples. We say
that the pair of labeled tuples (7%,, 7y,) covers the edge {z,, 25} of G, if there exists a coordinate
i € [1..gr] such that the variable in the i** coordinate of T}, is x, and of 7}, is x5 and for each of
the other coordinates the variable in 7 and in 7y, are the same. In addition, the label of z, in
7y, must be the same as the the label of 25 in 7y, .

For example, 73, = ((21,¢s8), (22, ¢4), (Za, ¢), (24, c9)) and
Ty, = (21, c4), (22, ¢3), (23, ¢), (24, ¢5)) cover the edge {z,,z3}.

Lemma 6.1 Suppose that f, and f, form a {z,,x3}-Covering Pair of addressing functions. If

these functions access the same cell ¢ on the input @éa:%:w, then the pair of labeled tuples
(73,, 75,) covers the edge {x,,25}.

28

Proof of Lemma 6.1: Because X'(f,) — X(f,) = {2z} and X (f,) — X(f.) = {23}, the variables
in the two labeled tuples will be the same, except for z, and z3. Because these two variables are
in the same subproblem, the order of the variables in the two tuples Will be the same. In addition,
because $ﬁ Q/ X(fT) fT(aca_v,) fT(aca_xﬁ =v;) = cC. Slmﬂaﬂy? fw(Ta=V;) fw(Ta=Tpg= v,) = C.
Therefore, the label of z, in 7y, and of 5 in 7y, are both the same cell c. Il

The most obvious way to proceed is to cover the edge {z,,23} of the element distinctness
graph G if there exists addressing functions f, €]:[Te“d] and f, €]:[w”te] such that the associated
pair of labeled tuples (7%, ,7;,) covers the edge. The problem with this technique, however, is that
if this were done, every edge of G could be covered in one time step on both the PRIORITY and on
the COMMON model. This is in fact is the essence of the constant time PRIORITY algorithm. The
solution, as stated before, is that the adversary does allow the {z,, z3}-covering pairs of addressing
functions to access the same cell as long as she can ensure that they do not interact.

A labeled tuple system (A, B) is a pair of sets of labeled tuples. It is important for
the graph theoretic result that the sets A and B are disjoint. The system is said to cover the
edge {z,,25} if there exists labeled tuples 74 € A and 73 € B such that the pair (74, 75)
covers the edge. The adversary forms a labeled tuple system for each time step t,, € [1..7]. Let
Apo.m1 = 75 | [r € fﬁfﬁf{ﬂ} and By, = {73, | fu € F*}. Note that Y ;|A;| < pT? and
> 1Bil < pT. The sets Ay, 11 and By, might not be disjoint. Therefore, the tw'" labeled tuple

system is defined to be (A, 77— Btw,Btw). We are now ready to prove the main lemma of this
section.

Lemma 6 If & € Bad[{ﬁfﬁﬁ}_cavemng, then the collection of labeled tuple systems

Ta=Tg=u;
{(A[tw..T] — Btw,Btw) | ty € [1..T]} covers the edge {x,,v5}. Note as well that 3;|A;] < pT?
and 3", |B;| < pT and that the tuples have length qr.

Fa=zg=v; € Ba d[{xa’Tﬁ} covermg Then, by definition, there

exists addressing functions f, €]:[Tead and f,, €]:W”]e such that: Type (f,, fu) = {2, 23}-covering

Proof of Lemma 6: Suppose that ®!

and f, € Falg] (q);a:l,ﬁ:v,ﬁ) In addition, there are no write functions in F[1g] (q);a_xﬁ Uz,fT)
that are similar to f,. Recall that Fﬁlg] (<I>Z _l,ﬁ:vi,fT) contains the set of write functions from

which f. reads on this input.

Because f, reads from f, on input <I>l, JRE—— they must access the same cell on this input.
Therefore, by Lemma 6.1, the pair of tuples (7%, ,7y,) covers the edge {z,,25}. In addition,
Ty, € Ap,.m and Ty, € By, for some time step t,,. Therefore, to show that the edge {z, %5} is

covered by the tuple system (-A[tw..T] - Btw,Btw), it is sufficient to show that 7, & By, .

Suppose by contradiction that 7y € B;,. Then, by definition of B;,, there exists a write
addressing function fr;; €]—"ﬁf”e used during time step ¢, which contributes the labeled tuple
7;,. Because f, and fp; contribute the same labeled tuple, they must depend on the same set of
variables, i.e. X(f,) = X(fnit), and hence must be similar. In addition, both functions give the
same label to z,, so they must access the same cell on the input <I>l, —y, and therefore on <I>§L, JRES—
It follows that f,, and fz;; write to the same cell during time step ¢,,. To conclude, if f,, is contained

in Fﬁlg] ((I)éca—x,@ s fT), then sois fr. This contradicts the fact that there are no write functions
alg

n F[

P (@;a:xﬁ:w,ﬁ) that are similar to f,. H

29

7 Graph Theory

Lemma 7 There exists a pair of variables {z,,xz3}, such that: x, and xg are contained in the
same subproblem 1. for some i € [1..qr]; the edge {z,, 23} is not covered by the collection of labeled

tuple systems {(A[tw..T] — Btw,Btw) | tw € [1..T]}; and neither variables are seen by processor Py,
i.e. Ta, g & Vip, 1)

Another combinatorial object is required. A semi-partition Il = (7,...,7,) of a set V =
{x1,...,2,} is a set of disjoint subsets of V. Boppana thinks of it as a partial function from V to
[1..r]. The semi-partition covers the edge {z,,25} if 2, and 23 are contained in different subsets
T1s...,T. Note that this forms a complete multipartite graph. The size of I is |II| = >, |7
The entropy of II is defined as follows. Uniformly at random choose a variable z from U;cp. . -
The entropy H (II) = > iepy.q] —Prle € mi]log, Priz e m] = -3, %log2 (%) is the expected
number of bits to specify which of the sets w; that z is contained in. The cost of 1l is defined in
the same way except that z is randomly chosen from V, giving cost (1) = %H (II). The size of
a collection of semi-partitions is the sum of the individual sizes and the cost of the collection is
the sum of the individual costs. A useful result due to Fredman and Komlds (1984) says that if a
collection of semi-partitions covers the complete graph on n vertices then the cost of the collection
is at least log, n. (For another proof, see Kérner (1986).)

In order to prove Lemma 7, we cover all the unacceptable edges of G with four collections of
semi-partitions, Iy, Iy, Il 4 gy, and Ilg. If by contradiction there is no uncovered edge, then the
sum cost of these collections is at least logy n. It is sufficient then to show that if the cost of Iy, Iy,

n logn

or Il 4 py is at least .1logy n or if the cost of Il is at least .7log, n, then T' € (517%(210@1) .
r

Note that the subproblems (II}., ..., II4") themselves form a semi-partition. This is denoted
Ip. If {z,, 23} is not covered by this semi-partition then z, and zg are contained in the same
subproblem II%.. |Il| = |V|. Therefore, cost (Ily;) = H (Ily). condition (3) bounds the entropy
H (II11). As stated in Section 2, Boppana proves that if H (Il7) is at least .1log, n, than 7" is as
required.

In order to ensure that z,,25 ¢ V(p,), We use the semi-partition <V(p1 1y V =V ,T)> and
form a collection of semi-partitions to cover all the edges in the clique Vip 1y. The entropy of any

random variable that takes on only two values is at most 1. Hence, the cost of <V(p1 1y V =V ,T)>

is at most 1. By condition (8),

Vip, ,T)‘ = gy < n%!. The result by Fredman and Komléds is tight
so there is a collection with cost log, (') = 0.1log, n that covers the clique.

What remains is forming two collections of semi-partitions, Il 4 gy and Ilg, that cover the
edges covered by the collection of labeled tuple systems {(A[tw..T] - Btw,Btw) | tw € [1T]}

Lemma 4.1 Given a collection of labeled tuple systems T = {{A;,B;) | i € [1..r]} with tuples of
length at most q, there exists a collection of semi-partitions 114 gy = {(A;, B;) | i € [1..r']} that

covers all the edges covered by T except for the edges in a set E of size g /nlog (|T])|7| + %
Furthermore, >, |Ai| < 32 |Ail and 3, | Bil <328l

As ¢ becomes larger, this bound becomes weaker. It is conjectured that the bound remains the
same regardless of the length of the tuples.

30

The proof of this lemma is taken from [RSSW88]. In that setting the tuples are not labeled.
However, the fact that the tuples are labeled does not effect the proof at all.

Proof of Lemma 4.1: Initially, let Il 4 gy and E be empty. Each labeled tuple system (A;, B;) €
7 will add a number of semi-partitions to Il 4 gy and a number of edges to F. A pair of labeled
tuples is said to be a covering pair if they cover an edge. We say that (A;, B;) is sparse if it contains
|A: [|B:]
Jr

at most covering pairs. If it is not sparse, then there exists some tuple 7 € A;, which forms

18]
Jn

tuples in B;. Since 7 is a tuple of length at most ¢, there is some

coordinate p such that at least q'B’l tuples in B; differ from 7 only in position p and have the same

label on this coordinate. Let A} be the subset (including 7) of A; with this property and B be the
subset of B;. Let A be the set of vertices occurring at position p in the tuples of A’ and similarly
B of B.. The label of these vertices are all same and hence can be removed. Therefore, (A, B) is a
semi-partition which covers the same edges as the labeled tuple system (A%, B).

a covering pair with at least

We remove A’ from A; and B! from B;. We have not accounted for edges covered by pairs
of tuples between A’ and B; — B} or between B! and A; — A.. But any tuple in B; — B covers at
most one edge with tuples in A/, for it can differ from a tuple in A’ only in a coordinate p’ # p and
tuples in A’ have the same variable in position p’ and different variables in position p. Similarly,
any tuple in A; — A} covers at most one edge with tuples in B}. Thus we have neglected at most

|A;| + |B;| edges. These are added to FE.

If (A;,B;) is not yvet sparse, we repeat the process. Each time, we shrink B; by at least a
factorof p = 1— 7 In at most 10g1 (1B;]) iterations, (A;, B;) becomes sparse (note that an empty

tuple system is sparse). The total number of pairs we have added to F is 10g1 (1B:) (A + 1Bs]) <

qv/nlog(|Bi)(|A;| + |Bi]). When (A;,B;) becomes sparse, we simply add to T the edges covered

¢ LA
o

by this system. This adds at mos more edges. When this process is completed, it is clear that

S 1Al < 5 A and 3 [Bi| < 53,8, Furthermore, | E| < 52, [qv/m log(1Bi)(|Ai] + |B]) + 5] <
2
gv/mlog (I7)|7]+ L. W
The next step is to form a collection of semi-partitions Il that cover the edges in F. Boppana,
Lemma 3.4 [B89], proves that every graph with n vertices and |E/| edges has a coloring with entropy

of at most log, (('f—' + 1) e). The semi-partition Il g is formed by putting together vertices with the
same color. The edges of F are guaranteed to be covered by I, because they are bi-chromatic. By
Lemma 6, 5. |A;| < pT? and Y, |B;| < pT. Therefore, |7| =5, |Ai| + |Bi] < 2pT2. If p > nlogn,
then the lower bound in Theorem 2 becomes Q(1). Therefore, assume p < nlogn. If T > logn,
then Theorem 2 follows. Therefore, assume that 7" < logn. By condition (8), the tuples have

length g7 < n%!. Therefore, by Lemma 4.1, |E| < g /nlog (|7])|7| + % < n'€. The cost of Ilg
is equal to its entropy, which is less than log, (('f—' + 1) e) < 0.7logn.

What remains is to bound the cost of the collection of semi-partitions IT 4 py. Ragde et.
al. [RSSW8R], Boppana [B89], and I have different ways of doing this. Ragde et. al. use the

fact that >, |4;] + |B;| < 2pT? and that H ((4;, B;)) < 1 to conclude that cost (H(A,B)) =

) I{ szB KAGB) gy ({(A;, B;)) < 2p7;[2 (1). This gives the weaker result of 7' € Q (, /5 log n) Boppana

uses a seml—partition with T parts and of size 2pT’. The cost of this is at most % (logT'), which
give the required T. My method uses that fact that the semi-partitions are unbalanced, namely

31

that the sets A; are bigger than the sets B;. Generally this is the case since Lemma 6 gives that
S 1Al < pT? and 3, |B;| < pT. T will show that unbalanced semi-partitions are not able to cover
edges effectively.

As a first step of this proof, consider the situation in which |A;] = T|B;|, for each 1.

Given this situation, the entropy is easy to compute H((A;, B)) = —%log2 (%) -
|B:] |Bs] __.T T 1

B log, (|Ai|+|Bi|) = —T—_Hlog2 (T-|—1) T+1 log, (T-|—1) Note that — log, (T-|—1) <7 . There-

fore, H (A, Bi)) < gy +°5) < 2020 1t follows that cost (T4 5y) = ¥, %LH«AZ»,B») <

(2pT2) (2%) = 42T log, T. Therefore, if cost (H<A7B>) is more than .1log,n, then T €

n
Qfz logn
p Tog(Zlogn) |

This bounds cost (H<A7B>) under the assumption that |A;| = T'|B;|, for each ¢. The next

lemma proves that cost (H<A7B>) is maximized when this assumption is true.

Lemma4.2 C' =3, 14 ||‘-|;||B |H(<A¢,Bi>) is maximized when the semi-partitions are as balanced

as possible, i.e. |A;| = T|B;l|, for each i.

Proof of Lemma 4.2: For each i € [1..77], let ¢; = |A;| + | B;], oy = il and 1— a; = Bl The
following notation will be helpful. Let h(z) = 2 logy(z) + (1 — x)log2(1 —). Substltutmg these
into the equation gives C' = — 37, %a;logy(a;) + (1 — a;)logy(1 — a;)] = = 37, “h(a;). The claim
is that this is maximized when all the a; have the same value. Suppose that C' is maximized with
the values ay,...,a, and suppose by way of contradiction, that there are indexes j, k € [1..r'] for
which a; # aj. Keep everything fixed except for a; and aj. This gives

C= —h(a]) + —h(h(a;) and
" " ig (k)

dC —c; day,

2 oy —h’ 2%k

do; n (o) + (e)da] +0

pT2_CJaJ_Zig{],k} cioy
Ck

and that j%f = _C—;J Therefore, setting (il—c(;; to zero gives —h'(a;) 4+ h'(ay) = 0. Because h'(z) =

logy(z) — logy(1 —), it follows that, log,(a;) — logy(1 — ;) = logy(ay) — logy(1 — ayg). This

gives logy(a; — ajay) = logy(ag — ajar) and a; — ajap = ap — ajag. We can concluded that C' is

maximized when a; = ay.

Since 3, |A;| = pT? and c;o; = | A;], we can conclude that a; = |’3:| =

We can conclude that the costs of the four collections of semi-partitions Iy, Iy, I 4 gy, and
Il are less than either .1log, n or .7logy, n. Therefore, these semi-partitions cannot cover all the

edges of the element distinctness graph . Hence, an edge exists meeting the requirements of
Lemma 7. I

As proved in Section 3.1, the Lemmas 4, 5, 6, and 7 together prove Theorem 2. Let {z,,z3}
be an edge with the properties stated in Lemma 7. From Lemmas 5 and 6, it follows that all the
addressing functions interact as revealed by the adversary on the inputs ®* and <I>§L, R Hence,
by Claim 2, the state of Py, for these two inputs, at the end of step T depends only on the fixed set
of input variables Vip, 1)y seen by him. P, does not see z, or x5 and therefore cannot distinguish

between the inputs ®' and <I>§L, JRES—— which differ only on these variables. Therefore, on these

32

inputs, P, is unable to determine whether or not the input is element distinct. i

8 Open Problems

Finding lower bounds for Element Distinctness when defined on even smaller domains is still open.
For example, nothing is known when the variables take on values up to n?. It is also open whether
PRIORITY and COMMON can be separated when the number of memory cells is bounded.

Acknowledgments

I would like to thank my supervisor, Faith Fich, for her inspiration and guidance. I would also like
to thank my Paul Beame, Toni Pitassi, and an unknown referee for their useful comments.

References

[B89] R. B. Boppana, “Optimal Separations Between Concurrent-Write Parallel Machines,” Proc.
2158 ACM Symposium on Theory of Computing, pp. 320-326, 1989.

[BHR7] P. Beame and J. Hastad, “Optimal bounds for decision problems on the CRCW PRAM,”
Proc. 19" ACM Symposium on Theory of Computing, pp. 83-93, 1987.

[CDHRS8] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, “Efficient simulations between
concurrent-read concurrent-write PRAM models,” 13" Symp. Math. Found. Comp. Seci., Lec-
ture Notes in Comp. Sci. vol. 324, Springer-Verlag, pp. 231-239, 1988.

[CDR&6] S. A. Cook, C. Dwork, and R. Reischuk, “Upper and lower bounds for parallel random
access machines without simultaneous writes,” SIAM J. Comp. vol. 15, pp. 87-97, 1986.

[FMRWS85] F. E. Fich, F. Meyer Auf Der Heide, P. L. Ragde, and A. Wigderson, “One, Two, ...
Infinity: Lower Bounds for Parallel Computation,” Proc. 17" ACM Symposium on Theory of
Computing, pp. 48-58, 1985.

[FMWRS86] F. E. Fich, F. Meyer Auf Der Heide, and A. Wigderson, “Lower bounds for parallel
random-access machines with unbounded shared memory,” Advances in Computing Research.,
vol. 4, pp. 1-15, 1986.

[FRWS&S8] F. E. Fich, P. L. Ragde, and A. Wigderson, “Relations Between Concurrent-Write Models
of Parallel Computation,” SIAM J. Comp., vol. 17, pp. 606-627, 1988.

[FRWS88-2] F. E. Fich, P. L. Ragde, and A. Wigderson, “Simulations among concurrent-write
PRAMSs,” Algorithmica 3, pp. 43-52, 1988.

[FK84] M. Fredman and J. Komlds, “On the size of separating systems and families of perfect hash
functions,” SIAM J. Alg. Disc. Meth. 5, 61-68, 1984.

[K88] L. Kucera (1982), “Parallel computation and conflicts in memory access,” Inf. Proc. Letters,
vol. 14, pp. 93-96, 1988.

33

[R] P. L. Ragde, “Processor-Time Tradeoffs in PRAM Simulations,” to appear in J. Comput. Syst.
Sciences.

[RSSW88] P. L. Ragde, W. L. Steiger, E. Szemerédi, and A. Wigderson, “The parallel complexity
of element distinctness is ((log n)%),” SIAM J. Disc. Math., vol. 1, pp. 399-410, 1988.

34

