
Embedding into l
2
∞ is Easy,

Embedding into l
3
∞ is NP-Complete

Jeff Edmonds ∗

Department of Computer Science

York University

North York, ONT M3J 1P3 jeff@cs.yorku.ca

Abstract

We give a new algorithm for enumerating all possible embeddings of a metric space (i.e.,
the distances between every pair within a set of n points) into R2 Cartesian space preserving
their l∞ (or l1) metric distances. Its expected time is O(n2 log2 n) (i.e. within a poly-log of the
size of the input) beating the previous O(n3) algorithm. In contrast, we prove that detecting
l3
∞

embeddings is NP-complete. The problem is also NP-complete within l2
1

or l2
∞

with the
added constraint that the locations of two of the points are given or alternatively that the two
dimension are curved into a 3-dimensional sphere. We also refute a compaction theorem by
giving a metric space that cannot be embedded in l3

∞
, however, can be if any single point is

removed.

∗This research is partially supported by NSERC grants. I would like to thank Steven Watson for his extensive

help on this paper.

1

1 Introduction

An n-point metric space consists of the distances d(P,P ′) between every pair of points P and P ′

within a set of n points χ. We say that it can be isometrically embedded into lkq (the Cartesian

space Rk endowed with the lq-distance) if there exists a distance-preserving mapping ϕ : χ → Rk,
i.e.

∀P,P ′ ∈ χ, d(P,P ′) = ||ϕ(P) − ϕ(P ′)|| =

(
k∑

i=1

|Pxi
− P ′

xi
|q
)1/q

.

Finding such an embedding, if possible, is not difficult for 1 < q < ∞ because the location in
Rk of a point is completely determined by knowing its lq distance to k + 1 linearly independent
locations. The same is not true for q = 1 with ||ϕ(P) − ϕ(Q)|| =

∑k
i=1 |Pxi

− Qxi
| or for q = ∞

with ||ϕ(P) − ϕ(Q)|| = maxk
i=1 |Pxi

− Qxi
|, because with these metrics, there may be an infinite

number of locations with the same distances to any given finite set of points.

Malitz and Malitz in 1992 [14] gave a O(n3) algorithm for embedding an arbitrary n-point
metric space into l21 or into l2∞. Alternative algorithms and information on this can be found in
[10, 4, 6, 11]. Our first result is a new polynomial time algorithm which does the same with expected
O(n2 log2 n) time (i.e. within a poly-log of the size of the input). More over this algorithm can
enumerate all such embeddings.

Avis and Deza [3] show that deciding if a finite metric space embeds into lk1 embeddings for
arbitrary k is NP-complete. It is conjectured that embedding into lk1 can be done in nO(k) time and
hence polynomial for a fixed k. In contrast, we prove that detecting l3∞ embeddings is NP-complete.
The problem is also NP-complete for l21 or l2∞ with the added constraint that the locations of two
of the points are given or alternatively that the two dimensions are curved into a 3-dimensional
sphere.

For a more combinatorial version of the problem, define cq(k) to be the smallest integer, if it
exists, such that a metric space embeds into lkq if and only if all subspaces with at most cq(k) points

embed. Note that this automatically gives a O(ncq(k)) time algorithm for detecting lkq embeddings
simply by checking all

(n
cq(k)

)
subsets of the points of cardinality cq(k). Merger in 1928, [16, 9],

proved a compactness theorem stating that c2(k) = k + 3, A similar theorem is likely also true
for 1 < q < ∞. Malitz and Malitz, [14], proved that for l21 and l2∞ only 11 points are needed. In
[14, 17], they prove that the number of points for lk1 is at least 2k + 2, which they conjectured
is tight. Though [5] confirmed that c1(2) = 6, [5, 7] disproved this conjecture by showing that
c1(3) ≥ 10, and c1(k) ≥ k2. This paper focuses on the l∞ metric. Besides c∞(2) = 6, little was
known. It is asked as problem 3.13 from the list “Open problems on embeddings of finite metric
spaces” edited by J. Matousek [15]. Our proving that detecting l3∞ embeddings is NP-complete
proves that unless P = NP there is no poly-time algorithm for this and hence c∞(3) cannot be a
constant. This paper goes on by giving for any n ≥ 24 a metric space that cannot be embedded in
l3∞, however, can be if any single point is removed, effectively showing that c∞(3) is unbounded.

The model for the algorithm is as follows. Because the input consists of O(n2) real values for
the distances between the n-points and because an embedding consists of real valued coordinates
for the points, the machine must be able to manipulate real numbers and perform simple arithmetic
operations on them in constant time. Bandelt and Chepoi [6] outline how to derive all embeddings
in l1-space from a single one. The embeddings to be “enumerated” fall into at most O(n) different
classes. Within one class of embeddings, the points fall into components, each of which is embedded

1

in a fixed way relative to itself, but which can be transposed and flipped relative to the other
components. There being an infinite number of these transpositions and an exponential number of
these ways of flipping, we clearly do not have time to enumerate each, but we are able to describe
the range of motion in O(n) space so that all O(n) of these classes can be outputted in the required
O(n2 log2 n) time. We will give the embedding algorithm for l2∞ and not for l21, because of the well
known translation between these two spaces.

2 Algorithm for Embedding into l
2
1 or l

2
∞

The main goal of this section is to prove the following result.

Theorem 1 Given an n-point metric space (χ, d), one can enumerate all its possible isometric

embeddings into l2∞ or l21 in a total of O
(
n2 log2 n

)
time.

Proof of Theorem 1: Let U and V be a diametral pair of (χ, d) and let ŷ = d(U, V). Modulo
translation and change in dimensions, we can assume without loss of generality that the points
U and V are embedded at locations ϕ(U) = 〈0, 0〉 and ϕ(V) = 〈x̂, ŷ〉, for some unknown value
x̂ ∈ [0, ŷ]. Since, ||ϕ(U) − ϕ(V)|| = max(x̂, ŷ) = ŷ, we say that this distance d(U, V) is manifested
in the Y dimension. Given any point P ∈ χ different from U and V , we will look for the location
ϕ(P) = 〈Px, Py〉 at which to embed it. Set uP = d(U,P) and vP = d(P, V) (or simply u and v
when P is understood). Define S to be the set of all points Q of χ which are between U and V ,
i.e. such that d(U, V) = d(U,Q) + d(Q,V) = uQ + vQ. A key issue is how the difference vP − uP

compares to x̂. To help us determine this, define the set of values ∆ = {|vP − uP | | P 6∈ S}. Sort
these values and let x0 = 0, xi be the ith distinct value in ∆, and xn+1 = ∞. Separately, for each i,
the algorithm will enumerate all possible embeddings of the points into l2∞ in which the unknown
value x̂ is equal to xi and then those for which x̂ is strictly within the interval (xi, xi+1). From here
on, let us restrict our attention to x̂ being in one such interval. Note that this restriction allows us
to compare x̂ to |vP − uP | for each point P . In fact, the next step of the algorithm is to classify
each point P according to this comparison. Section 2.1 uses this classification to narrow where each
point can be embedded to one of two regions and then to narrow each point down to only one of
these two regions. Section 2.2 then manages either to fix the X-dimension of every point or to fix
the Y dimension of every point. From here, it partitions the points into components, each of which
is embedded in a fixed way relative to itself, but which can be transposed and flipped relative to
the other components. Finally, Section 2.3 describes how in a total of O(n2 log2 n) time, the above
tasks can be repeated for each of the O(n) different intervals that x̂ is restricted to.

2.1 Classifying The Points

Consider some i ∈ [0, n] and either fix the unknown value x̂ to equal xi or to be strictly within the
interval (xi, xi+1). Classify each point P into the six categories as shown in the first column of the
following table. Whether P ∈ S is easy to determine. For the remaining points, note that |v − u|,
which is short for |vP − uP | = |d(P, V) − d(P,U)|, is in the set ∆. Because we have fixed how x̂
compares to the values in ∆, we can determine whether or not v − u > x̂. If so, classify P ∈ A.
Similarly, for the remaining classifications. Depending on the classification of P , the table goes on
to define two regions of locations R1(P) and R2(P) within which the point must be embedded. For

2

example, if point P is classified as S, then R1(P) = 〈?, u〉. This states that P must be embedded
at 〈Px, Py〉 where Py = u and the X-coordinate Px is not determined. Figure 1.a goes on to specify
that P must be embedded in the region of locations labeled L′

S . As such, it specifies the range of
values that Px can have to be within the dotted line labeled 〈?, u〉 in the figure. Similarly, if point
P is classified as A, P must be embedded either at the location R1(P) = 〈−u, ŷ − v〉 or location
R2(P) = 〈u, ŷ − v〉. These locations fall within the regions L′

A and L′′
A in Figure 1.a.

S = {P | u + v = ŷ} R1(P) = 〈?, u〉 = 〈?, ŷ − v〉
A = {P 6∈ S | v − u > x̂} R1(P) = 〈−u, ŷ − v〉 R2(P) = 〈u, ŷ − v〉
B = {P 6∈ S | v − u = x̂} R1(P) = 〈−u, ?〉 = 〈x̂ − v, ?〉 R2(P) = 〈u, ŷ − v〉
C = {P 6∈ S | |v − u| < x̂} R1(P) = 〈x̂ − v, u〉 R2(P) = 〈u, ŷ − v〉

B̂ = {P 6∈ S | u − v = x̂} R1(P) = 〈x̂ − v, u〉 R2(P) = 〈u, ?〉 = 〈x̂ + v, ?〉

Â = {P 6∈ S | u − v > x̂} R1(P) = 〈x̂ − v, u〉 R2(P) = 〈x̂ + v, u〉

SR
1

R
C

1

B
R

1 R 1
A A

R
2

R
B

2

C
R 2

R
B

2

AR
2

AR 1

B
R 1

y

x

d(P’,S’)

d(P’,S)
d(P,P’)

d(P,P’)
S’

S

P’

P

U

V
b)a) (V)

ϕ

ϕ

 (U)

Figure 1: The space l2∞ is partitioned into the areas according to how points are embedded into
them. For example, if point P is classified as A, P must be embedded either at the location
R1(P) = 〈−u, ŷ − v〉 or location R2(P) = 〈u, ŷ − v〉. These locations fall within the regions labeled
L′
A and L′′

A respectively.

Alternatively, these ideas can be expressed using the well known notion of a gated set. A subset
S of a metric space is called gated if every point P outside S contains a (necessarily unique) point
P ′ ∈ S (the gate for P in S) such that for every point S ∈ S, d(P, S) = d(P,P ′) + d(P ′, S). The
set S with corners U and V is a gated set of l2∞. See Figure 1.b. Our classification of the points P
corresponds to which edge or corner of S the gate P ′ of P is on. We do this classification based on
the value vP −uP . Alternatively, we could consider the values αP = d(U,P ′) = 1

2 [d(U,P)+d(U, V)−
d(P, V)] = 1

2 [uP + ŷ − vP] and βP = d(V, P ′) = 1
2 [d(V, P) + d(U, V)− d(P,U)] = 1

2 [vP + ŷ − uP]. If
the position of P is unknown, from the knowledge of up and vp we infer that there exist only two
possible locations of the gate P ′ of P . As well, if the location of this gate is known and is not a
corner of S, then we can precisely deduce the location of P . In addition, we can also tell whether
or not the gates of two points P and W belong to the same (open) side of S. This can be used to
place P once W has been placed.

3

Lemma 1 If x̂ is restricted as stated, then point P must be embedded either within the defined
region R1(P) or R2(P). For a fixed i, this classification can be done easily in time O(n).

Proof of Lemma 1: Consider some point P . It must be embedded within the rectangle −(ŷ−x̂) ≤
Px ≤ ŷ and 0 ≤ Py ≤ ŷ otherwise the distance from P to either U or V would be greater than ŷ,
contradicting the choice of U and V . See Figure 1.a.

The input states that the distance between P and point U is d(U,P), which we are denoting
u. Since ϕ(U) = 〈0, 0〉, we obtain u = ||ϕ(P) − ϕ(U)|| = max(|Px − 0|, |Py − 0|). This places P
within the half square of radius u around U , namely 〈Px, Py〉 ∈ {〈−u, ?〉 , 〈?, u〉 , 〈u, ?〉}. Note that
these three options correspond to the point being embedded left, above, or right of the two 45o

lines emanating up from location ϕ(U). We have been also been told that the distance from P
to V is v, which places it within the half square of radius v around V , namely either 〈Px, Py〉 ∈
{〈x̂ − v, ?〉 , 〈?, ŷ − v〉 , 〈x̂ + v, ?〉}, which correspond to being embedded left, below, or right of the
two 45o lines emanating down from locations ϕ(V). P must be embedded in the intersection of
these two half squares. See Figure 2.

If u + v = ŷ, then these two half squares intersect only along their edge above U and below V
as shown in Figure 2:S. We argue in this case that the distances uP and vP are both manifested in
the y-dimension and hence its embedding in the y-dimension is Py = u = ŷ − v. If Py were bigger
than this, then the distance from P to U would be bigger than u and if it were smaller, then the
distance from P to V would be bigger than v.

If u + v < ŷ, then the two rectangles around U and V do not intersect and by the triangle
inequality no embedding is possible.

When u + v > ŷ, how the two squares intersect depends on the ordering of the sides of the
squares. Let LU = −u, RU = u, LV = x̂− v and RV = x̂+ v denote the X-coordinate of the right
and left sides of the squares around U and V .

If P ∈ A, then v−u > x̂ ≥ 0, giving LV = x̂−v < −u = LU < RU = u < −x̂+v < x̂+v = RV .
See Figure 2:A. Therefore, the intersection is either on the left or the right sides of U ’s square and
on the bottom of V ’s. In the first case, P is embedded at 〈Px, Py〉 = 〈−u, ŷ − v〉, which is denoted
by R1(P). In the second, at 〈u, ŷ − v〉, denoted R2(P).

If P ∈ B, then v − u = x̂, giving LV = x̂ − v = −u = LU < RU = u = −x̂ + v < x̂ + v = RV .
See Figure 2:B. Therefore, the intersection is either left of both U and V or right of U and bottom
of V . In the first case, P is embedded at 〈Px, Py〉 = 〈−u, ?〉 = 〈x̂ − v, ?〉, denoted R1(P). The
second case is the same, as before.

If P ∈ C, then v − u < x̂, giving LU = −u < x̂ − v = LV and RU = u < x̂ + v = RV . We
have x̂ ≤ ŷ, by the fact that d(U, V) = ŷ and not x̂ and we have ŷ < u + v, by P 6∈ S. Hence,
LV = x̂ − v ≤ ŷ − v < u = RU . See Figure 2:C. Therefore, the intersection is either top of U and
right of V or left of U and bottom of V . In the first case, P is embedded at 〈x̂ − v, u〉, denoted
R1(P). The second case is the same as before.

The other cases are the same except for the roles of U and V switched.

We have narrowed the embedding of each point down to one of two specified regions. We will
now describe how for each point in A, B, and C, we will narrow this down to one region. (Â, B̂,
and C are done in a symmetric way.) If there are no such points, then there is nothing to do in this

4

2

C
R

1
R
C

2R
A

1

A
R

1
SR

2

B
R

1
B

R

uu u

uu

x x

v

u

 (V)

 (U)

 (U)

 (V) (V)

 (U)

 (U)

 (V)

B C

AS

v v

u

v

v

u

v

ϕ

ϕ ϕ

ϕ

ϕ

ϕϕ

ϕ

Figure 2: For each classification of points P , it is shown how the square around U and that around
V intersect at two regions.

task. Otherwise, let W be one of these points P that maximizes vP −uP = d(P, V)−d(P,U). This
point W is either embedded at R1(W) or R2(W). The algorithm will branch twice trying each of
these possibilities.

To make it concrete, let j, k ∈ {1, 2}. Suppose we are trying to embed W in Rj(W). Consider
some point P in A, B, and C and let us try to embedded it within Rk(P). Also, if our current
case allows x̂ to vary within some interval (xi, xi+1), then for the moment fix its value. Even
with these restrictions, there may be a lot of possibilities as to the locations ϕ(W) and ϕ(P)
for W and P . Denote the set of possible distances between these embeddings to be Dj,k(P) =
{||ϕ(W) − ϕ(P)|| | ϕ(W) ∈ Rj(W) and ϕ(P) ∈ Rk(P)}. Clearly, such an embedding of W and
P is impossible if the required distance d(W,P) is not in this set. Lemma 2 proves that the sets
of distances Dj,1(P) is disjoint from the set Dj,2(P). Hence, d(W,P) cannot be in both of them,
giving that the location of P has been narrowed down to at most one region. If in this process
P is narrowed down to neither region, then the algorithm reports that there are no embeddings
consistent with these choices made so far. Then the next embeddings of W or interval for x̂ is tried.
Now return to the fact that x̂ may vary within the interval (xi, xi+1). Lemma 2 will go on to prove
that which of R1(P) or R2(P) the above method chooses does not depend on the value of x̂ within
this range.

Lemma 2 For j ∈ {1, 2} and P ∈ A ∪ B ∪ C, the sets of possible distances ||Rj(W) − R1(P)|| is
disjoint from the set ||Rj(W)−R2(P)||. More over, the choice of R1(P) or R2(P) does not depend
on the value of x̂ within (xi, xi+1). The case with P ∈ Â ∪ B̂ ∪ C is symmetric.

5

Proof of Lemma 2: We distinguish four cases.

Case 1: W and P are both in A ∪ B and W is embedded in R1(W). Let ϕ1(P) ∈ R1(P),
ϕ2(P) ∈ R2(P), and ϕ(W) ∈ R1(W). It is sufficient to prove that ||ϕ(W) − ϕ1(P)|| < ||ϕ(W) −

ϕ1(P)||. Because P ∈ A ∪ B, ϕ1(P) =
〈
−Px, P

′
y

〉
and ϕ2(P) =

〈
+Px, P ′′

y

〉
with Px = u(P) > 0

(or else P = U), 0 ≤ P ′
y ≤ Px, and 0 ≤ P ′′

y ≤ Px (because u(P) is manifested in the X-dimension).
Similarly, because W ∈ A ∪ B, it is located at ϕ(W) = 〈−Wx,Wy〉 with 0 ≤ Wy ≤ Wx. Therefore,
|Wy−P ′

y| ≤ Wy+P ′
y ≤ Wx+Px = |(−Wx)−(Px)|. The only way to have equality here is if Wy = Wx,

P ′
y = Px and either Wy or P ′

y is zero, in which case either W or P is equal to U , which we assume
is not the case. Hence, |Wy − P ′

y| < |(−Wx) − (Px)|. Similarly, |Wy − P ′′
y | < |(−Wx) − (Px)|. We

also have that |(−Wx) − (−Px)| < |(−Wx) − (Px)|. Therefore, ||ϕ(W) − ϕ1(P)|| = max(|(−Wx) −
(−Px)|, |Wy − P ′

y|) < |(−Wx) − (Px)| = max(|(−Wx) − (Px)|, |Wy − P ′′
y |) = ||ϕ(W) − ϕ2(P)||. If

the value of x̂ changes within (xi, xi+1) then the points do not change categories and the locations
considered do not move. (Note that if a point is in B, the x̂ is fixed to some xi.)

Case 2: W and P are both in A∪B and W is embedded in R2(W). This case is similar to
the last except for flipping around the X-axis.

Case 3: W ∈ A ∪ B ∪ C and P ∈ C. For P ∈ C, the regions ϕ1 = R1(P) = 〈x̂ − v, u〉 and
ϕ2 = R2(P) = 〈u, ŷ − v〉 consist of a single point (fix the value of x̂ for the moment). Let Q be the
set of the locations Q that are at equal distance from locations ϕ1 and ϕ2. The method proves that
these locations are all contained in the region ϕ1

S , i.e. above or on U ’s upper 45o lines and below or
V ’s lower 45o lines. See Figure 3:b. Because W ∈ A ∪B ∪ C, all the locations in R1(W) are to the
left of ϕ1

S . Hence the distance from R1(P) to R1(W) is different then the distance from R2(P) to
R1(W). Similarly, all the locations in R2(W) are to the right of ϕ1

S and hence the distance from
R1(P) to R2(W) is different then the distance from R2(P) to R2(W). Again, if the value of x̂
changes within (xi, xi+1), then the points do not change categories and the fact that R1(W) and
R2(W) are on opposite sides of Q does not change.

1ϕ
S

R

B
R R

A

R
A

R
B

C
R

2

R
C

1

ϕ
d

b)a)

d

Q’’

Q’

d

d

Q’

d

 (V)

 (U)

Q’’

1

1

1

22

2

ϕ

ϕ

Figure 3: The bold line in (a) gives the set of points Q whose distances to C ′ is equal to its distance
to C ′′. (b) demonstrates how this region lies within completely in the region S.

We will leave it up to the reader to see that the equal distance loci set Q =
{
Q ∈ R2 | ||ϕ1 − Q|| = ||ϕ2 − Q||

}

consists, as is marked in Figure 3:a, of the line segment from Q′ to Q′′, the 45o line down and to
the left of Q′, and the 45o line up and to the right of Q′′.

To verify the picture, we first prove that the distance between locations ϕ1 and ϕ2 is manifested
as shown in the X-dimension. ϕ1 is left of ϕ2, because ϕ1

x = x̂− v ≤ ŷ − v < (u + v)− v = u = ϕ2
x;

ϕ1 is above of ϕ2, because ϕ1
y = u = (u+v)−v ≥ ŷ−v = ϕ2

y; and the X-distance is larger, because
∆x = u − (x̂ − v) ≥ u − (ŷ − v) = ∆y.

6

We compute d = ||ϕ2 − ϕ1||/2 = (u − (x̂ − v))/2. Q′, which is the point right d and down

d from ϕ1, is
〈
ϕ1

x + d, ϕ1
y − d

〉
= 〈(x̂ − v + u)/2, (x̂ − v + u)/2〉, and Q′′, which is the point left d

and up d from ϕ2, is
〈
ϕ2

x − d, ϕ2
y + d

〉
= 〈x̂ − (x̂ − v + u)/2, ŷ − (x̂ − v + u)/2〉. Note that Q′ is on

U ’s upper right 45o line and Q′′ is on V ’s lower left 45o line. It follows that the locations Q that
are equal distance from locations ϕ1 and ϕ2 are all contained in the region S, i.e. above or on U ’s
upper 45o lines and below or V ’s lower 45o lines, and hence W is not equal distant from them.

Case 4: W ∈ C and P ∈ A ∪ B. This case is impossible. Because W is one of the points that
maximizes vP − uP , if W is not in A or B then these classes are empty.

Every point is now completely narrowed down to one region R1(P) or R2(P). The points in B′

and B̂′′ are not fixed in the Y dimension, those in S are not fixed in the X-dimension, and many
are not fixed in the X-dimension because value of x̂ within (xi, xi+1) is unknown. The next step is
to either fix the X-dimension of every point or fix the Y dimension of every point. There are two
cases.

In the first case (see Figure 4.a), there are no points B ∈ B′ ∪ B̂′′. Hence, every point is fix in
the Y dimension. The algorithm at this point, completely relaxes the restriction on x̂. We are now
in the situation that every point is fix in the Y dimension, but their X-coordinate Px is unknown.

In the second case (see Figure 4.b), there is a point B ∈ B′ ∪ B̂′′. If B ∈ B′, then x̂ is known
to be equal to vB − uB (in fact, we started this attempt at embedding by narrowing x̂ down to
this single value xi). More over, the distance from such a B to any point P ∈ S is determined in
the X-dimension. See Figure 1.a to see that the X-distance between B and P is more than the Y
distance. We do not know the Y coordinate of B, but we do know it’s X-coordinate, Bx. From
this we know that Px = Bx + d(B,P). This fixes the location of all the points in S. The same
thing can be done if there is a point in B̂′′. Either way, every point is fix in the X-dimension, but
those in B′ ∪ B̂′′ are free in the Y dimension.

In the next section, we will be focusing on the Figure 4.a case, but the other is similar.

(U)

(V)

(U)

(V) ϕ

ϕ

ϕ

ϕ

b)a)

Figure 4: Two examples of embeddings. In (a) one, the components move within the X-dimension
and in (b) within the Y .

7

2.2 Embedding with all but one Dimension Fixed

Suppose we are given a metric space (i.e., the distances between every pair of points) and we are
given a partial embedding. The coordinates for one of the dimensions, say X, may be unknown,
yet the coordinates in the other dimensions are fixed. The question for this section is whether
or not this metric space can be embedded in a way consistent with the partial embedding. We
will show that there is potentially an exponential number of ways in which components of points
might flip and potentially an infinite number of ways for these components to translate within
X-coordinate. Clearly these are not all enumerated, but this section will described how they are
all characterized. In order to be more applicable, we will initially consider the possibility of more
than two dimensions.

Consider the graph on the points of the metric space with an edge {P,Q} if d(P,Q) > ||P −Q||~y,
where d(P,Q) is the distance required by the input and ||P − Q||~y = max(|Py − Qy|, . . .) is the
distance determined by the dimensions fixed so far. Such distances d(P,Q) must be manifested in
the X-dimension. Partition this graph into connected components. (In Theorem 3, there is a single
component forming a single path.)

Lemma 3 Let Φ be one of the connected components. Modulo translating and flipping Φ as a
unit along the X-dimension, the locations of all the points in the component are fixed. For each
point P ∈ Φ, the algorithm returns dx(Φ, P), which is the relative X-location of P with respect
to some designated spot within this rigid Φ. Then if someone else provides Φx, which we use to
denote the actual embedded X-coordinate of the designated spot, and flip(Φ) ∈ {1,−1}, which
we use to denote whether or not Φ is flipped, then the actual X-coordinate of point P will be
Px = Φx + flip(Φ) · dx(Φ, P).

Proof of Lemma 3: Consider this either to be a proof by induction on the number of nodes in
the component or an algorithm with recursion. There are a few cases. For a single point P , the
designated spot will clearly be this point itself, giving dx(Φ, P) = 0.

If the component consists of a single edge {P,Q}, then because the distance d(P,Q) must be
manifested in the X-dimension, Qx is must be either to Px + d(P,Q) or Px − d(P,Q). Setting
dx(Φ, Q) = d(P,Q) gives Px = Φx + flip(Φ) · 0, Qx = Φx + flip(Φ) · d(P,Q), and |Qx − Px| =
|flip(Φ) · (d(P,Q) − 0)| = d(P,Q) as required.

Now consider a component of any size. Let R be a leaf of some spanning tree, let Q be one its
neighbors, and P be one of Q’s neighbors. By induction/recursion, the component with R removed
is rigid. If there is an edge {P,R} (see Figure 5.a), then the two constraints Rx = Px ± d(P,R)
and Rx = Qx ± d(Q,R) fix the embedding of R within the component. (Note Px and Qx must be
different or else the distance between them can’t be manifested in the X-dimension.)

If there is not an edge {P,R} (see Figure 5.b), then we claim that Rx must be fixed on the
same side of Qx that Px is. This gives dx(Φ, R) = dx(Φ, Q) + d(Q,R) if dx(Φ, P) > dx(Φ, Q) and
dx(Φ, R) = dx(Φ, Q) − d(Q,R) if dx(Φ, P) < dx(Φ, Q). The proof that this works supposes by
way of contradiction that Px is set to Qy − d(P,Q) and Rx is set to Qy + d(Q,R). This gives an
embedded distance from P to R of at least d(P,Q)+d(Q,R). Because {P,Q} and {Q,R} are both
edges, this sum is strictly more then ||P − Q||~y + ||Q − R||~y. By the triangle inequality, this is
at least ||P − R||~y. Because {P,R} is not an edge, this is at least d(P,R). Having the embedded
distance from P to R be more than d(P,R) is illegal.

8

Φ1

Φ2

Φ3

3Φ

2Φ

1Φ

P’P

Q

R

x2

x , |V−U|>id)c)

b)

a)

P
Q

R

1

1y

x∆

∆ ∆

∆

∆

+ΣV=<

U=<0,0>

− x3
−∆

1− x

Figure 5: a & b) Fixing points within a component. c) The relative placements of the components
Φ1, Φ2, and Φ3. The edges with the components are shown. d) The metric space corresponding to
the Subset Sum problem

Each component has now been fixed as a unit. For the remainder of this section we will only
consider two dimensions again. The next step is to bound each component Φ by the smallest
rectangle rotated at 45o that contains all the points. See Figure 5.c. Even though they may not be
actual points in the metric space, let bottom(Φ) and top(Φ) denote the bottom and top corners of
this bounding rectangle. For convenience, shift the designated spot within Φ from that of the first
point considered to this bottom corner. This is done by shifting each X-location dx(Φ, P) within
the component. Let us now see how two components can fit together.

Lemma 4 Suppose there are are only two dimensions. For every pair of components Φ and Φ′, one
is strictly above the other giving an ordering Φ1, . . . ΦJ of the components along the Y dimension.

Proof of Lemma 4: Consider three points for which Py ≤ Qy ≤ Ry. If neither {P,Q} nor {Q,R}
is an edge then {P,R} is also not an edge. This is because Ry − Py = (Ry − Qy) + (Qy − Py) ≥
|Rx − Qx| + |Qx − Px| ≥ |Rx − Px|. The counter-positive is that if {P,R} is an edge, then at least
one of {P,Q} and {Q,R} is. Hence, a component not containing point Q either is strictly above Q
or strictly below it.

Let us now examine the restrictions on the X-coordinates imposed on one component by another.

Lemma 5 Suppose that Φ′ is embedded strictly above Φ. Considering only the distances between
them, Φ and Φ′ are free to shift left and right and to flip in the X-dimension within the constraint
that the rectangle containing Φ′ is embedded above and between the two lines extending upward at
45o from the top two sides of the rectangle containing Φ.

Proof of Lemma 5: Consider the point Q ∈ Φ defining the top right edge of the rectangle
containing Φ. Consider any point P ∈ Φ′. In order for the distance d(P,Q) to be manifested in the
Y dimension, P must be embedded above and between Q’s two upper 45o lines. Hence, P must be
above and to the right of the line extending the top right edge of the rectangle. Similarly, it must
be above and to the left of the extension of the top left edge. Any other point Q′ in Φ will impose
less strict restrictions on the location of P . If every point P ∈ Φ′ is embedded above and between
these two 45o lines, then so is the smallest 45o rectangle containing Φ′.

Given a line of components, one only need consider the restrictions imposed by consecutive com-

9

ponents, because these restrictions are the strongest.

We are now ready to specify the range of possible embeddings for these components. See
Figure 4.a. (The case Figure 4.b is similar.) For i = 1, . . . , I, we will embed the component
Φi. The algorithm started by embedding the point U at location ϕ(U) = 〈0, 0〉. This fixes the
location of the bottom most component Φ1. Φ1, however, can flip in the X-dimension by choosing
flip(Φ1) ∈ {1,−1}.

As a loop invariant, suppose that we have already embedded the components Φ1, . . . ,Φi−1.
For i′ < i, the X-coordinate of the bottom corner of bounding rectangle for component Φi′ is
fixed to bottom(Φi′)x and flip(Φi′) ∈ {1,−1} fixes whether or not Φi′ is flipped. We continue by
letting ∆xi−1 = dx(bottom(Φi−1), top(Φi−1)), which Lemma 3 gave to be the X-distance between
the bottom and top corners of the bounding rectangle for Φi−1. See Figure 5.c. This fixes the
X-coordinate of the top corner of Φi−1 to be top(Φi−1)x = bottom(Φi−1)x + flip(Φi−1) · ∆xi−1.
We go on to compute ∆yi−1 = |bottom(Φi)y − top(Φi−1)y|, which is the known y-distance between
the top corner of the bounding rectangle for Φi−1 and the bottom corner of that for Φi. Again see
Figure 5.c. These two corners cannot deviate by more than this amount in the X-dimension. This
bounds bottom(Φi)x to be within the range [top(Φi−1)x −∆yi−1, top(Φi−1)x +∆yi−1]. We also have
freedom to choose flip(Φi) ∈ {1,−1}.

This process continues one component at a time until at the top the point V is embedded. We
started this process by stating that V is to be embedded at ϕ(V) = 〈x̂, ŷ〉, for some unknown value
x̂ ∈ (xi, xi+1). However, at the beginning of this section we relaxed this restriction on x̂.

This completes this embedding. What remains is to check that all the distances are correct.
Independent of how the values bottom(Φi)x and flip(Φi) ∈ {1,−1} are chosen within the above
stated constraints, we have fixed the distances ||ϕ(P) − ϕ(Q)|| between the embedded locations of
each pair of points. If we have not already found an inconsistency, then it would now be good to
check for every pair of points that this embedded distance is in fact the required distance d(P,Q)
given by the metric space. Only after checking this to we accept this embedding.

We started by restricting x̂ to be within one of the ranges (xi, xi+1) (or equal to one xi) and
restricting to one of the two embeddings of W (and symmetrically of Ŵ). After outputting the
range of embeddings consistent with these choices, we go on to the next choices.

2.3 The Running Time with Different Values of x̂

The above algorithm is challenged because it does not know the value of Vx = x̂. However, the
main time that we need this information is to compare it to vP −uP for each point P . The number
of such values ∆ = {|vP − uP | | P 6∈ S} is at most O(n). Hence, the above algorithm needs to be
repeated for only O(n) ranges (xi, xi+1) (or equal to xi). (The value of x̂ being unknown within
the range (xi, xi+1) added a few more complications, but we believe these were all handled.)

Consider the total running time. For one interval, placing each point into two and then one
region takes only O(n) time, but to find the components and to check each of the

(n
2

)
distances

requires O
(
n2
)

time. This would lead to an O
(
n3
)

time algorithm.

This can be improved to a O
(
n2 log2 n

)
time algorithm as follows. Suppose that we have just

completed the algorithm above assuming that x̂ is within one of the intervals and in memory is

10

a data structure describing the situation. When shifting x̂ to the next interval only some of the
points will change categories. Across all such shifts a given point P will change categories only
twice, namely from x̂ being bigger than |vP −uP | to it being equal to it, to it being smaller than it.
When a point changes which category it is in, its location might change. Also in the graph used for
fixing the last dimension, all the edges adjacent to this node may change. Nothing else will change.

??? Hezinger and King [13] provide a fully dynamic randomized algorithm for maintaining
connected components. The total expected time for p edge insertion or deletion updates on an n
node graph is only O(p log2 n). In our application, the total number of edge updates is p = O(n2)
giving that the total time devoted to maintaining the connected components is only O(n2 log2 n)
as required.

The distance between a pair a points need only be rechecked when one of the points changes
location. This will occur only O(1) times per pair for a total of O(n2) time. (Actually, when the
points W and Ŵ move in this way, the complete data structure needs to be changed, however, this
occurs only a constant number of times.)

Open problem: Because the edge updates occurs in such an ordered way, is it possible to remove
the O(log2 n) factor? Is there a faster way to narrow down the value of x̂ and the placement of
W and Ŵ ? Finally, is it really possible to have O(n) completely different embeddings because of
these different initial choices?

3 An NP-Completeness Theorem

Theorem 1 proves that a metric space can be embedded into l2∞ in time O
(
n2 log2 n

)
. This section

will prove that this algorithm is not as flexible to minor changes as we would like.

Theorem 2 Embedding a metric space into lk∞ is NP-complete given any one of the following.

1. The number of dimensions is k ≥ 3.

2. On the k = 2 dimensions of the surface of a sphere.

3. In l2∞ with the added constraint that point U is embedded at 〈0, 0〉 and point V embedded at
〈0, d(U, V)〉, i.e. x̂ = 0.

We prove these in reverse order.

Proof of Theorem 2.3: The reduction is to Subset Sum. The input to this problem is a set of
positive integers {∆x1, . . . ,∆xn}. The question is whether there exists a subset S whose sum is
equal to the sum of the complement set, i.e., x̂ =

∑
i∈S ∆xi −

∑
i6∈S ∆xi = 0.

Given an input {∆x1, . . . ,∆xn} to Subset Sum, we construct a metric space as follows. Sepa-
rately for each value ∆xi, consider a rectangle Φi rotated at 45o such that the difference between
the X-coordinate of the lower and upper corners is ∆xi and the difference between the Y -coordinate
of the lower and upper corners is more than ∆xi. See Figure 5.d. Embed in Φi enough points to
form a connected component bounded by this rectangle. Place the point U at 〈0, 0〉 as required.
Place Π1 so that its lower corner is on U . Stack the rectangles in order on top of each other so

11

that the upper corner for Πi is the lower corner for Πi+1. (In the notation of Section 2.2, ∆yi = 0.)
Finally, place the point V at the upper corner for Πn. The distance between any two points in the
metric space are given by this embedding. This embedding, however, will not meet the constraints
because V is embedded at 〈

∑
i ∆xi, d(U, V)〉 instead of at 〈0, d(U, V)〉.

Recall the embedding algorithm from Theorem 1. A quick check will show that the points U
and V are the pair that are farthest apart and that all points are contained within the set S =
{P | d(U,P) + d(P, V) = d(U, V) = ŷ}. This fixes the Y -coordinate of each point. Because the set
{|vP − uP | | P 6∈ S} is empty, the only interval (∆xi,∆xi+1) within which x̂ needs to be restricted
is (0,∞). Lemma 5 then states that the only degrees of freedom in embedding this metric space is
that each component is free flip in the X-coordinate, with the corners of consecutive components
touching. Hence, there is a one-to-one mapping between the possible embeddings of the metric space
and subsets S ⊆ [1..n], where S indicates which rectangles are embedded with their upper corner

to the right of their lower corner. Moreover, V is embedded at
〈∑

i∈S ∆xi −
∑

i6∈S ∆xi, d(U, V)
〉
.

In conclusion, the metric space can be embedded with V at 〈0, d(U, V)〉 if and only if there is a
subset of the Subset Sum values {∆x1, . . . ,∆xn} for which

∑
i∈S ∆xi −

∑
i6∈S ∆xi = 0.

Proof of Theorem 2.2: The only change in the proof required is that the Y -dimension cycles
around the sphere so that U and V are in fact the same point embedded at 〈0, 0〉 = 〈0, d(U, V)〉.

Proof Sketch of Theorem 2.1: The proof technique is the same here as well. The only difference
is that the circle from U back to V =U travels through two of the three dimensions while the ridged
components continue to flip in the X dimension.

The complete proof of Theorem 2.1 will be a combination of the proof for Theorem 2.3 and that
for Theorem 3. Hence, we will delay it until the end of Section 4.

4 3-Dimensional mobius

Theorem 3 For every n ≥ 24, there exists a metric space on n points that cannot be embedded in
l3∞, however, every proper subspace can be embedded in l3∞.

A similar thing could be proved for dimensions larger than 3. Note that this gives that c∞(3) ≥ n−1.

Proof of Theorem 3: We will refer to the metric space in question as the möbius metric space
because of its relation to a möbius strip. This möbius strip has length traveling around a square
within the first two dimensions, U and V , and width across the third dimension, X. However,
along the path around the square, the strip twists connecting the top edge to the bottom and the
bottom to the top. This möbius strip cannot be embedded into l3∞ since the local information does
not allow the strip to flip over. On the other hand, if the möbius strip were cut (by removing points
from the metric space), then the strip could be untwisted and embedded into l3∞.

We would like the removal of only a single point in the metric space to allow the metric space
to be embeddable. Hence, the metric space will have only a single point across the width of the
strip whose coordinate in the X-dimension is either 1 or -1. Suppose one travels around the square
considering the sign of this coordinate. The local distances between consecutive points are able
to dictate whether these are the same or the opposite. We will dictate that all consecutive points
around the square must have the opposite sign, except at one place around the square, where the

12

consecutive points have same sign. The argument is now a question of parity. It is impossible to
have a string from {−1, 1} of even length in which consecutive entries have opposite signs and the
first and the last entries have the same sign. This contradiction ensures that the metric space is
not embeddable. On the other hand, if we delete any of the entries from these string requirements,
then such a string does exist.

A formal definition of the metric space is as follows. See Figure 6. The 4n points are
named {〈−n + u, u〉 | 0 ≤ u < n} ∪ {〈u, n − u〉 | 0 ≤ u < n} ∪ {〈n − u,−u〉 | 0 ≤ u < n}
∪ {〈−u,−n + u〉 | 0 ≤ u < n}. Consecutive points along the square will have distance 2 be-
tween them, which is the distance for example between locations 〈u, v, 1〉 and 〈u + 1, v + 1,−1〉,
namely max(|(u + 1) − (u)|, |(v + 1) − (v)|, |(−1) − (1)|) = max(1, 1, 2) = 2. The exception is that
the distance between the consecutive points 〈−n + 1,−1〉 and 〈−n, 0〉 is instead 1, which is the
distance for example between locations 〈−n + 1,−1, 1〉 and 〈−n, 0, 1〉, namely max(|(−n + 1) −
(−n)|, |(−1)− (0)|, |(1)− (1)|)max(1, 1, 0) = 1. The distance between non-consecutive points 〈u, v〉
and 〈u′, v′〉 will be defined to be the distance between the locations 〈u, v, 1〉 and 〈u′, v′,−1〉, which
is max(|u′ − u|, |v′ − v|, 2) = max(|u′ − u|, |v′ − v|). Lemma 7 proves that this metric space cannot
be embedded in l3∞, while Lemma 6 proves that any proper subspace can be.

b)

X
1−1

1−x

x2

3−x

U +xxV = i−+Σ x

V’

U’

X
1−1

<0,−n>

<−n,0> <n,0>

<0,n>

E

D

C

B
A

<0,0>

a) c)

V

U

V’

U’

Figure 6: a) In two of the dimensions the points of the möbius metric space form a square. b)
Along each edge of the square the points zig zag between X-coordinates 1 and −1. The edges
between the nodes are those used in Lemma 3 for fixing the last dimension. We first prove that
the nodes within the long rectangles in both (a) and (b) are fixed to form connected components.
Then we show that all the points form a single connected cycle. c) shows how the metric space
from Theorem 2.3 is later inserted into this metric space in order to prove Theorem 2.1.

Lemma 6 Any proper subspace formed from the möbius metric space by deleting at least one of
its underlying points can be embedded in l3∞.

Proof of Lemma 6: Let 〈û, v̂〉 be the point that is deleted from the möbius metric space. Each

point 〈u, v〉 is embedded at location
〈
u, v, x〈u,v〉

〉
with x〈u,v〉 ∈ {−1, 1}. Let x〈−n,0〉 = 1. Alternate

the signs as you go clockwise around the square until you get to the missing point. The pair of
entries of distance two across the gap are given opposite signs. After the gap, continue alternating
the signs until we are back to 〈−n + 1,−1〉. Note the first and the last points will have the same
sign for X as required. This embedding respects all the distances.

Lemma 7 The möbius metric space defined above cannot be embedded in l3∞.

13

The following classical betweenness relation and lemma will help. We say that the point B
lies between point A and C if d(A,B) + d(B,C) = d(A,C). For example, all the points in the
classification S of Theorem 1 lie between U and V . In ld2, these points would have to be co-linear.
However, this is not the case in l2∞.

Lemma 8 Consider a metric space and the set of points that lie between a point A to a point C.
For every embedding of the metric space, modulo translations, renaming of the dimensions, and
negations of the dimensions, the coordinates along one of the dimensions are fixed by the distances
between the points. More specifically, if the coordinate for A along this dimension is Ax, then for
the coordinate for any other point B is Bx = Ax + d(A,B).

Recall that this was done for the points in S as well.

Proof of Lemma 8: Without loss of generality, Cx = Ax + |C − A|. If Bx > Ax + |B − A|,
then |ϕ(B) − ϕ(A)| = max(|Bx − Ax|, |By − AA|, |Bz − Az|) ≥ Bx − Ax > |B − A|, which is a
contradiction. Similarly, if Bx < Ax + |B − A| = Cx − |C − B|, then |ϕ(C) − ϕ(B)| = max(|Cx −
Bx|, |Cy − By|, |Cz − Bz|) ≥ Cx − Bx > |C − B|. Therefore, Bx = Ax + |B − A|.

Using Lemma 8, we can say a lot about how the möbius metric space must be embedded.

Lemma 9 If the möbius metric space can be embedded into l3∞, then without loss of generality
for each point except for the eight points adjacent to the corners, 〈u, v〉 is embedded at location〈
u, v, x〈u,v〉

〉
, for some value x〈u,v〉.

Proof of Lemma 9: A quick check will show that all the points except for the four points that
are immediately adjacent to the corners A = 〈−n, 0〉 and C = 〈n, 0〉 lie between these corners.
Therefore, by Lemma 8, without loss of generality for these points, 〈u, v〉 is embedded at location〈
u, v〈u,v〉, x〈u,v〉

〉
, for some values v〈u,v〉 and x〈u,v〉. Going the other direction, the distance between

the corners A′ = 〈0,−n〉 and C ′ = 〈0, n〉 cant be manifested in the same dimension. Hence, applying
Lemma 8 again gives us that for each point except for the eight points adjacent to the corners,

〈u, v〉 is embedded at location
〈
u, v, x〈u,v〉

〉
, for some value x〈u,v〉.

Lemma 10 Points at even distance along the same side of the square, excluding the corners and
the two points that are adjacent to them, are embedded at locations with the same X-coordinate.

Proof of Lemma 10: The U and V coordinates of the points in question have been fixed. For these
points, this leaves only one dimension X undetermined. Lemma 3 describes how to partition these
points into connected components, each of whose embedding is fixed. In this graph, consecutive
points, which have distance 2 between them but only distance 1 in the 〈U, V 〉 dimensions, have
edges between them. It follows that each of the four sides of the square, excluding the corners and
the two points that are adjacent to them form components. See Figure 6:a and b. The lemma
follows.

Lemma 9 failed to consider the eight points adjacent to the corners. We are now ready to consider
these.

Lemma 11 For the eight points adjacent to the corners, 〈u, v〉 is embedded at location
〈
u, v, x〈u,v〉

〉
,

for some value x〈u,v〉.

14

Proof of Lemma 11: By symmetry of the argument, consider the point denoted A = 〈1, n − 1〉.
From the proof of Lemma 9, we know that it is embedded at location 〈1, Av , Ax〉 for some values
Av and Ax. Our goal is to prove that Av = n − 1. See Figure 6:a. If n is even, consider the
sequence of points A, B = 〈2, n − 2〉, C = 〈n − 2, 2〉, D = 〈n − 2,−2〉 and E = 〈2,−n + 2〉.
If n is odd, instead let C = 〈n − 3, 3〉 and D = 〈n − 3,−3〉. |Ax − Bx| ≤ d(A,B) = 2 and
|Cx −Dx| ≤ d(C,D) ≤ 6 by the given distances. |Bx −Cx| = |Dx −Ex| = 0, by Lemma 10. Hence,
|Ax −Ex| ≤ |Ax −Bx|+ |Bx −Cx|+ |Cx −Dx|+ |Dx −Ex| ≤ 2 + 0 + 6 + 0 = 8. We also have that
|Au − Eu| = |1 − 2| = 1. It follows that the given distance d(A,E) = 2n − 3 is manifested in the
second dimension, i.e., |Av − Ev| = |Av − (−n + 2)| = 2n − 3. Clearly, Av is not smaller then −n,
concluding that Av = n − 1.

Now that the U and V coordinates have been fixed for all of the points in the metric space, we
are ready to apply Lemma 3 again. Because consecutive points (except for the one pair that has
distance 1 between them) have an edge between them in the component graph, the entire square
becomes one component. Hence, without loss of generality, all X-coordinates are x〈u,v〉 ∈ {−1, 1}
and consecutive points with distance 2 must have opposite signs, while the one pair of consecutive
points with distances 0 must have the same sign. As said initially, this is impossible. This concludes
the proof of Theorem 3.

We are now ready to complete the remaining proof from Section 3 that embedding a metric space
into l3∞ is NP-complete.

Proof of Theorem 2.1: Given an instance {∆x1, . . . ,∆xn} to Subset Sum, we construct a metric
space as follows. See Figure 6:c. Start by building the möbius metric space from Theorem 3. To
create the twist in this möbius strip, the distance between the consecutive points 〈−n + 1,−1〉
and 〈−n, 0〉 was defined to be 1 instead of the usual 2. We remove this twist by changing the
distance to be 2. Then let U ′ denote the point 〈3,−n + 3〉, let V ′ denote 〈5,−n + 5〉, and remove
the point 〈4,−n + 4〉 between them. Just as was done for Theorem 3, we can prove that without

loss of generality each point 〈u, v〉 is embedded at location
〈
u, v, x〈u,v〉

〉
, where x〈u,v〉 ∈ {−1, 1} and

consecutive points have opposite signs. The only difference is that because the point 〈4,−n + 4〉
has been removed, the points U ′ and V ′ are in the same connected component only by following
the path the long way around the square.

The statement of Theorem 2.3 requires the added constraint that point U is embedded at 〈0, 0〉
and point V embedded at 〈0, d(U, V)〉. Instead, we have that point U ′ is embedded at 〈3,−n + 3, 1〉
and point V embedded at 〈5,−n + 5, 1)〉.

Given the instance {∆x1, . . . ,∆xn} to Subset Sum, construct the metric space as done in the
proof of theorem 2.3. Scale all the distances down so that d(U, V) = 2. To combine these two
metric spaces it is only necessary to give the distances between each point in the first and each in
the second. Imagine rotating the second metric space by 45o and inserting it in the first equating
point U with U ′ and V with V ′. This requires having the Y axis of the first metric space be rotated
to go along the 45o line between points U ′ and V ′. Once this is done define the distances between
the new pairs of points to be their distances determined by u and v axis.

Just as done in the proof of Lemmas 9-11, we can prove that if this combined metric space can
be embedded into l3∞, then without loss of generality the u and v coordinates of each point has been
fixed leaving only one dimension X undetermined. Lemma 3 describes how to partition these points
into connected components, each of whose embedding is fixed. As is true in Theorem 3, there will

15

be one component going the long way around the square from U ′ to V ′. As is true in Theorem 2.3
there will be one component for each ∆xi value. Though Lemma 5 was actually proved for only two
dimensions, with added conceptual difficulty it could be extended to three dimensions. However,
this is not really necessary because our string of components do lie in two dimensions, one being
the line from U ′ to V ′ and one being the X-dimension. Hence, we will freely use Lemma 5 to prove
that the only degrees of freedom in embedding this metric space is that each component is free
flip in the X-coordinate, with the corners of consecutive components touching. As was true with
Theorem 2.3, there is a one-to-one mapping between the possible embeddings of the metric space
and subsets S ⊆ [1..n], where S indicates which rectangles are embedded so that the X-coordinate
from one corner to the other is increasing or decreasing by ∆xi. Because U ′

x = V ′
x = 1, the metric

space can be embedded if and only if there is a subset of the Subset Sum values {∆x1, . . . ,∆xn}
for which

∑
i∈S ∆xi −

∑
i6∈S ∆xi = 0.

If the number of dimensions k is more three, then the same proof holds after adding a point
far in the positive direction and one far in the negative direction for each of the extra dimensions.
The distances to these points can be used to fix the coordinates in all but three of the dimensions
to zero.

5 Thanks

Being completely new to this field, I would like to thank Steven Watson for introducing these ideas
to me and for his extensive help. I would also like to thank Victor Chepoi for all the work that he
put into this paper.

16

References

[1] P. Assouad and M. Deza. “Espaces metriques plongeables dans un hypercube: aspectes combi-
natoires”, Annals of Discrete Mathematics 8 (1980), 197–210.

[2] P. Assouad and M. Deza. “Metric Subspaces of L1”, Publications Mathematiques D’Orsay,
Universite d Paris-Sud, Orsay (1980).

[3] D. Avis and M. Deza, The Cut Cone, L1Embedability, complexity and multicommodity flows,
Networks, Vol. 21, pp. 595–617 (1991).

[4] M. Badoiu, “Approximation algorithm for embedding metrics into a two-dimensional space”,
SODA’03

[5] H.J. Bandelt and V. Chepoi, “Embedding metric spaces in the rectilinear plane: a six–point
criterion”, Discrete Computational Geometry 15 (1996), 107-117

[6] H.J. Bandelt and V. Chepoi, “Embedding into the rectilinear grid”, Networks 32(1998), 127-132

[7] H.J. Bandelt and V. Chepoi, M. Laurent, “Embedding into rectilinear spaces”, Discrete Com-
putational Geometry 19(1998), 595-604)

[8] L. Blumenthal, Distance Geometries, University of Missouri Studies, vol. 13 no. 2 (1938)

[9] L. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, (1953)

[10] G.E. Christopher and M.A. Trick, “Faster decomposition of totally decomposable metrics with
applications”, 1996, Carnegie Mellon University.

[11] M. Deza and M. Laurent, “Geometry of Cuts and Metrics is a good general reference on metrics
and isometric embeddings”, book.

[12] Jeff Edmonds, “Embedding into l2∞ is Easy, Embedding into l3∞ is NP-Complete,” Earlier
version of this same paper. SODA 2007.

[13] M. Henzinger and Valerie King, ”Randomized Dynamic Graph Algorithms with Polylogarith-
mic Time per Operation” (STOC’95). Journal of the ACM, Vol. 46 No. 4 (1999) pp. 502–516.

[14] S. Malitz and J. Malitz, “A bounded compactness theorem for L1-embeddings of metric spaces
in the plane”, In Discrete Comput. Geom., 8 (1992) pp. 373–385.

[15] J. Matousek “Open problems on embeddings of finite metric spaces”, personal web page.

[16] K. Menger, Untersuchungen uber allgemeine Metrik, Mathematishe Annalen 100 (1928), pp.
75–163.

[17] James Schmerl, private communication with Seth Malitz and Jerome Malitz (1990).

17

