
Momentum, Kinetic Energy, and Temperature

Start with Newton’s three laws: 1 - things continue to traveling in a straight line, 2 - pushing things makes
them accelerate ~f = m~a, and 3 - colliding particles apply forces to one another that are equal in magnitude
and opposite in direction. Add a desire for conservation laws and that randomness uniformly distributes the
particles of a gas. From these alone our goal is to develop and relate momentum

∑
i mi~vi, potential energy

Ep = fd = mad, kinetic energy
∑

i mivi
2, thermal energy, temperature, and gas pressure. I have not really

read up on it, because I like doing things myself. I heard that the math was hard, but unless I am doing it
wrong, it is quite easy. I would love it if you loved it too.

My problem for years was that force relates to the rate of momentum transfer which depends on Avgivi,
while kinetic energy depends on Avgivi

2 and that these two values and can be vastly different values de-
pending on whether all the particles have the same velocity or one has N times this velocity and the other
N−1 have vi =0. I was happy when Janos told me that we should assume that the velocities of particles
are in the Boltzmann folded normal distribution which gives (Avgi|vi|)

2 = 2
π
Avgivi

2. I was quite pleased,
however, that this was not needed. The force exerted by a gas per unit area is the kinetic energy per the
unit volume which is the temperature of the gas. This requires that the particles are distributed uniformly
but assumes nothing about the distribution on the velocities.

The average momentum of the micro particles in the gas is defined as macro value Avgimi~vi because this
is a value that is conserved as the particles collide. If the macro gas is not flowing then this macro value is
zero because all the vectors being in different directions cancel out. We shift this to average speed Avgivi by
taking the component of each momentum in the direction of the container. This becomes (Avgivi)

2 when
we include both the momentum of the particle and the rate at which they collide against the container.
This becomes Avgivi

2 because these two events are correlated. The particles that have a bigger speed vi
both contribute more momentum and do so faster. The same sum of squares is also the definition of kinetic
energy because this is the definition that allows for the conservation of potential vs kinetic energy. This
kinetic energy causes the gas to put pressure on its container making the mercury expand defining as such
temperature measured by a thermometer. This gives rise to the conservation of kinetic vs thermal energy.
Cool.

Defining Momentum, Potential, and Kinetic Energy

Particle Velocities: Let ~vi denote the velocity of the ith particle in the gas as a direction & speed vector.
Let vi = |~vi| denote its meters/sec speed.

~f = m~a: Experimentation revealed that if you have twice as many people pushing then the car accelerates
twice as fast and that if the car weighs twice much then it accelerates half as fast. The constant 1 is
set by defining the unit newton (N) of force represents the force required to accelerate a mass of one
(kg) by one (m/s2).

Momentum: On a micro level, we may not know the direction or speed of each particle in a gas, but what
macro number will stay constant as the particles collide? When two collide, Newton stipulates that the
force ~f of the first exerted on the second is equal to the force −~f of the second exerted on the first but
in the opposite direction. By ~f = m~a, this will accelerate them at a rate of ~ai =

1
mi

~f . If the duration

of this force is δt, then the change in velocities will be ~δvi = ~ai · δt =
1
mi

~fδt. To make this the same for

the two particles lets multiply this by their individual masses, namely ~δpi = mi
~δvi = ~fδt. Because this

vector is in the opposite direction, these two changes sum to zero. This motivates defining a particles
momentum to be ~pi = mi~vi. We just proved that total momentum of the system

∑
i ~pi =

∑
i mi~vi

remains constant as the particles elastically collide,

A Vector: Momentum mi~vi has both a magnitude and a direction. If the gas as a macro system is not
moving, then these momentum vectors which point in all directions will cancel out given a total
momentum of

∑
i m~vi = 0. This is not helpful to us in our task.

Energy: Newton would have had the conceptual understanding that energy is what is needed to get work
done. Potential energy Ep = fd = mad arises when a particle is positioned a distance d up a force
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field (eg gravity) and hence has the potential to accelerate through this distance creating velocity.
Kinetic energy Ek = 1

2mv2 arises when a particle is moving at velocity v and hence can do ”work”
by smashing into something. These clearly depend linearly on the mass m, because if you glue two
particles together the energy doubles. The first clearly depend linearly on the distance d, because if
you move it this distance once and then a second time, it clearly takes twice the energy. The constant
1 in the first is set by defining the units of energy as such. But why are they linear in a and v2? Could
we just as well define Ep = ma3d and Ek = 7mv5?

Conservation of Energy: I have generally seen that Ep = mfd = ad and Ek = 1
2mv2 are given as

assumptions from which one proves conservation of energy. I prefer to turn it around. We want
conservation of energy and these are the only two equation that give it it you.

By this we mean the following. Let di, vi, m, and a be the initial distance from the ground, vertical
velocity, mass, and downward acceleration. After time t, calculate the new velocity to be v(t) = vi+at
and the distance traveled to be ∆d(t) =

∫
t
v(t)δt =

∫
t
(vi+at) δt = vit+

1
2at

2. Calculate the change

in potential energy ∆Ep = ma∆d(t) = ma(vit+
1
2at

2) and the change in kinetic energy ∆Ek =
Ek(t)−Ek(0) =

1
2mv(t)2 − 1

2mvi
2 = 1

2m(vi+at)2 − 1
2mvi

2 = 1
2m(2viat+a2t2) = ma(vit+

1
2at

2) = ∆Ep.
Note that these definition make ∆Ep = ∆Ek conserving energy. Playing a little more, one can see that
other definitions of energy would not do this.

Angular Momentum: Kepler said that the angle swept out by each planet each second remains a constant.
This is the conservation of angular momentum. It means that when a spinning person brings in their
hands, they spin faster. Newton has a fantastic proof involving the area of triangles. I would love to
show it to you.

Elliptical Orbit: I also made power point slides to give a geometric proof that the orbit of plants is elliptical
with the sun at the focal point.

Force per Unit Area Exerted by a Gas onto its Container is
Equal to its Average Particle Kinetic Energy per Unit Volume
ChatGPT gave me the law

P = 2
3
N
V
Ek

but says that the proof is too hard to present. Here pressure P is the force per unit area exerted by the
gas, N is the number of gas molecules in the container, V its volume and Ek is the average kinetic energy
of one particle of the gas. If we assume that the particles are always uniformly distributed, then there are
N
V

particles per unit volume and their expected total kinetic energy per unit volume is N
V
Ek. The only

assumption about the particles is that their location is always uniformly distributed through the space. As I
had first thought, we do not need to assume anything about the distribution of the particle velocities. (Our
calculations are off by the 2

3 factor.)

Pressure: Pressure P is the force per unit area exerted by the gas on its container from particles hitting
it. If you punched a hole anywhere in the container, the gas would come streaming out with a force F
proportional to the area A of the hole, i.e., F = PA. One Pascal (Pa) of force is defined as one newton
of pressure per square meter (N/m2), while a newton (N) is the force required to accelerate a mass of
one kilogram (kg) by one meter per second squared (m/s2).

Rate of Transfer of Momentum Gives Force: We know ~f = m~a because pushing things makes them
accelerate. We know acceleration is the rate of change of velocity, giving ~f = m δ~v

δt
= δm~v

δt
. Having

defined m~v to be momentum, this gives that the rate that the momentum of an object changes is equal
to the force at which you push it. It is fun that this same ”per time” unit can arise in a seemly different
way. Fire a stream of particles at the wall of a container at some rate, i.e., the number of particles per
second. The momentum mv of each particle gets transferred to the container wall. This leads to a rate
of transfer of momentum onto the container. It turns out that this is also equal to the force exerted
onto a contain by the stream of particles.

2



Area Region A: Let A denote both an area on the (bottom) surface of the container and its area. Our
goal is to argue that the force exerted by the gas on it is equal to A times the average particle kinetic
energy per unit volume.

Area A times length L equals Volume: Let AL denote the 3-dimensional space on top of area A with
height L and volume AL. If we assume that the particles are always uniformly distributed, then there
are ALN

V
particles within this volume AL. If such a particle is located at the top and travels straight

down, then it must travel a distance L in order to collide with the container at area A.

Particle Collisions: As a particle travels, it collides with another particle every few nano meters (billionths
of a meter) making its path very hard to predicted. To avoid this, we will make the volume AL
infinitesimally small so that the expected number of particles in it is much less than one. This makes
ALN

V
no longer be the number of particles within this volume AL but instead the probability that

there is a single particle in this volume. Because there is not a second particle anywhere near the first
during the time and space considered, we do not have to consider particle collisions at all.

Particle i: Assuming the volume AL contains the ith particle in the gas, let ~vi denote its velocity as a
direction & speed vector and vi = |~vi| denote its meters/sec speed. Let Li ∈ [0, L] denote its distance
to the container at the beginning of the time period considered. With probability 1

2 , it is headed
towards the container wall and not away from it. Assuming the former, let θi denote the angle between
~vi and the vertical so that the distance the particle needs to travel along the hypotenuse to reach the
container is Li

cos(θi)
. Lets assume that A is big compared to L, so that the probability of the particle

hitting the container outside of area A is insignificant.

Rate: Traveling at speed vi, the time until the collision with the container is Li

vicos(θi)
and hence the ”rate”

of collisions per second is vicos(θi)
Li

.

Momentum: The momentum of the particle is mi~vi, but only the component mivicos(θi) perpendicular to
the container is transferred to the container.

Concluding P = 2

3

N

V
Ek: The force exerted onto a contain by the gas is equal to rate of transfer of mo-

mentum onto the container. We obtain this rate by putting these pieces together: the probability
ALN

V
of there being a point in this volume; the probability 1

2 that the particle is going down; the rate
vicos(θi)

Li
of this particle colliding against the container; and the transferred momentum mivicos(θi),

gives a rate of momentum transfer of ALN
V

× 1
2 × vicos(θi)

Li
×mivicos(θi). Plugging in Exp(Li) =

1
2L

and Exp(cos2(θi)) = 1
2 gives AN

V
× 1

2mivi
2. If you average this over all the gas particles, one gets

A times the average particle kinetic energy per unit volume as needed for the right hand side of the
theorem. As said, these calculations do not give the constant 2

3 given by ChatGPT.

Boltzmann Folded Normal Distribution
I was happy when Janos told me that we should assume that the velocities of particles are in the Boltzmann
folded normal distribution.

Tending to Gaussian/Normal: Here is a fun fact. Take any very long sequence of independent random
experiments. Each can have what ever distribution on the real numbers that you want. Let Sum
denote the random variable obtained by adding of the result of these. As the sequence gets longer, this
sum distribution tends to be normally distributed.

Random Collisions: I image each collision of two particles is an independent experiment that distributes
the velocities from one particle to another. Perhaps the final velocity vi is the ”sum” of these experi-
ments.

Folding the Distribution: The velocity ~vi is in a random direction. If the macro system of gas is at rest,
then the average momentum is zero. If all the weights are the same m, then the average velocity is
zero, Avg~vi = 0. If this direction was projected onto a line, then vi would be a random positive and
negative real number. The claim is that this value is normally distributed with mean µ== 0. To get
speed, we take the absolute value |vi|. Wiki calls this the folded normal distribution.
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Boltzmann: Wikipedia gives that the probability that the ith particle has a given velocity v is proportional

to Prob(vi= v) ∝ e
−

Ek(v)

kBT = e
−

1
2
miv

2

kBT where kB = 1.380649 × 10−23 is the Boltzmann constant and
T is the temperature in Kelvin.

Folded Normal: To me this distribution is the folded normal distribution, namely, let vi be a normally

distributed random variable Prob(vi=v) ∝ e−
(x−µ)2

2σ2 , with mean µ=0 and variance σ2 = kBT
mi

.

Variance: The variance is defined Exp(vi
2). Multiplying by 1

2mi gives that Exp(Ei) = Exp( 12mivi) =
1
2miσ

2 = 1
2kBT .

Kinetic Energy ∝ Temperature: This tells that that the expected kinetic energy of a particle is propor-
tional to its temperature.

Avg|vi|: We ”expect” a normal variable to be 1, 2, or 3 standard deviations from the mean. Namely Avg|vi|
is going to be a few standard deviations, The standard deviation σ squared is the variance, Wikipedia
confirms this with (Avgi|vi|)

2 = 2
π
Avgivi

2. Note that both sides need to have a square in them to get
the units right.
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