
Quick Merge Sort
Jeff Edmonds

It is hard to believe that Merge Sort can be improved after the 70 years since Von Neumann invented
it in 1945, but who knows. The input and the output of the sorting are to be in the same array A, but an
auxiliary array B is needed. After recursively sorting the first and second halves of its input, Merge Sort
merges these taking the values from A into B and then has to copy the result back into A. Much attempt
has been made avoid this auxiliary memory – at the expense of extra time and complications. Here we still
use B, but avoid the extra copying time. This cuts in half the number of times an element moves, from
2n log n to n log n + n moves. As the program recurses, the input will always appear in array A[], but the
required location of the output alternates between A[] and B[].

algorithm QuickMergeSortToA(A[], iBegin, iEnd,B[])

〈pre−cond〉: The values A[iBegin, iEnd] are to be sorted.

〈post−cond〉: Then the result must appear in A[iBegin, iEnd].
B[iBegin, iEnd] is used as an auxiliary.

begin
if(iEnd − iBegin > 0) {

iMiddle = (iEnd + iBegin)/2; // iMiddle = midpoint
QuickMergeSortToB(A, iBegin, iMiddle,B) // Sort first half into B.
QuickMergeSortToB(A, iMiddle+1, iEnd,B) // Sort second half into B.
Merge(B, iBegin, iMiddle, iEnd,A); // merge from B to A.

}
end algorithm

algorithm QuickMergeSortToB(A[], iBegin, iEnd,B[])

〈pre−cond〉: The values A[iBegin, iEnd] are to be sorted.

〈post−cond〉: Then the result must appear in B[iBegin, iEnd].

begin
if(iEnd − iBegin = 0)

B[iBegin] = A[iBegin]; // Each element moves like this at most once.
else {

iMiddle = (iEnd + iBegin)/2; // iMiddle = midpoint
QuickMergeSortToA(A, iBegin, iMiddle,B) // Sort first half into A.
QuickMergeSortToA(A, iMiddle+1, iEnd,B) // Sort second half into A.
Merge(A, iBegin, iMiddle, iEnd,B); // merge from A to B.

}
end algorithm

Note that in normal merge sort, for each of the log
2
n levels of recursion each of the n elements is moved

once for the merge and once to be copied back for a total of 2n log n moves. Here the 1n log n moves still
happen for the merge but not for the copy. For a random value of n, half the basecases will have to move
the element, but each element moves at most once, for an at most n additional moves.


