
Locker Room Problem

I heard this problem over cake at a workshop with my friend Kirk Pruhs kirk@cs.pitt.edu. He might know
its origins.

Formulation of Problem:

There are n players, each with a locker and a driver’s license. The coach randomly permutes the licenses
and puts one in each locker. The players can agree on a strategy. Each player independently goes into the
locker room and can look in half the lockers. We say that he succeed if he finds his own license. We say that
they succeed if each player succeeds to finds his own license. They are not allowed to change the room set
up or communicate in any way. The probability that a given player succeeds is 1

2
. If things were completely

independent then the probability that all succeeds would be 1

2n
. Is it possible for the players to have a

strategy in which they all succeed with a significantly higher probability, say 0.3?



Strategy:

Each player starts by looking in his own locker. If he finds Bob’s license, he looks in Bob’s locker. If in Bob’s
locker he finds John’s license, he looks in John’s locker next. This continues until either he finds his locker
or has looked in half the lockers.

The next step is to prove that they all succeed with a significantly higher probability, say 0.3
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Analysis:

Permutation Graph: Put a directed edge from i to j if the locker i contains license j. Having out-degree
one and in-degree one, this graph contains a collection of cycles.

Success: Player i starts at node i, i.e. his own locker, and follows the edges of this graph. He succeeds when
he finds his own driver’s license, i.e. when the cycle he is following points back to node i, i.e. he arrives back
at node i. Hence, he succeeds when the cycle that he is in contains at most half the nodes. They all succeed
if the permutation graph contains no cycles of length greater than half.

Probability of a k Cycle: Let k ∈ [n
2
+1, n]. We will show that the probability that a random permutation

graph contains a k cycle is 1

k
.

The number of permutation graphs is n! because it can be described by a permutation. There are n

choices for a neighbor for node 1 and then n−1 choices for a neighbor for node 2, because they can’t have
the same neighbor, and so on.

Now let us count the number permutations with a cycle of length k. Choose a start node i1. There are
n ways. Choose its neighbor i2. There are n−1 ways, because we don’t want to allow node i1. Choose
i2’s neighbor i3. There are n−2 ways, because we don’t want to allow nodes i1 or i2. Continue until you
choose ik−1’s neighbor ik. There are n−(k−1) ways. Because we want a cycle of length k, we know that ik’s
neighbor is node i1. Then there (n−k)! ways to arranging the remaining n−k players. The total number of
ways is n!. However, we over counted by a factor of k because it does not matter which of the k nodes in
the k cycle that we started with. Note that we would have over counted further if there was a second cycle
of length k in the remaining n−k nodes, but this is not possible because n−k < k. Hence, the total number
of permutation graphs with a cycle of length k is n!

k
. The fact that the probability is 1

k
follows.

Probability of a Large Cycle: There can’t be two cycles of more than half the nodes. Hence, the event
of there being a k cycle is disjoint for the different k ∈ [n

2
+1, n]. Hence the probability of there being a more

than half cycle is
∑

n

k=n

2
+1

1

k
=

∑
n

k=1
1

k
−

∑n

2

k=1
1

k
≈ ln(n)−ln(n

2
) = ln(2). Hence, the probability of no such

large cycle and hence of success is 1−ln(2) > 0.3.
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