
Calculus Using Infinitesimals

Newton developed calculus using infinitesimal changes in the values of variables with relationships between
them. Leibniz “formally proved it” using limits of functions. People like engineers and physicists who want
to do quick and dirty and intuitive calculus tend to do the infinitesimal method. School teaches the limit
method. The goal here is to introduce the infinitesimal method.

Limits: f ′(x) = limh→0
f(x+h)−f(x)

h .

Infinitesimals: Let x and y be variables. This topic is about rates of change. So we will change x by
increasing it by some amount represented by δx. It should be noticed that values of x and δx live in
completely different domains. The variable x takes on some real value like 3.23432 . . .. In contrast δx
will be a variable that takes on an infinitesimal value that is smaller than small. This value comes from
some quantum mechanics fairy land. Hence x + δx is not significantly bigger than x. On the other
hand, if the value of y depends on the value of x with some relationship like y = x2, then this small
change δx causes some infinitesimal change δy in y. What we care about is the relationship between
them. Set some value for x, y, and δx, then we can see that δy = 2xδx. What is interesting is that
though the infinitesimal values δx and δy are too small to be of significant in our real world, the ratio
δy
δx often is a real value in this world like 5. Dividing through the last equation by δx gives δy

δx = 2x.

Derivative = Slope: The slope of the curve y vs x at the point 〈x, y〉 is slope = rise
run = change in y

change in x = δy
δx .

We call this the derivative of y with respect to x.

Functions: A function f is a mapping f(x) = x2 from the variable x to the value f(x). Similarly, g(z) = ez.

Then the composition g(f(x)) gives a function from x to g(f(x)) = ex
2

.

Variables: It is also useful to think of f and g as variables that take on the value f(x) and g(f(x)), namely

f = x2 and g = ef = ex
2

.

Proof of Sum Rule Using Infinitesimals: Let s(x) = f(x) + g(x) be the sum of the two amounts f(x)
and g(x). The sum rule states that s′(x) = f ′(x) + g′(x), i.e. the derivative of the sum is the sum
of the derivatives. We will now prove this using infinitesimals. Switching to the variable view gives
s = f + g. If x increases by δx, then f increases by δf and g increases by δg. This first change
increases the sum s = f + g by δf and the second by δg. The total change to the sum is δs = δf + δg.

Dividing through by δx gives δ(f+g)
δx = δs

δx = δf
δx + δg

δx . This completes the proof. As an example
δ(ex+x)

δx = δ(ex)
δx + δx

δx = ex + 1.

Proof of Product Rule Using Infinitesimals: Let a(x) = f(x)× g(x) be the area of the square that is
f(x) wide and g(x) high. The product rule states that a′(x) = f(x)× g′(x)+f ′(x)× g(x). We will now
prove this using infinitesimals. Switching to the variable view gives a = f × g. If x increases by δx,
then f increases by δf and g increases by δg. Draw the square with this infinitesimal increase on the
right and top side. See how the area increases by δa = fδg + gδf + δfδg. Besides looking at the area,
another way of seeing this is to make the changes one at a time. If f was a constant, but g increases
by δg, then a = f × g would increase by δa = f × δg. If g was a constant, but f increases by δf , then
a = f × g would increase by δa = δf × g. Making both changes would increase a by δa = fδg + gδf
(and ok maybe an extra δfδg).

Infinitesimals Squared: Recall that an infinitesimal like δf is so small that it doesn’t make a sig-
nificant change in f . Recall that 0.01× 0.02 = 0.0002 giving us that multiplying two really small
numbers gives a really really small number. A infinitesimals times an infinitesimal not only makes
no significant change in our world of values like f , it also only makes no significant change in the
world infinitesimals like δf . The infinitesimal δf only has meaning in our world when divided
by another infinitesimal like δx, giving the real valued derivative δf

δx = 2x. The infinitesimal in-

finitesimal δfδg only has meaning in our world when divided by another infinitesimal infinitesimal
like δx2, giving the real value δfδg

δx2 . We call a change in a like fδg a first order change an a change
like δfδg a second order change. Here we know that we are never going to divide by infinitesimal
infinitesimals so we can ignore the change δfδg.
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We simplify the change in a to just the first order changes δa = fδg + gδf . Dividing through by δx

gives δ(f×g)
δx = δa

δx = f δg
δx + g δf

δx . This completes the proof. As an example δ(x×x)
δx = x · δx

δx + x · δx
δx =

x · 1 + x · 1 = 2x.

Proof of Chain Rule Using Infinitesimals: Consider three gears labeled x, f , and g with 400, 100, and
20 teeth. If x turns by δx rotations then f turns by δf = 4δx rotations or δf

δx = 400
100 = 4. If f turns

by δf rotations then g turns by δg = 5δx rotations or δg
δf = 100

20 = 5. It follows that if x turns by δx
rotations then g turns by δg = 4 · 5δx = 20δx rotations. The chain rule gives

δg

δx
=

δg

δf
× δf

δx
= 5 · 4 = 20.

and is proved by simply write down what we want and what we have and cancel infinitesimals as
needed.

Now consider our previous example. We know that if f(x) = x2, then f ′(x) = 2x and that if g(z) = ez,

then g′(z) = ez. One uses the chain rule to take the derivative of the composition g(f(x)) = ex
2

,

namely (g(f(x)))′ = g′(f(x)) · f ′(x) = ex
2 · 2x. We will now prove this using infinitesimals. Switching

to the variable view gives that f = x2, δf
δx = 2x, g = ef , δg

δx = ef , and composing g = ex
2

. Chaining
things together, if x changes by δx, then this causes the change δf in f , which in turn causes the
change δg in g. The chain rule wants to understand how this change δg in g compares with this initial
change δx in x. The proof is easy. If you know that one is traveling 60km

hr for 2hrs, then one gets
the number of km the person has traveled by multiplying so that the units cancel as needed, namely
distance = speed× time = 60km

hr × 2hrs = 120km. Similarly, knowing how the change δg in g in how
it compares to the change δf in f and knowing how the change δf in f in how it compares to the
change δx in x, we do what we did with the gears, δg

δx = δg
δf × δf

δx . In our case, δg
δx = ef × 2x = ex

2 × 2x.

y = ex: You likely know that ex is defined to be

x
︷ ︸︸ ︷

e× e× e× . . .× e where e = 2.7182818 . . .. But where does
that come from. Suppose that y represents the value of your bank account at time x. Suppose that
due to interest, after each year the current value of y increases by the current value at the beginning
of the year, namely y(x + 1) = y(x) + y(x) = 2y(x). The $1 turns into $2, $4, $8, . . . after the years
go by to give the value y = 2x after x years. If after one year your bank account value y increase by
y, then after δx years, it should increase proportionally by yδx, namely y(x + δx) = y(x) + y(x)δx.
The change in y is δy = yδx. Dividing through gives the differential equation y′ = δy

δx = y. When we
get our interest every δx time intervals instead of every year, the interest compounds faster, getting
interest on the interest faster which makes your account grow faster. Instead of growing to 2x, it grows
to ex where e is a little bigger than 2, specifically is worked out to be e = 2.7182818 . . .. Look at the
plot of y = ex and verify that the slope at 〈x, y〉 is y. As y grows, this slope grows. In fact, the tangent
line through this point slopes so quickly that it goes down to the point 〈x− 1, 0〉 and up to the point
〈x+ 1, 2y〉.
Formally, we want

ex = y′ = limh→0
ex+h−ex

h = limh→0 e
x × eh−1

h .

Dividing through by ex, gives that limh→0
eh−1
h = 1.

Solving for h gives eh − 1 = h, eh = 1 + h, and
e = limh→0(1 + h)1/h.
This is the formal definition of e.

For example if 1/h = 10, then (1 + h)1/h = (1.1)10 = 2.59. Similarly 1.0520 = 2.65, 1.01100 = 2.704.

This value of e is the result of the tension between two effects. The first effect is that when h = 0,
then (1 + h)n = 1n = 1 for every value n. The second effect is that when h goes to zero, 1/h goes to
infinity and so (1 + 0.000001)1/h also goes to infinity.

y = cx: We take the derivative of exponentials with a different base as follows. (cx)′ =
((

eln(c)
)x
)′

=
(
eln(c)x

)′
= eln(c)x · ln(c) = ln(c) · cx.
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Or (xx)′ =
((

eln(x)
)x
)′

=
(
eln(x)x

)′
= eln(x)x · (xx + ln(x)) = (ln(x) + 1) · xx.

The Derivative of y = ln(x): Instead of remembering that Christ was 2014 years ago, homo erectus ap-
peared 1 million years ago, life appeared 4.5 billion years ago, and the universe appeared 13.8 billion
years old, it is easier to remember that these numbers have 3, 6, 9 and 10 zeros. We use the log function
for this. log10(1000) = 3. Instead of a base of 10, computer science uses a base of 2 and science uses
a base of e. We write y = loge(x) = ln(x), pronounced log and lawn. This is the inverse function of
x = ey. Though we have switched the role of x and y, we still know that if x = ey, then δx

δy = ey. You
can do anything to one side if you do the same thing to the other side. Flipping both sides over gives
δy
δx = 1

ey = 1
x . Look at the plot of y = ln(x) and verify that the slope at 〈x, y〉 is 1

x .

Approximating y = f(x): Suppose you have strange curve defined by y = f(x). Suppose you completely
understand the function at some value x = x0, namely you know the values f(x0), f

′(x0), and maybe
even f ′′(x0). We want to approximate the value f(x0 + δx) at x0 + δx for some small value δx.
Let F (x0 + δx) be this approximation. The constant approximation is F (x0 + δx) = f(x0) by the
approximation that f does not change that quickly. The first order approximation has F be the tangent
line through 〈x0, y0〉 with slope f ′(x0). This equation is F (x0+δx) = f(x0)+f ′(x0)δx. The second order

approximation has F be the quadratic function F (x) = ax2+bx+c such that F (x0) = f(x0), F
′(x0) =

f ′(x0), and F ′′(x0) = f ′′(x0). This turns out to be F (x0 + δx) = f(x0) + f ′(x0)δx+ 1
2f

′′(x0)δx
2.

Other Rules:

• The derivative of a constant is zero because when x changes by δx, 5 changes by δ5 = 0.

• The polynomial rule is that for all constants c, we have that (xc)′ = cxc−1.

– With c = 2, (x2)′ = 2x.

– With c = 1, (x1)′ = x′ = 1x0 = 1, which is good because x′ = δx
δx = 1.

– With c = 1
2 , (

√
x)′ = (x1/2)′ = 1

2x
−1/2 = 1

2
√
x
.

– With c = 0, (1)′ = (x0)′ = 0x−1 = 0, which is good because x0 = 1 which is a constant.

– With c = −1, ( 1x )
′ = (x−1)′ = −1x−2 = − 1

x2 .

• (sinx)′ = cosx and (cosx)′ = −sinx as long as x is measure in radians instead of degrees so that
an angle of x sweeps an arc of length x on the unit circle and the full circle has an angle of 2π.

Recursion: Trusting you friends. Build parse tree and differentiate recursively.

Two Ways: One thing I find fun is taking the derivative of something two different ways and seeing that
they give the same answer. The first three could actually be used as proofs of the polynomial rule that
(xc)′ = cxc−1.

• f2 = f × f . Take the derivative of the first using the chain rule and the second using the product
rule.

• xc+d = xc×xd. Take the derivative of the first as a polynomial and the second using the product
rule.

• xcd = (xc)
d
. Take the derivative of the first as a polynomial and the last using the chain rule.

• xc =
(
eln x

)c
= ec ln x. Take the derivative of the first as a polynomial and the second using the

chain rule.

• cf(x) = c × f(x). Take the derivative of the first using the fact that (cf(x))′ = cf ′(x) and the
second using the product rule.

• ln(cx) = ln(x) + ln(c). Take the derivative of the first using the chain rule and the second using
the sum rule.
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• One that has bothered me is the following. The polynomial rule gives that the derivative of xc

is a constant times xc−1 which means that taking the derivative shifts the power of a polynomial
by one. On the other hand, (lnx)′ = 1

x = x−1, the later being a polynomial and the former not
being. How do these mesh when c = ǫ is close to zero?

The key is that all the constants matter. Note that because the derivative of a constant is zero
that the dirivativers of f(x) + a and f(x) + b are the same.

But one thing that is true is that if two cars start in the same place and aways have the same
velocity (in the same direction) then they will always be in the same place. Hence if functions f
and g have the same starting points, say f(1) = g(1) and always have the same derivative, i.e.
f ′(x) = g′(x) for all x, then f(x) = g(x) are the same.

Let f(x) = lnx and g(x) = limǫ→0
xǫ−1

ǫ . You can easily confirm that f(1) = g(1) = 0 and that
f ′(x) = g′(x) = 1

x . Hence, it must be the case that f(x) = g(x). If you know how to do it using

l’hopital’s rule, confirm that g(x) = limǫ→0
xǫ−1

ǫ = lnx = f(x).

• Think of others.
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