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Abstract

Boltzmann and Shannon both define the entropy of a macrostate M as the amount of
information needed to specify a compatible microstate α, given that the macrostate is known.
This paper uses Kolmogorov complexity to define the information content of an individual
microstate α and macrostate M as the length of the shortest program that outputs them. We
establish a formal connection by proving that for any macrostate M with microstates α:

Max
α∈SM

Kolmog(α)−Kolmog(M)− cα ≤ Entropy(M) ≤ Avg
α∈SM

Kolmog(α) + 2

Moreover, whenM is simple, this is only a constant gap giving that variance of these complexities
is tightly bounded. A surprising consequence of our second result is that a constant fraction of all
n-bit strings with Kolmogorov complexity K = 0.9997n have exactly 49% zeros. Together these
results identify thermodynamic entropy as the computational gap between microstate precision
and macrostate observability.

1 Introduction

Entropy has long been a bridge between physics and probability, yet its connection to algorithmic
information remains underdeveloped. This paper offers a precise connection: entropy as the excess
description length of a microstate beyond its macrostate classification, measured via Kolmogorov
complexity. Theorem 2 shows that a constant fraction of all strings with a given Kolmogorov
complexity lie within the same macrostate

2 Related Work

Kolmogorov complexity and Shannon entropy have long been connected via Levin’s Coding The-
orem, which states that for a computable distribution ρ, the Kolmogorov complexity of a string
α is bounded above by − log ρ(α) + c. From this, one can derive that the expected Kolmogorov
complexity under ρ satisfies Eρ[Kolmog(α)] ≤ H(ρ) + c, where H(ρ) is the Shannon entropy.

∗Chatgpt is a flirt telling me constantly how great I am. I told her about some ideas I had about Entropy and
she said they were new and exciting. So working from my power point slides, she and I wrote a fun 5 page paper in
a few hrs. I enjoyed doing it. We hope you do too.
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However, the reverse direction — bounding entropy below using average Kolmogorov complexity
— is not generally known or widely stated. Our Theorem 1 provides such a lower bound in the
special case of a uniform distribution over a macrostate, and further shows that this bound is nearly
tight, with low variance across microstates.

Moreover, our result is distinct from previous work in two key ways: First, we prove an inequality
in the opposite direction of the classical expectation bound, namely:

Entropy(M) ≤ Avg
α∈SM

Kolmog(α) + c,

whereas previous work has only established that

Avg
α∈SM

Kolmog(α) ≤ Entropy(M) + c.

Second, we derive an inequality that holds for individual microstates:

Kolmog(α)−Kolmog(M)− cα ≤ Entropy(M),

which highlights the computational gap between microstate detail and macrostate structure on a
string-by-string basis.

Our Theorem 2 contributes to the understanding of algorithmic typicality: it shows that a
macrostate M containing strings of Kolmogorov complexity K must contain a constant fraction
of all such K-complexity strings. This refines the intuition that typicality is not just probabilistic
(in the Shannon sense), but also structural and computational. This complements prior work on
Shannon-typical sets and introduces a complexity-theoretic counterpart.

The link between thermodynamic entropy and information theory has been long acknowledged,
particularly through the work of Boltzmann, Gibbs, and Shannon. Shannon’s entropy measures
the expected number of bits to encode a random message, while Boltzmann’s entropy counts the
number of microstates consistent with a macrostate. However, neither explicitly framed entropy in
terms of Kolmogorov complexity.

It is well known in algorithmic information theory that most binary strings of a given length n
are incompressible — their Kolmogorov complexity is close to n. A classical argument shows that
only 2n−k programs of length n−k exist, so only a fraction 2−k of n-bit strings can be compressed by
k bits. This fact underpins the notion of ”typical strings” in Kolmogorov theory, and our Theorem
2 directly builds on it.

Regarding strings with constrained structure — such as those with exactly 49% zeros — this
idea has also appeared in the literature on typical sets in Shannon theory. For instance, the set of
strings with a given empirical distribution (type class) has logarithmic size approximately nH(p),
and strings drawn uniformly from that set are incompressible.

Our approach is algorithmic: rather than focusing on probabilistic ensembles or expectations,
we emphasize individual descriptions, indexability, and the structure of programs themselves. This
allows us to move seamlessly between physics, computation, and information.

Related topics such as logical depth (Bennett) and the thermodynamic cost of erasure (Lan-
dauer) explore other angles of the information-physics interface. Our focus, however, is on pure
descriptive complexity as the measure of microstate precision.

3 Definitions and Examples

We define the key terms used in the theorems and illustrate each with concrete examples.
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Microstate α: A binary string encoding the full physical configuration of a system.
(e.g., in a gas, α encodes the positions, velocities, and masses of all particles.)

Macrostate M : A computable predicate over microstates.
(e.g., a gas’s macrostate might be defined by volume, temperature, and pressure.)

SM : The set {α : M(α) = 1}, i.e., all microstates compatible with macrostate M .

Entropy: Boltzmann entropy is defined as log2 |SM |, which measures the number of bits needed
to specify a microstate consistent with M .
(e.g., for a gas with N particles in a container of volume V , |SM | ∝ V N , so Entropy(M) ≈
N log2 V .)

Note: Physicists often use S = k ln |SM | where k is Boltzmann’s constant. We use base-2
logarithms and measure entropy in bits, in line with Shannon and Kolmogorov.

Example: 49% Zeros: Let M49% be the macrostate requiring that a string of length n contains
exactly 49% zeros. Then

|SM49%
| =

(
n

0.49n

)
⇒ Entropy(M49%) ≈ nH(0.49) ≈ 0.9997n

where H(p) is the binary entropy function.

Kolmog(M): The length of the shortest program that, given α, determines whether M(α) is true.
(e.g., a short program can verify whether the particle positions and velocities yield the correct
temperature and pressure.)

In most physical contexts, macrostatesM are simple and natural, so we assume Kolmog(M) ≤
cM , where cM is a small constant (e.g., 1000).

Caveat: If M requires the string α to have a particular length n, then Kolmog(M) may
include an additional O(log n) bits to encode n.

Kolmog(α): The length of the shortest program that outputs α.
(e.g., though the binary expansion of π appears random, it is compressible because a short
program generates it.)

Random: A string α is considered random if it is incompressible, i.e., Kolmog(α) ≈ n. Most
strings are random in this sense. At most a fraction 2−k of n-bit strings can be compressed
by k bits, because there are 2n strings of length n, but only 2n−k programs of length n− k.

(e.g., strings with exactly 49% zeros have Entropy(M) ≈ 0.9997n, so they are not maximally
random. Our theorem relates this to the Kolmogorov perspective: their average Kolmogorov
complexity is close to Entropy(M) ≈ 0.9997n.)

Theorem 1: Our main result proves:

Entropy(M) ≈ Kolmog(α)−Kolmog(M)

Kolmog(α) ≈ Entropy(M) + Kolmog(M)

for typical α ∈ SM . The following three examples illustrate how Theorem 1 behaves in
different cases.
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Extreme Cases

49% Zeros: We know by counting that

Entropy(M49%) ≈ 0.9997n

and Kolmog(M49%) is small since a short program can check the 49% zero condition. Then
Theorem 1 gives:

Kolmog(α) ≤ Entropy(M49%) + Kolmog(M49%) ≈ 0.9997n+ cM

However, this is only an upper bound: some strings in SM may be very compressible (e.g.,
one with all 0s first, then all 1s).

Single-Element Macrostate: LetMα accept only one string α. Then SMα = {α}, so Entropy(Mα) =
0. Any program to check membership in Mα must encode α, so Kolmog(Mα) ≈ Kolmog(α).
In this case, Theorem 1 is tight in one extreme:

Kolmog(α) ≈ Entropy(Mα) + Kolmog(Mα) ≈ zero+ equal

Fixed-Complexity Macrostate: Let MK be the macrostate of all strings with Kolmog(α) = K.
Then |SMK

| ≤ 2K , so Entropy(MK) ≤ K. The macrostate MK is simple to define: run all K-
bit Turing machines and collect their outputs. Thus, Kolmog(MK) is small. Here, Theorem
1 is tight in a different extreme.

Kolmog(α) ≈ Entropy(MK) + Kolmog(MK) ≈ equal + cM

4 Main Results

Theorem 1: Kolmogorov Complexity Bound

Entropy is sandwiched between the max and average Kolmogorov complexity of microstates, up to
a small constant gap.

For any (simple/natural) macrostate M with microstates α:
Max
α∈SM

Kolmog(α)−c ≤ Max
α∈SM

Kolmog(α)−Kolmog(M)−cα ≤ Entropy(M) ≤ Avg
α∈SM

Kolmog(α)+2

where cM , cα, and c = cM + cα are small constants.

Corollary: The variance in Kolmog(α) over SM is at most c2.

Proof of Lower Bound:

Let N = |SM | be the number of microstates consistent with macrostate M , and assume α ∈ SM .
We construct a program P that outputs α as follows:

1. Include the code for the predicate M , requiring Kolmog(M) bits.

2. Include the index i of α among all strings in SM in lexicographic order. This requires log2N =
Entropy(M) bits.

3. Add a fixed decoding routine that:
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(a) Enumerates strings in lex order

(b) Applies M to each, incrementing count if valid.

(c) Stops at index i

(d) Outputs the i-th valid string

This decoding routine is fixed and contributes only a constant cα bits.

Thus:
Kolmog(α) ≤ Kolmog(M) + Entropy(M) + cα

Rearranging gives the result.

Proof of Upper Bound:

Let α′ be the shortest Turing machine program that outputs α, and let S′
M be the set of all such

programs for α ∈ SM . Then |S′
M | = |SM |. If all α′ had the same length n′, then clearly |S′

M | ≤ 2n
′
.

A similar bound holds when lengths vary. Let n′ be the average program length. By Lemma 1

|S| ≤ 2n
′+2.

Hence:
Entropy(M) ≤ Avg

α∈SM

Kolmog(α) + 2

Theorem 2: Constant Fraction of K-Complexity Strings in SM

Recall that the macrostate M49% of having exactly 49% zeros has Entropy(M49%) = 0.9997n. We
now prove that a surprising consequence of this is that a constant fraction of all n-bit strings with
Kolmogorov complexity K = 0.9997n have this property of having exactly 49% zeros. Moreover,
this is true for every simple macrostate M ,

Let KMax = maxα∈SM
Kolmog(α) and KAvg = Avg

α∈SM

Kolmog(α). Then:

2−c · |{β : Kolmog(β) = KMax}| ≤ |SM | ≤ |{β : Kolmog(β) = KAvg}|

Proof: From Theorem 1, we have:

KMax − c ≤ log2 |SM | ≤ KAvg

Exponentiating gives:
2−c · 2KMax ≤ |SM | ≤ 2KAvg

Since there are at most 2K strings with Kolmogorov complexity K, the claim follows.
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Lemma 1

Statement: If S is a set of binary strings with average length n′, then |S| ≤ 2n
′+2.

Proof: Assume, without loss of generality, that S contains all binary strings of lengths less than
some integer n, and r ·2n strings of length n, where r ∈ [0, 1]. If this is not the case, we can make the
average length n′ smaller (worsening the inequality) by replacing some longer strings with shorter
ones, keeping the total number of strings |S| unchanged.

The total number of strings in S is:

|S| =

[
n−1∑
i=0

2i

]
+ [r · 2n] = [2n − 1] + [r · 2n] ≤ (1 + r) · 2n.

The total sum of the string lengths is:[
n−1∑
i=0

i · 2i
]
+ [n · r · 2n] = [(n− 2) · 2n + 2] + [n · r · 2n] ≥ ((1 + r) · n− 2) · 2n.

Therefore, the average length is:

n′ =
Total Length

|S|
≥ ((1 + r) · n− 2) · 2n

(1 + r) · 2n
= n− 2

1 + r
.

Solving for n gives:

n ≤ n′ +
2

1 + r
.

Therefore:
|S| ≤ (1 + r) · 2n ≤ (1 + r) · 2n

′+ 2
1+r =

[
(1 + r) · 2

2
1+r

]
· 2n′

To ensure |S| ≤ 4 · 2n′
, we require:

(1 + r) · 2
2

1+r ≤ 4.

This inequality holds for all r ∈ [0, 1] with equality at the end points.

5 Discussion and Future Work

Rather than viewing entropy as mere disorder, our results cast it as the Kolmogorov gap between
microscopic detail and macroscopic description. In this framework:

• Entropy emerges as the minimal extra information needed to pinpoint a specific microstate
once its macrostate is known.

• High-entropy macrostates coincide with classes of microstates that are, on average, algorith-
mically incompressible.

• The narrow variance in complexity across typical microstates explains why macroscopic ther-
modynamics is robust to microscopic fluctuations.

• A constant fraction of all n-bit strings with Kolmogorov complexityK = 0.9997n have exactly
49% zeros. Moreover, this is true for every simple macrostate M ,
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This computational perspective suggests several exciting directions:

• Gravitational and cosmological systems: Extend the Kolmogorov-entropy gap to self-
gravitating ensembles and early-universe scenarios where coarse-graining plays a fundamental
role.

• Logical depth and irreversibility: Investigate how notions of algorithmic depth and com-
putation cost underpin the arrow of time and the thermodynamic cost of logical operations.

• Practical applications: Apply this framework to model chaotic dynamical systems, op-
timize compression schemes based on physical constraints, and quantify information loss in
simulations.

6 Conclusion

By interpreting entropy as the difference in Kolmogorov complexity between a microstate and
its macro classification, we give a computational account of thermodynamic entropy. This helps
bridge the physical and algorithmic interpretations of disorder, with implications across physics,
information theory, and the philosophy of science.
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