
Dependencies Between Random Variables
Viewed as Entropy Areas

(Stuff cut out of short version)
by Jeff Edmonds
York University

Entropy is a hugely useful concept. We discuss it here in terms of the thermo dynamics, the
expected number of bits needed to generate/specify a random object, and in compressing
text.

1 Entropy

Thermo Dynamics: The second law of thermo dynamics says that the Entropy of a closed
system always increases. In physics, Entropy is a measure of how much usable energy
there is. This amounts to how much disorder there is in a system. It is measured as
some constant times the log of the number of micro states the system might be in given
one knows the macro state. 100 years later, Shannon related Entropy to information
theory. Because it takes log2 N bits to specify one of N states, the Entropy of a system
can be viewed as (a constant times) the number of bits of information needed to reveal
the micro state. For example, if the macro state consist of a nicely ordered crystal,
then there are few possible positions that the atoms may be in and it would take very
few bits to reveal where they all are. On the other hand, if the macro state consist of
a hot gas, each atom has some unknown location and velocity. It would then take a
lot of bits to reveal all of this information.

Compressing Text: Suppose you had text consisting of a sequence of objects each from the
set {Obj1, . . . , ObjN}. Your task is to compress this text by allocating to each object
Obji a code consisting of a short bit string. If all n of the objects Oi are equally likely
to appear in the text, then it makes sense to allocated each of them a code of length
log n. However, if some objects appear much more frequently then they should be
allocated much shorter codes. One challenge with stringing together codes of different
lengths is being able to uniquely decode what the original sequence of objects was. For
example, you can not allocate Obj1 the string 10, Obj2 the string 11, and Obj3 the
string 1011, because then we would not know whether to decode 1011 as Obj1Obj2 or
as Obj3. It is sufficient to require that no code is the prefix of another code. This is
best viewed a putting the objects Obji on the leaves of a binary tree. Label each left
edge zero and each right edge one. The code for Obji will be the string of labels in
the path from the root to the leaf it is on. One decodes 1011... by starting at the root
and heading left or right down the tree as indicated by the bits. When one reaches a
leaf, the object Oi at this leaf is outputted and one starts back at the root in order to
decode the next object.

Code Length: The next task is to decide the optimal length Ii for each code. Focus for
a moment only on the ith object. We will argue that if it appears with probability pi

then optimally it should be allocated a code of length I(pi) = log1(
1
pp
). (Of course if

this number is not an integer, then we might have to round it up a bit.) Here are two
arguments for this. We have not considered all the other objects, but suppose they
all had this same probability pi of occurring. Then there would be 1

pi
objects and it

would require I(pi) = log2(
1
pi
) bits to specify this object. The second argument is that

if we allocate Ii bits to object Obji, then this object will be placed on a leaf of the
binary tree at level Ii. In a full binary tree, there are 2Ii nodes at this level. Hence, it
is reasonable to say that that the object Obji has “used up” 1

2Ii
of the tree. Given that

it appears with probability pi it should only “use up” a pi fraction of the tree. This
motivates setting Ii so that 1

2Ii
= pi. Solving gives that I = log2(

1
pi
).

Building the Tree: Having decided to allocated code of length I(pi) = log2(
1
pi
) to object

Obji, the next task is to allocated the codes themselves. It turns out, that there is
always a way to build a binary tree with the objects Obji on its leaves so that objects
Obji is at depth ⌈log2(

1
pi
)⌉.

Expected Code Length: Given that we allocated a code of length I(pi) = log2(
1
pi
) to ob-

ject Obji, we can now compute the expected length of the code. Recall how expectation
is computed.

H({pi}) = Expi∈{pi}
I(pi) =

∑

i

piI(pi) =
∑

i

pi log2(
1

pi
)

It turns out that, given the probabilities pi, this is the optimal expected length of the
code. This then becomes a lower bound on how much the text can be compressed or
a measure of the “information content” of the text. It is referred to as the entropy H
of the probability distribution.

Entropy of a Probability Distribution: A probability distribution D on a set of ob-
jects/states {Obj1, . . . , ObjN} is defined by specifying for each state/object obji, the
probability pi of being in that state or of choosing that object. Entropy H(D) measures
the amount of randomness in a probability distribution. As seen above, it is the ex-
pected number bits that need to be communicated in order to specify which object was
chosen. Within one or two, it is also the expected number of fair coins that need to be
flipped to generate an object according to this distribution (See homework question).

2 Summery of Lemmas

Lemma 1 The relationships between the entropies, joint entropies, conditional entropies,
and the mutual information between three random variables X, Y , Z is equivalent to the
relationships between the areas of three over lapping circles X, Y , Z.

1. Entropy: H(X) =
∑

x p(x)L(x), where p(x) is short for Pr(X = x) and L(x) is short
for log(1/p(x)). H(X) = area(X).

2

Intuitively, H(X) can be thought of as the expected length of shortest message to tell
someone in the optimum way the value X happens to take on, where L(x) is the length
measured in bits to say X = x.

2. 0 ≤ H(X) ≤ log2(# of different values).

3. H(F (X)) ≤ H(X) with equality when 1-1

4. Joint Entropy: H(XY) =
∑

x

∑

y p(xy)L(xy), where p(xy) is short for Pr(X =
x & Y = y). H(XY) = area(X ∪ Y).

Intuitively, It is the expected length of message to say both X & Y .

5. H(XY) ≤ H(X) +H(Y) with equality iff independent.

6. Conditional Entropy: H(X|Y) = H(XY)−H(Y) = area(X ∩ Y).

Intuitively, H(X|Y) is the expected length of message to tell you X after I have already
told you Y .

7. H(X|Y) ≥ 0 with equality iff Y determines X.

8. H(X|Y) ≤ H(X) with equality when independent.

9. H(XY |Z) ≤ H(X|Z) +H(Y |Z) with equality iff independent conditional on Z.

10. H(F (X, Y)) 6=
∑

y H(F (X, y)).

11. Mutual Information: I(X;Y) = H(X) − H(X|Y) = H(X) + H(Y) − H(XY) =
area(X ∩ Y).

Intuitively, I(X;Y) is the information that is common to both X and Y . It is the
amount about X you learn from me telling you Y . Perhaps surprisingly, this is equal
to the amount about Y you learn from me telling you X.

12. I(X;Y) ≥ 0 with equality iff independent.

13. I(X;Y) ≤ H(X) with equality iff X = Y .

14. Joint Mutual Information: I(XY ;Z) = area((X ∪ Y) ∩ Z).

15. I(XY ;Z) 6≈ I(X;Z) + I(Y ;Z) with ≥ if X and Y are independent.

16. I(XY ;Z) ≤ I(X;Z) +H(Y).

17. I(U ;AR) ≤ I(UR;A) when U and R are independent.

18. Conditional Mutual Information: I((X;Y)|Z) = H(X|Z) − H(X|Y Z) =
area(X ∩ Y ∩ Z).

Intuitively, it is the information common to X and Y after you have already told me
Z. Or after you have already told me Z, it is the amount of additional information I
learn about X from you telling me Y .

3

19. 0 ≤ I((X;Y)|Z) ≤ H(Y |Z) ≤ H(Y).

20. I((F (X, Y);Z)|Y) ≤ I(X;Z).

21. Strange Area: I(X;Y ;Z) = Area(X ∩ Y ∩ Z) = I(X;Y)− I((X;Y)|Z) 6≥ 0.

22. I((X;Y ;Z)|W) ≥ 0 when X and Z are conditionally independent given Y and W .

23. Group Learning:
∑

j I((Xj;Z)|Yj) ≤ I((〈 X1, X2, . . . , Xn 〉 ;Z)| 〈 Y1, Y2, . . . , Yn 〉) ≤
H(Z) assuming for all disjoint subsets J and J ′ ⊆ [n], XJ and XJ ′ are independent
conditional on 〈 YJ , YJ ′ 〉, and XJ is independent of YJ ′ conditional on YJ .

Intuitively, the sum of the amounts people in your class who came in with the knowledge
Xi learned individually about their question Yi from your lecture Z is at most that
learned collectively.

24. Possible Random Variables and Areas of Primitives: Areas of circles X, Y ,
and Z correspond to random variables X, Y , and Z if and only if the area of each dual
primitive must be positive, with the exception of X ∩ Y ∩ Z, which could be negative
and for each pair of random variables the mutual information I(X;Y) = X ∩ Y must
also be positive.

25. Communication Complexity: Let Π denote the transcript of a communication
between two players with inputs X and Y and with private random bits. Consider
a third player, Alice. Alice knowing both X and Y sends a message A consisting of
m bits to the Y player (or to both of them.) Then the X and Y players have the
conversation with transcript Π.

26. Negative Area:

(a) I(X;Y ; Π) ≥ 0

(b) I(X;Y ;AΠ) ≥ −m.

(c)
∑

k∈[K],j∈[n] I(X〈k,j 〉;Yj ;AΠ) ≥ −m.
This requires that conditioned on Y , the rows of X are independent.
It also requires that conditioned on Y , the bits X〈k,j 〉 and X〈k,j′ 〉 are independent.
It also requires that conditioned on Y−j, the bits X〈k,j 〉 and Yj are independent.
This is confusing. Just make all the bits independent.

(d)
∑

k∈[K],j∈[n] I((X〈k,j 〉;Yj;AΠ)| 〈 X〈 ∗,−j 〉, Y−j 〉) ≥ −nm.
This requires that conditioned on Y , the rows of X are independent.

Where X is a matrix with k ∈ [K], j ∈ [n], X〈k,j 〉 and Yj a row.

27. What People Learn: Suppose there is an eves dropper, Eve, who learns the con-
versation Π but knows neither X nor Y . By definition I(XY ; Π) is what she learns
about the inputs 〈 X, Y 〉 from their conversation Π, I(X; Π) is what she learns about
the X-player’s inputs X, and I(Y ; Π) about the Y -player’s inputs Y . The X-player
already knows X, and hence from Π the amount about Y that he learns is denoted
I((Y ; Π)|X). Similarly, the Y -player learns I((X; Π)|Y) about X.

4

• I((Y ;Z)|X) + I((X;Z)|Y) ≥ I(XY ;Z) ≥ I(X;Z) + I(Y ;Z)
when X and Y are independent.

• I((Y ; Π)|X) + I((X; Π)|Y) ≤ I(XY ; Π) ≤ I(X; Π) + I(Y ; Π).

• Same with equality when X and Y are independent.

• I((Y ;AΠ)|X) + I((X;AΠ)|Y) ≤ I(XY ;AΠ) +m.

3 Proofs of the Lemmas

Entropy H(X) (Proof of Lm1.1): Just as there are three ways of understanding the
random variable X, there are corresponding ways of understanding the entropy H(X)
of X.

Random Variables: H(X) is said to be the entropy of X.

Computationally: It is formally defined as H(X) =
∑

x p(x)L(x), where p(x) is short
for Pr(X = x) and L(x) is short for log(1/p(x)).

Information: H(X) can be thought of as the expected length of shortest message to
tell someone in the optimum way the value X happens to take on, where L(x) is
the length measured in bits to say X = x.

Generating X: If you were to write a program that flips as few coins as possible in
order to determine which value X should take, then H(X) would be the expected
number of coins that would need be flipped, where L(x) is the number flipped
when the program decides that X = x.

Circles: H(X) can also be viewed as the area of the circle representing X.

0 ≤ H(X) ≤ log
2
(# of different values) (Proof of Lm1.2): One can identify

each n different objects, using a binary label containing log2(n) bits. Given this
is one way to communicate X, the optimal way takes at most this many bits.

H(F (X)) ≤ H(X) with Equality when 1-1 (Proof of Lm1.3): Here F is a
function that maps each objects/events/values that X takes to some other ob-
ject/event/value. For each of these new objects f , there is a probability that
F (X, Y) = f . Hence, F becomes a random variable in its own right. Remember
that the which objects X takes on does effect the entropy H(X) of X, only how
the probability is distributed between them. Hence, if X takes on the objects
apple, orange, and pair, and f maps these to 1, 2, and 3, then the entropy does
not change. However, if f collapse apple and orange to the same value 1, then
the entropy goes down.

Proof: The key observation is that for each x, Pr(F (X) = F (x)) ≥ Pr(X = x),
because when ever X = x, we have that F (X) = F (x), but it may be
that F (X) = F (x′) = F (x) when X = x′ 6= x. From this we bound
the entropy. H(F (X)) =

∑

f Pr(F (X, Y) = f) log(1/Pr(F (X) = f) =
∑

f [
∑

x px(whether F (x)=f)] log(1/Pr(F (X)= f)=
∑

x px log(1/Pr(F (X)=
F (x)) ≤

∑

x px log(1/Pr(X=x).

5

Joint Entropy H(XY) (Proof of Lm1.4): (Often written H(X, Y) or H(〈X, Y 〉).

Random Variables: IfX and Y are random variables then 〈X, Y 〉 is the joint random
variable telling you both the value of X and of Y . The joint entropy, H(XY), is
to defined to be the entropy of 〈X, Y 〉.

Computationally: It is formally defined as H(XY) =
∑

x

∑

y p(xy)L(xy), where
p(xy) is short for Pr(X = x & Y = y).

Information: It follows that H(XY) is the expected length of message to say both
X & Y .

Circles: H(XY) is the area of X ∪ Y .

H(XY) ≤ H(X) + H(Y) with Equality iff Independent (Proof of Lm1.5):

Intuition: Intuitively, this is true because one could say both X and Y by say-
ing X and then saying Y , but perhaps one could save time by saying them
together if some of the information overlaps. But if X & Y are independent,
then no information overlaps and H(XY) = H(X) +H(Y).

Proof: With independence the proof is as follows.
L(xy) = log(1/p(xy)), which by independence is log(1/(p(x)p(y))) =
L(x) + L(y). This gives H(XY) =

∑

x

∑

y p(xy)L(xy) =
∑

x

∑

y p(xy)L(x) +
∑

x

∑

y p(xy)L(y) =
∑

x

[

∑

y p(xy)
]

L(x) +
∑

y [
∑

x p(xy)]L(y) =
∑

x p(x)L(x) +
∑

y p(y)L(y) = H(x) +H(y).
The proof that without independence H(XY) ≤ H(X) + H(Y) is
harder. Note that the terms for which L(xy) > L(x) + L(y) have their
weight p(xy) larger because p(xy) > p(x)p(y). Similarly the terms for
which L(xy) < L(x) + L(y) have their weight p(xy) smaller because
p(xy) < p(x)p(y).

Conditional Entropy H(X|Y) (Proof of Lm1.6):

Random Variables: H(X|Y) is defined to be the entropy of X conditional on Y .

Computationally: It is formally defined as H(X|Y) =
∑

y p(y)H(X|y), but this is
not so intuitive.

Information: Intuitively, H(X|Y) is the expected length of message to tell you X
after I have already told you Y .

Circles: Pictorially, H(X|Y) is the area of X−Y = X ∩Y . This is the area of X ∪Y
minus the area of Y .

H(X|Y) = H(XY) − H(Y): This seems to be a more intuitive and a more useful
definition of mutual information.

Intuition: Thinking of mutual information as areas of area of X ∪ Y minus the
area of Y leads us to understand that H(X|Y) = H(XY)−H(Y) is true.

Primitives: I like this definition because it is wrt the “primitives” H(X), H(Y)
and H(XY).

6

Conditional Probabilities: I also like it because it looks like p(x|y) = p(xy)
p(y)

when you take the log of both sides.

Proof: The proof of H(X|Y) = H(XY)−H(Y) is as follows.
H(X|Y) =

∑

y p(y)H(X|y) =
∑

y p(y) [
∑

x p(x|y)L(x|y)]

=
∑

y p(y)
[

∑

x
p(xy)
p(y)

log(p(y)
p(xy)

)
]

=
∑

x

∑

y p(xy) [L(xy)− L(y)]

=
[

∑

x

∑

y p(xy)L(xy)
]

−
[

∑

x

∑

y p(xy)L(y)
]

= H(XY)−
∑

y [
∑

x p(xy)]L(y)

= H(XY)−
∑

y p(y)L(y) = H(XY)−
∑

y p(y)L(y) = H(XY)−H(Y).

H(X|Y) ≥ 0 with Equality iff Y Determines X (Proof of Lm1.7):

Intuition: After telling you Y , either you know X in which case H(X|Y) = 0 or
I need to tell you more.

Proof: The proof is easy using our new definition, H(X|Y) = H(XY) − H(Y)
which is positive because surely it take more to tell you X and Y than to
simply tell you Y .

H(X|Y) ≤ H(X) with Equality when Independent (Proof of Lm1.8):

Intuition: The intuition is that it can only be easier to tell you X after I have
only told you Y .

Proof: The proof is easy using our new definition, H(X|Y) = H(XY)−H(Y) ≤
[H(X) +H(Y)]−H(Y) = H(X).

H(XY |Z) ≤ H(X|Z) + H(Y |Z) with Equality iff Independent Conditional on Z (Pro

Intuition: After I have told you Z, it is no harder to tell you X and Y together
than to tell you each separately.

Proof: The proof of this is hard like that for H(XY) ≤ H(X) +H(Y).

H(F (X,Y)) 6=
∑

y H(F (X, y)) (Proof of Lm1.10): It is natural to assume that
because entropy is a weighted sum that one can decompose it into a weighted
sum. However, it is not this easy.

∑

y H(F (X, y)) =
∑

y H(F (X, Y)|Y = y) =
H(F (X, Y)|Y) 6= H(F (X, Y)).

Mutual Information I(X;Y) (Proof of Lm1.11):

Random Variables: I(X;Y) is said to be the mutual information between X and
Y .

Information: I(X;Y) is the information that is common to both X and Y .
It is the amount about X you learn from me telling you Y .
Perhaps surprisingly, this is equal to the amount about Y you learn from me
telling you X.

Computationally: It is formally defined as I(X;Y) = H(X)−H(X|Y),
namely how much less do I have to tell you to tell you X after I have told you Y .

Primitives: Decomposed it into primitives gives I(X;Y) = H(X) − H(X|Y) =
H(X) +H(Y)−H(XY).

7

Circles: I(X;Y) is the area of X ∩ Y . This is the area of X plus that of Y minus
that of X ∪ Y .

〈X;Y 〉 is Not a Random Variable: When seeing H(X;Y), it is tempting to think
of 〈X;Y 〉 as a random variable and/or information to be be communicated. This
is not the case and can lead to faulty intuition at times. The information 〈X;Y 〉
common between X and Y is something that may be hard to communicate sepa-
rate from communicating X and Y . It is not a random variable to communication
in its own right. Maybe this is why they use the letter I in I(X;Y) instead of an
H as in H(X;Y).

I(X;Y) ≥ 0 with Equality iff Independent (Proof of Lm1.12):

Intuition: I(X;Y) ≥ 0 is true because the amount of common information cant
be negative. Clearly if X and Y are independent then I(X;Y) = 0, because
they contain no information about each other.

Proof: I(X;Y) ≥ 0 follows from our new definition I(X;Y) = H(X) +H(Y)−
H(XY) and that H(XY) ≤ H(X) +H(Y) with equality iff independent.

I(X;Y) ≤ H(X) with Equality iff X = Y (Proof of Lm1.13):

Intuition: I(X;Y) ≥ 0 is true because the amount of common information cant
be negative. Clearly if X and Y are independent then I(X;Y) = 0, because
they contain no information about each other.

Proof: H(X)− I(X;Y) = H(X)− [H(X)−H(X|Y)] = H(X|Y) ≥ 0.

Joint Mutual Information I(XY ;Z) (Proof of Lm1.14): When I tell you Z, what
does this tell you about the joint entropy of X and Y ?

I(XY ;Z) 6≈ I(X;Z) + I(Y ;Z) (Proof of Lm1.15): When understanding a
subject, it is important to understand not only what is true but also what
intuitively one might think is true but is not. Despite ones intuition, no direct
comparison can be made between I(XY ;Z) and I(X;Z) + I(Y ;Z).

I(XY ;Z) 6≤ I(X;Z) + I(Y ;Z):

False Intuition: One might first guess that this would be similar to
H(XY) ≤ H(X) +H(Y), namely that the amount you learn about XY
from Z is at most the you learn about X plus the amount you learn about
Y .

Example: Consider the example in which X = Y and I(X;Z) > 0. Then
I(XY ;Z) = I(X;Z) = I(Y ;Z). It follows that for this example
I(XY ;Z) < 2I(XY ;Z) = I(X;Z) + I(Y ;Z).

I(XY ;Z) 6≥ I(X;Z) + I(Y ;Z):

False Intuition: On the other hand, one could argue the opposite. You
learn at least as much about Z from X and Y , than you learn about Z
from each of them separately.

Example: Consider the example Z = X ⊕ Y , where X and Y are indepen-
dent boolean variables. Here knowing Z tells you nothing about X and

8

similarly nothing about Y . However, knowing Z tells you a full bit of
information about 〈X, Y 〉, namely their parity. It follows that for this
example 1 = I(XY ;Z) > I(X;Z) + I(Y ;Z) = 0.

I(XY ;Z) ≥ I(X;Z) + I(Y ;Z) if X and Y are independent: See the
intuition and example above.

Proof: The proof is as follows. I(XY ;Z) = H(XY) − H(XY |Z). Be-
cause of independence, we have that H(XY) = H(X)+H(Y). However,
we can only be sure that H(XY |Z) ≤ H(X|Z) + H(Y |Z) unless, X
and Y are independent conditional on Z. It follows that I(XY ;Z) ≥
[H(X)−H(X|Z)] + [H(Y)−H(Y |Z)] = I(X;Z) + I(Y ;Z).

Key: This is key in proving lower bound in communication complexity.

I(XY ;Z) ≤ I(X;Z) + H(Y) (Proof of Lm1.16): This is similar in nature to
the previous comparison, but it is true.

Intuition: The intuition is as follows. Suppose someone knows X and from this
can deduce I(X;Z) about Z. Then suppose someone tells him Y . Now he
knows X and Z. The amount that he can now deduce about Z is denoted
I(XY ;Z). Surely, this is at most the about I(X;Z) that he could deduce
before plus the number of bits H(Y) needed to communicate Y .

Proof: This can be proved as follows. Look at the 23 dual primitive formed
from the intersections of the three circles for X, Y , and Z. In each separate
dual primitive area put a +1 when within the area X ∩ Z for I(X;Z) and
another +1 when within the area Z. Similarly, put a -1 when within each
dual primitive area within XY ∩Z for I(XY ;Z). Summing these gives a zero
in every dual primitive area except for three, which are the union of X ∩ Y
and Y − (X ∪ Z). These two areas are equal to I(X;Y) and H(Y |XZ). All
this proves that RHS − LHS = I(X;Z) + H(Y) − I(XY ;Z) = I(X;Y) +
H(Y |XZ). One could prove this more formally by expanding each into the
primitives and making sure they all cancel. We also know that both I(X;Y)
and H(Y |XZ) are positive. The statement follows.

I(U ;AR) ≤ I(UR;A) when U and R are independent (Proof of Lm1.17): Proof:
I(U ;AR) = I(U ;A|R) + I(U ;R) = I(U ;A|R) + 0 ≤ I(U ;A|R) + I(A;R) =
I(UR;A).

Conditional Mutual Information I((X;Y)|Z) (Proof of Lm1.18): It is often writ-
ten as I(X;Y |Z) but its is parsed as I((X;Y)|Z).

Information: I((X;Y)|Z) is the information common to X and Y after you have
already told me Z. Or after you have already told me Z, I((X;Y)|Z) is the
amount of additional information I learn about X from you telling me Y .

Computationally: I((X;Y)|Z) = H(X|Z)−H(X|Y Z)
= H(X|Z) +H(Y |Z) +H(XY |Z)
= H(XZ) +H(Y Z)−H(Z)−H(XY Z).

9

Circles: I((X;Y)|Z) is the area of (X ∩ Y) − Z which is the single dual primitive
X ∩ Y ∩ Z.

0 ≤ I((X;Y)|Z) ≤ H(Y |Z) ≤ H(Y) (Proof of Lm1.19): All of these are rea-
sonable and useful things that are true but need to be proved.

Proof of I((X;Y)|Z) ≥ 0: By definition I((X;Y)|Z) = H(X|Z)+H(Y |Z)+
H(XY |Z). But we have already seen that H(XY |Z) ≤ H(X|Z) +H(Y |Z).

Proof of I((X;Y)|Z) ≤ H(Y |Z): H(Y |Z) − I((X;Y)|Z) = H(Y |Z) −
[H(Y |Z)−H(Y |XZ)] = H(Y |XZ) ≥ 0.

Proof of H(Y |Z) ≤ H(Y): H(Y)−H(Y |Z) = I(Y ;Z) ≥ 0.

I((F (X,Y);Z)|Y) ≤ I(X;Z) (Proof of Lm1.20): The intuition is that if I tell
you the value of Y , then F (X, Y) simply becomes a function Fy(X) = F (X, y)
dependent only on X. As we have seen above H(Fy(X)) ≤ H(X). Similarly,
I((Fy(X);Z) ≤ I(X;Z).

Proof: Could write one ????

Strange Area I(X;Y ;Z) = Area(X ∩ Y ∩ Z) 6≥ 0 (Proof of Lm1.21): See Sec-
tion ?? to see how parity can give a negative area in the middle.

I(X;Y ;Z) = I(X;Y) − I((X;Y)|Z) 6≥ 0: The question I(X;Y) vs I((X;Y)|Z)
is whether or not there can be more common information between X and Y after
I tell you Z.

False Intuition: We already have seen I(W ;Z) = H(W) − H(W |Z) ≥ 0. Hence,
it would be natural to generalize to I(X;Y ;Z) = I((X;Y);Z) = H((X;Y)) −
H((X;Y)|Z) ≥ 0. However, we will see that this is not true. It is not directly
true because 〈X;Y 〉 is not a random variable in its own right.

Circles: Lets try to expand I(X;Y) − I((X;Y)|Z) = [H(X) +H(Y)−H(XY)] −
[H(XZ) +H(Y Z)−H(Z)−H(XY Z)]. Look at the three intersecting circles.
In each dual primitive area put a +1 when the area is added and a -1 when it
is subtracted. Summing these gives a zero every where except for a one in the
intersection dual primitive area X ∩ Y ∩ Z. This concurs with the intuition that
this is the information that is common between all three of X, Y and Z, namely
I(X;Y ;Z) = I(X;Y)− I((X;Y)|Z).

I((X;Y ;Z)|W) ≥ 0 when X and Z are conditionally independent given Y and W (Pro

Positive Area: I(X;Y ;Z) is the area of the dual primitive X ∩ Y ∩ Z. It is
counter intuitive for this area to be negative. We claim, in fact, that most
counter intuitive things about mutual entropy arise from the fact that this
area can be negative. Hence, it is interesting to look at conditions in which
it is not. Conditioning it on another variable W , just makes the result more
general. Assuming W is a constant removes mention of it.

10

I((X;Y)|Z) ≤ I(X;Y) when X and Z are conditionally independent given Y :
This is a restatement of the above because by definition I(X;Y ;Z) =
I(X;Y) − I((X;Y)|Z). This was listed in the [YJLS]. I am not sure how
they used, it but we will find it very useful.

Proof: By assumption, X and Z are conditionally independent given Y and
W . Formally this means I((X;Z)|YW) = 0. We have not considered the
intersections of four random variables. But we can think of U = YW as
corresponding to U = Y ∪ W . Above we defined I((X;Z)|U) = area(X ∩
Z ∩ U) = area(X ∩ Z ∩ Y ∪W) + area(X ∩ Z ∩ Y ∩W) = 0.
What is always true is that mutual information I((X;Z)|W) = area(X∩Z∩
W) ≥ 0.
It follows that I((X;Y ;Z)|W) = area(X ∩Z ∩Y ∩W) = area(X ∩Z ∩W)−
area(X ∩ Z ∩ Y ∩W) = I((X;Z)|W)− 0 ≥ 0.

Group Learning (Proof of Lm1.23):
∑

j I((Xj;Z)|Yj) ≤
I((〈X1, X2, . . . , Xn〉 ;Z)| 〈Y1, Y2, . . . , Yn〉) ≤ H(Z) assuming for all disjoint sub-
sets J and J ′ ⊆ [n], XJ and XJ ′ are independent conditional on 〈YJ , YJ ′〉, and XJ is
independent of YJ ′ conditional on YJ .

Intuition: Suppose you are teaching a class to n people. For each j ∈ [n], let Yj

denote the information that the jth person knows before the lecture. Let Xj

denote the information that he personally wants to learn, hopefully from the
lecture. Let Z denote the information taught at the lecture. Then I((Xj;Z)|Yj)
denotes how much the jth person learns during the lecture about his personal
question and I((〈X1, X2, . . . , Xn〉 ;Z)| 〈Y1, Y2, . . . , Yn〉) denotes how much the class
collectively learns about their collective questions. Requiring that XJ and XJ ′ are
independent conditional on 〈YJ , YJ ′〉 asserts that for any disjoint subsets of people
J 6= J ′ ∈ [n], given their combined knowledge, their questions are independent
of each other. Requiring that XJ is independent of YJ ′ conditional on YJ asserts
that given what the J of people know, the other people’s previous knowledge will
not help him with his personal question. The conclusion is that the sum of the
amounts learned individually is at most that learned collectively.

Proof: It is only necessary to prove it for two people, then the result for n people
follows by induction.

(X1 and X2 are independent conditional on 〈Y1, Y2〉) thought of as areas of circles
translates into area(X1 ∩X2 ∩ Y 1 ∩ Y 2) = 0.

(I((X1;X2)|Y1Y2Z) ≥ 0) translates into area(X1 ∩X2 ∩ Y 1 ∩ Y 2 ∩ Z) ≥ 0.

Combining the last two statements gives that area(X1 ∩ X2 ∩ Y 1 ∩ Y 2 ∩ Z) =
area(X1 ∩X2 ∩Y 1 ∩Y 2)− area(X1 ∩X2 ∩Y 1 ∩Y 2 ∩Z) ≤ 0. Call this statement
(1).

(X2 is independent of Y1 given Y2) translates into area(X2 ∩ Y1 ∩ Y 2) = 0.

(I((X2;Y1)|Y2Z) ≥ 0) translates into area(X2 ∩ Y1 ∩ Y 2 ∩ Z) ≥ 0.

Combining the last two statements gives that area(X2∩Y1∩Y 2∩Z) = area(X2∩
Y1 ∩ Y 2)− area(X2 ∩ Y1 ∩ Y 2 ∩ Z) ≤ 0.

11

We use this result to bound the following. I((X2;Z)|Y2) = area(X2 ∩ Y 2 ∩ Z) =
area(X2 ∩ Y1 ∩ Y 2 ∩ Z) + area(X2 ∩ Y 1 ∩ Y 2 ∩ Z) ≤ area(X2 ∩ Y 1 ∩ Y 2 ∩ Z) =
area(X1 ∩X2 ∩Y 1 ∩Y 2 ∩Z)+ area(X1 ∩X2 ∩ Y 1 ∩Y 2 ∩Z). Call this statement
(2).

By symmetry of statement (2), get the following statement (3) that
I((X1;Z)|Y1) ≤ area(X1 ∩X2 ∩ Y 1 ∩ Y 2 ∩ Z) + area(X1 ∩X2 ∩ Y 1 ∩ Y 2 ∩ Z).

I((〈X1, X2〉 ;Z)| 〈Y1, Y2〉) = area((X1∪X2)∩Y 1∩Y 2∩Z) = area(X1∩X2∩Y 1∩
Y 2 ∩Z) + area(X1 ∩X2 ∩ Y 1 ∩ Y 2 ∩Z) + area(X1 ∩X2 ∩ Y 1 ∩ Y 2 ∩Z). Call this
statement (4).

Combining statements (2,3,4) gives that I((X1;Z)|Y1) + I((X2;Z)|Y2) −
I((〈X1, X2〉 ;Z)| 〈Y1, Y2〉) ≤ area(X1∩X2∩Y 1∩Y 2∩Z). Then by statement (1),
this less than or equal to zero.

4 Predictability

In this section we introduce Russell Impagliazzo’s idea of Predictability.

• J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall, “Communication Complexity
Towards Lower Bounds on Circuit Depth,” Journal of Computational Complexity, 10:
pp 210-246, 2001. Previously in FOCS, Symp. Foundations of Computer Science,
pp. 249-257, 1991.

For example, suppose over a sequence of communication bits, the A-Player tells the B-
Player, “I am not telling you any of my values, but I will tell you that if my coin flip is heads,
then all k bits in my vector are zero. On the other hand, if this flip is tails, then I reveal no
information about this vector.” The question now is whether the B-Player is considered to
know k or zero bits about this vector. A useful information measure for many applications is
Entropy. Because half the time k bits about the vector are revealed and half the time 0 bits
are revealed, Entropy measures the number of bits revealed as the average (k + 0)/2 = k/2.
Our adversary, however, wants to be more cautious by assuming that the B-Player knows
more than this. We define a measure of “predictability” to be the probability of guessing
the value. If the B-Player completely knows the vector then the probability of guessing it is
1 and if he knows nothing about it, then the probability is 2−k. The measure is the average
of these, (1 + 2−k)/2 ≈ 1/2. A predictability of 1/2 is then interpreted to mean that the
B-Player knows everything but “1 bit” about this vector. The next section formally defines
this measure.

Defn 4.1 Let v ∈ [k]π a vector be a vector indexed by entries in π and values in [1..k] and
let S be a set of such vectors. For every subset of indices ρ ⊆ π, let Proj(v, ρ) ∈ [k]ρ be
the sub-vector of v indexed by the indices in ρ and let Proj(S, ρ) = {Proj(v, ρ) | v ∈ S}
be the projection of S onto ρ. A function R from Proj(S, ρ) to S is called an extension
function if for all w ∈ Proj(S, ρ), Proj(R(w), ρ) = w.

12

Suppose an input v specifies for each index i ∈ π, a value vi = Proj(v, i) ∈ [k]. Then there
are k|π| possible inputs v. Suppose someone restricts this set of possible inputs to a set of

size |S| ≥
(

r
k

)ℓ
×k|π|. We will interpret this as them revealing some t = ℓ log(k/r) bits about

the input. An interesting question is, for i ∈ π, how many of these bits were communicated
“about the ith element” conditioned on knowing the other elements? Since the actual bits
communicated could depend on all the elements, this is not a clear-cut issue. Our measure
is computed as follows. Choose a random vector w ∈ Proj(S, π−i) giving values of all the
elements other than i. The set {vi ∈ [k] | 〈w, vi〉 ∈ S} ≡ {v ∈ s| Proj(v, π−i) = w} is the
set of values for the ith element (or full vectors) consistent with our chosen values w for
the other elements. We define the unpredictability of vi to be the expected number of such
choices.

Defn 4.2 The unpredictability of the ith element in S is UnPredi(S) =
|S|

|Proj(S,π−i)|
. 1

If the ith element vi of v ∈ S is fixed as a function of the other elements, then UnPredi(S) = 1.
If this element is completely undetermined, then UnPredi(S) = k. If UnPredi(S) = r, we
can think of t = log(k/r) as the “number of bits known about element i”, since if S is the
set of inputs consistent with this number of independent bits communicated about vi, then
UnPredi(S) =

k
2t

= r.

Suppose t = ℓ log(k/r) bits have been communicated about the vectors v in S, i.e.,
|S| = 2−t · k|π|. A natural property to want is that at most ℓ elements of v can have more
than t

ℓ
= log(k/r) bits “revealed about it”. The exemplary counter example is the following.

Suppose that the sum of the elements over the field [k] was revealed. This requires only
log(k) bits to be communicated. On one hand, it feel like nothing has been revealed about
any one element because each still can uniformly take on any value. On the other hand, each
element has been completely revealed, conditioned on knowing the other elements. This gives
that for each i ∈ π, UnPredi(S) = 1, implying that log(k) bits have been communicated
“about each of the elements”. We will get around this problem as follows. When an element
i ∈ π becomes highly predictable in S, we start ignoring it by considering only the possible
settings of the other elements Proj(S, π−i) in place of S. The value of element i is fixed as a
function of the other elements using an extension function R(w) as defined in Definition 4.1.
In our previous example, if any one of element vi is fixed to be vi = sum −

∑

j 6=i vj, then
no information at all is known about the remaining elements. The following lemma then
gives us what we wanted, that if at most t = ℓ log(k/r) bits have been revealed about S,
then there exists a set of at most ℓ elements such that, if we fixed them in this way, then
no more than t

ℓ
= log(k/r) bits have been “revealed about” any of the other elements and

hence there are still k
2t/ℓ

= r values left for each.

Lemma 2 [Lemma 4.6 in [EIRS]] Let |S| ≥
(

r
k

)ℓ
×k|π| and |π| ≥ ℓ > 0. Then there exists a

subset σ ⊆ π of at most ℓ of elements such that if we reveal these, then each of the unrevealed
elements is still highly unpredictable, namely ∀i ∈ π−σ, UnPredi(Proj(S, π−σ)) > r.

1This definition of unpredictability is one over the the definition of predictability defined in [EIRS]. They
also give a second equivalent definition. Also our Proj(v, ρ) is their Proj(v, π − ρ).

13

Proof:

Initially, let σ = ∅. We will keep adding indices to σ, maintaining the property that

|Proj(S, π−σ)|

k|π−σ|
≥

(

r

k

)ℓ−|σ|

.

Clearly this is true for σ = ∅, because Proj(S, π) = S. Now assume for σ ⊆ π the property
holds and that there is an index i ∈ π−σ for which

|Proj(S, π−σ)|

|Proj(S, π−σ ∪ {i})|
= UnPredi(Proj(S, π−σ)) ≤ r.

It follows that

|Proj(S, π−σ ∪ {i})|

k|π−σ−{i}|
≥

1

r
·
|Proj(S, π−σ)|

k|π−σ−{i}|
=

k

r
·
|Proj(S, π−σ)|

k|π−σ|
≥

k

r
·
(

r

k

)ℓ−|σ|

=
(

r

k

)ℓ−|σ∪{i}|

.

Thus the property holds for σ∪{i}. Eventually, for all i ∈ π−σ, UnPredi(Proj(S, π−σ)) > r.
Since Proj(S, π−σ) ⊆ [k]π−σ and r < k, it follows that

1 ≥
|Proj(S, π−σ)|

k|π−σ|
≥

(

r

k

)ℓ−|σ|

and thus |σ| ≤ l.

14

