
Two Ways of Thinking about Dynamic Programming
Jeff Edmonds

Here are two set of steps that you could follow to design a new dynamic programming algorithm. The first
are the steps that I teach in 3101 using birds and friends. The second are new. Hopefully, it will help you
understand dynamic programming better and not simply confuse you more. The homework will ask you
to design an algorithm for a problem using the first method and then another (better) algorithm using the
second method.

1 Bird and Friend Steps From 3101

When providing a dynamic programming algorithm and its proof of correctness, the following are all the
paragraphs that should be included, their headings, and what they should contain. (See HTA pg 268 for the
full description of the steps)

1) Specifications: This is likely part of the question and hence does not need to be written. However,
before writing anything consider: What is the set of instances, for each instance what is its set of
solutions, and for each solution what is its cost/value.

Algorithm using Trusted Bird and Friend: I have my instance I. The little bird knows a solution to
it.

2) Question for Bird: I ask the little bird . . . Choose something like one of the following:

• Is the last object from the instance in the solution?

• What is the last object in the solution?

• The solution forms a tree. What is the object at the root?

2’) Possible Answers from Bird: The list of possible answers that she may give is (Enumerate
them with k ∈ [K]). (For each such answer) Assume that she gives me answer k.

3) Constructing Subinstances: I give my friend the subinstance subI. (Describe). He gives me
an optimal solution optSubSol for it.

4) Constructing a Solution for My Instance: I produce an optimal solution optSol for my in-
stance I from the bird’s answer k and the friend’s solution optSubSol. (Describe)

5) Costs of Solution: Similarly, I compute the cost cost of our solution optSol. (Describe)

Recursive Back Tracing Algorithm:

6) Best of the Best: I can trust the friend because he is a recursive version of myself. Not actually
having a little bird, I try all her answers and take best of best.

7) Base Cases: The base case instances and their solutions are . . . (Describe)

Dynamic Programming Algorithm:

1) The Set of Subinstances: The set of subinstances subI ever given to me, my friends, their friends
is . . . (Describe). Note that this set is closed under this “sub”-operator and all (or at least most)
of these subinstances are needed.

3) Construct a Table Indexed by Subinstances: I index these subinstances with i (and maybe
j) so that subI[i, j] denotes the subinstance (Describe). I build a table indexed by these subin-
stances so that optS[i, j] stores an optimal solution for subI[i, j], cost[i, j] the cost of this solution,
and birdAdvice[i, j] stores the birds advice given on this subinstance. (Actually we don’t store
the solution because it is too big.)

6) The Order in which to Fill the Table: The friends solve their subinstances (and the table is
filled) in an order so that nobody has to wait. (from smaller to larger instances). (Describe
order)

8) Code:

algorithm DynamicProgrammingAlg (I)

〈pre−cond〉: I is my instance.

〈post−cond〉: optSol is an optimal solution for I and cost is it’s cost.

begin
% Table: subI[i, j] denotes the subinstance (Describe).

optSol[i, j] stores an optimal solution for it (Describe)
table[i, j] cost, birdAdvice

% Base Cases: Describe the base cases and their solutions.
loop over base cases

optSol[basecases] = its solution
cost[basecases] = its cost

end loop

% General Cases: Loop over subinstances in the table.
for i ∈ [range]

for j ∈ [range]
% Solve instance subI[i, j] and fill in table entry 〈i, j〉.
% Try each possible bird answer.
for k ∈ [K]

% The bird and Friend Alg: see above
optSolk = Describe how to construct the solution to our instance from the

bird’s advice k and the solution optSol[friend] to our friends in-
stance subI[friend].

costk = Describe how to construct the cost of this solution from the bird’s
advice k and the cost cost[friend] of our friends solution.

end for
% Having the best, optSolk, for each bird’s answer k, we keep the best of these best.
kmin = “a k that minimizes costk”
% optSol[i, j] = optSolkmin

cost[i, j] = costkmin

birdAdvice[i, j] = kmin

end for
optSol = AlgWithAdvice (I, birdAdvice)
return 〈optSol, cost[initial instance]〉

end algorithm

8’) Constructing the Solution: We would run the recursive algorithm with the bird’s advice to find
the solution to our instance. We exclude this step from our answer.

9) Running Time: The number of subinstances in the table is
The number of bird answers is
The running time is the product of these

2 Designing a Dynamic Programming Algorithm

via the “Where are you” Abstraction
and/or “a Reduction to Shortest Paths” Abstraction

Understanding dynamic programming is hard. To help with this, we have already presented the bird/friend
abstraction. We will now present a second abstraction. The difference is not huge – just a different story used
to describe the same underlying math. It shifts the algorithm designer’s initial attention from determining

2

the question for the little bird to determining the set of subinstances to be solved. It also shifts how one
thinks about these subinstances. Hopefully this new abstraction will help your intuition and not confuse you
further.

A Reduction to Shortest Paths: This new abstraction of dynamic programming can be considered to
be a reduction to the shortest paths in the leveled graph problem. Read HTA 19.8. Given a new
optimization problem and an instance I for it, our goal is to design a dynamic programming algorithm
which will find an optimal solution for I. The reduction involves constructing a leveled graph GI such
that there is one-to-one correspondence between the solutions for I and the st-paths in GI and such
that the cost/value of each solution is the same as the cost of its corresponding path. Then the dynamic
programming algorithm that finds a shortest path in GI can be used to find an optimal solution for I.

Over View of the new Abstraction: We will refer to this second abstract as the “Where are you?”
abstraction. The key difference between the bird/friend abstraction and it has to do with how one
thinks about the subinstances. In the first abstraction, after the bird answers a question, you must
formulate a subinstance to give your friend. This subinstance needs to meet the precondition of your
same computational problem and needs to be smaller than your instance. These restrictions limit the
scope of your thinking. In the new abstraction, you go on a journey (without friends) in search of a
solution to your instance. The sequence of questions to the bird, “What is the first edge in the shortest
path?”, “What is the second?”, are viewed as the road you are traveling along forking and you needing
to choose which direction to continue following. The path you take specifies the sequence of choices
you make and as such specifies the solution that you choose. You can add lengths to the road segments
that you travel along so that the total length of the path you travel is equal to the cost of the solution
corresponding to this path. Then your task of finding the optimal solution is reduced to the task of
finding the shortest from the source to the destination through this leveled graph. If the possible paths
you could take fork and refork into a tree of exponential size, then searching for the best path amounts
to the recursive backtracking algorithm and to the brute force algorithm of trying each of the possible
solutions. However, if we can collapse this tree into a DAG (directed acyclic graph) then the running
time will be much less. The key to collapsing the tree is to forget the path you took to get where
you are and to focus on where is is that you are. More specifically, what about our current state will
influence your future choices.

Where You Currently Are Splitting The Task: Suppose you are traveling from home to school and
you are currently standing at Spadina station. Being at Spadina splits your problem into two completely
separate independent problems. The first subtask is to determine an optimal path is from home to
Spadina. The second subtask is determining a optimal path is from Spadina to school. These two
subtasks are independent in that if you concatenate an optimal solution for the first and an optimal
for the second, you will obtain a path from home to school that is optimal from amongst those that
go through Spadina Station. What remains in obtaining an overall optimal solution is to repeat this
processes for all possible locations that you might stand. This set of possible locations corresponds to
the set subinstances that need to be solved by the dynamic programming algorithm.

The detailed steps for designing a dynamic programming algorithm using this abstraction are as follows.

Goal: Be clear about the specification for your new optimization problem. Consider an instance I to the
problem. Our goal is to find an optimal solution for it.

st-Path: Recall that an instance to the shortest path in a leveled graph problem consists of a leveled
graph G for which there is a known linear ordering of the nodes, the edges have known weights,
and the source node s and the sink node t are given. The goal is to find a shortest weighted path
from s to t.

Knapsack: As a working example, consider the knapsack problem. An instance consists of
〈V, 〈v1, p1〉 , . . . , 〈vn, pn〉〉. Here, V is the total volume of the knapsack. There are n objects
in a store. The volume of the ith object is vi, and its price is pi. A solution is a subset S ⊆ [1..n]
of the objects that fit into the knapsack, i.e.,

∑
i∈S vi ≤ V . The cost (or success) of a solution S

3

is the total value of what is put in the knapsack, i.e.,
∑

i∈S pi. Given a set of objects and the size
of the knapsack, the goal is fill the knapsack with the greatest possible total price.

Stocks: Read the stock market question in the homework. The input instance to your problem consists
of I = 〈T, S, Price〉, where T is an integer indicating your last day to be in the market, S is the
set of |S| stocks that you consider, and Price is a table such that Price(t, s) gives the price of
buying one share of stock s on day t. Buying stocks costs an overhead of 3%. Hence, if you buy

p dollars worth of stock s on day t, then you can sell them on day t′ for p · (1 − 0.03) · Price(t′,s)
Price(t,s) .

You have one dollar on day 1, can buy the same stock many times, and must sell all your stock
on day T . You will need to determine how you should buy and sell to maximize your profits.

A Sequence Choices; Each Path ≈ A Solution: As said, this “Where are you?” abstraction shifts the
algorithm designer’s initial attention from determining the question for the little bird to determining
the set of subinstances to be solved. However, before we can consider “Where you are,” you do have
to understand that your journey is amounts to a sequence of decisions in the process of choosing a
solution to your instance I and that possible solution corresponds to a different possible path. To be
consistent with the bird/friend technique, let us consider the end of the solution first.

st-Path: To construct an st-path in G backwards, we start at node t, we choose the last edge 〈ur, t〉
in the path, then the second last 〈ur−1, ur〉, then the third, and so on. We are done when we
reach node s.

Knapsack: A solution to the knapsack instance would be constructed simply by considering the
objects 〈vn, pn〉 , 〈vn−1, pn−2〉 , . . . backwards and deciding at each fork in the road whether to put
the next object in or not.

Stocks: There are a lot of different question we might ask the bird. Keep in mind that the running
time of the algorithm depends on the number of answers she might give. If we ask ”Do should
I sell the stock that I own today?”, then there are two answers she can give. If we ask ”When
should I sell the stock that I own?”, then there are T answers she can give. If we ask ”What shock
should I buy today?”, then there are |S| answers she can give. If we ask ”What shock should I buy
today and when should I sell it?”, then there are |S| · T answers she can give. We are not going
to worry at the moment about the details of question to ask. All we know is that our journey
learns the what stocks to buy and when to buy and sell them. Because we are advised to journey
backwards, we move backwards in time.

Remember Only What is Necessary to Continue: The path you followed to your current loca-
tion/state determines what you have chosen so far about the solution. Your current location/state,
however, determines what of that information you have remembered. While the number of possible
paths is exponential, we want number of possible locations to be polynomial. Hence, we only remember
what is necessary to continue our journey. You must remember some of the following.

1. Independent of how you got here, where are you currently?

2. When considering our current location, there is a complete symmetry between whether we are
traveling forward or backwards along a path. But express the state in term of future path towards
the beginning of the solution.

3. How much of the input instance I have you considered so far and how much remains?

4. How of much of the instance’s resources you have used up and how much remain?

5. The key question is: What about the choices you have made so far will influence what choices
you are allowed to make in the future?

Each possible answer to these questions determines your current location. Each will translate into a
subinstance.

4

st-Path: When constructing an st-path, a state in which we might be in is that we have constructed
the path backwards from t to some node v and now we are standing at node v. However, according
to (a), how we got here does not matter, only our current location v. Hence, we will have a state

for each node v in the graph G. Note that the choices we are allowed to make in the future in our
path to s depends only on this current state v.

Knapsack: At some point during this process of deciding which objects to put in the knapsack, we
have considered the objects n, n−1, . . . , i+1 and we still must consider the objects i, i−1, . . . , 1. The
input’s resource is the volume V of the knapsack. Let V − v denote the volume of knapsack that
we have filled so far so that v denotes the volume yet to be filled. Which objects have been put
in so far does not influence what can be put in in the future except for this i and this remaining
volume v. Hence, we will have a state for each 〈i, v〉. Being in this state means that we still must
choose which of the first i objects will go in and we have v volume left.

Stocks: Suppose that if we are to buy and sell on a giving day, then we sell the stock that we have
in the morning and we buy the next stock in the afternoon. The key about this is that at noon
we may or may not own stock and at midnight we definitely own some stock. Hence, during
our journey, there two types of states that we may be in. Let being in state 〈t〉 mean that it
is currently noon on day t and I do not own any stock. Let being in state 〈t, s〉 meaning that
it is currently midnight on day t and I own any stock s. Note that this is the only information
that determines your future journey. What stocks you have bought and sold in the past does not
influence what and when you buy in the future. Neither does the amount of money/stocks that
you currently have.

Construct GI : Construct a graph GI to represent this process.

Nodes ≈ States: GI will have a node u for each state that the process might be in. Going backwards
t and s denote the initial and final states. (If there is more than one such states, then have extra
nodes t and s and put an edge from all possible initial and final states to these.)

st-Path: The graph GI is identical to the graph G. This should not surprise us too much if we
recall what our initial goal is. We want the task of finding the optimal st-path in GI to be
identical to the task of finding the optimal st-path in G.

Knapsack: GI will have a state 〈i, v〉 for each i ∈ [0, n] and each v ∈ [0, V]. Note that the states
〈0, v〉 and 〈i, 0〉 are all final states because nothing else could be put in the knapsack. Hence,
we will have a zero weight edge from the source node s to each of these nodes.

Stocks: The algorithm designer must decide whether to include nodes of type 〈t〉 and/or nodes
of type 〈t, s〉. It is your choice. The running time of the algorithm depends on the number of
subinstances/nodes. Note that there are T of the first type of states and T · |S| of the second
type

Edges ≈ Choices: There is an edge 〈u, v〉 between two states/nodes if making one decision about
the solution transitions you from state u to state v. If there are more than one way to transition
between these two states, then it is fine to have more than one edge between u and v. In our
dynamic program, each node u corresponds to a subinstance and each outgoing edge correspond
to the different answers the bird might give for this subinstance.

Edge Weights ≈ Cost Choice: The weight/cost w〈u,v〉 of the edge 〈u, v〉 will be the cost/benefit
added to the solution because of this choice.

Knapsack: Being in state 〈i, v〉 means that we still must choose which of the first i objects will
go into the knapsack and we have v volume left. The next decision will be whether or not
to put the ith object in the knapsack. If we do, then we follow the edge from this state
〈i, v〉 to state 〈i−1, v−vi〉. The weight of this edge will be pi because this is the benefit of
transitioning between these states. (If the object does not fit because v−vi < 0, then the
weight will be −∞.) If we do not put the ith object in the knapsack, then we follow the edge
from this state 〈i, v〉 to the state 〈i−1, v〉. The weight of this edge will be zero.

5

Stocks: What edges are in the graph depend on which nodes 〈t〉 and/or 〈t, s〉 you include. Each
step of your journey does not increase the amount you have by an additive amount but by a
multiplicative amount. Let the weight of the edge be this multiplicative factor.

st-Path ≈ Solution: A st-path through the graph GI then corresponds to a sequence of choices
that are made along the process of constructing a solution for the instance I. Hence, there will
be a one-to-one correspondence between the st-paths in GI and the solutions for I. More over,
the edge weights are designed so that the cost of this path is the same as the cost/value of its
corresponding solution.

Knapsack: A path from t ≈ 〈n, V 〉 to 〈0, v〉 or 〈i, 0〉 to s in this graph GI corresponds to a
solution to the knapsack problem, i.e. it specifies which objects to take and which not to take.
The cost of the path is the sum of the edges, which will amount to the sum

∑
i∈S pi of the

prices pi of the objects put in the knapsack, which in turn is the value of the constructed
solution.

Stocks: A path backwards in time from state t ≈ 〈T 〉 to s ≈ 〈0〉 in this graph GI corresponds
to a solution to the stock problem, i.e. it specifies which stocks to buy and when. Define the
cost of the path to be not the sum but the product of the edges. Then this cost will amount
to the total multiplicative factor that the your money increases from midnight on day zero to
midnight on day T . This in turn is the value of the constructed solution.

Shortest st-Path ≈ Optimal Solution: It follows that an optimal solution for the instance I cor-
responds to a shortest st-path through the graph GI .

Knapsack: Actually, an optimal path is one with maximal value
∑

i∈S pi. However, in a leveled
graph, it is just as easy to find a longest st-path.

Stocks: It is just as easy to find an st-path whose product of edge weights is maximized. (Alter-
natively take the logarithm of all the weights and then products translate into sums.)

Leveled Graph: The graph GI produced is leveled because the process of constructing the solution
orders the states into levels so that all edges point forwards.

Dynamic Programming Algorithm: The dynamic programming algorithm that finds the shortest path
in GI can be used to find the optimal solution for I. Or even better, you can construct a dynamic
programming algorithm that directly solves your new problem.

States ≈ Nodes ≈ Subinstances: Given the instance I, the states in the process to construct the
solution for I corresponds to nodes in GI , which in turn correspond to subinstances that the
dynamic programming needs to solve. The subinstance corresponding to a state is to find the
optimal way continuing from here.

st-Path: The state v indicates that we are standing at node v. The subinstance corresponding
to this state is to find the shortest path from v to s – or forward from s to v.

Knapsack: The state 〈i, v〉 indicates that we still must choose which of the first i objects will
go in and we have v volume left. The subinstance corresponding to this state is to find an
optimal way of doing this.

The dynamic programming algorithm sets up a table in which to store the cost of an optimal
solution for each of these subinstances (and the bird’s advice). The algorithm will loop through
these subinstances v starting with the sink node t and ending with the source node s.

Bird-Friend Algorithm: When considering the subinstance corresponding to the node v, the algo-
rithm will ask the little bird for the last choice 〈uk, v〉 in an optimal solution for the subinstance
v. The set of answers to the birds questions correspond to the edges into v in the graph GI . Not
having such a bird, the algorithm will try each possibility. When trying the answer 〈uk, v〉, the
algorithm asks the friend for the optimal solution for the subinstance uk. An optimal solution
optSolk for v from amongst those solutions consistent with the bird’s answer k is easily obtained
from an optimal solution for uk and the bird’s advice k. The cost of this solution for v is the cost
of this solution for uk plus the weight w〈uk,v〉 of the bird’s choice. An optimal solution optSol for
v is obtained to by taking the best of optSolk optimized over all of the bird’s answers k.

6

st-Path: When considering the subinstance v, we are looking for an optimal path from s to node
v. We ask the bird for the last edge in this path. If she answers 〈uk, v〉, then we ask the
friend to solve the subinstance uk, namely for an optimal path from s to uk. The shortest
path from s to v from amongst those traveling through node uk is the shortest path from s

to uk plus the last edge 〈uk, v〉. The shortest over all path from s to v is the best of these
optimized over v’s incoming neighbors uk.

Knapsack: When considering the subinstance 〈i, v〉, we are looking for an optimal subset of the
first i objects to go into a knapsack of volume v. We ask the bird whether or not to put the
last object in. If yes, we ask the friend 〈i−1, v−vi〉 and add pi to his solution. If no we ask
the friend 〈i−1, v〉 and give the same solution.

Stocks: Your homework is to develop three different dynamic algorithms for this problem. The
differ in T ime = # of subinstances × # of bird answers.

The Table: This cost of this optimal solution for v and the bird’s advice k are stored in the table
index at v. When the friend is asked about uk, his solution had already been stored in this table.
The original instance I corresponds to the node t. Hence, the solution (or at least its cost) can
be read from the table.

This completes the dynamic programming algorithm. This characterization of Dynamic Programming is, as
far as I can tell, general enough to capture most every Dynamic Programming Algorithm that I can think
of.

7

