
Chapter 16

Network Flows and Linear

Programming

16.1 The Steepest Ascent Hill Climbing Algorithm

We have all experienced that climbing a hill can take a long time if you wind back and forth
barely increasing your height at all. In contrast, you get there much faster if energetically you head
straight up the hill. This method, which is call the method of steepest ascent, is to always take
the step that increases your height the most. If you already know that the hill climbing algorithm
in which you take any step up the hill works, then this new more specific algorithm also works.
However, if you are lucky it finds the optimal solution faster.

In our network flow algorithm, the choice of what step to take next involves choosing which
path in the augmenting graph to take. The amount the flow increases is the smallest augmenta-
tion capacity of any edge in this path. It follows that the choice that would give us the biggest
improvement is the path whose smallest edge is the largest for any path from s to t. Our steepest
ascent network flow algorithm will augment such a best path each iteration. What remains to be
done is to give an algorithm that finds such a path and to prove that this finds a maximum flow is
found within a polynomial number of iterations.

Finding The Augmenting Path With The Biggest Smallest Edge: The input consists of
a directed graph with positive edge weights and with special nodes s and t. The output
consists of a path from s to t through this graph whose smallest weighted edge is as big as
possible.

Easier Problem: Before attempting to develop an algorithm for this, let us consider an
easier but related problem. In addition to the directed graph, the input to the easier
problem provides a weight denoted wmin. It either outputs a path from s to t whose
smallest weighted edge is at least as big as wmin or states that no such path exists.

Using the Easier Problem: Assuming that we can solve this easier problem, we solve the
original problem by running the first algorithm with wmin being every edge weight in
the graph, until we find the weight for which there is a path with such a smallest
weight, but there is not a path with a bigger smallest weight. This is our answer. (See
Exercise 16.1.1.)

Solving the Easier Problem: A path whose smallest weighted edge is at least as big as
wmin will obviously not contain any edge whose weight is smaller than wmin. Hence, the

1

answer to this easier problem will not change if we delete from the graph all edges whose
weight is smaller. Any path from s to t in the remaining graph will meet our needs.
If there is no such path then we also know there is no such path in our original graph.
This solves the problem.

Implementation Details: In order to find a path from s to t in a graph, the algorithm
branches out from s using breadth-first or depth-first search marking every node reach-
able from s with the predecessor of the node in the path to it from s. If in the process t

is marked, then we have our path. (See Section ??.) It seems a waste of time to have to
redo this work for each wmin so let’s use an iterative algorithm. The loop invariant will
be that the work for the previous wmin has been done and is stored in a useful way. The
main loop will then complete the work for the current wmin reusing as much of the previ-
ous work as possible. This can be implemented as follows. Sort the edges from biggest to
smallest (breaking ties arbitrarily). Consider them one at a time. When considering wi,
we must construct the graph formed by deleting all the edges with weights smaller than
wi. Denote this Gwi

. We must mark every node reachable from s in this graph. Suppose
that we have already done these things in the graph Gwi−1

. We form Gwi
from Gwi−1

by
adding the single edge with weight wi. Let 〈u, v〉 denote this edge. Nodes are reachable
from s in Gwi

that were not reachable in Gwi−1
only if u was reachable and v was not.

This new edge then allows v to be reachable. Unmarked nodes now reachable from s via
v can all be marked reachable by starting a depth first search from v. The algorithm
will stop at the first edge that allows t to be reached. The edge with the smallest weight
in this path to t will be the edge with weight wi added during this iteration. There is
not a path from s to t in the input graph with a larger smallest weighted edge because t

was not reachable when only the larger edges were added. Hence, this path is a path to
t in the graph whose smallest weighted edge is the largest. This is the required output
of this subroutine.

Running Time: Even though the algorithm for finding the path with the largest smallest
edge runs depth-first search for each weight wi, because the work done before is reused,
no node in the process is marked reached more than once and hence no edge is traversed
more than once. It follows that this process requires only O(m) time, where m is the
number of edges. This time, however, is dominated by the time O(m log m) to sort the
edges.

Code:
algorithm LargestShortestWeight (G, s, t)

〈pre−cond〉: G is a weighted directed (augmenting) graph. s is the source node. t is
the sink.

〈post−cond〉: P specifies a path from s to t whose smallest edge weight is as large as
possible. 〈u, v〉 is its smallest weighted edge.

begin
Sort the edges by weight from largest to smallest
G′ = graph with no edges
mark s reachable
loop

〈loop−invariant〉: Every node reachable from s in G′ is marked reach-
able.

exit when t is reachable
〈u, v〉 = the next largest weighted edge in G

2

Add 〈u, v〉 to G′

if(u is marked reachable and v is not) then
Do a depth-first search from v marking all reachable nodes not marked before.

end if
end loop
P = path from s to t in G′

return(P , 〈u, v〉)
end algorithm

Running Time of Steepest Ascent: How many times must the network flow algorithm aug-
ment the flow in a path when the path chosen is that whose augmentation capacity is the
largest possible?

Decreasing the Remaining Distance by Constant Factor: The flow starts out as zero
and may need to increase be as large as O(m · 2ℓ) when there are m edges with ℓ bit
capacities. We would like the number of steps to be not exponential but linear in ℓ.
One way to achieve this is to ensure that the current flow doubles each iteration. This,
however, is likely not to happen. Another possibility is to turn the measure of progress
around. After the ith iteration, let Ri denote the remaining amount that the flow must
increase. More formally, suppose that the maximum flow is ratemax and that the rate of
the current flow is rate(F). The remaining distance is then Ri = ratemax−rate(F). We
will show that the amount wmin by which the flow increases is at least some constant
fraction of Ri.

Bounding The Remaining Distance: The funny thing about this measure of progress, is
that the algorithm does not know what the maximum flow ratemax is. It is only needed
as part of the analysis. We must bound how big the remaining distance, Ri = ratemax−
rate(F), is. Recall that the augmentation graph for the current flow is constructed so
that the augmentation capacity of each edge gives the amount that the flow through this
edge can be increased by. Hence, just as the sum of the capacities of the edges across
any cut C = 〈U, V 〉 in the network, acts as an upper bound to the total flow possible,
the sum of the augmentation capacities of the edges across any cut C = 〈U, V 〉 in the
augmentation graph, acts as an upper bound to the total amount that the current flow
can be increased.

Choosing a Cut: We need to choose which cut we will use. (This is not part of the al-
gorithm.) As before, the natural cut to use comes out of the algorithm that finds the
path from s to t. Let wmin = wi denote the smallest augmentation capacity in the path
whose smallest augmentation capacity is largest. Let Gwi−1

be the graph created from
the augmenting graph by deleting all edges whose augmentation capacities are smaller
or equal to wmin. This is the last graph that the algorithm which finds the augmenting
path considers before adding the edge with weight wmin that connects s and t. We know
that there is not a path from s to t in Gwi−1

or else there would be an path in the
augmenting graph whose smallest augmenting capacity was larger then wmin. Form the
cut C = 〈U, V 〉 by letting U be the set of all the nodes reachable from s in Gwi−1

and
letting V be those that are not. Now consider any edge in the augmenting graph that
crosses this cut. This edge cannot be in the graph Gwi−1

or else it would be crossing
from a node in U that is reachable from s to a node that is not reachable from s, which
is a contradiction. Because this edge has been deleted in Gwi−1

, we know that its aug-

3

mentation capacity is at most wmin. The number of edges across this cut is at most the
number of edges in the network, which has be denoted by m. It follows that the sum of
the augmentation capacities of the edges across this cut C = 〈U, V 〉 is at most m ·wmin.

Bounding The Increase, wmin ≥ 1

m
Ri: We have determined that the remaining amount

that the flow needs to be increased, Ri = ratemax − rate(F), is at most the sum of
the augmentation capacities across the cut C, which is at most m · wmin, that is, Ri ≤
m · wmin. Rearranging this gives that wmin ≥ 1

m
Ri.

The Number of Iterations: If the flow increases each iteration by at least 1

m
times the

remaining amount Ri, it decreases the remaining amount, giving that Ri+1 ≤ Ri − 1

m
Ri.

You might think that it follows that the maximum flow is obtained in only m iterations.
This would be true if Ri+1 ≤ Ri − 1

m
R0. However, it is not because the smaller Ri gets,

the smaller it decreases by. One way to bound the number of iterations needed is to note
that Ri ≤ (1− 1

m
)iR0 and then to either bound logarithms base (1− 1

m
) or to know that

limm→∞(1 − 1

m
)m = 1

e
≈ 1

2.17
. However, I prefer the following method. As long as Ri

is big, we know that it decreases by a lot. After some Ith iteration, say that Ri is still
relatively big when it is still at least 1

2
RI . As long as this is the case, Ri decrease by at

least 1

m
Ri ≥ 1

2m
RI . After m such iterations, Ri would decrease from RI to 1

2
RI . The

only reason that it would not continue to decrease this fast is if it already had decreased
this much. Either way, we know that every m iterations, Ri decreases by a factor of two.

This process may make you think of what is known as zeno’s paradox. If you cut the
remaining distance in half and then in half again and so on, then though you get very
close very fast, you never actually get there. However, if all the capacities are integers
then all values will be integers and hence when Ri decreases to be less that one, it must
in fact be zero, giving us the maximum flow.

Initially, the remaining amount Ri = ratemax − rate(F) is at most O(m · 2ℓ). Hence, if
it decreases by at least a factor of two each m iterations, then after mj iterations, this
amount is at most O(m·2ℓ

2j). This reaches one when j = O(log2(m ·2ℓ)) = O(ℓ+log m) or
O(mℓ+m log m) iterations. If your capacities are real numbers, then you will be able to
approximate the maximum flow to within ℓ′ bits of accuracy in another mℓ′ iterations.

Bounding the Running Time: We have determined that each iteration takes m log m

time and that only O(mℓ+m log m) iterations are required. It follows that this steepest
ascent network flow algorithm runs in time O(ℓm2 log m + m2 log2 m).

Fully Polynomial Time: A lot of work was spent finding an algorithm that is what is
known as fully polynomial. This requires that the number of iterations be polynomial in
the number of values and does not depend at all on the values themselves. Hence, if you
charge only one time step for addition and subtraction, even if the capacities are strange
things like

√
2, then the algorithm gives the exact answer (at least symbolically) in

polynomial time. My father, Jack Edmonds, and a colleague, Richard Karp, developed
such an algorithm in 1972. It is a version of the original Ford-Fulkerson algorithm.
However, in this, each iteration, the path from s to t in the augmenting graph with the
smallest number of edges is augmented. This algorithm iterates at most O(nm) times,
where n is the number of nodes and m the number of edges. In practice, this is slower
than the O(mℓ) time steepest ascent algorithm.

Exercise 16.1.1 Could we use binary search on the weights wmin to find the critical weight (see
Section ??) and if so would it be faster? Why?

4

16.2 Linear Programming

When I was an undergraduate, I had a summer job with a food company. Our goal was to make
cheap hot dogs. Every morning we got the prices of thousands of ingredients: pig hearts, sawdust,
etc. Each ingredient has an associated variable indicating how much of it to add to the hot dogs.
There are thousands of linear constraints on these variables: so much meat, so much moisture, and
so on. Together these constraints specify which combinations of ingredients constitute a “hot dog.”
The cost of the hot dog is a linear function of what you put into it and their costs. The goal is to
determine what to put into the hot dogs that day to minimize the cost. This is an example of a
general class of problems referred to as linear programs.

Formal Specification: A linear program is an optimization problem whose constraints and ob-
jective functions are linear functions. The goal is to find a setting of variables that optimizes
the objective function, while respecting all of the constraints.

Precondition: We are given one of the following instances.

Instances: An input instance consists of (1) a set of linear constraints on a set of
variables and (2) a linear objective function.

Postcondition: The output is a solution with minimum cost and the cost of that solution.

Solutions for Instance: A solution for the instance is a setting of all the variables
that satisfies the constraints.

Measure Of Success: The cost or value of a solutions is given by the objective func-
tion.

Example 16.2.1:

maximize
7x1 − 6x2 + 5x3 + 7x4

subject to
3x1 + 7x2 + 2x3 + 9x4 ≤ 258
6x1 + 3x2 + 9x3 − 6x4 ≤ 721
2x1 + 1x2 + 5x3 + 5x4 ≤ 524
3x1 + 6x2 + 2x3 + 3x4 ≤ 411
4x1 − 8x2 − 4x3 + 4x4 ≤ 685

Matrix Representation: A linear program can be expressed very compactly using matrix alge-
bra. Let n denote the number of variables and m the number of constraints. Let a denote
the row of n coefficients in the objective function, M denote the matrix with m rows and n

columns of coefficients on the left hand side of the constraints, let b denote the column of m

coefficients on the right hand side of the constraints, and finally let x denote the column of n

variables. Then the goal of the linear program is to maximize a · x subject to M · x ≤ b.

Network Flows: The network flows problem can be expressed as instances of linear programming.
See Exercise 16.2.1.

The Euclidean Space Interpretation: Each possible solution, giving values to the variables
x1, . . . , xn, can be viewed as a point in n dimensional space. This space is easiest to view
when there are only two or three dimensions, but the same ideas hold for any number of
solutions.

5

Constraints: Each constraint specifies a boundary in space, on one side of which a valid
solution must lie. When n = 2, this constraint is a one-dimensional line. See Figure 16.1.
When n = 3, it is a two-dimensional plane, like the side of a box. In general, it is an n−1
dimensional space. The space bounded by all of the constraints is called a polyhedral.

Initial Solution

2

1
x

Optimal Solution

Hill Climbing Algorithm

x

Objective function

Figure 16.1: The Euclidean space representation of a linear program with n = 2.

Vertexes: The boundary of the polyhedral is defined by many vertexes where a number of
constraints intersect. When n = 2, pairs of line-constraints intersect at a vertex. See
Figure 16.1. For n = 3, three sides of a box define a vertex (corner). In general, it
requires n constraints to intersect to define a single vertex. This is because saying that
the solution is on the constraint, says that the linear equation meets with equality and
not with “less than or equal to.” Then recall that n linear equations with n unknowns
are sufficient to specify a unique solution.

The Objective Function: The objective function gives a direction in Euclidean space. The
goal is to find a point in the bounded polyhedral that is the furthest in this direction.
The best way to visualize this is to rotate the Euclidean space so that the objective
function points straight up. The goal is to find a point in the bounded polyhedral that
is as high as possible.

A Vertex is an Optimal Solution: As you can imagine from looking at Figure 16.1, if
there is a unique solution, it will be at a vertex where n constraints meet. If there is a
whole region of equivalently optimal solutions, then at least one of them will be a vertex.
Our search for an optimal solution will focus on these vertices.

The Hill Climbing Algorithm: The obvious algorithm simply climbs the hill formed by the out-
side of the bounded polyhedral until the top is reached. In defining a hill climbing algorithm
for linear programming we just need to devise a way to find an initial valid solution and to
define what constitutes a “step” to a better solution.

A Step: Suppose by the loop invariant, we have a solution that in addition to being valid,
it is also a vertex of the bounding polyhedral. More formally, the solution satisfies all
of the constraints and meets n of the constraints with equality. A step will involve
climbing along the edge (one dimensional line) between two adjacent vertices. This
involves relaxing one of the constraints that is met with equality so that it no longer is
met with equality and tightening one of the constraints that was not met with equality
so that it now is met with equality. This is called is called pivoting out one equation

6

and in another. The new solution will be the unique solution that satisfies with equality
the n presently selected equations. Of course, each iteration such a step can be take
only if it continues to satisfy all of the constraints and improves the objective function.
There are fast ways of finding a good step to take. However, even if you do not know
these, there are only n · m choices of “steps” to try, when there are n variables and m

equations.

Finding an Initial Valid Solution: If we are lucky, the origin is a valid solution. However,
in general finding some valid solution is itself a challenging problem. Our algorithm to
do so will be an iterative algorithm that includes the constraints one at a time. Suppose
we have vertex solution that satisfies all of the constraints in Example 16.2.1 except the
last one. We will then treat the negative of this next constraint as the objective function,
namely −4x1 + 8x2 + 4x3 − 4x4. We will run our hill climbing algorithm, starting with
the vertex we have until, we have a vertex solution that maximizes this new objective
function subject to the first i equations. This is equivalent to minimizing the objective
4x1 − 8x2 − 4x3 + 4x4. If this minimum is less that 685, then we have found a vertex
solution that satisfies the first i + 1 equation. If not, then we determined that no such
solution exists.

No Small Local Maximum: To prove that the algorithm eventually finds a global maximum,
we must prove that it will not get stuck in a small local maximum.

Convex: Because the bounded polyhedral is the intersection of straight cuts, it is what
we call convex. More formally, this means that the line between any two points in
the polyhedral are also in the polyhedral. This means that there cannot be two local
maximum points, because between these two hills there would need to be a valley and a
line between two points across this valley would be outside the polyhedral.

The Primal-Dual Method: The primal dual method formally proves that a global maxi-
mum will be found. Given any linear program, defined by an optimization function and
a set constraints, there is a way of forming its dual minimization linear program. Each
solution to this dual acts as a roof or upper bound on how high the primal solution
can be. Then each iteration either finds a better solution for the primal or providing a
solution for the dual linear program with a matching value. This dual solution witnesses
the fact no primal solution is bigger.

Forming the Dual: If the primal linear program is to maximize a·x subject to Mx ≤ b,
then the dual is to minimize bT · y subject to MT · y ≥ aT . Where bT , MT , and a

are the transposes formed by flipping the vector or matrix along the diagonal. The
dual of example 16.2.1 is
minimize

258 + 721y2 + 524y3 + 411y4 + 685y5

subject to
3y1 + 6y2 + 2y3 + 3y4 + 4y5 ≥ 7
7y1 + 3y2 + 1y3 + 6y4 − 8y5 ≥ −6
2y1 + 9y2 + 5y3 + 2y4 − 4y5 ≥ 5
9y1 − 6y2 + 5y3 + 3y4 + 4y5 ≥ 7

The dual will have a variable for each constraint in the primal and a constraint for
each of its variables. The coefficients of the objective function become the numbers
on the right hand side of the inequalities and the numbers on the right hand side

7

of the inequalities become the coefficients of the objective function. Finally, the
maximize becomes a minimize. The dual is the same as the original primal.

Upper Bound: We prove that the value of any solution to the primal linear program
is at most the value of any solution to the dual linear program as flows. The value
of the primal solution x is a · x. The constraints MT · y ≥ aT can be turned around
to give a ≤ yT ·M . This gives that a ·x ≤ yT ·M ·x. Using the constraints Mx ≤ b,
this is at most yT · b. This can be turned around to give bT · y, which is value of the
dual solution y.

Running Time: The primal-dual hill climbing algorithm is guaranteed to find the optimal solu-
tion. In practice, it works quickly (though for my summer job, the computers would crank
for hours.) However, there is no known hill climbing algorithm that is guaranteed to run in
polynomial time.

There is another algorithm that solves this problem, called the Ellipsoid Method. Practically,
it is not as fast, but theoretically it provably runs in polynomial time.

Exercise 16.2.1 Express the network flow instance in Figure ?? as a linear program.

16.3 Exercises

Exercise 16.3.1 (See solution in Section ??) Let G = (L ∪R,E) be a bipartite graph with nodes
L on the left and R on the right. A matching is a subset of the edges so that each node appears at
most once. For any A ⊆ L, let N(A) be the neighborhood set of A, namely N(A) = {v ∈ R | ∃u ∈
A such that (u, v) ∈ E}. Prove Hall’s Theorem which states that there exists a matching in which
every node in L is matched if and only iff ∀A ⊆ L, |A| ≤ |N(A)|.

1. For each of the following two bipartite graphs, either give a short witness to the fact that it
has a perfect matching or to the fact that it does not. Use Hall’s Theorem in your explanation
as to why a graph does not have a matching. No need to mention flows or cuts.

1 5432

A B C D E

1 5432

A B C D E

2. ⇒: Suppose there exists a matching in which every node in L is matched. For u ∈ L, let
M(u) ∈ R specify one such matching. Prove that ∀A ⊆ L, |A| ≤ |N(A)|.

3. Look at both the slides and section 19.5 of the notes. It describes a network with nodes
{s} ∪ L ∪ R ∪ {t} with a directed edge from s to each node in L, the edges E from L to R in
the bipartite graph directed from L to R, and a directed edge from each node in R to t. The
notes gives each edge capacity 1. However, The edges 〈u, v〉 across the bipartite graph could
just as well be given capacity ∞.

Consider some cut (U, V) in this network. Note U contains s, some nodes of L, and some
nodes of R, while V contains the remaining nodes of L, the remaining nodes of R, and t.
Assume that ∀A ⊆ L, |A| ≤ |N(A)|. Prove that the capacity of this cut, i.e. cap(U, V) =
∑

u∈U

∑
v∈V c〈u,v〉, is at least |L|.

8

4. ⇐: Assume that ∀A ⊆ L, |A| ≤ |N(A)| is true. Prove that there exists a matching in which
every node in L is matched. Hint: Use everything you know about Network Flows.

5. Suppose that there is some integer k ≥ 1 such that every node in L has degree at least k and
every node in R has degree at most k. Prove that there exists a matching in which every node
in L is matched.

9

Chapter 21

Reductions and NP-Completeness

21.1 An Algorithm for Bipartite Matching using the Network

Flow Algorithm

Up to now we have been justifying our belief that certain computational problems are difficult by
reducing them to other problems believed to be difficult. Here, we will give an example of the
reverse, by proving that the problem Bipartite Matching can be solved easily by reducing it to
the Network Flows problem, which we already know is easy because we gave an polynomial time
algorithm for it in Section 16.

Bipartite Matching: Bipartite matching is a classic optimization problem. As always, we define
the problem by given a set of instances, a set of solutions for each instance, and a cost for
each solution.

Instances: An input instance to the problem is a bipartite graph. A bipartite graph is a
graph whose nodes are partitioned into two sets U and V and all edges in the graph go
between U and V . See the first figure in Figure ??.

Solutions for Instance: Given an instance, a solution is a matching. A matching is a subset
M of the edges so that no node appears more than once in M . See the last figure in
Figure ??.

Cost of a Solution: The cost (or success) of a matching is the number of pairs matched.
It is said to be a perfect matching if every node is matched.

Goal: Given a bipartite graph, the goal of the problem is to find a matching that matches
as many pairs as possible.

Network Flows: Network Flow is another example of an optimization problem that involves
searching for a best solution from some large set of solutions.

Instances: An instance 〈G, s, t〉 consists of a directed graph G and specific nodes s and t.
Each edge 〈u, v〉 is associated with a positive capacity c〈u,v〉.

Solutions for Instance: A solution for the instance is a flow F which specifies a flow
F〈u,v〉 ≤ c〈u,v〉 through each edges of the network with no leaking or additional flow
at any node.

10

Graph
Bipartite

Network Flow

s t

Matching

s t

cap = 1
flow = 1
flow = 0

Figure 21.1: The first figure is the bipartite graph given as an instance to Bipartite matching. The
next is the network that it is translated into. The next is a flow through this network. The last is
the matching obtained from the flow.

Measure Of Success: The cost (or success) of a flow is the the amount of flow out of node
s.

Goal: Given an instance 〈G, s, t〉, the goal is to find an optimal solution, that is, a maximum
flow.

Bipartite Matching ≤poly Network Flows: We go through the same steps as before.

3) Direction of Reduction and Code: We will now design an algorithm for Bipartite
Matching given an algorithm for Network Flows.

4) Look For Similarities: A matching decides which edges to keep and a flow decides which
edges to put flow though. This similarity suggests keeping the edges that have flow
through them.

5) InstanceMap, Translating the Bipartite Graphs into a Network: Our algorithm
for Bipartite Matching takes as input a bipartite graph Gbipartite. The first step is to
translate this into a network Gnetwork = InstanceMap(Gbipartite). See the first two
figures in Figure ??. The network will have the nodes U and V from the bipartite graph
and for each edge 〈u, v〉 in the bipartite graph, the network has a directed edge 〈u, v〉.
In addition, the network will have a source node s with a directed edge from s to each
node u ∈ U . It will also have a sink node t with a directed edge from each node v ∈ V

to t. Every edge out of s and every into t will have capacity one. The edges 〈u, v〉 across
the bipartite graph could be given capacity one as well, but they could just as well be
given capacity ∞.

6) SolutionMap, Translating a Flow into an Matching: When the Network Flows al-
gorithm finds a flow Sflow through the network, our algorithm must translate this flow
into a matching Smatching = SolutionMap(Sflow). See the last two figures in Figure ??.

SolutionMap: The translation puts the edge 〈u, v〉 in the matching if there is a flow
of one through the corresponding edge in the network and not if there is no flow in
the edge.

Warning: Be careful to map every possible flow to a matching. The above mapping is
ill defined when there is a flow of 1

2
through an edge. This needs to be fixed and

could be quite problematic.

11

Integer Flow: Luckily, Exercise ?? proves that if all the capacities in the given network
are integers, then the algorithm always returns a solution in which the flow through
each edge is an integer. Given that our capacities are all one, each edge will either
have a flow of zero or of one. Hence, in our translation, it is well-defined whether to
include the edge 〈u, v〉 in the matching or not.

7) Valid to Valid: Here we must prove that if the flow Sflow is valid than the matching
Smatching is also valid.

Each u Matched At Most Once: Consider a node u ∈ U . The flow into u can be
as most one because there is only one edge into it and it has capacity one. For the
flow to be valid, the flow out of this node must equal that in. Hence, it too can be
at most one. Because each edge out of u either has flow zero or one, if follows that
at most one edge out of u has flow. We can conclude that u is matched to at most
one node v ∈ V .

Each v Matched At Most Once: See Exercise ??

Cost to Cost: To be sure that the matching we obtain contains the maximum
number of edges, it is important that the cost of the matching Smatching =
SolutionMap(Sflow) equals the cost of the flow. The cost of the flow is the amount
of flow out of node s, which equals the flow across the cut 〈U, V 〉, which equals the
number of edges 〈u, v〉 with flow of one, which equals the number of edges in the
matching, which equals the cost of the matching.

8) ReverseSolutionMap: The reverse mapping from each matching Smatching to a valid
flow Sflow = ReverseSolutionMap(Smatching) is straight forward. If edge 〈u, v〉 is in
the matching, then put a flow of one from the source s, along the edge 〈s, u〉 to node u,
across the corresponding edge 〈u, v〉, and then on through the edge 〈v, t〉 to t.

9) Reverse Valid to Valid: We must also prove that if the matching Smatching is valid then
the flow Sflow = ReverseSolutionMap(Smatching) is also valid.

Flow in Equals Flow Out: Because the flow is the sum of paths, we can be assured
that the flow in equals the flow out of every node except for the source and the
sink. Because the matching is valid, each u and each v is matched either zero or
once. Hence the flows through the edges 〈s, u〉, 〈u, v〉, and 〈v, t〉 will be at most their
capacity one.

Cost to Cost: Again, we need to prove that the cost of the flow Sflow =
ReverseSolutionMap(Smatching) is the same as the cost of the matching. See Ex-
ercise ??.

10 & 11: These steps are always the same. InstanceMap(Gbipartite) maps bipartite graph
instances to network flow instances Gflow with the same cost. Hence, because algorithm
Algflow correctly solves network flows quickly, our designed algorithm correctly solves
bipartite matching quickly.

In conclusion, bipartite matching can be solved in the same time that network flows is solved.

Exercise 21.1.1 Give a proof for the case where each v is matched at most once.

Exercise 21.1.2 Give a proof that the cost of the flow Sflow = ReverseSolutionMap(Smatching)
is the same as the cost of the matching

12

Exercise 21.1.3 Section ?? constructs three dynamic programming algorithms using reductions.
For each of these, carry out the formal steps required for a reduction.

Exercise 21.1.4 There is a collection of software packages S1, . . . , Sn which you are considering
acquiring. For each i, you will gain an overall benefit of bi if you acquire package Si. Possibly bi

is negative, for example, if the cost of Si is greater than the money that will be saved by having it.
Some of these packages rely on each other; if Si relies on Sj, then you will incur an additional cost
of Ci,j ≥ 0 if you acquire Si but not Sj . Unfortunately, S1 is not available. Provide a polytime
algorithm to decide which of S2, . . . , Sn you should acquire. Hint: Use max flow / min cut.

13

