
2.3 More of the Input vs More of the Output

Sometimes it is not clear at first whether to use “More Of The Input” or “More Of The Output”
type of loop invariants. This section gives two similar problems, one of which the first works better
and the other in which the second works better.

Example 2.3.1 Tournament: A tournament is a directed graph (see Section 3.1) formed by
taking the complete undirected graph and assigning arbitrary directions on the edges, i.e.,
a graph G = (V,E) such that for each u, v ∈ V , exactly one of 〈u, v〉 or 〈v, u〉 is in E. A
Hamiltonian path is a path through a graph that can start and finish any where but must
visit every node exactly once each. Design an algorithm which finds a Hamiltonian path
through it given any tournament. Because this algorithm finds a Hamiltonian path for each
tournament, this algorithm, in itself, acts as proof that every tournament has a Hamiltonian
path.

More of the Output: It is natural to want to push forward and find the required path
through a graph. The measure of progress would be the amount of the path output
and the loop invariant would say “I have the first i nodes (edges) in the final path.”
Maintaining this loop invariant would require extending the path constructed so far by
one more node. The problem, however, is that the algorithm might get stuck, when the
path constructed so far has no edges leaving the last node to a node that has not yet
been visited. This makes the loop invariant as stated false.

Recursive Backtracking: One is then tempted to have the algorithm “backtrack” when it
gets stuck trying in a different direction for the path to go. This is a fine algorithm. See
recursive backtracking algorithms in Chapter 17. However, unless one is really careful,
such algorithms tend to require exponential time.

More of the Input: Instead, try solving this problem using a “more of the input” loop
invariant. Assume the nodes are numbered 1 to n in an arbitrary way. The algorithm
temporarily pretends that the sub-graph on the first i of the nodes is the entire input
instance. The loop invariant is “I currently have a solution for this sub-instance.” Such
a solution is a hamiltonian path u1, . . . , ui that visits each of the first i nodes exactly
once each, which in turn is simply a permutation the first i nodes. Maintaining this loop
invariant requires constructing a path for the first i + 1 nodes. There is no requirement
that this new path resembles the previous path. However, for this problem, it can be
accomplished by finding a place to insert the i + 1st node within the permutation of the
first i nodes. In this way, the algorithm looks a lot like insertion sort.

Case Analysis: When developing an algorithm, a good technique is to see for which input
instances the obvious thing works and then try to design another algorithm for the
remaining cases.

u
i

v
i+1

(c) 2
uu

1 i(a) 32
uuu

1
u

v

1
u u u

2 3 i
u

i+1

j+1j
uu

v
i+1

(b)

(a) If 〈vi+1, u1〉 is an edge, then the extended path is easily vi+1, u1, . . . , ui.

(b) Similarly, if 〈ui, vi+1〉 is an edge, then the extended path is easily u1, . . . , ui, vi+1.

31

(c) Otherwise, because the graph is a tournament, both 〈u1, vi+1〉 and 〈vi+1, ui〉 are edges.
Color each node uj red if 〈uj , vi+1〉 is an edge and blue if 〈vi+1, uj〉 is. Because u1

is red and ui is blue, there must be some place uj to uj+i in the path where path
changes color from red to blue. Because both 〈uj, vi+1〉 and 〈vi+1, uj+i〉 are edges, we
can form the extended path u1, . . . , uj , vi+1, uj+i, . . . , ui.

Example 2.3.2 Euler Tour: An Euler tour in an undirected graph is a cycle that passes through
each edge exactly once. A graph contains an Eulerian cycle iff it is connected and the degree
of each vertex is even. Given such a graph find such a cycle.

More of the Output: We will again start by attempting to solve the problem using the
more the output technique, namely, start at any node and build the output path one
edge at a time. Not having any real insight into which edge should be taken next, we
will choose them in a blind or “greedy” way (see Chapter 16). The loop invariant is that
after i steps you have some path through i different edges from some node s to some
node v.

Getting Stuck: The next step in designing this algorithm is to determine when, if ever, this
simple blind algorithm gets stuck and to either figure out how to avoid this situation or
to fix it.

Making Progress: If s 6= v, then the end node v must be adjacent to an odd number of
edges that are in the path. See Figure ??.a. This is because there is the last edge in
the path and then for every edge in the path coming into the node there is one leaving.
Hence, because v has even degree it follows that v is adjacent to at least one edge that
is not in the path. Follow this edge extending the path by one edge. This maintains the
loop invariant while making progress. This process can only get stuck when the path
happens to cycle around back to the starting node giving s = v. In such a case, join the
path here to form a cycle.

s v
u = new s

b)a)
vs

Figure 2.2: Euler Algorithm

Ending: If the cycle created covers all of the edges, then we are done.

Getting Unstuck: If the cycle we have created from our chosen node s back to s does not
cover all the edges, then we look for a node u with in this cycle that is adjacent to an
edge not in the cycle. See Figure ??.b. Change s to be this new node u. We break
the cycle at u giving us a path from u back to u. The difference with this path is that
we can extend it past u along this unvisited edge. Again the loop invariant has been
maintained while making progress.

u Exists: The only thing remaining to prove is that when v comes around to meet s again
and we are not done, then there is in fact a node u in the path that is adjacent to an
edge not in the path. Because we are not done then there is an edge e in the graph

32

that is not in our path. Because the graph is connected, there must be a path in the
graph from e to our constructed path. The node u at which this connecting path meets
our constructed path must be as required because the last edge {u,w} in the connecting
path is not in our constructed path.

Extended Loop Invariant: To avoid having to find such a node u when it is needed, we
extend the loop invariant to state that in addition to the path, the algorithm remembers
some node u other than s and v that is in the path and is adjacent to an edge not in the
path.

Exercise 2.3.1 (See solution in Section V) Iterative Cake Cutting: The famous algorithm for
fairly cutting a cake in two is for one person to cut the cake in the place that he believes is half and
for the other person to choose which “half” he likes. One player may value the icing more while
the other the cake more, but it does not matter. The second player is guaranteed to get a piece that
he considers to be worth at least a half because he choose between two pieces whose sum worth for
him is at least a one. Because the first person cut it in half according to his own criteria, he is
happy which ever piece is left for him. Our goal is write an iterative algorithm which solves this
same problem for n players.

To make our life easier, we view a cake not as three dimensional thing, but as the line from
zero to one. Different players value different subintervals of the cake differently. To express this,
he assigns some numeric value to each subinterval. For example, if player pi’s name is written on
the subinterval [i−1

2n
, i

2n
] of cake then he might allocate a higher numeric value to it, say 1

2
. The

only requirement is that the sum total value of the cake is one.

Your algorithm is only allowed the following two operations. In an evaluation query, v =
Eval(p, [a, b]), the algorithm asks a player p how much v he values a particular subinterval [a, b]
of the whole cake [0, 1]. In a cut query, b = Cut(p, a, v), the protocol asks the player p to identify
the shortest subinterval [a, b] starting at a given left endpoint a, with a given value v. In the above
example, Eval(pi, [

i−1

2n
, i

2n
]) returns 1

2
and Cut(pi,

i−1

2n
, 1

2
) returns i

2n
. Using these the two player

algorithm is as follows.

algorithm Partition2({p1, p2}, [a, b])

〈pre−cond〉: p1 and p2 are players.
[a, b] ⊆ [0, 1] is a subinterval of the whole cake.

〈post−cond〉: Returns a partitioning of [a, b] into two disjoint pieces [a1, b1] and [a2, b2] so that
player pi values [ai, bi] at least half as much as he values [a, b].

begin
v1 = Eval(p1, [a, b])
c = Cut(p1, a, v1

2
)

if(Eval(p2, [a, c]) ≤ Eval(p2, [c, b])) then
[a1, b1] = [a, c] and [a2, b2] = [c, b]

else
[a1, b1] = [c, b] and [a2, b2] = [a, c]

end if
return([a1, b1] and [a2, b2])

end algorithm

33

