
COSC 6111 Advanced Design and Analysis of Algorithms
Jeff Edmonds

Assignment: Recursion

First Person: Second Person:
Family Name: Family Name:
Given Name: Given Name:
Student #: Student #:
Email: Email:

Skip 1, 2abc, 5 and 7. Do 2de,3,4, and 6. Let me know if you have seen them before.

Problem Name
If Done
Old Mark

Check
if to be
Marked

New
Mark

1 Finite Fields

2 Size of Recursive Instance

3 Recursion on Matrix

4 Parsing

5 Harder Parsing

6 Recursive Tiling

7 Multiplying

COSC 6111 Advanced Design and Analysis of Algorithms
Jeff Edmonds

Assignment: Recursion

1. Finite Fields. (Done in class)

(a) Find the inverse of 20 in Z67. To show your work, make a table with columns u, v, r, s, and t
and a row for each stack

(b) Given as input I = 〈a, b, p〉 compute ab mod p. The algorithm is in the notes. Do not copy the
algorithm. The section reference (and necessary changes) is sufficient. What is the number of bit
operations needed as a function of n = |I| = log2(a) + log2(b) + log2(p)?

(c) Given as input I = 〈a, c, p〉 solve ab ≡mod p c for b. This is called discrete log. What is the best
algorithm that you can come up with in 15min. (Do not cheat and spend more time than this.)
What is the number of bit operations needed as a function of n = |I| = log2(a)+log2(c)+log2(p)?

2. (a, b, and c done in class) In friends level of abstracting recursion, you can give your friend any legal
instance that is smaller than yours according to some measure as long as you solve on your own any
instance that is sufficiently small. For which of these algorithms has this been done? If so what is your
measure of the size of the instance? On input instance 〈n,m〉, either bound the depth to which the
algorithm recurses as a function of n and m or prove that there is at least one path down the recursion
tree that is infinite.

algorithm Ra(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0)

Print(”Hi”)
else

Ra(n − 1, 2m)
end if

end algorithm

algorithm Rb(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0)

Print(”Hi”)
else

Rb(n − 1,m)
Rb(n,m − 1)

end if
end algorithm

algorithm Rc(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Rc(n − 1,m)
Rc(n,m − 1)

end if
end algorithm

algorithm Rd(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Rd(n − 1,m + 2)
Rd(n + 1,m − 3)

end if
end algorithm

algorithm Re(n,m)

〈pre−cond〉: n & m ints.

〈post−cond〉: Say Hi

begin
if(n ≤ 0 or m ≤ 0)

Print(”Hi”)
else

Re(n − 4,m + 2)
Re(n + 6,m − 3)

end if
end algorithm

3. Recursion:

(a) We asked for an iterative algorithm for searching within a matrix A[1..n, 1..m] in which each row
is sorted and each column is sorted. This requires that T (n,m) = n+m−1 of the matrix entries
be examined. Our lower bound proves that this is tight when n = m. But this is clearly too big

2

when m >> n, given one can do binary search in each row in time n log m << n+m−1. The goal
now is to design a recursive algorithm that accesses T (n,m) ≈ n log2(

m
n) entries. As a huge hint,

the recurrence relation will be T (n,m) = maxi∈[1,n] T (i, m
2) + T (n − i, m

2) + log2 n.

(b) (DONT NEED TO DO) Recurrence Relations: Consider the recurrence relation T (n,m) =
maxn′∈[1,n] T (n′, m

2) + T (n − n′, m
2) + log2 n.

You must look at the recursive tree in order to get some intuition to why the time is T (n,m) ≈
n log2(

m
n). You can also plug T (n,m) = n log2(

m
n) + 2n− log(n)− 2 into this recurrence relation

and see that it satisfies it.

(c) (DONT NEED TO DO) We have seen three algorithms for the sorted matrix problem with
running times T1(n,m) = n + m, T2(n,m) = n log(m

n) and T3(n,m) = n log(m). We will be
considering families of matrices. In a particular family, the height n can have any value and the
width m = m(n) is some function of n. The recursive T2(n,m) algorithm was a pain to write
and implement. Hence, we only want to use it for families of matrices where the running is really
little oh of the running time of other two algorithms, i.e. not Theta. Use O, o, Θ, Ω, and ω, to
bound for which functions m(n) we will use this algorithm. Start by trying different functions.
Give extreme examples that work and others that do not work.

4. Parsing

Look Ahead One: A grammar is said to be look ahead one if, given any two rules for the same
non-terminal, the first place that the rules differ is a difference in a terminal. (Equivalently the
rules can be views as paths down a tree.) This feature allows our parsing algorithm to look only
at the next token in order to decide what to do next. Thus the algorithm runs in linear time. An
example of a good set of rules would be:

A ⇒ B ’u’ C ’w’ E
A ⇒ B ’u’ C ’x’ F
A ⇒ B ’u’ C
A ⇒ B ’v’ G H

(Actually, even this grammar could also be problematic if when s = bbbucccweee, B could either
be parsed as bbb or as bbbu. Having B eat the ′u′ would be a problem.)
An example of a bad set of rules would be:

A ⇒ B C
A ⇒ D E

With such a grammar, you would not know whether to start parsing the string as a B or a D. If
you made the wrong choice, you would have to back up and repeat the process.

Consider a grammar G which includes the four look ahead rules for A given above. Give the code for
GetA (s, i) that is similar to that for GetExp (s, i). We can assume that it can be parsed, so do not
bother with error detection. HINT: The code should contain NO loops.

5. Harder Parsing: If you are feeling bold, try to write a recursive program for a generic parsing algorithm.
The input is 〈G,T, s, i〉, where G is a look ahead one grammar, T is a non-terminal of G, s is a
string of terminals, and i is an index. The output consists of a parsing of the longest substring
s[i], s[i + 1], . . . , s[j − 1] of s that starts at index i and is a valid “T” according to the grammar G. In
other words, the parsing starts with non-terminal T and ends with the string s[i], s[i + 1], . . . , s[j − 1].
The output also includes the index j of the token that comes immediately after the parsed expression.
For example, GetExp(s, i) is the same as calling this algorithm on 〈G, exp, s, i〉 where G is the grammar
given above.

It is helpful to think of the grammar as a tree. The grammar from the last question would be:

v

G

H

A B

FE

xw

C

u

3

The loop invariant is that you have parsed a prefix s[i], s[i + 1], . . . , s[j′ − 1] of s producing a partial
parsing p and the rest of the string s[j′], s[j′ +1], . . . , s[j−1] will be parsed using the one of the partial
rules in the set R. For example, suppose the grammar G includes the four look ahead rules for A given
above, we are starting with the non-terminal T = A, and we are parsing the string s = bbbucccweee.
Initially, we have parsed nothing and R contains all of each of the four rules, namely R = {BuCwE,
BuCxF, BuC, BvGH}. After two iterations, we have parsed bbbu using a parsing pB for bbb followed
by the character u. We must parse the rest of the string cccweee using one of the rules in R = {CwE,
CxF, C}. Note that the used up the prefix Bu from the consistent rules and the inconsistent rules were
deleted. Because the grammar is look ahead one we know that either the first token in each rule of R
is the same non-terminal B, or each rule of R begins with a terminal or is the empty rule. These are
the two cases your iteration needs to deal with.

6. Recursionive Tiling: The precondition to the problem is that you are given three integers 〈n, i, j〉,
where i and j are in the range 1 to 2n. You have a 2n by 2n square board of squares. You have a

sufficient number of tiles each with the shape . Your goal is to place non-overlapping tiles on the
board to cover each of the 2n × 2n tiles except for the single square at location 〈i, j〉. Give a recursive
algorithm for this problem.

7.

In class we got a Θ(n
log 3

log 2) = Θ(n1.58) time algorithm for multiplying two
n-bit integers by cutting the numbers into two parts and managing to us-
ing only three friends instead of four. For this question, cut the num-
bers into d parts. As a bit string 〈x〉 = 〈xd−1, . . . , x1, x0〉 and as an in-

teger x =
∑d−1

i=0 xi2
ni/d. Similarly, y =

∑d−1
j=0 yj2

nj/d. Multiplying them

gives z = x × y =
∑d−1

i=0

∑d−1
j=0 xiyj2

n(i+j)/d =
∑2d−2

k=0

∑k
i=0 xiyk−i2

nk/d =
∑2d−2

k=0 zk2nk/d, where zk =
∑k

i=0 xiyk−i. A way to picture the values zk is
to the right. 8z

z 7
6z

z 5
4z

z 3

2zz 1
0z

y43yy21yy0

4

2

1

x
x3

x
x
x0

You might note that getting the zk from the xi and the yj is the same as the convolution of the
coefficients resulting from the multiplication of two polynomials. We learned in class that this could
be done using FFT in Θ(d log d) time. We, however, want to do it with only 2d − 1 multiplications.
Surely, we can’t do it faster than FFT! The trick is to differentiate between multiplications that are
expensive and additions that are cheap. Once we get the number of expensive multiplications down to
the required 2d− 1, we could try to decrease to number of cheap additions using something like FFT.
However, because they are cheap anyway, we will not worry so much about how many we have d2 or
d3 of them would be fine. For this reason, we will keep it simple by only doing simple standard matrix
operations.

(a) Suppose each xi and yj are big integers. Hence, getting a friend to multiply two of them is
expensive, but multiplying one of them by a small integer is relatively cheap and as is adding two
of them. Your goal is compute the 2d−1 values of zk using not d2 expensive multiplications, but
only 2d−1 of them. For each ℓ ∈ [0, 2d−2], the ℓth such multiplication involves choose small integers

a〈ℓ,0〉, . . . , a〈ℓ,d−1〉 and b〈ℓ,0〉, . . . , b〈ℓ,d−1〉 and computing wℓ =
[

∑d−1
i=0 a〈ℓ,i〉xi

]

×
[

∑d−1
j=0 b〈ℓ,j〉yj

]

. My

hint is to let a〈ℓ,i〉 = b〈ℓ,i〉 = (αℓ)
i for values αℓ to be chosen later. Rearrange these equations to

define wℓ in terms of αℓ and the desired zk.

(b) Give the matrix mapping from the zk to the wℓ. Does this matrix look familiar?

(c) The inverse matrix maps from the wℓ to the zk. You do not have to find this inverse. However,
one can compute the zk by first computing the wℓ and them multiplying the vector of them by
this inverse matrix. Lets not do anything fancy, but just simple matrix multiplication.

Note the number of xi × yj type multiplications needed to compute the zk is only 2d−1, one for
each of the wℓ.

4

Suppose each a〈ℓ,i〉×xi type of multiplication takes time Θ(log(a〈ℓ,i〉)×log(xi)) = Θ(log(dd)×n
d) =

Θ(n log(d)).

Suppose each addition of numbers like a〈ℓ,i〉xi takes time Θ(log(xi)) = Θ(n
d).

Compute time you spend, excluding the time your friends spend multiplying, i.e. the time needed
to compute

∑d−1
i=0 a〈ℓ,i〉xi and

∑d−1
j=0 b〈ℓ,j〉yj for computing the wℓ and then the time to compute

the zk from the wℓ.

(d) Give a recurrence relation T (n) giving the total running time of this algorithm as a function of n
and the constant d.

(e) Suppose T (n) = aT (n
b)+αnc. Determine how the α affects the solution by setting T (n) = αT ′(n),

solving for T ′(n) and then multiplying by α to get T (n).

(f) Oops, I thought that one got T (n) = Θ(n log n) by setting d = log n, but can’t seem to get this
after all. Given we wont get T (n) = Θ(n log n) anyway, we might as well ignore factors of log n
and of log d in our approximation of T (n).

One thing that makes me a little nervous is using the Master Theorem when d is not a constant.
Recall that when T (n) = aT (n/b) + f(n) that T (n) = O(f(n)), T (n) = O(nlog a/ log b), or log n
times these. Given we are ignoring factors of log n we can ignore this worry.

Find the d that minimizes your T (n). Instead of differentiating T (n) wrt d and setting this to
zero, I recommend doing the following. Factor the n out of T (n) because it does not depend on
d. Then take the log of T (n)/n, because log(T (n)/n) is minimized with the same d that T (n) is
minimized with. This gives two terms. A very useful thing to know is that the sum of two terms
(within a factor of 2) is minimized by setting d to make the two terms equal. What does this give
you for T (n)?

.

5

