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Previously, we showed that that there exist languages which are not decidable. However all such lan-
guages that we’ve seen are “metacomputing” languages, in the sense that they are languages defined by the
descriptions of Turing machines with various properties. The goal of these lectures is to show that there
exist other sorts of problems which are also undecidable.

Definition 1. A language L is in the class RE of recursive enumerable, or recognizable languages if there
exists a Turing machine M such that for all = € L, M (z) halts and accepts, and for all « ¢ L, M («) does not
accept (it may reject, or it may not halt.)

Definition 2. A language L is in the class REC of recursive, or decidable languages if there exists a Turing
machine M such that for all x € L, M (x) halts and accepts, and for all x ¢ L, M (x) halts and rejects.

Definition 3. A language L is in the class co-RE of co-recursive enumerable, or co-recognizable languages,
if L={x|x¢L}isin RE.

Claim 1. REC = RE n co-RFE

Definition 4. A Turing reduction from language A to a language B, denoted A <r B, is an oracle Turing
machine M such that M? decides A.

Think of an oracle TM MP as a regular TM which may use a decider for B as a subroutine as needed.

Definition 5. A many-one reduction or map reduction from a language A to a language B, denoted A <,,, B,
is a computable function f such that z € A < f(z) € B.

Let TILING = {(7) | 7 is a set of simple rectilinear polygons such that there exists a square which may
be exactly tiled using copies of polygons in 7 without rotating them}. See Figure 1 for an example.

We wish to show that TILING is undecidable (not in REC). To do so, we will give a sequence of
reductions from HALT, which we previously proved was undecidable: HALT <, U <, Ux <y US <

ABSTRACT -TILING <, TILING. Define the languages U, Uy, and Uj as follows: U = {{M,w) | M

P

Figure 1: Tiling a square with tiles from 7.




is a TM and M halts and accepts w}, Uy = {{(M) | M is a TM which halts and accepts the empty string },
and U3 = {{M)| M is a TM which halts and accepts the empty string with a blank tape and the tape head
at the beginning of the tape when it halts }.

The first three reductions, HALT <, U <, Uy <y, Uy, are straightforward and omitted. We will begin
the actual proof by defining ABSTRACT - TILING and showing Uj <,,, ABSTRACT -TILING.

Let ABSTRACT -TILING = {(3,7) | ¥ is a set of symbols and 7 is a set of 2 x 3 matrices with entries

from ¥ =X u{L,,r,7,—, 1} such that there exists a T x T' matrix M, for some T > 3, with entries from ¥’/
satisfying (i) every 2 x 3 sub-matrix of M is in 7, (ii) the top row of M is of the form r,—,...,—, 7, (iii) the
bottom row of M is of the form L,—,...,—, 1, (iv) the left edge of M is of the form r, 1,...,1,L, and (v) the
right edge of M is of the form 7, 1,..., 1,1 }.

Claim 2. Uj <, ABSTRACT -TILING

Proof. For any TM M, we wish to construct a pair (X, 7) such that (M) e Uy < (X,7) e ABSTRACT -
TILING. Suppose that M halts and accepts the empty string (with a blank tape, and the tape head in
the left position) in T" times steps. We will think of a T'+ 2 x T+ 2 matrix as encoding the computation
history of M, with the edges of matrix consisting of the required boundary pieces. Each row of the matrix
will correspond to the contents of the tape of M, where the first row corresponds to the initial tape, and the
last row correspond to M in an accepting state with a blank tape. We will encode the position of the tape
head and the state of M by using a pair of symbol and state for the current position of the tape head.

Let ¥ =X, 0X ) xQns, where Xy and Qs are the tape alphabet and the set of states of M respectively.

LetT={(T ($’_qo) é)’(($’_qo) 5 é)(é $ é)(; 5 7)

Corresponding to the 15¢, 2"d, subsequent, and last sub-matrices in the first row, where qq is the start state
of M and § is the blank symbol.
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Corresponding to the 15t, 28, subsequent, and last sub-matrices in the last row, where g, is the accept state

of M.

g1 092 O3 g1 02 g3 01 o2 03 g1 02 | | 02 O3

o1 oy o03)’\or o2 (03,9))'\(01,9) 02 03)'\o1r o2 1)\ o2 o3)
For all o; € X3y and q € Qps. These correspond to portions of the tape where the tape head doesn’t start in
any of the positions covered by the sub-matrix.
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For all o; € X)y and ¢ € Qas such that M writes o4, goes to state ¢’ and doesn’t move the tape head when
in state ¢ on symbol I's.
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For all o; € Xy and g € Qas such that M writes o4, goes to state ¢’ and moves the tape head right when in
state ¢ on symbol I's.



In addition, we define a similar set of 2 x 3 sub-matrices for when the tape head moves left, and sub-matrices
for left, right, and non-moving cases when the left edge or right edge is 1.

}.

Next, we have to prove that M e U <= (X,7) e ABSTRACT - TILING. We prove this in 2 parts:

(== ) Assume M halts and accepts with a blank tape, and the tape head in the left position in T" steps.
Let S be a T +2 x T + 2 matrix such that the edge pieces are as required, and S[i + 1,5 + 1] is the symbol
in position j on the tape of M at time 4, or the symbol and state if the tape head is in position j. By
construction, such a matrix satisfies all of the conditions for ABSTRACT - TILING.

( <= ) Assume there exists a T+2xT+2 matrix S such that S satisfies all the conditions for ABSTRACT -
TILING. For i=1and i =T +2, S[4,j] must consist of edge pieces. For i = 2, the row S[i,j] must be
1,(8,90),%,...,%, 1 by the first set of constraints. We argue by induction that for i = 2,..., T+ 1, S[4,j]
must encode the tape in position j — 1 and time 7 — 1 since either the 3 positions around the tape head at
the previous time step (row ¢ —1 of S) are uniquely determined by the second row of the 2 x 3 sub-matrix

of the form (Ul (U_Z‘iq) 03). All other positions are uniquely determined from the previous row by sub-

. [ | .
matrices of the form |71 72 03) , (U1 72 ), or ( 72 03). Finally, the last 2 rows of S must be

g1 02 O3 o1 09 | | 09 O3
1,(%$,44),9%,...,%, 1 and L,—,...,—, 1. Thus, S corresponds to the computation of M, and must end up in
the accepting state with a blank tape. O

Finally, we prove ABSTRACT -TILING <,,, TILING.
Let a: %' — {0,1}* be a binary encoding of ¥ such that for all o € {L, 1,r,71,—, 1}, a(o) = 0% and for all
o1 #02€%, a(oy) #0F, a(oy) # OF, and a(oy) # a(0s).

For each (Ul 72 93] ¢ T, construct the following polygon:
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Any time two horizontally polygon blocks are horizontally adjacent, the corresponding 2 x 3 rectangles
must agree on the 4 symbols where they overlap, and vice versa when two sub-matrices overlap on 4 symbols.
Similarly, when two polygon blocks are vertically adjacent, the corresponding 2 x 3 sub-matrices must agree

a(o1)

a(o4)

on the overlapping 3 symbols.
This intuition can fairly straightforwardly be formalized into a rigorous proof.
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