
York University

CSE 4111 Fall 2009
Instructor: Jeff Edmonds

Family Name: Given Name:

Student #: Email:

The following are problems that Jeff made up likely won’t every use often because the may be too hard.

Maybe the better students might enjoy them too.

1. Adding:

(a) Define the function ♯ : {0, 1}3 ⇒ {0, 1}2 so that ♯(x, y, z) gives in binary the number of bits of x,

y, and Z that are one. For example, ♯(0, 0, 0) = 00, ♯(0, 0, 1) = 01, ♯(0, 1, 0) = 01, ♯(1, 0, 1) = 10,

♯(1, 1, 0) = 10, and ♯(1, 1, 1) = 11. Design a circuit with three inputs and two outputs using AND,

OR, and NOT gates that computes ♯. Let ♯1(x, y, z) be the high order bit and ♯2(x, y, z) be the

low order bit. It might be easier to separately build circuit for ♯1 and for ♯2. More marks will be

given if fewer gates are used.

(b) Recall how to add to binary numbers. 1011 + 1101 = 11000. Add the following binary numbers.

100101100100 + 011001011100.

(c) Do Sipser question 9.15, building a circuit that adds two binary numbers. In addition to AND, OR,

and NOT circuits, you can build the circuit using ♯ gates. Denote the one input with xn−1, . . . , x0,

the other with yn−1, . . . , y0, and the sum with zn, . . . , z0.

(d) Design a three tape TM that adds two binary numbers. Initially, the first and second tapes

contain the two numbers. In end, the third tape should contain the sum. You can assume that

the two inputs and the output all have the same length, i.e. the high order bits are zero. Describe

it using the implementation level description (pg 145). However, I am particularly interested in

how the transition function δ(qi, x, y, z) = (qj , x
′, y′, z′, R,R,R) is defined as the bits are being

added together. You may want to use ♯1 and ♯2, when defining the transition function.

2. Faster primitive recursive programs

(a) It is a royal pain that primitive recursive programs on input 〈x, y, z〉 can only recurse by subtract-

ing one on one argument, i.e. on 〈x, y − 1, z〉 but won’t allow you to recurse by dividing by two,

i.e. on
〈

x, ⌊y
2 ⌋, z

〉

or on more than one argument, i.e. on
〈

x, ⌊y
2 ⌋, z−1

〉

. It would be really nice to

be able to say that F (x, y) is “primitive recursive” if H and G are and

F (x, y, z) = H(x, y, z, F (x, ⌊y
2 ⌋), z−1)

F (x, 0, 0) = G(x) .

For example Log(y) = Log(⌊y
2 ⌋) + 1.

This problem is to design a generic way for computing this as a primitive recursive function.

1



Towards this goal, define R = max(⌊log y⌋ + 1, z) to be the number of times that the algorithm

needs to recurses from input 〈x, y, z〉 until it reaches the base case 〈x, 0, 0〉. (Remember neither
y
2 nor z−1 ever goes negative.)

Define 〈x, Smallery(i), Smallerz(i)〉 to be the input that the stackframe i iterations from the

bottom is given and define f(x, y, z, i) = F (x, Smallery(i), Smallerz(i)) to be the answer that

this stack frame returns.

For example, for i = 0, the input is the base case 〈x, Smallery(0), Smallerz(0)〉 = 〈x, 0, 0〉. When

i = 1, this input might be 〈x, 1, 0〉 or 〈x, 0, 1〉 depending on which parameter reached zero first.

Finally when i = R, 〈x, Smallery(R), Smallerz(R)〉 is the original instance 〈x, y, z〉. It follows

that f(x, y, z,R) = F (x, y, z), which is what we are trying to compute.

Smallery(i) = High(y, i) = ⌊ y
2R−i ⌋ is the integer consisting of the i highest order bits of y.

For example 11 = 10112, so High(11, 2) = ⌊ 11
2⌊4⌋−2

⌋ = ⌊ 11
4 ⌋ = 2 = 102. Note that as needed

⌊High(y,i)
2 ⌋ = High(y, i−1).

It is more than you need to know, but Smallerz(i) = min(i,max(z − R + i, 0)). If z is the last

parameter to reach zero, then R = z and Smallerz(i) = i, giving as required Smallerz(0) = 0 and

Smallerz(R) = z. On the other hand, if z reaches zero earlier, then R > z and Smallerz(i) =

max(z − R + i, 0), giving as required Smallerz(0) = Smallerz(1) = 0 and Smallerz(R) = z.

Recall that our goal is to prove that F is primitive recursive. It is sufficient to prove instead that

f is primitive recursive because if it is, then so is F because F (x, y) = f(x, y,R).

Note that Smallery(i) and Smallerz(i)) are primitive recursive using things learned in class.

Assume that H and G are primitive recursive. Use them to write a primitive recursive function

for f . The answer is two quick lines. All you need to use are

F (x, y, z) = H(x, y, z, F (x, ⌊y
2 ⌋, z−1))

F (x, 0, 0) = G(x)

f(x, y, z, i) = F (x, Smallery(i), Smallerz(i)).

(b) Lets use this faster recursive structure to compute Add(x, y). The form of the recursion will be

Add(x, y) = HAdd(x, y,Add(⌊x
2 ⌋, ⌊

y
2 ⌋))

Add(0, 0) = 0

Your goal is to define HAdd defining Add(x, y) using the known primitive recursive functions

Double(z) = 2z and Odd(x) which is 1 if x is odd and 0 if it is even.

Hint start with x = 2a or x = 2a + 1 and y = 2b or y = 2b + 1.

You must also prove by induction on the size of the input that Add(x, y) is defined correctly.

(c) We will now use this faster recursive structure to compute Mult(x, y). The form of the recursion

will be

Mult(x, y) = HMult(x, y,Mult(x, ⌊y
2 ⌋))

Mult(0, 0) = 0

In addition to Double(z) = 2z and Odd(x), you have Add(x, y) available to you. Again prove by

induction that Mult(x, y) is defined correctly.

(d) Now lets bound the time to compute Add(x, y) and Mult(x, y).

Smallery(i) = High(y, i) = ⌊ y
2R−i ⌋ just involves shifting bits in the binary expansion of y, so it

is reasonable to say that this can be done in constant time. Same for Double(x) and Odd(x).

Give recurrence relations on the time TAdd(n) needed to add two n bit numbers and the time

TMult(n,m) needed to multiply x and y when x has n bits and y has m.

2


