
York University

CSE 2001 – Unit 2 Models
Instructor: Jeff Edmonds

Read Jeff’s notes. Read the book. Go to class. Ask lots of question. Study the slides. Work hard on solving
these questions on your own. Talk to your friends about it. Talk to Jeff about it. Only after this should
you read the posted solutions. Study the solutions. Understand the solutions. Memorize the solutions. The
questions on the tests will be different. But the answers will be surprisingly close.

1. Loops: Do some computational problems require two loops or can all of them be accomplished by a
single loop?

2. Suppose we want to design a TM to know whether a graph G is connected. What is the difference
between G and < G >? When do we use < G > and why is this done?

3. What is the difference between a computational problem that is a function vs one that is a language?
If L is a language, what (if anything) do the following mean: L(x), x ∈ L, L = ∅, L = {0, 1}∗, L is
decidable.

4. (Answer in Slides) TM Transitions: In the slides we proved that a TM that is only able to write the
characters {0, 1, b} on the tape is as powerful as one that has a larger tape alphabet Σ. The simpler
machine simulated the more complex one by grouping its cells into blocks of some fixed length so that
each block contained a 0/1 code for the required character from Σ. Suppose this block size is four,
input character 0 is encoded with 0000 and 1 with 0001. The simulation must start by inserting three
zeros in front of every bit of the input. For example, on input b1011bb . . ., the output of this first phase
should be . . . bb0001000000010001bb Note that we don’t actually care if the the output is at the
beginning of the tape as long as it is surrounded by blanks. Writing down TM descriptions is hard.
Instead, I recommend starting by writing pseudo code using variables and loops. The only allowed
actions are to read and write to the tape where the head is and to move the head to the left and right.
I am also a big believer in loop invariants. This is a clear picture of what the tape looks like at the
beginning of each iteration. To help, I will give you this code.

algorithm AddZerosBetweenEachDigit()

〈pre−cond〉: Assume head on the b before the input.

〈post−cond〉: Required output on tape after where the input had been

begin
loop

〈loop−invariant〉: For some i ∈ [0, n], the first i bits of the input have been
blanked out. These bits have been copied into a block past the input separated
by a single blank with three zeros inserted before each. The head is on the b

before the i+1st input bit.

1: Move head right one
2: a = bit at head (i.e. the i+1st input bit), Write a blank, Move head right
3: Move head right until it is at a blank (i.e. after remaining input)
4: Move head right one (i.e. into the output)
5: Move head right until it is at a blank (i.e. after produced output)
6-9 Write 0, head right; Write 0, head right; Write 0, head right; write a

10: Move head left until it is at a blank (i.e. after produced output)
11: Move head left one (i.e. into the remaining input)
12: if head is on a blank then exit loop (i.e. no more input)
13: Move head left until it is at a blank (i.e. after remaining input)

1

end loop
end algorithm

(a) Your goal is to prove that you know how to translate this code into a TM. You do not need to give
the full translation. That would be far too tedious. Suppose a program had 13 lines of code and
two variables x, y ∈ {1..5}, then what Pooh bear should write on the wall is the current line number
that is being executed and the value of x and of y. Hence for each k ∈ {1..13}, x′, y′ ∈ {1..5}, let
q〈k,x′,y′〉 denote the state in which the TM is on line k, x has the value x′, and y has the value y′.
What are the states for the above program and how many of them are there? Give the general
idea for how the transition function δ(q, c) = 〈q′, c′, direction〉 is defined.

(b) Explain and give the parts of δ(q, c) = 〈q′, c′, direction〉 needed for translating line 2 of the code,
i.e. “a = bit at head (i.e. the i+1st input bit), Write a blank, Move head right”.

(c) Do the same for lines 3 and 4, i.e. “Move head right until it is at a blank” and “Move head right
one (i.e. into the output)”.

(d) Do the same for line 9, i.e. “Write a”.

(e) Bonus 10 marks if correct: The problem is to redo the previous problem, except the TM can only
write 0 or 1. The tape starts with a two blanks before the input and an infinite number after
it, but once a blank gets a 0/1 written in it, it will never be blank again. Hint: At first I was
thinking that this could not be done, because the TM could not differentiate between whether
what is written on the tape is the initial input or some markings to know that progress had been
made. Then I saw how to do it. See if you can do it too.

5. Turing Machine: Write all the transition rules for a Turing Machine that solves the palindrome
problem. A palindrome is a string that is the same if you reverse it. For example, 9235329 is an
odd length palindrome and 923329 is an even length one. Your TM given a string of characters from
{0, 1, ..., 9} will answer with either yes or no. The input will have a blank b at the beginning and end,
i.e. b9235329b. The head will be at the first character. The loop invariant should be that either the
TM has already halted because it has already discovered that the string is not to a palindrome or for
some i ≥ 0, the first i characters and the last i characters have been correctly matched and blanked
out. What remains to check that the remaining string is a palindrome. For example, with i = 2 the
tape would contain bbb353bbb. The head will be at the first remaining character. You are to first write
the code as done in the slides and then translate this code into a TM.

6. (Answer in Slides) TM computing J(I)

(a) The input consists two blocks each consisting of exactly a million 0/1 characters. The first is the
binary description of a JAVA program J , the second of an input I. Describe, if possible, a simple
TM for computing whether J(I) = 1, meaning that program J on this input halts and accepts or
not, J(I) = 0. Focus on giving a meaningful name to each of the states of your machine. Describe
the complete δ(q, c) = 〈q′, c′, direction〉 function in all of its details.

(b) Redo the question when J is arbitrarily long, but I is still of this fixed length. Remember that
lots of problems can be solved that have arbitrarily long inputs so if you want to say that this
one is uncomputable, don’t give this as your reason.

7. (Answer in Slides) Recall that a Universal TM is a TM Muniversal, which when given input 〈“M”, I〉,
simulates TM M on input I. You are to give a sketch of how such a Muniversal would be built.
To make it easier, lets assume that M only has one tape and one head.
Hint: Because Muniversal is one fixed TM, it must have one fixed set of states Quniversal and one fixed
tape alphabet Σuniversal (i.e. the set of characters c that it is allowed to write in each tape call.)
Hint: Fix Σuniversal = { ′0′, ′1′, ′ 〈 ′, ′,′ , ′ 〉 ′ }.
Hint: Let Muniversal have three tapes each with its own head.
When Muniversal’s computation begins, the description of M will appear on Muniversal’s first tape and
I on its second.

2

(a) We must assume that the TM M described in Muniversal’s input has an arbitrarily large set of
states and an arbitrarily large tape alphabet ΣM .
Explain how you would describe M on Muniversal’s first tape. Remember this description must
be encoded using characters from Σuniversal = { ′0′, ′1′, ′ 〈 ′, ′,′ , ′ 〉 ′ }.

(b) At the beginning of Muniversal’s simulation of the tM
th time step of M ’s computation, Muniversal’s

first tape will still contain the description of M . What would be best to put on Muniversal’s second
and third tape? Remember what you have written there must be encoded using characters from
Σuniversal = { ′0′, ′1′, ′ 〈 ′, ′,′ , ′ 〉 ′ }.
Also where will Muniversal three tape heads be.

(c) We say that M can compute in one time step any function of “what it knows”, where “what it
knows” is its current state and the character that its head currently on. More formally, if M is in
state q and its head is seeing the character c, then δM (q, c) = 〈q′, c′, direction〉 specifies M ’s next
state and next actions.
Is it possible that Muniversal “knows” q, or c, or for that matter δM?

(d) Quickly sketch the actions taken by Muniversal’s simulation of the tM
th time step of M ’s compu-

tation.

(e) Let T (|I|) denote the running time of M on I and let |“M”| denote length of the description of
M stored on Muniversal’s first tape.
What is the running time needed by Muniversal to simulate M(I)?

(f) It is not fair that Muniversal is allowed three tapes but M only one. Suppose instead, Muniversal

was only allowed one tape.

Remember that a one tape TM Muniversal is able to simulate our three tape Muniversal by
interweaving the cells of the three tapes on one tape or by having a larger tape alphabet Σuniversal

to include characters like ′0 〈 1′ to signify that ′0′ is on its first tape ′ 〈 ′ on its second and ′1′ on
its third.

The challenge is that the one tape version of Muniversal has one not three heads.

Show how the straight forward implementation requires [O(|“M”|) + O(T (|I|))] × T (|I|) time.

Show how this can be improved to only O(|“M”|) × T (|I|) time with the smart trick of moving
the “M” and the “q”.

8. (Solution in Slides)

Think carefully about the definitions of Turing Machines. For every state q that the machine might
currently be in and character c that might be written in the cell of the tape pointed to by the head, we
define δ(q, c) = 〈q′, c′, direction〉 where q′ is the next state, c′ is the character to write, and direction

is the direction in which to move the head one cell.

For each of these three specified changes to the TM model, explain the effect it would have on the
reasonableness and on the computational power of the model. Do one of:
- A: Either argue that the set of problems computable does not change because the new and the old
versions of TM can simulate each other
- B: or show that the new model is weaker by giving a computable problem that no longer can be
computed
- C: or show that the new model is stronger by giving an easy algorithm for an arbitrary uncomputable
problem (for example the halting problem).

(a) Instead of requiring the characters c that are written in each cell of the tape to be from a
set of a fixed size (eg binary or ascii), allow the c and the c′ in the above definition δ(q, c) =
〈q′, c′, direction〉 to be arbitrarily large integers.

3

(b) Change the model so that the TM “knows” the location of the head. More formally, δ(q, i, c) =
〈q′, c′, direction〉 also depends on the index i of the cell that head is currently at.

(c) Change the model so that the TM no longer has a head but can specify the index of a cell of
the tape to read and to write to. The TM still has its input stored in the first n cells of the
input and is only allowed a fixed/constant/finite number of states and alphabet size. Formally,
δ(q, c) = 〈q′, c′, i, i′〉 where c is the last value read, c′ will be written to cell indexed by i and the
next c will be read from that indexed by i′.

4

