York University CSE 4111 Fall 2009 Instructor: Jeff Edmonds Steps Uncomputable

1. Our goal is to prove that there are more real numbers than integers, i.e. $|\mathcal{R}| > |\mathcal{N}|$. We prove this by proving the following first order logic statement \forall an inverse functions F^{-1} from \mathcal{N} ideally to \mathcal{R} , $\exists x_{diagonal} \in \mathcal{R}, \forall i \in \mathcal{N}, F^{-1}(i) \neq x_{diagonal}$ namely there are not enough integers to hit each real. We prove this by playing the game. Let F^{-1} be an arbitrary inverse function from \mathcal{N} ideally to \mathcal{R} . Define the real $x_{diagonal} \in \mathcal{R}$ as follows. For each $i \in \mathcal{N}$, I must define the i^{th} digit of $x_{diagonal}$. For this, we use flip of the i^{th} diagonal element as follows. Let x_i denote the real $F^{-1}(i)$ that the i^{th} row gives us. Let d_i denote the i^{th} digit of x_i . Then let the i^{th} digit of $x_{diagonal}$ be any digit d'_i other than d_i . This completely defines $x_{diagonal}$. Continuing the game, let $i \in \mathcal{N}$ be arbitrary. Note $x_i = F^{-1}(i)$ and $x_{diagonal}$ differ in their i^{th} digits. This proves that $F^{-1}(i) \neq x_{diagonal}$. 2. Our goal is to prove that there is an uncomputable computation problem P_{hard} ,

2. Our goar is to prove that there is an uncomputative computation problem T_{hard} , i.e. one for which each TM M fails to compute, because there in an input I_M on which it gives the wrong answer, i.e. $M(I_M) \neq P_{hard}(I_M)$. This is stated using the first order logic statement: $\exists P_{hard} \forall M \exists I_M M(I_M) \neq P_{hard}(I_M)$ We prove this using the game. Define P_{hard} to be the problem $\neg Problem_{diagonal}$, defined as $\neg Problem_{diagonal}("M") = 0$ iff M("M") = 1, i.e. M on "M" halts and says "yes" (assuming "M" is a valid the description of TM M). Continuing the game, let M be an arbitrary TM. Define input I_M to be the description "M" of TM M. We know M does not accept $\neg Problem_{diagonal}$, because it gives the wrong answer on input $I_M = "M"$, i.e. $M(I_M) \neq P_{hard}(I_M)$. This completes the proof that there is an uncomputable computation problem.