
August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 1 of 12

Maximal Vector Computation in Large Data Sets

Parke Godfrey1 Ryan Shipley2 Jarek Gryz1

1York University
Toronto, ON M3J 1P3, Canada

{godfrey, jarek}@cs.yorku.ca

2The College of William and Mary
Williamsburg, VA 23187-8795, USA

Abstract

Finding the maximals in a collection of vec-
tors is relevant to many applications. The
maximal set is related to the convex hull—
and hence, linear optimization—and near-
est neighbors. The maximal vector prob-
lem has resurfaced with the advent of skyline
queries for relational databases and skyline
algorithms that are external and relationally
well behaved.

The initial algorithms proposed for maximals
are based on divide-and-conquer. These es-
tablished good average and worst case asymp-
totic running times, showing it to be O(n)
average-case, where n is the number of vec-
tors. However, they are not amenable to ex-
ternalizing. We prove, furthermore, that their
performance is quite bad with respect to the
dimensionality, k, of the problem. We demon-
strate that the more recent external skyline
algorithms are actually better behaved, al-
though they do not have as good an apparent
asymptotic complexity. We introduce a new
external algorithm, LESS, that combines the
best features of these, experimentally evalu-
ate its effectiveness and improvement over the
field, and prove its average-case running time
is O(kn).

1 Introduction

The maximal vector problem is to find the subset of the
vectors such that each is not dominated by any of the

Part of this work was conducted at William & Mary where
Ryan Shipley was a student and Parke Godfrey was on faculty
while on leave of absence from York.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

vectors from the set. One vector dominates another
if each of its components has an equal or higher value
than the other vector’s corresponding component, and
it has a higher value on at least one of the correspond-
ing components. One may equivalently consider points
in a k-dimensional space instead of vectors. In this
context, the maximals have also been called the ad-
missible points, and the set of maximals called the
Pareto set. This problem has been considered for many
years, as identifying the maximal vectors—or admissi-
ble points—is useful in many applications. A number
of algorithms have been proposed for efficiently finding
the maximals.

The maximal vector problem has been rediscovered
recently in the database context with the introduction
of skyline queries. Instead of vectors or points, this
is to find the maximals over tuples. Certain columns
(with numeric domains) of the input relation are des-
ignated as the skyline criteria, and dominance is then
defined with respect to these. The non-dominated tu-
ples then constitute the skyline set.

Skyline queries have attracted a fair amount of at-
tention since their introduction in [5]. It is thought
that skyline offers a good mechanism for incorporat-
ing preferences into relational queries, and, of course,
its implementation could enable maximal vector ap-
plications to be built on relational database systems
efficiently. While the idea itself is older, much of the
recent skyline work has focused on designing good al-
gorithms that are well-behaved in the context of a re-
lational query engine and are external (that is, that
work over data sets too large to fit in main-memory).

On the one hand, intuition says it should be fairly
trivial to design a reasonably good algorithm for find-
ing the maximal vectors. We shall see that many ap-
proaches are O(n) average-case running time. On the
other hand, performance varies widely for the algo-
rithms when applied to input sets of large, but real-
istic, sizes (n) and reasonable dimensionality (k). In
truth, designing a good algorithm for the maximal vec-
tor problem is far from simple, and there are many
subtle, but important, issues to attend.

In this paper, we focus on generic maximal-vector
algorithms; that is, on algorithms for which prepro-

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 2 of 12

cessing steps or data-structures such as indexes are
not required. The contributions are two-fold: first, we
thoroughly analyze the existing field of generic max-
imal vector algorithms, especially with consideration
of the dimensionality k’s impact; second, we present
a new algorithm that essentially combines aspects of
a number of the established algorithms, and offers a
substantial improvement over the field.

In §2, we simultaneously review the work in the area
and analyze the proposed algorithms’ runtime perfor-
mances. We first introduce a cost model on which we
can base average-case analyses (§2.1). This assumes
an estimate of the number of maximals expected, on
average, assuming statistical independence of the di-
mensions and distinct values of the vectors along each
dimension. We summarize the generic algorithmic
approaches—both older algorithms and newer, exter-
nal skyline algorithms—for computing maximal vector
sets (§2.2). We briefly discuss some of the index-based
approaches to maximal vector computation, and why
index-based approaches are necessarily of limited util-
ity (§2.3). We then formally analyze the run-time per-
formances of the generic algorithms to identify the bot-
tlenecks and compare advantages and disadvantages
between the approaches, first the divide-and-conquer
approaches (§2.4), and then the external, “skyline” ap-
proaches (§2.5).

In §3, we present a new algorithm for maximal vec-
tor computation, LESS (linear elimination sort for sky-
line), the design of which is motivated by our analyses
and observations (§3.1). We present briefly some ex-
perimental evaluation of LESS that demonstrates its
improvement over the existing field (§3.2). We for-
mally analyze its runtime characteristics, prove it has
O(kn) average runtime performance, and demonstrate
its advantages with respect to the other algorithms
(§3.3). Finally, we identify the key bottlenecks for any
maximal-vector algorithm, and discuss further ways
that LESS could be improved (§3.4).

We discuss future issues and conclude in §4.

2 Algorithms and Analyses

2.1 Cost Model

A simple approach would be to compare each point
against every other point to determine whether it is
dominated. This would be O(n2), for any fixed dimen-
sionality k. Of course, once a point is found that dom-
inates the point in question, processing for that point
can be curtailed. So average-case running time should
be significantly better, even for this simple approach.
In the best-case scenario, for each non-maximal point,
we would find a dominating point for it immediately.
So each non-maximal point would be eliminated in
O(1) steps. Each maximal point would still be ex-
pensive to verify; in the least, it would need to be
compared against each of the other maximal points to

show it is not dominated. If there are not too many
maximals, this will not be too expensive. Given m, the
expected number of maximals, if m <

√
n, the number

of maximal-to-maximal comparisons, O(m2), is O(n).
Thus, assuming m is sufficiently small, in best-case,
this approach is O(n). A goal then is for algorithms
with average-case running time of O(n).

Performance then is also dependent on the number
of maximals (m). In worst-case, all points are maximal
(m = n); that is, no point dominates any other. We
shall consider average-case performance based on the
expected value of m. To do this, we shall need certain
assumptions about the input set.
Definition 1 Consider the following properties of a
set of points:
a. (independence) the values of the points over a sin-

gle dimension are statistically independent of the
values of the points along any other dimension;

b. (distinct values) points (mostly) have distinct val-
ues along any dimension (that is, there are not
many repeated values); and

c. (uniformity) the values of the points along any
one dimension are uniformly distributed.

Collectively, the properties of independence and dis-
tinct values are called component independence (CI)
[4]. (In some cases, we shall just assume CI as the
property of uniformity is not necessary for the result
at hand.) Let us call collectively the three properties
uniform independence (UI).1

Additionally, assume under uniformity, without loss
of generality, that any value is on the interval (0, 1).2

Under CI, the expected value of the number of max-
imals is known [6, 11]: m = Hk−1,n, where Hk,n is the
k-th order harmonic of n. Let H0,n = 1, for n > 0, and

Hk,n be inductively defined as Hk,n =

n
∑

i=1

Hk−1,i

i
, for

k > 1. Hk,n ≈ H
k

1,n/k ! ≈ ((ln n) + γ)k/k !.
When the distinct-value assumption is violated and

there are many repeated values along a dimension, the
expected value of m goes down, up to the point at
which the set is dominated by duplicate points (that
is, equivalent on all the dimensions) [11].

For best-case, assume that there is a total ordering
of the points, p1, . . . , pn, such that any pi dominates
all pj , for i < j. Thus, in best-case, m = 1 (the one
point being p1).

3

1Note that, given a set of points that is CI, we could replace
the points’ values with their ordinal ranks over the data set with
respect to each dimension. Then the set of points would be
UI. However, this transformation would not be computationally
insignificant.

2This is without loss of generality since it makes no further
assumptions about the data distributions. The data values can
always be normalized onto (0, 1). Furthermore, this adds no sig-
nificant computational load. Knowing the maximum and mini-
mum values of the points for each dimension is sufficient to make
the mapping in a single pass.

3We consider a total order so that, for any subset of the

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 3 of 12

algorithm ext. best-case average-case worst-case

DD&C [14] no O(knlg n) §2.2 Ω(knlgn + (k − 1)k−3
n) Thm.12 O(nlg k−2

n) [14]

LD&C [4] no O(kn) §2.2 O(n), Ω((k − 1)k−2
n) [4], Thm. 11 O(nlg k−1

n) [4]

FLET [3] no O(kn) §2.2 O(kn) [3] O(nlg k−2
n) [3]

SD&C [5] – O(kn) Thm. 2 Ω(
√

k 22k
n) Thm. 10 O(kn2) Thm. 3

BNL [5] yes O(kn) Thm. 4 – O(kn2) Thm. 5

SFS [8] yes O(nlg n + kn) Thm. 6 O(nlg n + kn) Thm. 8 O(kn2) Thm. 9

LESS – yes O(kn) Thm. 14 O(kn) Thm. 13 O(kn2) Thm. 15

Figure 1: The generic maximal vector algorithms.

We shall assume that k ≪ n. Furthermore, we as-
sume that, generally, k < lg n. We include the dimen-
sionality k in our O-analyses.

We are now equipped to review the proposed algo-
rithms for finding the maximal vectors, and to analyze
their asymptotic runtime complexities (O’s). Not all
of the O(n) average cases can be considered equivalent
without factoring in the impact of the dimensionality
k. Furthermore, we are interested in external algo-
rithms, so I/O cost is pertinent. After our initial anal-
yses, we shall look into these details.

2.2 The Algorithms

The main (generic) algorithms that have been pro-
posed for maximal vectors are listed in Figure 1. We
have given our own names to the algorithms (not nec-
essarily the same names as used in the original papers)
for the sake of discussion. For each, whether the al-
gorithm was designed to be external is indicated, and
the known best, average, and worst case running time
analyses—with respect to CI or UI and our model for
average case in §2.1—are shown. For each runtime
analysis, it is indicated where the analysis appears.
For each marked with ‘§’, it follows readily from the
discussion of the algorithm in that Section. BNL’s
average-case, marked with ‘–’, is not directly amica-
ble to analysis (as discussed in §2.5). The rest are
proven in the indicated theorems.4

The first group consists of divide-and-conquer-
based algorithms. DD&C (double divide and conquer)
[14], LD&C (linear divide and conquer) [4], and FLET

(fast linear expected time) [3] are “theoretical” algo-
rithms that were proposed to establish the best bounds
possible on the maximal vector problem. No attention
was paid to making the algorithms external. Their
initial asymptotic analyses make them look attractive,
however.

DD&C does divide-and-conquer over both the data
(n) and the dimensions (k). First, the input set is
sorted in k ways, once for each dimension. Then, the

points, there is just one maximal with respect to that subset.
This is necessary for discussing the divide-and-conquer-based
algorithms.

4Some of the theorems are relatively straightforward, but we
put them in for consistency.

sorted set is then split in half along one of the di-
mensions, say dk, with respect to the the sorted order
over dk. This is recursively repeated until the result-
ing set is below threshold in size (say, a single point).
At the bottom of this recursive divide, each set (one
point) consists of just maximals with respect to that
set. Next, these (locally) maximal sets are merged.
On each merge, we need to eliminate any point that
is not maximal with respect to the unioned set. Con-
sider merging sets A and B. Let all the maximals in A
have a higher value on dimension dk than those in B
(given the original set was divided over the sorted list
of points with respect to dimension dk). The maximals
of A ∪ B are determined by applying DD&C, but now
over dimensions d1, . . . , dk−1, so with reduced dimen-
sionality.5

Once the dimensionality is three, an efficient
special-case algorithm can be applied. Thus, in worst-
case, O(nlg k−2n) steps are taken. In the best-case, the
double-divide-and-conquer is inexpensive since each
maximal set only has a single point. (It resolves to
O(n).) However, DD&C needs to sort the data by each
dimension initially, and this costs O(knlgn). We estab-
lish DD&C’s average-case performance in Section 2.4.
Note that DD&C establishes that the maximal vector
problem is, in fact, o(n2).

LD&C [4] improves on the average-case over DD&C.
Their analysis exploits the fact that they showed m to
be O(ln k−1n) average-case. LD&C does a basic divide-
and-conquer recursion first, randomly splitting the set
into two equal sets each time. (The points have not
been sorted.) Once a set is below threshold size, the
maximals are found. To merge sets, the DD&C algo-
rithm is applied. This can be modeled by the recur-
rence

T (1) = 1

T (n) = 2T (n/2) + (ln k−1n)lg k−2(ln k−1n)

Note that (ln k−1n)lg k−2(ln k−1n) is o(n). Therefore,
LD&C is average-case linear, O(n) [4].

In best case, each time LD&C calls DD&C to merge
to maximal sets, each maximal set contains a single
point. Only one of the two points survives in the re-

5All points in A are marked so none will be thrown away.
Only points in B can be dominated by points in A, since those
in A are better along dimension dk.

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 4 of 12

sulting maximal set. This requires that DD&C recurse
to the bottom of its dimensional divide, which is k
deep, to determine the winning point. O(n) merges are
then done at a cost of O(k) steps each. Thus, LD&C’s
average-case running time is, at least, Ω(kn). (In Sec-
tion 2.4, we establish that, in fact, it is far worse.)
In worst case, the set has been recursively divided an
extra time, so LD&C is lgn times worse than DD&C.

FLET [3] takes a rather different approach to im-
proving on DD&C’s average-case. Under UI,6 a virtual
point x—not necessarily an actual point in the set—is
determined so that the probability that no point from
the set dominates it is less than 1/n. The set of points
is then scanned, and any point that is dominated by x
is eliminated. It is shown that the number of points x
will dominate, on average, converges on n in the limit,
and the number it does not is o(n). It is also tracked
while scanning the set whether any point is found that
dominates x. If some point did dominate x, it does not
matter that the points that x dominates were thrown
away. Those eliminated points are dominated by a real
point from the set anyway. DD&C is then applied to
the o(n) remaining points, for a O(kn) average-case
running time. This happens at least (n − 1)/n frac-
tion of trials. In the case no point was seen to dom-
inate x, which should occur less than 1/n fraction of
trials, DD&C is applied to the whole set. However,
DD&C’s O(nlg k−2n) running time in this case is amor-

tized by 1/n, and so contributes O(lg k−2n), which is
o(n). Thus, the amortized, average-case running time
of FLET is O(kn). FLET is no worse asymptotically
than DD&C in worst case.

FLET’s average-case runtime is O(kn) because FLET

compares O(n) number of points against point x. Each
comparison involves comparing all k components of the
two points, and so is k steps. DD&C and LD&C never
compare two points directly on all k dimensions since
they do divide-and-conquer also over the dimensions.
In [4] and [14], DD&C and LD&C were analyzed with
respect to a fixed k. We are interested in how k affects
their performance, though.

The second group—the skyline group—consists of
external algorithms designed for skyline queries. Sky-
line queries were introduced in [5] along with two gen-
eral algorithms proposed for computing the skyline in
the context of a relational query engine.

The first general algorithm in [5] is SD&C, single
divide-and-conquer. It is a divide-and-conquer algo-
rithm similar to DD&C and LD&C. It recursively di-
vides the data set. Unlike LD&C, DD&C is not called
to merge the resulting maximal sets. A divide-and-
conquer is not performed over the dimensions. Con-
sider two maximal sets A and B. SD&C merges them
by comparing each point in A against each point in B,
and vice versa, to eliminate any point in A dominated

6For the analysis of FLET, we need to make the additional
assumption of uniformity from Def. 1.

by a point in B, and vice versa, to result in just the
maximals with respect to A∪ B.
Theorem 2 Under CI (Def. 1) and the model in §2.1,
SD&C has a best-case runtime of O(kn).
Proof 2 Let mA denote the number of points in A
(which are maximal with respect to A). Let mA\B de-
note the number of points in A that are maximal with
respect to A∪B. Likewise, define mB and mB\A in the
same way with respect to B. An upper bound on the
cost of merging A and B is kmAmB and a lower bound
is kmA\BmB\A. In best case, SD&C is O(kn). 2

For a fixed k, average case is O(n). (We shall con-
sider more closely the impact of k on the average case
in §2.4.)
Theorem 3 Under CI (Def. 1), SD&C has a worst-
case runtime of O(kn2).
Proof 3 The recurrence for SD&C under worst case
is

T (1) = 1
T (n) = 2T (n/2) + (n/2)2

This is O(n2) number of comparisons. Each com-
parison under SD&C costs k steps, so the runtime is
O(kn2). 2

No provisions were made to make SD&C particu-
larly well behaved relationally, although it is clearly
more amenable to use as an external algorithm than
DD&C (and hence, LD&C and, to an extent, FLET too,
as they rely on DD&C). The divide stage of SD&C is
accomplished trivially by bookkeeping. In the merge
stage, two files, say A and B, are read into main mem-
ory, and their points pairwise compared. The result
is written out. As long as the two input files fit in
main memory, this works well. At the point at which
the two files are too large, it is much less efficient. A
block-nested loops strategy is employed to compare all
A’s points against all of B’s, and vice versa.

The second algorithm proposed in [5] is BNL, block
nested loops. This is basically an implementation of
the simple approach discussed in §2.1, and works re-
markably well. A window is allocated in main memory
for collecting points (tuples). The input file is scanned.
Each point from the input stream is compared against
the window’s points. If it is dominated by any of them,
it is eliminated. Otherwise, any window points dom-
inated by the new point are removed, and the new
point itself is added to the window.

At some stage, the window may become full. Once
this happens, the rest of the input file is processed dif-
ferently. As before, if a new point is dominated by a
window point, it is eliminated. However, if the new
point is not dominated, it is written to an overflow
file. (Dominated window points are still eliminated
as before.) The creation of an overflow file means
another pass will be needed to process the overflow
points. Thus, BNL is a multi-pass algorithm. On a
subsequent pass, the previous overflow file is read as
the input. Appropriate bookkeeping tracks when a

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 5 of 12

window point has gone full cycle. (That is, it has been
compared against all currently surviving points.) Such
window points can be removed from the window and
written out, or pipelined along, as maximals.

BNL differs substantially from the divide-and-
conquer algorithms. As points are continuously re-
placed in the window, those in the window are a sub-
set of the maximals with respect to the points seen so
far (modulo those written to overflow). These global
maximals are much more effective at eliminating other
points than are the local maximals computed at each
recursive stage in divide-and-conquer.
Theorem 4 Under CI (Def. 1) and the model in §2.1,
BNL has a best-case runtime of O(kn).
Proof 4 BNL’s window will only ever contain one
point. Each new point off the stream will either re-
place it or be eliminated by it. Thus BNL will only
require one pass. 2

A good average case argument with respect to UI
is difficult to make. We discuss this in §2.5. Let w be
the size limit of the window in number of points.
Theorem 5 Under CI (Def. 1), BNL has a worst-case
runtime of O(kn2).
Proof 5 In worst case, every point will need to be
compared against every other point for O(kn2). This
requires ⌈n/w⌉ passes. Each subsequent overflow file
is smaller by w points. So this requires writing n2/2w
points and reading n2/2w points. The size of w is fixed.
In addition to requiring O(n2) I/O’s, every record will
need to be compared against every other record. Every
record is added to the window; none is ever removed.
Each comparison costs k steps. So the work of the
comparisons is O(kn2). 2

In [8], SFS, sort filter skyline, is presented. It differs
from BNL in that the data set is topologically sorted
initially. A common nested sort over the dimensions
d1, . . . , dk, for instance, would suffice. In [9], the utility
of sorting for finding maximals and SFS are considered
in greater depth. Processing the sorted data stream
has the advantage that no point in the stream can be
dominated by any point that comes after it. In [8, 9],

sorting the records by volume descending,
∏

k

i=1 t[di];
7

or, equivalently, by entropy descending,
∑

k

i=1 ln t[di]
(with the assumption that the values t[di] > 0 for all
records t and dimensions i) is advocated.8 This has the
advantage of tending to push records that dominate
many records towards the beginning of the stream.

SFS sorts by volume because records with higher
volumes are more likely to dominate more records in
the set. They have high “dominance” numbers. As-
suming UI, the number of records a given record dom-
inates is proportional to its volume. By putting these
earlier in the stream, non-maximal records are elimi-
nated in fewer comparisons, on average. The impor-

7As in the discussion about FLET, we are assuming unifor-
mity (Def. 1.

8Keeping entropy instead of volume avoids register overflow.

tance of this effect is emphasized in the discussion
of LESS in §3 and in the proof that LESS is O(kn)
(Thm. 13).

SFS maintains a main-memory window as does
BNL. It is impossible for a point off the stream to dom-
inate any of the points in the window, however. Any
point is thus known to be maximal at the time it is
placed in the window. The window’s points are used
to eliminate stream points. Any stream point not elim-
inated is itself added to the window. As in BNL, once
the window becomes full, surviving stream points must
be written to an overflow file. At the end of the input
stream, if an overflow file was opened, another pass is
required. Unlike BNL, the window can be cleared at
the beginning of each pass, since all points have been
compared against those maximals. The overflow file is
then used as the input stream.

SFS has less bookkeeping overhead than BNL since
when a point is added to the window, it is already
known that the point is maximal. This also means
that SFS is progressive: at the time a point is added
to the window, it can also be shipped as a maximal
to the next operation. In [8], it was shown that SFS

performs better I/O-wise than BNL, and runs in better
time (and this includes SFS’s necessary sorting step).
The experiments in [8] were run over million-tuple data
sets and with dimensions of five to seven.

Theorem 6 Under CI (Def. 1) and the model in §2.1,
SFS has a best-case runtime of O(kn + nlgn).

Proof 6 Under our best-case scenario, there is one
maximal point. This point must have the largest vol-
ume. Thus it will be the first point in SFS’s sorted
stream, and the only point to be ever added to the win-
dow. This point will eliminate all others in one pass.
So SFS is sorting plus O(kn) in best-case, and works
in one filtering pass. 2

For average-case analysis of SFS, we need to know
how many of the maximal points dominate any given
non-maximal. For any maximal point, it will be com-
pared against every maximal point before it in the
sorted stream to confirm its maximality. Thus there
will be m2/2 of these comparisons. For any non-
maximal point, how many maximals (points in the
window) will it need to be compared against before
being eliminated?

Lemma 7 Under UI (Def. 1), in the limit of n, the
probability that any non-maximal point is dominated by
the maximal point with the highest volume converges to
one.

Proof 7 Assume UI. Let the values of the points be
distributed uniformly on (0, 1) on each dimension.

We draw on the proof of FLET’s average case run-
time in [3]. Consider the (virtual) point x with coor-
dinates x[di] = 1 − ((ln n)/n)1/k, for each i ∈ 1, . . . , k.
The probability that no point from the data set dom-
inates x then is (1 − (ln n)/n)n, which is at most
e−lnn = 1/n.

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 6 of 12

The expected number of points dominated by x (and
hence, dominated by any point that dominates x) is
(1 − ((ln n)/n)1/k)k.

lim
n→∞

(1 − ((ln n)/n)1/k)k = 1

Thus any maximal with a volume greater than x’s
(which would include any points that dominate x) will
dominate all points in the limit of n. The probabil-
ity there is such a maximal is greater than (n − 1)/n,
which converges to one in the limit of n. 2

Theorem 8 Under UI (Def. 1), SFS has an average-
case runtime of O(kn + nlgn).
Proof 8 The sort phase for SFS is O(nlgn). On
the initial pass, the volume of each point can be com-
puted at O(kn) expense. During the filter phase of SFS,
m2/2 maximal-to-maximal comparisons will be made.

Expected m is Θ((ln k−1n)/(k − 1)!), so this is o(n).
Number of comparisons of non-maximal to maximal is
O(n). Thus the comparison cost is O(kn). 2

Theorem 9 Under CI (Def. 1), SFS has a worst-case
runtime of O(kn2).
Proof 9 In the worst-case, all records are maximal.
Each record will be placed in the skyline window af-
ter being compared against the records currently there.
This results in n(n − 1)/2 comparisons, each taking k
steps. The sorting phase is O(nlgn) again. 2

On the one hand, it is observed experimentally that
SFS makes fewer comparisons than BNL. SFS com-
pares only against maximals, whereas BNL will often
have non-maximal points in its window. On the other
hand, SFS does require sorting. For much larger n, the
sorting cost will begin to dominate SFS’s performance.

2.3 Index-based Algorithms and Others

In this paper, as stated already, we focus on generic al-
gorithms to find the maximal vectors, algorithms that
do not require any pre-processing or pre-existing data-
structures. Any query facility that is to offer maximal
vector, or skyline, computation would require a generic
algorithm for those queries for which the pre-existing
indexes are not adequate.

There has been a good deal of interest though in
index-based algorithms for skyline. The goals are to
be able to evaluate the skyline without needing to
scan the entire dataset—so for sub-linear performance,
o(n)—and to produce skyline points progressively, to
return initial answers as quickly as possible.

The shooting-stars algorithm [13] exploits R-trees
and modifies nearest-neighbors approaches for finding
skyline points progressively. This work is extended
upon in [15] in which they apply branch-and-bound
techniques to reduce significantly the I/O overhead.
In [10, 12], bitmaps are explored for skyline evalua-
tion, appropriate when the number of values possible
along a dimension is small. In [1], an algorithm is
presented as instance-optimal when the input data is

available for scanning in k sorted ways, sorted along
each dimension. If a tree index were available for each
dimension, this approach could be applied.

Index-based algorithms for computing the skyline
(the maximal vectors) additionally have serious limi-
tations. The performance of indexes—such as R-trees
as used in [13, 15]—does not scale well with the num-
ber of dimensions. Although the dimensionality of a
given skyline query will be typically small, the range
of the dimensions over which queries can be composed
can be quite large, often exceeding the performance
limit of the indexes. For an index to be of practical
use, it would need to cover most of the dimensions
used in queries.

Note also that building several indexes on small sub-
sets of dimensions (so that the union covers all the
dimensions) does not suffice, as the skyline of a set
of dimensions cannot be computed from the skylines
of the subsets of its dimensions. It is possible, and
probable, that

maxes{d1,...,di}(T) ∪ maxes{di+1,...,dk}(T)
(maxes{d1,...,dk}(T)

Furthermore, if the distinct-values assumption from
§2.1 is lifted, the union is no longer even guaranteed
to be a subset. (This is due to the possibility of ties
over, say, d1, . . . , di.)

Another difficulty with the use of indexes for com-
puting skyline queries is the fact that the skyline oper-
ator is holistic, in the sense of holistic aggregation op-
erators. The skyline operator is not, in general, com-
mutative with selections.9 For any skyline query that
involves a select condition then, an index that would
have applied to the query without the select will not
be applicable.

Finally, in a relational setting, it is quite possible
that the input set—for which the maximals are to be
found—is itself computed via a sub-query. In such a
case, there are no available indexes on the input set.

2.4 The Case against Divide and Conquer

Divide-and-conquer algorithms for maximal vectors
face two problems:

1. it is not evident how to make an efficient external
version; and,

2. although the asymptotic complexity with respect
to n is good, the multiplicative “constant”—and
the effect of the dimensionality k—may be bad.

Since there are algorithms with better average-case
run-times, we would not consider DD&C. Furthermore,
devising an effective external version for it seems im-
possible. In DD&C, the data set is sorted first in
k ways, once for each dimension. The sorted orders
could be implemented in main memory with one node
per point and a linked list through the nodes for each
dimension. During the merge phase, DD&C does not

9In [7], cases of commutativity of skyline with other relational
operators are shown.

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 7 of 12

re-sort the data points; rather, the sorted orders are
maintained. In a linked-list implementation, it is easy
to see how this could be done. It does not look possible
to do this efficiently as an external algorithm.

LD&C calls DD&C repeatedly. Thus, for the same
reasons, it does not seem possible to make an effec-
tive external version of LD&C. FLET calls DD&C just
once. Still, since the number of points that remain
after FLET’s initial scan and elimination could be sig-
nificant, FLET would also be hard to externalize.

SD&C was introduced in [5] as a viable external
divide-and-conquer for computing maximal vectors.
As we argued above, and as is argued in [15], SD&C is
still far from ideal as an external algorithm. Further-
more, its runtime performance is far from what one
might expect.

Each merge that SD&C performs of sets, say, A
and B, every maximal with respect to A∪B that sur-
vives from A must have been compared against every
maximal that survives from B, and vice-versa. This
is a floor on the number of comparisons done by the
merge. We know the number of maximals in aver-
age case under CI. Thus we can model SD&C’s cost
via a recurrence. The expected number of maximals
out of n points of k dimensions under CI is Hk−1,n;

(ln k−1n)/(k − 1)! converges on this from below, so we
can use this in a floor analysis.
Theorem 10 Under CI (Def. 1), SD&C has average-

case runtime of Ω(
√

k 22kn).
Proof 10 Let n = 2q for some positive integer q, with-
out loss of generality. Consider the function T as fol-
lows.
T (1) = 1

T (n) = 2T (n/2) + (1
2 (ln k−1n)/(k − 1)!)2

c1 = 1/(4(k− 1)!2) D = 2k − 2

= 2T (n/2) + c1ln
Dn

= c1

q
∑

i=1

2i(ln n − ln 2i)D

c2 = c1/(lg 2e)
D

= c2

q
∑

i=1

2i(lg 2n − lg 22
i)D

= c2

q
∑

i=1

2i(q − i)D = c2

q−1
∑

i=0

2q−iiD

j
∑

i=0

2j−iiD ≈ (lg 2e)
D−1D! 2j+1

≈ c2(lg 2e)
D−1D! 2q = 1

4 (ln 2)
(

2k−2
k−1

)

n
(

2j
j

)

≈ 22j/
√

πj (by Stirling’s approximation)

≈ ln 2√
π(k−1)

22k−4n

This counts the number of comparisons. Each compar-
ison costs k steps.

For each merge step, we assume that the expected
value of maximals survive, and that exactly half came
from each of the two input sets. In truth, fewer might

0 2 4 6 8 10 12 14 16 18#dimensions 0
10

20
30

40
50

60
70

80
90

100

lg2(#vectors)

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30

ratio

Figure 2: Behavior of LD&C.

come from A and more from B sometimes. So the
square of an even split is an over-estimate, given vari-
ance of resulting set sizes. In [2], it is established that
the variance of the number of maximals under CI con-
verges on Hk−1,n. Thus in the limit of n, runtime of
SD&C will converge up to an asymptotic above the re-
currence. 2

This is bad news. SFS requires n comparisons in the
limit of n, for any fixed dimensionality k. SD&C, how-
ever, requires on the order of (22k/

√
k)×n comparisons

in n’s limit!
In [5], it was advocated that SD&C is more appro-

priate for larger k (say, for k > 7) than BNL, and is
the preferred solution for data sets with large k. Our
analysis conclusively shows the opposite: SD&C will
perform increasingly worse for larger k and with larger
n. We believe their observation was an artifact of the
experiments in [5]. The data sets they used were only
100,000 points, and up to 10 dimensions. Even if the
data sets used were a million points instead (and 10
dimensions), SD&C would have performed proportion-
ally significantly much worse.

We can model LD&C’s behavior similarly. For a
merge (of A and B) in LD&C, it calls DD&C. Since
A and B are maximal sets, most point will survive
the merge. The cost of the call to DD&C is bounded
below by its worst-case runtime over the number of
points that survive. The double recursion must run
to complete depth for these. So if m points sur-
vive the merge, the cost is mlg k−2

2 m steps. As in
the proof of Thm. 10 for SD&C, we can approximate
the expected number of maximals from below. Let
mk,n = (ln k−1(n + γ))/(k − 1)!. The recurrence is

T (1) = 1

T (n) = 2T (n/2) + max(mk,nlg k−2
2 mk,n, 1)

We plot this in Figure 2.10 This shows the ratio
of the number of comparisons over n. The recurrence
asymptotically converges to a constant value for any
given k. It is startling to observe that the k-overhead of
LD&C appears to be worse than that of SD&C! The ex-
planation is that mk,ilg

k−2
2 mk,i is larger initially than

10The behavior near the dimensions axis is an artifact of our
log approximation of Hk−1,i, the expected number of maximals.

In computing the graph, mk,ilg
k−2

2
mk,i is rounded up to one

whenever it evaluates to less than one.

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 8 of 12

is m2
k,i, for the small i sizes of data sets encountered

near the bottom of the divide-and-conquer. (Of course

m2
k,i ≫ mk,ilg

k−2
2 mk,i in i’s limit; or, in other words,

as i approaches n each subsequent merge level, for very
large n.) However, it is those initial merges near the
bottom of the divide-and-conquer that contribute most
to the cost overall, since there are many more pairs of
sets to merge at those levels. Next, we prove a lower
bound on LD&C’s average case.
Theorem 11 Under CI (Def. 1), LD&C has average-
case runtime of Ω((k − 1)k−2n).
Proof 11 Let n = 2q for some positive integer q, with-
out loss of generality.
mk,nlg k−2

2 mk,n

≈ ((ln k−1n)/(k − 1)!)lg 2(((ln
k−1n)/(k − 1)!))k−2

c1 = 1/(k − 1)!

= c1(ln 2)k−1(lg 2n)k−1

· (lg 2((ln 2)k−1(lg 2n)k−1) − lg 2(k − 1)!)k−2

c2 = ln k−12

> c1c2(lg
k−1
2 n)

· ((k − 1)((lg 2q) + (ln 2) − (lg 2(k − 1)))k−2

when lg 2q > lg 2(k − 1)

> c1c2(lg
k−1
2 n)(k − 1)k−2

when lg 2q − lg 2(k − 1) ≥ 1
thus q ≥ 2(k − 1)

Let l = 2(k − 1). Consider the function T as follows.

T (n) = 2T (n/2) + max(mk,nlg k−2
2 mk,n, 1)

> c1c2(k − 1)k−2

q
∑

i=l

2q−iik−1

for n ≥ 2l

= c1c2(k − 1)k−22l

(q−l)
∑

i=0

2(q−l)−iik−1

≈ c1c2(k − 1)k−22l(lg k−1
2 e)(k − 1)!2(q−l)

= (k − 1)k−22q

= (k − 1)k−2n
T (n) is a strict lower bound on the number of com-
parisons that LD&C makes, in average case. We only
sum T (n) for n ≥ 2l and show T (n) > (k − 1)k−2n. 2

We can use the same reasoning to obtain an asymp-
totic lower bound on DD&C’s average-case runtime.
Theorem 12 Under CI (Def. 1), DD&C has an
average-case runtime of Ω(knlgn + (k − 1)k−3n).
Proof 11 DD&C first does a divide and conquer over
the data on the first dimension. During a merge step
of this divide-and-conquer, it recursively calls DD&C

to do the merge, but considering one dimension fewer.
The following recurrence provides a lower bound.
T (n) = 1

T (n) = 2T (n/2) + max(mk,nlg k−3
2 mk,n, 1)

By the same proof steps as in the proof for Thm. 11,
we can show T (n) > (k − 1)k−3n. Of course,
DD&C sorts the data along each dimension before
it commences divide-and-conquer. The sorting costs
Θ(knlgn). Thus, DD&C considered under CI has

average-case runtime of Ω(knlgn + (k − 1)k−3n). 2

Should one even attempt to adapt a divide-and-
conquer approach to a high-performance, external al-
gorithm for maximal vectors? Divide-and-conquer is
quite elegant and efficient in other contexts. We have
already noted, however, that it is quite unclear how
one could externalize a divide-and-conquer approach
for maximal vectors effectively. Furthermore, we be-
lieve their average-case run-times are so bad, in light of
the dimensionality k, that it would not be worthwhile.

Divide-and-conquer has high overhead with respect
to k because the ratio of the number of maximals to
the size of the set for a small set is much greater than
for a large set. Vectors are not eliminated quickly as
they are compared against local maximals. The scan-
based approaches such as BNL and SFS find global
maximals—maximals with respect to the entire set—
early, and so eliminate non-maximals more quickly.

2.5 The Case against the Skyline Algorithms

SFS needs to sort initially, which gives it too high an
average-case runtime. However, it was shown in [8] to
perform better than BNL. Furthermore, it was shown
in [8] that BNL is ill-behaved relationally. If the data
set is already ordered in some way (but not for the ben-
efit of finding the maximals), BNL can perform very
badly. Of course, SFS is immune to input order since
it must sort. When BNL is given more main-memory
allocation—and thus, its window is larger—its per-
formance deteriorates. This is because any maximal
point is necessarily compared against all the points
in the window. There no doubt exists an optimal
window-size for BNL for a data set of any given n and
k. However, not being able to adjust the window size
freely means one cannot reduce the number of passes
BNL takes.

All algorithms we have observed are CPU-bound, as
the number of comparisons to be performed often dom-
inates the cost. SFS has been observed to have a lower
CPU-overhead than BNL, and when the window-size
is increased for SFS, its performance improves. This is
because all points must be compared against all points
in the window (since they are maximals) eventually
anyway. The number of maximal-to-maximal compar-
isons for SFS is m2/2 because each point only needs
to be compared against those before it in the stream.
BNL of course has this cost too, and also compares
eventual maximals against additional non-maximals
along the way. Often, m is reasonably large, and so
this cost is substantial.

3 The LESS Algorithm

3.1 Description

We devise an external, maximal-vector algorithm that
we call LESS (linear elimination sort for skyline) that
combines aspects of SFS, BNL, and FLET, but that

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 9 of 12

Buffer Pool

E
F W

indow

Block for quicksort

...

(a) in pass zero

Buffer Pool

SF W
indow

k

...

...1

2

OutputInputs

(b) in pass f

Figure 3: Buffer pool for LESS.

does not contain any aspects of divide-and-conquer.
LESS filters the records via a skyline-filter (SF) win-
dow, as does SFS. The record stream must be in sorted
order by this point. Thus LESS must sort the records
initially too, as does SFS. LESS makes two major
changes:

1. it uses an elimination-filter (EF) window in pass
zero of the external sort routine to eliminate
records quickly; and

2. it combines the final pass of the external sort with
the first skyline-filter (SF) pass.

The external sort routine used to sort the records is
integrated into LESS. Let b be the number of buffer-
pool frames allocated to LESS. Pass zero of the stan-
dard external sort routine reads in b pages of the data,
sorts the records across those b pages (say, using quick-
sort), and writes the b sorted pages out as a b-length
sorted run. All subsequent passes of external sort are
merge passes. During a merge pass, external sort does
a number of (b − 1)-way merges, consuming all the
runs created by the previous pass. For each merge,
(up to) b − 1 of the runs created by the previous pass
are read in one page at a time, and written out as a
single sorted run.

LESS sorts the records by their entropy scores,
as discussed in §2.2 with regards to SFS. LESS ad-
ditionally eliminates records during pass zero of its
external-sort phase. It does this by maintaining a
small elimination-filter window. Copies of the records
with the best entropy scores seen so far are kept in the
EF window (Fig. 3(a)). When a block of records is read
in, the records are compared against those in the EF
window. Any input record that is dominated by any
EF record is dropped. Of the surviving input records,
the one with the highest entropy is found. Any records
in the EF window that are dominated by this highest
entropy record are dropped. If the EF window has
room, (a copy of) the input record is added. Else, if
the EF window is full but there is a record in it with a
lower entropy than this input record, the input record
replaces it in the window. Otherwise, the window is
not modified.

The EF window acts then similarly to the elimina-
tion window used by BNL. The records in the EF win-
dow are accumulated from the entire input stream.
They are not guaranteed to be maximals, of course,

but as records are replaced in the EF window, the col-
lection has records with increasingly higher entropy
scores. Thus the collection performs well to eliminate
other records.

LESS’s merge passes of its external-sort phase are
the same as for standard external sort, except for the
last merge pass. Let pass f be the last merge pass. The
final merge pass is combined with the initial skyline-
filter pass. Thus LESS creates a skyline-filter window
(like SFS’s window) for this pass. Of course, there
must be room in the buffer pool to perform a multi-
way merge over all the runs from pass f − 1 and for
a SF window (Fig. 3(b)). As long as there are fewer
than B − 2 runs, this can be done: one frame per run
for input, one frame for accumulating maximal records
as found, and the rest for the SF window. (If not,
another merge pass has to be done before commencing
the SF passes.) This is the same optimization done in
the standard two-pass sort-merge join, implemented
by many database systems. This saves a pass over the
data by combining the last merge pass of external sort
with join-merge pass. For LESS, this typically saves a
pass by combining the last merge pass of the external
sort with the first SF pass.

As with SFS, multiple SF passes may be needed. If
the SF window becomes full, then an overflow file will
be created. Another pass then is needed to process the
overflow file. After pass f—if there is an overflow file
and thus more passes are required—LESS can allocate
b − 2 frames of its buffer-pool allocation to the SF
window for the subsequent passes.

In effect, LESS has all of SFS’s benefits with no ad-
ditional disadvantages. LESS should consistently per-
form better than SFS. Some buffer-pool space is allo-
cated to the EF window in pass zero for LESS which
is not for SFS. Consequently, the initial runs produced
by LESS’s pass zero are smaller than SFS’s; this may
occasionally force that LESS will require an additional
pass to complete the sort. Of course LESS saves a
pass since it combines the last sort pass with the first
skyline pass.

LESS also has BNL’s advantages, but effectively
none of its disadvantages. BNL has the overhead of
tracking when window records can be promoted as
known maximals. LESS does not need this. Maxi-
mals are identified more efficiently once the input is
effectively sorted. Thus LESS has the same advan-
tages as does SFS in comparison to BNL. LESS will
drop many records in pass zero via use of the EF win-
dow. The EF window works to the same advantage
as BNL’s window. All subsequent passes of LESS then
are over much smaller runs. Indeed, LESS’s efficiency
rests on how effective the EF window is at eliminat-
ing records early. In §3.3, we show this elimination is
very effective—as it is for FLET and much for the same
reason—enough to reduce the sort time to O(n).

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 10 of 12

LESS
SFS

0

20

40

60

80

100

5 6 7
#dimensions

#I
/O

’s
 (

th
ou

sa
nd

s)

(a) I/O’s

LESS
SFS

0

5

10

15

20

25

5 6 7

tim
e

(s
ec

s)

#dimensions

(b) time

Figure 4: Performance of LESS versus SFS.

3.2 Experimental Evaluation

The LESS prototype is in C and uses Pthreads to
implement non-blocking reads and writes. It imple-
ments external sort with double buffering. It was im-
plemented and run on RedHat Linux 7.3 on an Intel
Pentium III 733 MHz machine.

All tests calculate the skyline of a 500,000 record set
with respect to 5, 6, and 7 dimensions. Each record
is 100 bytes. A disk-page size of 4,096 bytes is used.
Each column used as a skyline criterion has a value
1 . . . 10, 000. The values were chosen randomly, and
the record sets obey the UI criteria from Def. 1.

Input and output is double-buffered to increase per-
formance and to simulate a commercial-caliber rela-
tional algorithm. Each input / output block has a
thread watchdog that handles the reading / writing of
the block. The thread blocks on write but the main
process is free to continue processing.

If the EF window is too large, LESS will take more
time simply as management of the EF window starts
to have an impact. If the EF window is too small
(say a single page), the algorithm may become less
effective at eliminating records early. As more records
survive the sort to the SF-phase, LESS’s performance
degrades. We experimented with varying the size of
the EF window from one to thirty pages. Its size makes
virtually no difference to LESS’s performance in time
or I/O usage. (We make clear why this should be the
case in §3.3.) Below five pages, there was some modest
increase in LESS’s I/O usage. We set the EF window
at five pages for what we report here.

We experimented with various buffer pool allot-
ments from 10 to 500 pages. The size affects primarily
the efficiency of the sorting phase, as expected. We set
the allocation at 76 pages for what we report here.

SFS and BNL are bench marked in [8] where SFS is
shown to provide a distinct improvement. Hence we
bench marked LESS against SFS. We implemented SFS

within our LESS prototype. In essence, when in SFS-
mode, the external sort is done to completion without
using an EF window for elimination, and then the SF
passes are commenced.

I/O performance for SFS and LESS are shown in
Fig. 4(a). It is the same for SFS in this case for the
five, six, and seven dimensional runs. This is because

A

B
x

x 1

1

Figure 5: Choosing point v.

the external sorting is the same in each case, and the
number of SF pass I/O’s needed were the same. LESS

shows a remarkable improvement in I/O usage, as we
expect. Many records are eliminated by the EF win-
dow during the sorting phase. The I/O usage climbs
slightly as the dimensionality increases. This is due to
that the elimination during sorting becomes less effec-
tive (for a fixed n) as the dimensionality k increases.

The time performance for SFS and LESS are shown
in Fig. 4(b). For five dimensions, LESS clocks in at
a third of SFS’s time. The difference between LESS

and SFS closes as the dimensionality increases. This is
because, for higher dimensionality, more time is spent
by LESS and SFS in the skyline-filtering phase. This is
simply due to the fact that more records are maximal.
The algorithms become CPU-bound as most of the
time is spent comparing skyline records against one
another to verify that each is, in fact, maximal.

3.3 Analysis

LESS also incorporates implicitly aspects of FLET. Un-
like FLET, we do not want to guess a virtual point
to use for elimination. In the rare occasion that the
virtual point was not found to be dominated, FLET

must process the entire data set by calling DD&C.
Such hit-or-miss algorithms are not amenable to re-
lational systems. Instead, LESS uses real points accu-
mulated in the EF window for eliminating. We shall
show that these collected points ultimately do as good
a job of elimination as does FLET’s virtual point. Fur-
thermore, the EF points are points from the data set,
so there is no danger of failing in the first pass, as there
is with FLET.

To prove that the EF points are effective at elimi-
nating most points, we can construct an argument sim-
ilar to that used in [3] to prove FLET’s O(n) average-
case runtime performance and in Lemma 7.
Theorem 13 Under UI (Def. 1), LESS has an
average-case runtime of O(kn).
Proof 13 Let the data set be distributed on (0, 1)k

under UI.
Consider a virtual point v with coordinate x ∈ (0, 1)

on each dimension. Call the “box” of space that dom-
inates v A, and the “box” of space dominated by v B.
(This is shown in Fig. 5 for k = 2.) The size of B
is then xk, and the size of A is (1 − x)k. Let x =

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 11 of 12

(1 − n−1/2k). Thus the size of B, xk, is (1 − n−1/2k)k.
In the limit of n, the size of B is 1.

lim
n→∞

(1 − n−1/2k)k = 1

If a point exists in A, it dominates all points in B.
The expected number of points that occupy A is pro-
portional to A’s volume, which is 1/

√
n by our con-

struction. There are n points, thus
√

n is the expected
number of points occupying A.

If points are drawn at random with replacement
from the data set, how many must be explored, on av-
erage, before finding one belonging to A? 11 If there
were exactly

√
n points in A, the expected number of

draws would be n/
√

n =
√

n.

Of course,
√

n is only the expected number of points
occupying A. Sometimes fewer than

√
n points fall in

A; sometimes, more. The actual number is distributed
around

√
n via a binomial distribution. Taking the re-

ciprocal of this distribution, the number of draws, on
average, to finding a point in A (or to find no point is
in A) is bound above by (lnn)

√
n.

So during LESS’s pass zero, in average case, the
number of points that will be processed before finding
an A point is bounded above by (ln n)

√
n. Once found,

that A point will be added to the EF window; else, there
is a point in the EF window already that has a better
volume score than this A point. After this happens,
every subsequent B point will be eliminated.

The number of points that remain, on average, after
pass zero then is at most 1− (1− n−1/2k)k +(ln n)

√
n.

This is o(n). Thus, the surviving set is bound above by
nf , for some f < 1. Effectively, LESS only spends ef-
fort to sort these surviving points, and nf lgnf is O(n).

Thus the sort phase of LESS is O(kn). The skyline
phase of LESS is clearly bound above by SFS’s average-
case, minus the sorting cost. SFS average-case cost
after sorting is O(kn) (Thm. 8). In this case, only nf

points survived the sorting phase, so LESS’s SF phase
is bounded above by O(kn). 2

Proving LESS’s best-case performance directly is
not as straightforward. Of course, it follows directly
from the average-case analysis.

Theorem 14 Under CI (Def. 1) and the model in
§2.1, LESS has a best-case runtime of O(kn).

Proof 14 The records have a linear ordering. Thus,
this is like considering the average-case runtime for
skyline problem with dimensionality one. 2

Worst-case analysis is straightforward.

Theorem 15 Under CI (Def. 1), LESS has a worst-
case runtime of O(kn2).

Proof 15 Nothing is eliminated in the sort phase,
which costs O(nlg n). The SF phase costs the same
as the worst-case of SFS, O(kn2) (Thm. 9). 2

11This is simpler to consider than without replacement, and
is an upper bound with respect to the number of draws needed
without replacement.

3.4 Issues and Improvements

Since our experiments in §3.2, we have been focus-
ing on how to decrease the CPU load of LESS, and of
maximal-vector algorithms generally. LESS and SFS

must make m2/2 comparisons just to verify that the
maximals are, indeed, maximals. The m2 is cut in half
since the input stream is in sorted order; we know no
record can be dominated by any after it. BNL faces
this same computational load, and does cumulatively
more comparisons as records are compared against
non-maximal records in its window.

There are two ways to address the comparison load:
reduce further somehow the number of comparisons
that must be made; and improve the efficiency of the
comparison operation itself. The divide-and-conquer
algorithms have a seeming advantage here. DD&C,
LD&C, and FLET have a o(n2) worst-case performance.
They need not compare every maximal against ev-
ery maximal. Of course, §2.4 demonstrates that the
divide-and-conquer algorithms have their own limita-
tions.

The sorted order of the input stream need not be the
same as that in which the records are kept in the EF
and the SF windows. Indeed, we have learned that us-
ing two different orderings can be advantageous. (Like-
wise, this is true for SFS also.) Say that we sort the
data in a nested sort with respect to skyline columns,
and keep the EF and SF windows sorted by entropy as
before. This has the additional benefit that the data
can be sorted in a natural way, perhaps useful to other
parts of a query plan. Now when a stream record is
compared against the SF records, the comparison can
be stopped early, as soon as the stream record’s en-
tropy is greater than the next SF record’s. At this
point, we know the stream record is maximal. We
have observed this change to reduce the maximal-to-
maximal comparisons needed to 26% of that required
before for 500,000 points and seven dimensions. This
would reduce LESS’s performance on the seven dimen-
sional data-set in Fig. 4 from 15 to, say, 7 seconds.

LESS can be used with any tree index that provides
a sorted order which is also a topological order with
respect to the maximality conditions. In this case, the
index replaces the need to sort the data initially. The
existence of an applicable index for a given skyline
query is much more likely than for the types of index
structures the index-based skyline algorithms employ
(as discussed in §2.3).12 The index also can be a stan-
dard type commonly employed in databases such as a
B+ tree index. It only needs to provide a way to read
the data in sorted order.

The dual-order versions of LESS—one order for the
input stream and one for the skyline window—that
we are investigating have given us insight into how we
can handle better sets with anti-correlation. This rep-

12To be fair, researchers investigating index-based skyline al-
gorithms are seeking o(n) performance.

August 2005 Maximal Vector—Godfrey, Shipley, & Gryz—VLDB 2005 p. 12 of 12

resents the worst-case scenario for maximal-vector al-
gorithms (§2.1). We are able to handle well some cases
of anti-correlation, for instance, when one dimension
is highly anti-correlated with another one. A modified
version of LESS will run still in O(kn) average-case
time for this. We believe we shall be able to extend
this to handle most anti-correlation effects in the input
to still achieve good running time. Furthermore, this
may lead to ways to improve on LESS-like algorithms
worst-case running time to better than O(kn2).

There may be other ways to reduce the computa-
tional load of the comparisons themselves. Clearly,
there is much to gain by making the comparison op-
eration that the maximal-vector algorithm must do so
often more efficient. We are exploring these techniques
further, both experimentally and analytically, to see
how much improvement we can accomplish. We antic-
ipate improving upon the algorithm significantly more.

4 Conclusions

We have reviewed extensively the existing field of algo-
rithms for maximal vector computation and analyzed
their runtime performances. We show that the divide-
and-conquer based algorithms are flawed in that the
dimensionality k results in very large “multiplicative-
constants” over their O(n) average-case performance.
The scan-based skyline algorithms, while seemingly
more näıve, are much better behaved in practice. We
introduced a new algorithm, LESS, which improves sig-
nificantly over the existing skyline algorithms, and we
prove that its average-case performance is O(kn). This
is linear in the number of data points for fixed dimen-
sionality k, and scales linearly as k is increased.

There remains room for improvement, and there
are clear directions for future work. Our proofs for
average-case performance rely on a uniformity as-
sumption (Def. 1). In truth, LESS and related algo-
rithms are quite robust in the absence of uniformity.
We may be able to reduce the number of assump-
tions that need to be made for the proofs of asymp-
totic complexity. We want to reduce the comparison
load of maximal-to-maximal comparisons necessary in
LESS-like algorithms. While the divide-and-conquer
algorithms do not work well, their worst-case running
times are o(n2), while LESS’s is O(n2). It is a ques-
tion whether the O(n2) worst-case of scan-based al-
gorithms can be improved. Even if not, we want an
algorithm to avoid worst-case scenarios as much as
possible. For maximal vectors, anti-correlation in the
data-set causes m to approach n. We want to be able
to handle sets with anti-correlation much better. We
are presently working on promising ideas for this, as
discussed in §3.4.

We have found it fascinating that a problem as
seemingly simple as maximal vector computation is,
in fact, fairly complex to accomplish well. While there
have been a number of efforts to develop good algo-

rithms for finding the maximals, there has not been
a clear understanding of the performance issues in-
volved. This work should help to clarify these issues,
and lead to better understanding of maximal-vector
computation and related problems. Lastly, LESS rep-
resents a high-performance algorithm for maximal-
vector computation.

References

[1] W.-T. Balke and U. Güntzer. Multi-objective
query processing for database systems. In VLDB,
pp. 936–947, Aug. 2004.

[2] O. Barndorff-Nielsen and M. Sobel. On the dis-
tribution of the number of admissible points in a
vector random sample. Theory of Prob. and its
Appl., 11(2):249–269, 1966.

[3] J.L. Bentley, K.L. Clarkson, and D.B. Levine.
Fast linear expected-time algorithms for comput-
ing maxima and convex hulls. In SODA, pp. 179–
187, Jan. 1990.

[4] J.L. Bentley, H.T. Kung, M. Schkolnick, and
C.D. Thompson. On the average number of max-
ima in a set of vectors and applications. JACM,
25(4):536–543, 1978.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pp. 421–430, 2001.

[6] C. Buchta. On the average number of maxima in
a set of vectors. Information Processing Letters,
33:63–65, 1989.

[7] J. Chomicki. Querying with intrinsic preferences.
In EDBT, pp. 34–51, Mar. 2002.

[8] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, pp. 717–719,
Mar. 2003.

[9] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting: Theory and optimiza-
tion. In Int. Inf. Sys. Conference (IIS) pp. 593–
602, Jun. 2005.

[10] P.-K. Eng, B.C. Ooi, and K.-L. Tan. Indexing
for progressive skyline computation. Data and
Knowledge Engineering, 46(2):169–201, 2003.

[11] P. Godfrey. Skyline cardinality for relational pro-
cessing. In FoIKS, pp. 78–97, Feb. 2004.

[12] K.-L. Tan, P.-K. Eng, and B.C. Ooi. Efficient pro-
gressive skyline computation. In VLDB, pp. 301–
310, Sept. 2001.

[13] D. Kossmann, F. Ramask, and S. Rost. Shooting
stars in the sky: An online algorithm for skyline
queries. In VLDB, pp. 275–286, Aug. 2002.

[14] H.T. Kung, F. Luccio, and F.P. Preparata. On
finding the maxima of a set of vectors. JACM,
22(4):469–476, 1975.

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
An optimal and progressive algorithm for skyline
queries. In SIGMOD, pp. 467–478, Jun. 2003.

