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Abstract

A join of two relations in real databases is usually much $nahan their cartesian product. This
means that most of the combinations of tuples in the crogsytoof the respective relations do not
appear together in the join result. We characterize thesiwmtions as ranges of attributes that do not
appear together. We sketch an algorithm for finding such daatibns and present experimental results
from real data sets. We then explore two potential appbicatof this knowledge in query processing.
In the first application, we model empty joins as materializiews, we show how they can be used for
guery optimization. In the second application, we proposeategy that uses information about empty
joins for an improved join selectivity estimation.

1 Introduction

A join of relations in real databases is usually much smdhlan their Cartesian product. For example,
the OLAP Benchmark [11] with a star schema of six dimensiditegwith, respectively, 12, 15, 16, 86,
1000, and 10,000 tuples, has a fact table of the size of 2libndltuples. The size of the fact table is thus
0.00009% of the size of the Cartesian product of the dimansibles.

This rather trivial observation about the relative sizehsf join and the respective Cartesian product,
gives rise to the following questions: Can the non-joinirartions of the tables be characterized in an
interesting way? If so, can this knowledge be useful in qupeogessing? Consider the following example.

Example 1l ConsiderLineitem andOrder tables in TPC-H [40]. The_order-date attribute in theOrder
table stores information about the time an item was ordetteell_shipdate attribute in theL ineitem table
stores information about the time an item was shipped. Theativibutes are correlated: an item cannot
be shipped before it is ordered and it is likely to be shippétina short period of time after it is ordered.
This is depicted graphically in Figure 1. Assume that an itemways shipped within a year from the time
it is ordered. Thus, for a given range oforderdate, only the tuples from that range extended by one year
of [_shipdate will be in the join ofLineitem and Order. None of the crossproduct between the remaining
portions of the tables will appear together in the join resul

Call any query that involves a join and that evaluates to thptg table arempty join Knowledge of
empty joins may be valuable in and of itself as it may revednamwn correlations between data values
which can be exploited in applications. For example, if a DigAermines that a certain empty join is a time
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Figure 1: Distribution of tuples with respect to the valuéslopdate andorderdate.

invariant constraint, then it may be modeled as an integotystraint. Indeed, the fact that an item cannot
be shipped before it is ordered is defined in TPC-H as a chauti@int [40].

But even if the discovered empty joins are not the result dfre tinvariant property or constraint,
knowledge of these regions may be exploited in query praugss

Example 2 Consider the following quer§) over TPC-H.

select sum(Ltotalprice)
from lineitem |, order o
where |_orderkey = aorderkey
AND oorderdate BETWEEN ‘1995.01.01" AND ‘1996.01.01"

Given the correlation of Figure 1, the original query can egly rewritten asy’:

select sum(Ltotalprice)

from lineitem I, order o

where |_orderkey = aorderkey
AND oorderdate BETWEEN ‘1995.01.01" AND ‘1996.01.01"
AND |_shipdate BETWEEN ‘1995.01.01' AND ‘1997.01.01"

By reducing the range of one or more of the attributes or byirgld range predicate (hence reducing
an attribute’s range), we reduce the number of tuples thatigipate in the join execution thus providing
optimization. In the extreme case, when the predicatesiqtiery fallwithin the ranges of an empty region,
the query would not have to be evaluated at all, since thdtresnecessarily empty.

The information about the correlation between the two bitites can also be used for a different purpose.
Consider again the original quer§. Since there is no predicate (except for the join) placedherineitem
table, it seems that any tuple from that table can potentiafypear in the answer. With this assumption,
a database optimizer would vastly overestimate the calitljinaf the join result. Given the correlation



of Example 1, however, we can infer that only the tuples fyaig the conditionl_shipdate BETWEEN
1995.01.01’ AND ‘1997.01.01can appear in the join. This knowledge can be used to provideose
exact estimate of the join selectivity.

Note that the rewrite frond) to @’ requires that the correlation between the attributes becexar the
purpose of cardinality estimates, an approximate corielats sufficient, since statistical information need
not be exact.

An empty join can be characterized in different ways. Thetnstsightforward way is to describe it
negatively by defining a correlation between data points dogoin. Thus, for the two attributes from
Example 1 we can specify their relationship as a linear tatrom: | _shipdate = aorderdate + [0, 1] year
where[0, 1] year is the correlation error. We explored this idea in [16] anovebd how such correlations can
be used in query optimization. We also learned, however siinzh correlations are rare in the real data that
we explored. In this paper, we are proposing an alterndbwecomplementary approach to characterizing
empty joins as ranges of attributes tlaat notappear together in the join. For example, there are no tuples
with |_orderdate> ‘1995.01.01" and_shipdate< ‘1995.01.01’ in the join oL ineitem andOrder. In other
words, the join ofLineitem andOrder with thus specified ranges bforderdateand|_shipdateis empty.

To maximize the use of empty joins knowledge, our goal in#sk is not only to find empty joins in the
data, but to characterize fully that empty space. Spedificak discover the set of all maximal empty joins
in a two dimensional data set. Maximal empty joins repref@mtanges of the two attributes for which the
join is empty and such that they cannot be extended witholtnmgdhe join non-empty.

We suggest that empty joins can be thought of as a novel deasdc of data skew. By characterizing
ranges of attributes that do not appear together, we prandéher description of data distribution in a uni-
versal relation. In this paper, we show how the knowledgemufty joins can be used in query processing.
The techniques we present here are straightforward geradrahs of Example 2. The first technique is a
rewrite-based query optimization. The second one offeravamethod for improved join selectivity esti-
mates. Although both techniques utilize information alempty joins, they do not depend upon each other
and can be used separately. We show these techniques tofbkeimigeactice by experimental verification
of the following claims.

e First, real data sets contain a large number of empty jooreesof which are themselves very large.
This is important as the value of our techniques increaséseadata is more skewed in that sense.

e Second, the types of rewrites we propose in the first tecleniggeed provide powerful optimization
of query execution. We present experiments showing how tladity of optimization depends on the
types and number of empty joins used in a rewrite.

e Third, the join cardinality estimates provided by the setéechnique are almost uniformly more
accuarate than estimates based on an assumption of uniédentdligtribution or histograms.

e Last but not least, we develop these techniques with a gessiionmercial implementation in mind.
We show how the existing tools in DB2 can be used to implemetit techniques. Our solution there-
fore has the highly desirable property that it provides nptingizations method without requiring any
change to the underlying query optimization and processimgine.

The paper is organized as follows. In Section 2, we introdaomally the notion of an empty join and
briefly describe an algorithm for their discovery. Relateatkvis described in Section 3. In Section 4 we
present the results of experiments performed on real datayisg the nature and quantity of empty joins
that can occur in large, real databases. In Section 5, weidesz technique illustrating how knowledge
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of empty joins can be used in join size estimation. In Seddiopwe evaluate the quality of join cardinality
estimates based on the knowledge of empty joins. Conclsigind future work are presented in Section 7.

2 Discovery of Empty Joins

In this section we introduce a formal representation of enginhs and present a sketch of an algorithm for
finding all maximal empty joins within a two dimensional datt (two-way join):

Consider a join of two relation® X S. Let A and B be attributes of and S respectively over two
totally ordered domains. (Note thdtand B arenotthe join attributes.) We are interested in finding ranges
of A and B for which the joinR X S is empty. Define the data sét = IIz 4 s p(R X S). Let X and
Y denote the set of distinct values for attributésind B respectively. The sab consists of a set of tuples
(xi,y;) over two ordered domains. We can depict the data set X as |Y| matrix M of O's and 1’s.
There is a 1 in positiorfi, j) of the matrix if and only if(z;,y;) € D wherez; is the:!" smallest value in
X andy; the j** smallest inY". An empty join is represented ik as a rectangle containing only 0’'s and
no 1's. The coordinate@:, 1), (yo, y1) Of the rectangle specify the endpoints of the ranges obatts A
and B for which the join is empty. Since there is a one-to-one gpoadence between an empty join and a
O-rectangle in the corresponding matfix, we will sometimes refer to empty joins as empty rectangies i
the remainder of this paper.

An empty rectangle isnaximaf if it cannot be extended along either theor Y axis because there is
at least one 1-entry lying on each of the borders of the rgtgan

Example 3 Let A be an attribute of? with the domainX = (1,2, 3) and letB be an attribute with domain
Y = (6,7,8). Assume thatrp 4 5.5(R X S) = {(3,6),(1,7),(3,8)}. The matrix M for the data set is
shown in Figure 2a. Figure 2b shows all maximal empty reckesg

1 2 3 1 2 3

6 0 0 1 6 0 0 1

7 1 0 0 7 1 0 0

8 0 0 1 8 0 0 1
(a) (b)

Figure 2: The matrix and some of the empty rectangles (maskidthick lines) for Example 3

Knowledge of large empty rectangles in a data set can helpy queimization because such regions
do not need to be considered during query processing. If syaqua be optimized with respect to some
empty join.J, then it can be optimized at least as well with respect togetaempty joinJ’ that contains

1We make the restriction to two-way joins only for simplicitpdeed, empty joins can be discovered for any pair of attei
from a multi-way join.
2|t is important here not to confuse maximal with maximumgst).



J (but not vice versa). In addition, having many empty reclasigeven if they overlap, enhances the query
optimization potential of the discovered regions. For ¢hesasons, we consider the problem of finding all
maximal empty rectangles. (In practice we keep only thogeate sufficiently large.)

Although it appears that there may be a huge number of oysrigpmaximal rectangles, [29] prove
that the number is at mo€}(| D|?), and that for a random placement of the 1-entries, the eggectiue is
O|D|log |D|. We proved in [13] that the number is at m&3t| X ||Y|).)

A related problem attempts to find the minimum number of megles (either overlapping or not) that
covers all the 0’s in the matrix. (It is a special case of thebfgm known as Rectilinear Picture Compres-
sion [14].) This problem is NP-complete, and hence is imjpzaktfor use in large data sets. Besides, as
we shall show in Section 5 that for the purpose of query opttidn, it is more important to have large
rectangles than to have the minimum number of rectangles.

The algorithm for finding all maximal empty rectangles in &egi data set is scalable to large data sets
because it uses relatively little memory and keeps diskssctiea minimum. The input consists of a two
dimensional data seb of tuples(z;, y;) stored on disk and sorted with respect to #iedlomain. The
algorithm requires only a single scan over this data. Theuiutonsists of the coordinates of the empty
rectangles and can be written to disk, as generated. The rgeemuirements ar®(|X|), which is an
order of magnitude smaller than the si2¢| X ||Y'|) of both the input and the output. (We assume without
loss of generality thatX | < |Y'|.) The time complexity of the algorithn@) (| X||Y'|), is linear in the size of
the underlying matrix.

The matrix representation/ of the data seD is never actually constructed. For simplicity, however,
we describe the algorithm completely in termsidf (The reader is referred to [13] for the details of the
algorithm). We shall ensure that only one pass is made thrtheydata seD.

The main strategy of the algorithm is to consider each O-efefx, y) of M one at a time, row by row.
Although the 0-elements are not explicitly stored, thisiisiudated as follows. We assume that the Eeof
distinct values in the (smaller) dimension is small enowghktbre in memory. The data sktis first sorted
with respect to th&” domain. Tuples fronD are read sequentially off the disk in this sorted order. When
the next tuple(z;,y;) € D is read from disk, we are able to deduce the block of O-elesnienthe row
before this 1-element.

When considering the 0-elemeft, y), the algorithm needs to look ahead by querying the matrix el-
ements(z + 1,y) and(z,y + 1). This is handled by having the single pass through the datacseally
occur one row in advance. Similarly, when considering tredebrent(z, y), the algorithm looks back and
gueries information about the parts of the matrix alreaddreTo avoid re-reading the data set, all such
information is retained in memory.

The algorithm sketched above has a straightforward gepatiah to higher dimensions (also described
in detail in [13]). However, in all experiments describedtlie remainder of this paper, we only consider
two dimensional datasets. This is a consequence of thelfactie number of maximal hyper-rectangles
in a d-dimensional matrix i®(n?*2) (wheren = |X| = |Y|). The number of such maximal hyper-
rectangles (which represent multi-way empty joins) andckethe complexity of an algorithm to produce
them increases exponentially with Ford = 2 dimensions, this i€ (n?), which is linear in the sizé®(n?)
of the input matrix. Forl = 3 dimensions, it is alread§)(n*), which is not likely practical in general for
large data sets. A heuristic is required to discover hypetangles. We do not address this issue here.

3 Related Work

We are not aware of any work on discovery or application of grjgns.



Extracting semantic information from database schemasanténts, often calledule discovery has
been studied over the last several years. Rules can beddffreom integrity constraints [5, 4, 41] or can be
discovered from database content using machine learnidgtarmining approaches [8, 10, 19, 34, 36, 41].
It has also been suggested that such rules be used for gquamyzapion [20, 34, 36, 41]. None of this work,
however, addressed the specific problem we solve here.

Another area of research related to our work is answeringiegiasing views. Since we model empty
joins as a special case of materialized views (that are aguyg, essentially all techniques developed for
maintaining, and using materialized views for query angvgeapply here as well [17, 25, 7, 38].

Also, since empty regions describe semantic regularitiedata, they are similar to integrity con-
straints [15]. They describe what is true in a database inutsent state, as do integrity constraints, but
can be invalidated by updates, unlike integrity constgint/sing empty joins for query optimization is
thus similar to semantic query optimization [6, 18, 22, 23, 9|, which uses integrity constraints for that
purpose.

Query optimizer makes heavy use of the statistical infolonah cardinality estimation. There are two
ways to store such information in the database: parametdcnan-parametric [26] . In the parametric
approach, the actual value distribution is approximated pgrameterized mathematical distribution. This
technique requires little overhead, but it is typicallydoarate because real data does not usually follow
any known distribution. Non-parametric approach is oftestdgram-based [32, 31, 28, 21, 27]. While a
histogram is adequate for one attribute on a base tableskigdys that a histogram is not practically efficient
for multiple columns because of high storage overhead agidl éniror rates. Current commercial database
systems usually maintain histograms only for individudloms on base tables.

A query joining two or more tables with multiple columns nefieced makes the situation even more
complex. To estimate the size of such queries, the optimireed to assume independence between at-
tributes and predicates, and errors in the estimates magase exponentially with the number of joins
[15]. The problem is typically caused by propagating stiat$ information through the query plan. As a
result, the optimizers often return low-quality executfans for complex join queries.

We are thus motivated to propose building new statistics aea base-relations for better estimates
of join cardinality. To the best of our knowledge, there isinadepth effort so far to address this type
of problem. [1] presents join synopses based on samplingg@proximating query processing, and the
technique is restricted to be foreign-key joins. In coritra® focus on estimating query cardinality. We are
not histogram-based or sample-based, and we place natieston the type of joins.

4 Characteristics of Empty Joins

We would expect real data sets to exhibit different charaties than synthetic data sets such as the TPC-H
benchmark. Hence, to characterize empty joins we used @laatabases: the first, an insurance database;
and the second, a department of motor vehicles databaseaWhe empty joins mining algorithm on 12
pairs of attributes. The pairs of attributes came from thekiead queries provided with the databases.
These were the attributes frequently referenced togethtrei queries (one from one table, and the other
from a second table, and the tables are joined). For coressemve only present the results of four repre-
sentative tests hefeFor all reported tests the mining algorithm ran in less thamirfutes (on a single-user
67MHz IBM RISC System/6000 machine with 512 MB RAM).

3They are representative in the sense that they cover th&rspeof results in terms of the number and sizes of the diseave
empty joins.



Test| n m T R S (sizes of the 5 largest empty joins
1 2 3 4 5
525 | 3683 | 269 8 74 | 73 | 69 7 7
6 | 37716| 39572 | 29323| 68 | 58 | 40 | 37 28
1503 | 3061 | 650 97 | 94 | 80 |12.2| 0.04
525 | 423 | 42854 | 13850 91.6| 91.6| 91.3| 91.3| 83.1

A OWDNPRP
w

Table 1: Data characteristics

Table 1 contains the mining results: the number of distiaties,» andm, of each of the attributes, the
number of tuples in the datasEt(this is the number of 1-entries in the matrix representatibthe dataset),
the total number of empty joinR, and the sizes of the five largest empty joins. The size mstdefines
the size of an empty join as the area it covers with respetteda@omains of values of the two attributes. It
is defined formally in the following way.

Let £ be an empty join with the coordinatés, vo), (z1,y1) over attributesA and B with sets of
distinct valuesX andY respectively in table§; andT; respectively. The relative size of the join with
respect to the covered ares,is defined as:

(1 —z0) * (Y1 — Yo) (1)

S(E) = [maz(X) — min(X)] * [mazx(Y) — min(Y)]

We make the following observations:

1.

The number of empty joins discovered in the tested datasegery large. In some cases (see Test 3)
it is on the order of magnitude of the theoretical limit of phessible number of empty joins [13].

In virtually all tests, extremely large empty joisswere discovered. Usually, however, only a few
are very large and the sizes drop dramatically to a fractf@pmrcentage point (see Figure 3) for the
others.
100
80
60

40
Number of
empty joins

20

<.001 .001-.01 .01-.1 1-1 1-10 >10

Size of empty join

Figure 3: Distribution (with respect t8) of empty joins in Test 1.

. The empty joins overlap substantially. The five largesptgnjoins from Test 1 overlap with, re-

spectively, 7, 11, 16, 7, and 8 other empty joins discoverethat data set. These overlaps are a
consequence of our decision to fiall maximal empty joins. They also cover a large area of the join
matrix; that is, the combination of values from the domaifithe two attributes. The white area of



Figure 4 indicates the combinations of values of attributeend B for which tuples exist in the join
result.

R.A

S.B

Figure 4: The area (in dark) covered by the five largest engitgjin Test 1 indicates no tuples in the join
for the respective ranges of attributésand B.

4. The experiments reveal a new type of data skew: non-umifprof data distribution within a join
result. This non-uniformity is extreme in the sense thatupdets exist within wide ranges of specified
attributes.

5 Using Empty Joinsin Query Optimization

51 Query Rewriting

We now turn to the question of how to effectively use the kramigle about empty joins in query optimization.
Our approach is to model the empty joins as materialized siefhe only extra storage required is the
storage required for the view definition since the actualemalized view will be empty.

Assume that the following query represents an empty join.

select *

from R,S

where RJ=5J
and X betweenz, and x
and Y betweenyg and 1,

We can represent this query as a materialized Weand use it to rewrite future queries to improve their
performance. Indeed, we can use existing results on detergnivhether a view can be used to answer a
qguery and on rewriting queries using such views [38]. Rathan describing the algorithm, we present an
example of how it would be applied here.

For example, ifrg < x;,2; < zp andyy < y; < y1 < yj, then the following rewrite of query) is
possible.

selectx selectx
from RS from RS
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Yo Y, Y.

Figure 5: Queny (marked with thick lines) overlaps the empty Viév

whereR.J = S.J = whereR.J = S.J
and X betweenz; and z; and X betweenz; and z;
and Y betweeny; and y; and Y betweeny; and y;

This rewrite can be graphically represented, as shown inr€i§, as a reduction of the area of the
rectangle representing quefywith respect to the attributeX¥ andY’, given the overlap with the empty join
V.

Effectively, we are using the empty joins to reduce the rar@feéhe attributes in the query predicates.
This, in turn, reduces the size(s) of the tables partiaigain the join, thus reducing the cost of computing
the join.

5.2 Choosing Among Possible Rewrites

There are several ways such rewrites of the ranges can bedépeading on the types of overlap between
the ranges of the attributes in the query and the empty joiasadle. Previous work on rewriting queries

using views can be used to decide when a view, in this case ptyemew, can be used to rewrite the query
[25, 38]. However, this work does not give us a way of enunirggednd prioritizing the possible alternative

rewrites for the inequality predicates used in our quenmek\aews.

As shown in Figure 5, a pair of range predicates in a query earepresented as a rectangle in a two
dimensional matrix. Since the goal of the rewrite is to “remiqthat is, not to reference) the combination of
ranges covered by an empty join, we need to represent them@iy portion of the query, which we will call
theremainder quenyj12]. Consider Figure 6, which illustrates five fundametalifferent ways a query,
represented as a rectangle with thick lines, can overldpavitempty join marked as a filled rectangle.

(@) (b) © (d) ©
Figure 6: Overlaps of increasing complexity between theyjaad empty joins.

In Case (a), the remainder query can be still representediagla rectangle. Hence, the rewritten SQL
guery has a single non-empty query block. In Case (b), howt@remainder query has to be represented
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by at least two rectangles, which implies that the rewri&€yL. query will be the UNION ALL of two non-
empty query blocks (or an appropriate OR condition). Casggd), and (e) illustrate even more complex
scenarios where three or four rectangles are needed talmesice remainder query. Indeed, it has been
shown in [7] that blind application of materialized viewsymasult in worse plans compared to alternative
plans that do not use materialized views. This is also trweiabmpty views. Our experiments reported
below suggest that using rewrites containing multiple earpty query blocks usually degrade rather than
improve query performance. The decision about which engtgjto use in a rewrite must be made within
the optimizer in a cost-based way. There are cases, howelren cost-based optimization can be avoided.
For example, a rewrite of type (a) in Figure 8 is guarantegdamproduce worse performance than in the
original query as the only change it makes in the query is dnice the exisiting range predicates. Our
experiments also showed that a rewrite of type (b) condlgtderlivered optimization.

In the next subsection we investigate how the followingdesaffect the quality of optimization:

1. The size of the overlap between an empty join and a query.
2. The type of the overlap.

3. The number of empty joins overlapping the query used imdheite.

To demonstrate the usability of empty joins for query optiation under various overlap conditions, we
performed several sets of experiments.

5.3 FactorsAffecting Optimization

The experiments described below were run on a PC with PIMHY) 320M Memory under Windows
2000, DB2 UDB V7.1 for NT.

We created two tableB(id int, X int, J int) andS(id int, X int, J int), whereJ is a join column and
X andY are attributes with totally ordered domains. The range hfesfor bothX andY is 0 — 10, 000.
R has 100k tuples$ has 10M tuples uniformly distributed over the domainsioandY (henceS, = St).
The join method used in the queries below is sort-merge*jdi. indexes have been created or used.

In all experiments the query had the form:

select =«

from R,S

where R.J=5.J
and X betweerd, 000 and 6, 000
and Y betweern2, 000 and 8, 000

In the first experiment, we created empty joins with an insirggaoverlap with query. This was done by
changing the values of one of the join attributes so thatupkes in the designed range do not join with any
tuples in the other table. The empty joins had the followioigf:

create viewempty as
select *

4Similar results were obtained for nested-loops join. Narojziation can be achieved for index nested-loops, sincgoines
executed before the selections.
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from R,S

where R.J=S.J
and X betweend, 000 and 6, 000
and Y betweer2, 000 and par

with par set to : 2,300, 2,600, 3,250, 3,500, 4,000, 5,000, 6,000748@D. The overlaps of the query and
the empty join are graphically presented in Figure 7.

Figure 7: Increasing overlaps between a query and an emipty jo

Reduction of the size of the table(%)5 | 10 | 20| 25| 33 | 50 | 66 | 83
Reduction of execution time (%) 24|166|16| 39|41 |48 |56 | 67

Table 2: Improvement in query execution time (in %) as thelapewith the empty join is increased.

As we expected, the reduction in query execution time growsaatonically with the increase of the
overlap. On the other hand, the size of the overlap does mvid® equivalent reduction in the query
execution time. This is understandable, as the query ev@atuiavolves not only the join execution, but also
scanning of the two tables which is a constant factor foreslis. The only surprising result came from Test
4 (and later in Test 5): the reduction of the query executime jumps above the reduction of the table’s
size. As it turns out, the table became sulfficiently smalldsbrted in memory, whereas before it required
an external sort.

In the second experiment we kept the size of the overlap anfsit 25% of the size of the query, but
changed the type of an overlap as shown in Figure 8.

| Type of overlap la|b|c[d]e]
| Reduction of execution time (%)39 | 37 | 4.6 | 0] -13 |

Table 3: Impact of the type of the overlap used in rewrite oargperformance.

As shown in Table 3, only the first two types of the overlap pewsubstantial performance improve-
ment. As the number of OR conditions (or UNION'’s) necessargxpress the remainder query increases,
the performance deteriorates. For example, in Case (ejjubey rewritten with ORs would have the fol-
lowing structure:

11



a b c d e

Figure 8: Overlaps of increasing complexity between thayjaad empty joins.

select =«

from R,S

where R.J=5.J and
[(X between4, 000 and 6,000
and Y betweer2, 000 and 3, 000)
or
(X betweent, 000 and 6, 000
and Y betweens, 000 and 8, 000)
or
(X betweend, 000 and 4, 500
and Y between3, 000 and 6, 000)
or
(X betweens, 500 and 6, 000
and Y between3, 000 and 6, 000)]

If the remainder query were expressed using UNIONSs, it winalde four separate blocks. Executing
these blocks requires multiple scanning of relati®endS. Indeed, in all our experiments only the rewrites
using overlaps of type (a) or (b) consistently led to perfange improvement.

In the third experiment we kept the size of the overlap consta25% and used only type (a) and (b)
of the overlap from the previous experiment. This time, haavewe changed the number of overlapping
empty joins with the query. We varied the number of emptygaised in a rewrite from 1 to 8 decreasing
their sizes accordingly (to keep the total overlap at 25%grasvn in Figure 9. The results are shown in
Table 4.

| Number of overlapping empty joins 1| 2| 4| 6] 8]
| Reduction of execution time (%) | 39 [ 38.4] 38.3| 35.9] 34.3]

Table 4: Impact of the increasing number of overlaps useevimite on query performance.
Interestingly, query performance degrades very slowhhe increasing number of empty joins used

in a rewrite. The reason is, that despite an appearance afcamased complexity of the query after the
rewrite (see the query of Test (c) below), a single scan df éatale is still sufficient to evaluate the join.
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Figure 9: Overlaps with increasing number of empty joins.

select =«

from R,S

where R.J = 5.Jand
X betweerd, 000 and 6,000 and
[(Y between2, 000 and 2,400)
or
(Y between3, 000 and 3, 400)
or
(Y betweend, 000 and 4, 400)
or
(Y betweenb, 000 and 5, 550)]

We performed a number of experiments measuring the qudldgptomization in the real workload of the
insurance database using some of the empty joins descrikfgelciion 4. The results were consistent with
those reported above. Ideally, we would have presentedptimiaation results performed with a publicly
available workload, such as TPC-D, to allow for replicatafrthe experiments. Unfortunately, the type of
data distribution in TPC-D is not representative of a reahd®t. The data is synthetically generated, and
the distribution of the attribute values tends to be unifolvie ran the mining algorithm on several pairs
of attributes on TPC-D joins. In all cases the results werg ddferent from what we discovered in real
data sets. Although the number of empty joins was large, &flewere very small thereby making them
impractical for use by this technique. Indeed, we beliew the optimization technique presented in this
paper would be most useful in datasets with large data skesventhrge empty joins might exist.

5.4 Quality of Optimization in Real Queries

To confirm the effectiveness of our proposed query optingraechniques we considered real data sets. To
be useful, the rewrites we propose must provide significaptévements in processing queries from a real
query workload. Our goal was to verify the following conjuics:

e The discovered empty joins overlap with queries from a reakivad.

e The optimization achieved through rewrites is consistdittt the results on synthetic data reported in
the previous section.
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To demonstrate the benefits of our optimization, we consitletl queries from a workload for one of
the real world databases discussed in Section 4, the inrmidatabase. A query qualified for a rewrite if it
contained range predicates and involved a join. There wepgehies (T1,...,T5) in the workload of 30 that
qualified for the rewrite.

Next, we mined for empty joins for each pair of attributegvaht to these queries. We consider queries
of the following form.

select *

from Ry,...,RN

where JoinCond(Q) and OtherCond(Q)
and X betweenzy and z;
and Y betweeny, and 1

For each such query, we mined the data sets produced by tbheifad query.

select X,Y
from Ry,...,RN
where  JoinCond(Q)

Figure 3 in Section 4 reports the size of the discovered eljoptg. The empty joins found in Test 1
were used to rewrite Query T1, in Test 2 for Queries T2 and M Jeist 3 for Query T4, and in Test 4 for
Query T5. Our results show that there is substantial ovdrtpreen the discovered empty joins and the

queries. We show in Figure 10 the number and the percentagiéeshpty joins that overlapped with each
of the five queries.

25% S
20 S
5113 S
=
15
10
19
2006 S
|
5 = S
.
o | &Y = S

QL Q2 Q3 Q4 Q5

Figure 10: Percentage and the number (shown above eachfladirgmpty joins overlapping with each of
the queries.

Once we discovered all the empty joins, we proceeded to arthe query rewrite as described in
Section 5.3. In each case, we only considered the simplateswtypea in Figure 8) using an empty join
with the largest overlap with the query. Not surprisinghg empty joins with the largest overlaps were also
large empty joins themselves. They ranked 1, 3, 3, 17, 12 gril@rectangles in the respective datasets for
queries T1-T5. This is important as it indicates that onlgwa bf the largest joins need to be kept to provide
useful optimizations.

Table 5 shows the performance improvement for each of theegueswritten in this way compared
against the execution time of the original. These optindzst were consistent with our experiments on
synthetic data.
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Query T1|T2 | T3 | T4 | T5
Performance Improvement (%)11 | 75| 31 | 20 | 28

Table 5: Improvement in execution time (in %) of the testedrigs.

5.5 Selection and Maintenance of Empty Joins

As proposed in Section 5.1, we model empty joins as mategilviews. Thus, the choice of the “best”
empty joins could be determined by the same considerati@isate used in choosing standard materialized
views for query optimization [2, 17, 3, 42]. In particulgrettechnigues we developed in [42] are particularly
useful here as they require almost no human interventionter A&fn initial set of materialized views is
suggested (in our case these would be a set ofittergest empty joinsp is the parameter that can be
set experimentally just as it is the case with materializiesvs), the system automatically selects a set of
views that provide the best ratio of benefit (improvement ankhoad query performance) versus cost (view
maintenance). Both benefit and cost are computed - throuifhagi®n - by a standard database query
optimizer.

Although empty joins do not take space to store (except feir thescriptions), there is an associated
maintenance cost. Techniques developed for the maintenainmaterialized views [17] can be applied
here as well. Since empty joins are a special case of matedaviews, even more efficient maintenance
techniques can be devised for them. For example, empty g@mgnmune to deletions (they may become
non-maximal, but they still correctly describe empty regp For an insertion - if it falls within a range
of an empty rectangle - the rectangle can be simply dividéd $maller ones (again, at the expense of
losing optimality). Still, to maintain an optimal set of etppviews in the face of frequent updates would
be prohibitive. However, the benefit of using empty views iwaehousing environment - where updates
are infrequent - could be tremendous as our experiments. skavthermore, there is a growing trend in
industry [30, 15] to store and use new forms of integrity ¢@ists and materialized views that are not
verified or updated (because no updates are expected tteviblem). The need for such constraints arises
from the benefits they can have in many applications, in @aeti, for query optimization through query
rewrites. The maintenance of such constraints is essgritieé¢.

6 Using Empty Joinsto Improve Cardinality Estimates

6.1 Soft Constraints

We introduced in [15] the concept ebft constraints The idea is that a soft constraint is a constraint state-
ment which is valid with respect to tlwairrent state of the database. On the next update to the database—in
other words, whenever the state of the database changeseribtraint may become invalid. If a transac-
tion would invalidate an actual integrity constraint (acgdled “hard” constraint), the transaction is aborted
and the consistency of the database is preserved. On thetl@hd, if a transaction would invalidate a
soft constraint, it is not aborted for that reason. Instéfathe transaction commits, the soft constraint is
“aborted” since it is no longer consistent with respect @ database. Thus consistency of the database is
still maintained, but by different means.

Soft constraints are not meant to protect the integrity efdhtabase as do integrity constraints, but like
integrity constraints, they do semantically charactetimdatabase. As integrity constraints are now used
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to an extent in query optimization, soft constraints candeun the optimizer in the same way. If there are
any useful characterizations of the database that are watlidrespect to the current state of the database
and would be useful for the optimizer with respect to the Wwaa#l, but are not truly integrity constraints
(that is, the database designer has no reason to specitydhasles), then these could be expressed as soft
constraints. Clearly, empty joins can be modeled as softcaints.

So far in this paper, we have only described empty joins tteavalid with respect to the current state of
the database in the same way standard integrity consta@tsT his was necessary to guarantee soundness
of query rewrites. But we can also consider empty joins - gr@ther soft constraints - that are “soft” in
another way as well: that the soft constraint statement doesompletely hold with respect to the database.
Instead, some “violations” of the statement are acceptdltias, soft constraints can be further divided into:

e absolute soft constraintsvhich have no violations in the current state of the datalfempty joins
described in Section 5 are like that); and

e statistical soft constrainfsvhich can have some degree of violation.

Statistical soft constraints are easier to maintain, sirmdees not matter when they go slightly stale. We
show in this section howempty joins modelled as statisgo#tl constraints can be used for an improved join
cardinality estimates.

6.2 The Strategy

Most commercial database systems adoptuthiéorm distribution assumptioflUDA) [33] for estimating
query result size. This assumption is often incorrect evem kingle attribute and is almost never true for a
joint data ditribution of two or more attributes in a relatior his non-uniformity becomes extreme when the
attributes come from different relations and appear tageiiha join result. Histograms have been shown
to be an effective tool in estimating query selectivity ipdedently of data distribution. However, their use
has been mostly limited to single attribute queries; mimitehsional histograms are expensive to construct
and maintain.

We are proposing a new technique (we calSIEQEfor Statistics in Empty Query Express)ofor
selectivity estimation of joins which provides much betiegdiction quality ovelJ DA without the overhead
associated with histograms. Our strategy is to discoverrmaanhtain several large empty joins and use
information about them to improve the estimates of quergdility. Although our techniques can be
applied to distributions of several dimensions, we onlysider two dimensional queries in this paper.

Let R and S be two relations and.A and S.B be two attributes referenced in range predicates. The
first step of the technique consists in mining the j&iN< S for empty joins with respect to attributet
andB. Only the largest of the empty joins are maintaifedext, we compute the total area covered by the
empty joins and adjust the "density” of the data points inrémaining area. LeN be a number of tuples
in R X S and< a1, a, >and< by, b,, > be the ranges ofl and B respectively. The density of data points
(which is assumed to be uniform IyDA) can be defined ab = m Let Empty be the total
area covered by empty joins. Then the density of data paintise remaining are should be adjusted to be
D' = (an—al)*(me—bl)—Empty' Once a query is submitted, its overlap with the empty josrdatermined and
the size of non-empty area calculated. The number of datapimi the non-empty area is then estimated
from the adjusted densit®’. We illustrate the technique on following example.

The decision as thow manyof the empty joins to maintain is application dependentt @ssthe decision on the number of
buckets in a histogram.
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Figure 11: Empty joins and queries for Example 4.

Example 4 Let the range of boti and B be < 0,100 > and the join containV = 10, 000 tuples. Assume
that two empty joins have been discovered, onfox A < 40 and20 < B < 80, and the second one
with 30 < A < 80 and40 < B < 60 as shown in Figure 11. Thus, the empty joins cover 2,000 ohitse
entire (two-dimensional) domain. WithDA, the densityD would be eqal to 1 tuple per square unit. With
the information about the empty areas, we can infer that #resity is in fact larger in the non-empty areas
and equal to:

10,000
(100 — 0) * (100 — 0) — 2,000

D' = =1.25

Let the first query),, shown in Figure 11, be:

select *
from R,S
where R.X = S.X
and50 < A < 70 and50 < B < 70

Since only half of the query is within the region containimy a@ata points, we can estimate the number
of tuples in the result to be:

1
5 * (70 = 50) % (70 — 50) » 1.25 = 250

With UDA, the number of tuples would have been overestimated to he 400
On the other hand, queries that do not overlap with emptyoregiwould have their selectivities under-
estimated as the density of tuples would have been assurbeddwer. Consider querg),:

select *
from R,S
where R.X = S.X
and10 < A < 30and70 < B < 90

With UDA, the estimated number of tuples would have been 400. Hovgeven the existence of empty
joins and consequently higher density of tuples outsidethpety areas, that number should be estimated to
be 500.
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We note thatSIEQEwill neverproduce worse estimates thaiDA if the data is uniformly distributed
outside of empty regions. Without that assumption, howeJ&A may happen to be more accurate for
some queries.

6.3 Quality of Estimates

We performed experiments on 8 query templatiessm the workload described in Section 4. Each query
template contained a join and two range selections. Forgaety template, we selected randomly 100 sets
of endpoints for the ranges of the two attributes and eséithette result sizes of each such query. We mined
for and maintained only five largest empty joins for each péattributes tested.

One difficulty we faced in comparing errors produced3ig QEandUDA was the fact that for queries
which fall entirely within empty regions the error is eiti@or infinite. Thus, whenever the actual number
of tuples was 0, we computed the error as if the number of suwlere equal to .01. Figure 12 shows the
results. Except for one query templaB#EQESs estimates are orders of magnitude better tHaA\’s.

10°

Figure 12: Average estimate error for eight query templeieSIEQE(white bars) andUDA (black bars).

The observed errors (even after empty queries are elimipate quite largé. The reason is that the
data distribution outside of the empty areas is far from gpeiniform and there are a few queries for which
the errors are enormous. However, for most of the queriegrfues produced bgIEQEare acceptable.
Figure 13 shows the proportion of queries for which the efpooduced both bYSIEQEas well asUDA)
was less than a given limit. For over 70% of queri®l;QEpredicted their cardinality with less than 10%
error; UDA achieved it only for 34% of the queries.

We also compared the prediction qualitySHEQEto the estimates provided by the query optimizer in
a commercial system (DB2 Enterprise Server Edition, V8\E)expected, on average, DB2 estimates were
worse than eitheBIEQEor UDA.

We believe that our technique has important advantages muéirdimensional histograms. First, it
allows for an incremantal maintenance of empty joins. Thig algorithm for dynamic maintenance of
multidimenional histograms that we are aware of [39] dodsapply to queries over joins. In the absence of
incremental maintanance, multidimensional histograme lb@be recomputed statically from the data. Our

®The workload queries did not contain actual values for tivibate ranges.
"We emphasize again that the number of maintained empty yassvery small (less than 5); the errors can be easily reduced
by increasing that number.
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Figure 13: Number of queries for which the error was less thgiven limit.

approach is also superior to histograms on that issue: rumtisiy multidimensional histograms incurs a
substantial cost in addition to computing the join (whickhis input to the construction algorithm) [28, 32].
The algorithm for empty join discovery requires only a sengtan of the join result.

7 Conclusions

We presented a novel approach to characterizing data that isased on detecting and measuring similarity
of values within the data, but is instead based on the disgafeempty regions. We sketched an efficient
and scalable algorithm that discovers all maximal emptygaiith a single scan over sorted two dimensional
data set. We presented results from experiments performedab data, showing the nature and quantity
of empty joins that can occur in large, real databases. Kedgd of empty joins may be valuable in and
of itself as it may reveal unknown correlations between dataes. In this paper, we considered using this
knowledge in query processing.

In the first technique we model the empty joins as materidlizews, and so we exploit existing work
on maintaining and using materialized views for query oation. We presented experiments showing
how the quality of optimization depends on the types and rarrobempty joins used in a rewrite.

In the second technique we use knowledge of empty joins tamatng join result size. Our approach
provides a substantial improvement in the quality of estma@averlUDA, a standard assumption in database
systems. We also showed that our technique is superior tbdmensional histograms with respect to
construction and maintenance.
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