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Abstract

A join of two relations in real databases is usually much smaller than their cartesian product. This
means that most of the combinations of tuples in the crossproduct of the respective relations do not
appear together in the join result. We characterize these combinations as ranges of attributes that do not
appear together. We sketch an algorithm for finding such combinations and present experimental results
from real data sets. We then explore two potential applications of this knowledge in query processing.
In the first application, we model empty joins as materialized views, we show how they can be used for
query optimization. In the second application, we propose astrategy that uses information about empty
joins for an improved join selectivity estimation.

1 Introduction

A join of relations in real databases is usually much smallerthan their Cartesian product. For example,
the OLAP Benchmark [11] with a star schema of six dimension tables with, respectively, 12, 15, 16, 86,
1000, and 10,000 tuples, has a fact table of the size of 2.4 millions tuples. The size of the fact table is thus
0.00009% of the size of the Cartesian product of the dimension tables.

This rather trivial observation about the relative size of the join and the respective Cartesian product,
gives rise to the following questions: Can the non-joining portions of the tables be characterized in an
interesting way? If so, can this knowledge be useful in queryprocessing? Consider the following example.

Example 1 ConsiderLineitem andOrder tables in TPC-H [40]. Theo order-date attribute in theOrder
table stores information about the time an item was ordered,the l shipdate attribute in theLineitem table
stores information about the time an item was shipped. The two attributes are correlated: an item cannot
be shipped before it is ordered and it is likely to be shipped within a short period of time after it is ordered.
This is depicted graphically in Figure 1. Assume that an itemis always shipped within a year from the time
it is ordered. Thus, for a given range ofo orderdate, only the tuples from that range extended by one year
of l shipdate will be in the join ofLineitem and Order. None of the crossproduct between the remaining
portions of the tables will appear together in the join result.

Call any query that involves a join and that evaluates to the empty table anempty join. Knowledge of
empty joins may be valuable in and of itself as it may reveal unknown correlations between data values
which can be exploited in applications. For example, if a DBAdetermines that a certain empty join is a time
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Figure 1: Distribution of tuples with respect to the values of shipdate andorderdate.

invariant constraint, then it may be modeled as an integrityconstraint. Indeed, the fact that an item cannot
be shipped before it is ordered is defined in TPC-H as a check constraint [40].

But even if the discovered empty joins are not the result of a time invariant property or constraint,
knowledge of these regions may be exploited in query processing.

Example 2 Consider the following queryQ over TPC-H.

select sum(l totalprice)
from lineitem l, order o
where l orderkey = oorderkey

AND o orderdate BETWEEN ‘1995.01.01’ AND ‘1996.01.01’

Given the correlation of Figure 1, the original query can be simply rewritten asQ′:

select sum(l totalprice)
from lineitem l, order o
where l orderkey = oorderkey

AND o orderdate BETWEEN ‘1995.01.01’ AND ‘1996.01.01’
AND l shipdate BETWEEN ‘1995.01.01’ AND ‘1997.01.01’

By reducing the range of one or more of the attributes or by adding a range predicate (hence reducing
an attribute’s range), we reduce the number of tuples that participate in the join execution thus providing
optimization. In the extreme case, when the predicates in the query fallwithin the ranges of an empty region,
the query would not have to be evaluated at all, since the result is necessarily empty.

The information about the correlation between the two attributes can also be used for a different purpose.
Consider again the original queryQ. Since there is no predicate (except for the join) placed on the lineitem
table, it seems that any tuple from that table can potentially appear in the answer. With this assumption,
a database optimizer would vastly overestimate the cardinality of the join result. Given the correlation
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of Example 1, however, we can infer that only the tuples satisfying the conditionl shipdate BETWEEN
‘1995.01.01’ AND ‘1997.01.01’can appear in the join. This knowledge can be used to provide amore
exact estimate of the join selectivity.

Note that the rewrite fromQ to Q′ requires that the correlation between the attributes be exact; for the
purpose of cardinality estimates, an approximate correlation is sufficient, since statistical information need
not be exact.

An empty join can be characterized in different ways. The most straightforward way is to describe it
negatively by defining a correlation between data points that do join. Thus, for the two attributes from
Example 1 we can specify their relationship as a linear correlation: l shipdate = oorderdate + [0, 1] year,
where[0, 1] year is the correlation error. We explored this idea in [16] and showed how such correlations can
be used in query optimization. We also learned, however, that such correlations are rare in the real data that
we explored. In this paper, we are proposing an alternative,but complementary approach to characterizing
empty joins as ranges of attributes thatdo notappear together in the join. For example, there are no tuples
with l orderdate> ‘1995.01.01’ andl shipdate< ‘1995.01.01’ in the join ofLineitem andOrder. In other
words, the join ofLineitem andOrder with thus specified ranges ofl orderdateand l shipdateis empty.
To maximize the use of empty joins knowledge, our goal in thiswork is not only to find empty joins in the
data, but to characterize fully that empty space. Specifically, we discover the set of all maximal empty joins
in a two dimensional data set. Maximal empty joins representthe ranges of the two attributes for which the
join is empty and such that they cannot be extended without making the join non-empty.

We suggest that empty joins can be thought of as a novel characteristic of data skew. By characterizing
ranges of attributes that do not appear together, we provideanother description of data distribution in a uni-
versal relation. In this paper, we show how the knowledge of empty joins can be used in query processing.
The techniques we present here are straightforward generalizations of Example 2. The first technique is a
rewrite-based query optimization. The second one offers a new method for improved join selectivity esti-
mates. Although both techniques utilize information aboutempty joins, they do not depend upon each other
and can be used separately. We show these techniques to be useful in practice by experimental verification
of the following claims.

• First, real data sets contain a large number of empty joins, some of which are themselves very large.
This is important as the value of our techniques increases asthe data is more skewed in that sense.

• Second, the types of rewrites we propose in the first technique indeed provide powerful optimization
of query execution. We present experiments showing how the quality of optimization depends on the
types and number of empty joins used in a rewrite.

• Third, the join cardinality estimates provided by the second technique are almost uniformly more
accuarate than estimates based on an assumption of uniform data distribution or histograms.

• Last but not least, we develop these techniques with a possible commercial implementation in mind.
We show how the existing tools in DB2 can be used to implement both techniques. Our solution there-
fore has the highly desirable property that it provides new optimizations method without requiring any
change to the underlying query optimization and processingengine.

The paper is organized as follows. In Section 2, we introduceformally the notion of an empty join and
briefly describe an algorithm for their discovery. Related work is described in Section 3. In Section 4 we
present the results of experiments performed on real data, showing the nature and quantity of empty joins
that can occur in large, real databases. In Section 5, we describe a technique illustrating how knowledge
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of empty joins can be used in join size estimation. In Section6, we evaluate the quality of join cardinality
estimates based on the knowledge of empty joins. Conclusions and future work are presented in Section 7.

2 Discovery of Empty Joins

In this section we introduce a formal representation of empty joins and present a sketch of an algorithm for
finding all maximal empty joins within a two dimensional dataset (two-way join).1

Consider a join of two relationsR 1 S. Let A andB be attributes ofR andS respectively over two
totally ordered domains. (Note thatA andB arenot the join attributes.) We are interested in finding ranges
of A andB for which the joinR 1 S is empty. Define the data setD = ΠR.A,S.B(R 1 S). Let X and
Y denote the set of distinct values for attributesA andB respectively. The setD consists of a set of tuples
〈xi, yj〉 over two ordered domains. We can depict the data set as an|X| × |Y | matrix M of 0’s and 1’s.
There is a 1 in position〈i, j〉 of the matrix if and only if〈xi, yj〉 ∈ D wherexi is theith smallest value in
X andyj the jth smallest inY . An empty join is represented inM as a rectangle containing only 0’s and
no 1’s. The coordinates(x0, x1), (y0, y1) of the rectangle specify the endpoints of the ranges of attributesA
andB for which the join is empty. Since there is a one-to-one correspondence between an empty join and a
0-rectangle in the corresponding matrixM , we will sometimes refer to empty joins as empty rectangles in
the remainder of this paper.

An empty rectangle ismaximal2 if it cannot be extended along either theX or Y axis because there is
at least one 1-entry lying on each of the borders of the rectangle.

Example 3 LetA be an attribute ofR with the domainX = (1, 2, 3) and letB be an attribute with domain
Y = (6, 7, 8). Assume thatπR.A,S.B(R 1 S) = {(3, 6), (1, 7), (3, 8)}. The matrix M for the data set is
shown in Figure 2a. Figure 2b shows all maximal empty rectangles.
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Figure 2: The matrix and some of the empty rectangles (markedwith thick lines) for Example 3

Knowledge of large empty rectangles in a data set can help query optimization because such regions
do not need to be considered during query processing. If a query can be optimized with respect to some
empty joinJ , then it can be optimized at least as well with respect to a larger empty joinJ ′ that contains

1We make the restriction to two-way joins only for simplicity. Indeed, empty joins can be discovered for any pair of attributes
from a multi-way join.

2It is important here not to confuse maximal with maximum (largest).
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J (but not vice versa). In addition, having many empty rectangles, even if they overlap, enhances the query
optimization potential of the discovered regions. For these reasons, we consider the problem of finding all
maximal empty rectangles. (In practice we keep only those that are sufficiently large.)

Although it appears that there may be a huge number of overlapping maximal rectangles, [29] prove
that the number is at mostO(|D|2), and that for a random placement of the 1-entries, the expected value is
O|D| log |D|. We proved in [13] that the number is at mostO(|X||Y |).)

A related problem attempts to find the minimum number of rectangles (either overlapping or not) that
covers all the 0’s in the matrix. (It is a special case of the problem known as Rectilinear Picture Compres-
sion [14].) This problem is NP-complete, and hence is impractical for use in large data sets. Besides, as
we shall show in Section 5 that for the purpose of query optimization, it is more important to have large
rectangles than to have the minimum number of rectangles.

The algorithm for finding all maximal empty rectangles in a given data set is scalable to large data sets
because it uses relatively little memory and keeps disk access to a minimum. The input consists of a two
dimensional data setD of tuples〈xi, yj〉 stored on disk and sorted with respect to theY domain. The
algorithm requires only a single scan over this data. The output consists of the coordinates of the empty
rectangles and can be written to disk, as generated. The memory requirements areΘ(|X|), which is an
order of magnitude smaller than the sizeO(|X||Y |) of both the input and the output. (We assume without
loss of generality that|X| ≤ |Y |.) The time complexity of the algorithm,O(|X||Y |), is linear in the size of
the underlying matrix.

The matrix representationM of the data setD is never actually constructed. For simplicity, however,
we describe the algorithm completely in terms ofM . (The reader is referred to [13] for the details of the
algorithm). We shall ensure that only one pass is made through the data setD.

The main strategy of the algorithm is to consider each 0-element〈x, y〉 of M one at a time, row by row.
Although the 0-elements are not explicitly stored, this is simulated as follows. We assume that the setX of
distinct values in the (smaller) dimension is small enough to store in memory. The data setD is first sorted
with respect to theY domain. Tuples fromD are read sequentially off the disk in this sorted order. When
the next tuple〈xi, yj〉 ∈ D is read from disk, we are able to deduce the block of 0-elements in the row
before this 1-element.

When considering the 0-element〈x, y〉, the algorithm needs to look ahead by querying the matrix el-
ements〈x + 1, y〉 and〈x, y + 1〉. This is handled by having the single pass through the data set actually
occur one row in advance. Similarly, when considering the 0-element〈x, y〉, the algorithm looks back and
queries information about the parts of the matrix already read. To avoid re-reading the data set, all such
information is retained in memory.

The algorithm sketched above has a straightforward generalization to higher dimensions (also described
in detail in [13]). However, in all experiments described inthe remainder of this paper, we only consider
two dimensional datasets. This is a consequence of the fact that the number of maximal hyper-rectangles
in a d-dimensional matrix isΘ(n2d−2) (wheren = |X| = |Y |). The number of such maximal hyper-
rectangles (which represent multi-way empty joins) and hence the complexity of an algorithm to produce
them increases exponentially withd. Ford = 2 dimensions, this isΘ(n2), which is linear in the sizeΘ(n2)
of the input matrix. Ford = 3 dimensions, it is alreadyΘ(n4), which is not likely practical in general for
large data sets. A heuristic is required to discover hyper-rectangles. We do not address this issue here.

3 Related Work

We are not aware of any work on discovery or application of empty joins.
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Extracting semantic information from database schemas andcontents, often calledrule discovery, has
been studied over the last several years. Rules can be inferred from integrity constraints [5, 4, 41] or can be
discovered from database content using machine learning ordata mining approaches [8, 10, 19, 34, 36, 41].
It has also been suggested that such rules be used for query optimization [20, 34, 36, 41]. None of this work,
however, addressed the specific problem we solve here.

Another area of research related to our work is answering queries using views. Since we model empty
joins as a special case of materialized views (that are also empty), essentially all techniques developed for
maintaining, and using materialized views for query answering apply here as well [17, 25, 7, 38].

Also, since empty regions describe semantic regularities in data, they are similar to integrity con-
straints [15]. They describe what is true in a database in itscurrent state, as do integrity constraints, but
can be invalidated by updates, unlike integrity constraints. Using empty joins for query optimization is
thus similar to semantic query optimization [6, 18, 22, 23, 35, 9], which uses integrity constraints for that
purpose.

Query optimizer makes heavy use of the statistical information in cardinality estimation. There are two
ways to store such information in the database: parametric and non-parametric [26] . In the parametric
approach, the actual value distribution is approximated bya parameterized mathematical distribution. This
technique requires little overhead, but it is typically inaccurate because real data does not usually follow
any known distribution. Non-parametric approach is often histogram-based [32, 31, 28, 21, 27]. While a
histogram is adequate for one attribute on a base table, [24]shows that a histogram is not practically efficient
for multiple columns because of high storage overhead and high error rates. Current commercial database
systems usually maintain histograms only for individual columns on base tables.

A query joining two or more tables with multiple columns referenced makes the situation even more
complex. To estimate the size of such queries, the optimizers need to assume independence between at-
tributes and predicates, and errors in the estimates may increase exponentially with the number of joins
[15]. The problem is typically caused by propagating statistical information through the query plan. As a
result, the optimizers often return low-quality executionplans for complex join queries.

We are thus motivated to propose building new statistics over non base-relations for better estimates
of join cardinality. To the best of our knowledge, there is noin depth effort so far to address this type
of problem. [1] presents join synopses based on sampling forapproximating query processing, and the
technique is restricted to be foreign-key joins. In contrast, we focus on estimating query cardinality. We are
not histogram-based or sample-based, and we place no restriction on the type of joins.

4 Characteristics of Empty Joins

We would expect real data sets to exhibit different characteristics than synthetic data sets such as the TPC-H
benchmark. Hence, to characterize empty joins we used two real databases: the first, an insurance database;
and the second, a department of motor vehicles database. We ran the empty joins mining algorithm on 12
pairs of attributes. The pairs of attributes came from the workload queries provided with the databases.
These were the attributes frequently referenced together in the queries (one from one table, and the other
from a second table, and the tables are joined). For conciseness, we only present the results of four repre-
sentative tests here.3 For all reported tests the mining algorithm ran in less than 2minutes (on a single-user
67MHz IBM RISC System/6000 machine with 512 MB RAM).

3They are representative in the sense that they cover the spectrum of results in terms of the number and sizes of the discovered
empty joins.
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Test n m T R S (sizes of the 5 largest empty joins
1 2 3 4 5

1 525 3683 269 8 74 73 69 7 7
2 6 37716 39572 29323 68 58 40 37 28
3 3 1503 3061 650 97 94 80 12.2 0.04
4 525 423 42854 13850 91.6 91.6 91.3 91.3 83.1

Table 1: Data characteristics

Table 1 contains the mining results: the number of distinct values,n andm, of each of the attributes, the
number of tuples in the datasetT (this is the number of 1-entries in the matrix representation of the dataset),
the total number of empty joinsR, and the sizes of the five largest empty joins. The size metricS defines
the size of an empty join as the area it covers with respect to the domains of values of the two attributes. It
is defined formally in the following way.

Let E be an empty join with the coordinates(x0, y0), (x1, y1) over attributesA and B with sets of
distinct valuesX andY respectively in tablesT1 andT2 respectively. The relative size of the join with
respect to the covered area,S, is defined as:

S(E) =
(x1 − x0) ∗ (y1 − y0)

[max(X) − min(X)] ∗ [max(Y ) − min(Y )]
(1)

We make the following observations:

1. The number of empty joins discovered in the tested data sets is very large. In some cases (see Test 3)
it is on the order of magnitude of the theoretical limit of thepossible number of empty joins [13].

2. In virtually all tests, extremely large empty joinsS were discovered. Usually, however, only a few
are very large and the sizes drop dramatically to a fraction of a percentage point (see Figure 3) for the
others.
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Figure 3: Distribution (with respect toS) of empty joins in Test 1.

3. The empty joins overlap substantially. The five largest empty joins from Test 1 overlap with, re-
spectively, 7, 11, 16, 7, and 8 other empty joins discovered in that data set. These overlaps are a
consequence of our decision to findall maximal empty joins. They also cover a large area of the join
matrix; that is, the combination of values from the domains of the two attributes. The white area of
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Figure 4 indicates the combinations of values of attributesA andB for which tuples exist in the join
result.

R.A

S.B

Figure 4: The area (in dark) covered by the five largest empty joins in Test 1 indicates no tuples in the join
for the respective ranges of attributesA andB.

4. The experiments reveal a new type of data skew: non-uniformity of data distribution within a join
result. This non-uniformity is extreme in the sense that no tuples exist within wide ranges of specified
attributes.

5 Using Empty Joins in Query Optimization

5.1 Query Rewriting

We now turn to the question of how to effectively use the knowledge about empty joins in query optimization.
Our approach is to model the empty joins as materialized views. The only extra storage required is the
storage required for the view definition since the actual materialized view will be empty.

Assume that the following query represents an empty join.

select ∗
from R,S

where R.J = S.J

and X betweenx0 and x1

and Y betweeny0 and y1

We can represent this query as a materialized viewV and use it to rewrite future queries to improve their
performance. Indeed, we can use existing results on determining whether a view can be used to answer a
query and on rewriting queries using such views [38]. Ratherthan describing the algorithm, we present an
example of how it would be applied here.

For example, ifx0 ≤ xi, xj ≤ x1 andy0 ≤ yi ≤ y1 ≤ yj, then the following rewrite of queryQ is
possible.

select∗ select∗
from R,S from R,S
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Figure 5: QueryQ (marked with thick lines) overlaps the empty ViewV .

whereR.J = S.J ⇒ whereR.J = S.J

and X betweenxi and xj and X betweenxi and xj

and Y betweenyi and yj and Y betweeny1 and yj

This rewrite can be graphically represented, as shown in Figure 5, as a reduction of the area of the
rectangle representing queryQ with respect to the attributesX andY , given the overlap with the empty join
V .

Effectively, we are using the empty joins to reduce the ranges of the attributes in the query predicates.
This, in turn, reduces the size(s) of the tables participating in the join, thus reducing the cost of computing
the join.

5.2 Choosing Among Possible Rewrites

There are several ways such rewrites of the ranges can be donedepending on the types of overlap between
the ranges of the attributes in the query and the empty joins available. Previous work on rewriting queries
using views can be used to decide when a view, in this case an empty view, can be used to rewrite the query
[25, 38]. However, this work does not give us a way of enumerating and prioritizing the possible alternative
rewrites for the inequality predicates used in our queries and views.

As shown in Figure 5, a pair of range predicates in a query can be represented as a rectangle in a two
dimensional matrix. Since the goal of the rewrite is to “remove” (that is, not to reference) the combination of
ranges covered by an empty join, we need to represent the non-empty portion of the query, which we will call
the remainder query[12]. Consider Figure 6, which illustrates five fundamentally different ways a query,
represented as a rectangle with thick lines, can overlap with an empty join marked as a filled rectangle.

(a) (b) (c) (d) (e)

Figure 6: Overlaps of increasing complexity between the query and empty joins.

In Case (a), the remainder query can be still represented as asingle rectangle. Hence, the rewritten SQL
query has a single non-empty query block. In Case (b), however, the remainder query has to be represented
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by at least two rectangles, which implies that the rewrittenSQL query will be the UNION ALL of two non-
empty query blocks (or an appropriate OR condition). Cases (c), (d), and (e) illustrate even more complex
scenarios where three or four rectangles are needed to describe the remainder query. Indeed, it has been
shown in [7] that blind application of materialized views may result in worse plans compared to alternative
plans that do not use materialized views. This is also true about empty views. Our experiments reported
below suggest that using rewrites containing multiple non-empty query blocks usually degrade rather than
improve query performance. The decision about which empty joins to use in a rewrite must be made within
the optimizer in a cost-based way. There are cases, however,when cost-based optimization can be avoided.
For example, a rewrite of type (a) in Figure 8 is guaranteed not to produce worse performance than in the
original query as the only change it makes in the query is to reduce the exisiting range predicates. Our
experiments also showed that a rewrite of type (b) consistently delivered optimization.

In the next subsection we investigate how the following factors affect the quality of optimization:

1. The size of the overlap between an empty join and a query.

2. The type of the overlap.

3. The number of empty joins overlapping the query used in therewrite.

To demonstrate the usability of empty joins for query optimization under various overlap conditions, we
performed several sets of experiments.

5.3 Factors Affecting Optimization

The experiments described below were run on a PC with PII-700MHz, 320M Memory under Windows
2000, DB2 UDB V7.1 for NT.

We created two tablesR(id int,X int, J int) andS(id int,X int, J int), whereJ is a join column and
X andY are attributes with totally ordered domains. The range of values for bothX andY is 0 − 10, 000.
R has 100k tuples,S has 10M tuples uniformly distributed over the domains ofX andY (henceSA = ST ).
The join method used in the queries below is sort-merge join.4 No indexes have been created or used.

In all experiments the query had the form:

select ∗
from R,S

where R.J = S.J

and X between4, 000 and 6, 000
and Y between2, 000 and 8, 000

In the first experiment, we created empty joins with an increasing overlap with query. This was done by
changing the values of one of the join attributes so that the tuples in the designed range do not join with any
tuples in the other table. The empty joins had the following form:

create viewempty as
select ∗

4Similar results were obtained for nested-loops join. No optimization can be achieved for index nested-loops, since thejoin is
executed before the selections.
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from R,S

where R.J = S.J

and X between4, 000 and 6, 000
and Y between2, 000 and par

with par set to : 2,300, 2,600, 3,250, 3,500, 4,000, 5,000, 6,000, and7,000. The overlaps of the query and
the empty join are graphically presented in Figure 7.

Figure 7: Increasing overlaps between a query and an empty join.

Reduction of the size of the table(%) 5 10 20 25 33 50 66 83
Reduction of execution time (%) 2.4 6.6 16 39 41 48 56 67

Table 2: Improvement in query execution time (in %) as the overlap with the empty join is increased.

As we expected, the reduction in query execution time grows monotonically with the increase of the
overlap. On the other hand, the size of the overlap does not provide equivalent reduction in the query
execution time. This is understandable, as the query evaluation involves not only the join execution, but also
scanning of the two tables which is a constant factor for all tests. The only surprising result came from Test
4 (and later in Test 5): the reduction of the query execution time jumps above the reduction of the table’s
size. As it turns out, the table became sufficiently small to be sorted in memory, whereas before it required
an external sort.

In the second experiment we kept the size of the overlap constant, at 25% of the size of the query, but
changed the type of an overlap as shown in Figure 8.

Type of overlap a b c d e

Reduction of execution time (%) 39 37 4.6 0 -13

Table 3: Impact of the type of the overlap used in rewrite on query performance.

As shown in Table 3, only the first two types of the overlap provide substantial performance improve-
ment. As the number of OR conditions (or UNION’s) necessary to express the remainder query increases,
the performance deteriorates. For example, in Case (e), thequery rewritten with ORs would have the fol-
lowing structure:
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a b c d e

Figure 8: Overlaps of increasing complexity between the query and empty joins.

select ∗
from R,S

where R.J = S.J and
[(X between4, 000 and 6, 000
and Y between2, 000 and 3, 000)
or
(X between4, 000 and 6, 000
and Y between6, 000 and 8, 000)
or
(X between4, 000 and 4, 500
and Y between3, 000 and 6, 000)
or
(X between5, 500 and 6, 000
and Y between3, 000 and 6, 000)]

If the remainder query were expressed using UNIONs, it wouldhave four separate blocks. Executing
these blocks requires multiple scanning of relationsR andS. Indeed, in all our experiments only the rewrites
using overlaps of type (a) or (b) consistently led to performance improvement.

In the third experiment we kept the size of the overlap constant at 25% and used only type (a) and (b)
of the overlap from the previous experiment. This time, however, we changed the number of overlapping
empty joins with the query. We varied the number of empty joins used in a rewrite from 1 to 8 decreasing
their sizes accordingly (to keep the total overlap at 25%) asshown in Figure 9. The results are shown in
Table 4.

Number of overlapping empty joins 1 2 4 6 8

Reduction of execution time (%) 39 38.4 38.3 35.9 34.3

Table 4: Impact of the increasing number of overlaps used in rewrite on query performance.

Interestingly, query performance degrades very slowly with the increasing number of empty joins used
in a rewrite. The reason is, that despite an appearance of an increased complexity of the query after the
rewrite (see the query of Test (c) below), a single scan of each table is still sufficient to evaluate the join.
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Figure 9: Overlaps with increasing number of empty joins.

select ∗
from R,S

where R.J = S.J and
X between4, 000 and 6, 000 and
[(Y between2, 000 and 2, 400)
or
(Y between3, 000 and 3, 400)
or
(Y between4, 000 and 4, 400)
or
(Y between5, 000 and 5, 550)]

We performed a number of experiments measuring the quality of optimization in the real workload of the
insurance database using some of the empty joins described in Section 4. The results were consistent with
those reported above. Ideally, we would have presented the optimization results performed with a publicly
available workload, such as TPC-D, to allow for replicationof the experiments. Unfortunately, the type of
data distribution in TPC-D is not representative of a real data set. The data is synthetically generated, and
the distribution of the attribute values tends to be uniform. We ran the mining algorithm on several pairs
of attributes on TPC-D joins. In all cases the results were very different from what we discovered in real
data sets. Although the number of empty joins was large, theyall were very small thereby making them
impractical for use by this technique. Indeed, we believe that the optimization technique presented in this
paper would be most useful in datasets with large data skew where large empty joins might exist.

5.4 Quality of Optimization in Real Queries

To confirm the effectiveness of our proposed query optimization techniques we considered real data sets. To
be useful, the rewrites we propose must provide significant improvements in processing queries from a real
query workload. Our goal was to verify the following conjuctures:

• The discovered empty joins overlap with queries from a real workload.

• The optimization achieved through rewrites is consistent with the results on synthetic data reported in
the previous section.
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To demonstrate the benefits of our optimization, we considered all queries from a workload for one of
the real world databases discussed in Section 4, the insurance database. A query qualified for a rewrite if it
contained range predicates and involved a join. There were 5queries (T1,...,T5) in the workload of 30 that
qualified for the rewrite.

Next, we mined for empty joins for each pair of attributes relevant to these queries. We consider queries
of the following form.

select *
from R1, ..., RN

where JoinCond(Q) and OtherCond(Q)
and X betweenx0 and x1

and Y betweeny0 and y1

For each such query, we mined the data sets produced by the following query.

select X, Y
from R1, ..., RN

where JoinCond(Q)

Figure 3 in Section 4 reports the size of the discovered emptyjoins. The empty joins found in Test 1
were used to rewrite Query T1, in Test 2 for Queries T2 and T3, in Test 3 for Query T4, and in Test 4 for
Query T5. Our results show that there is substantial overlapbetween the discovered empty joins and the
queries. We show in Figure 10 the number and the percentage ofall empty joins that overlapped with each
of the five queries.
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Figure 10: Percentage and the number (shown above each bar) of all empty joins overlapping with each of
the queries.

Once we discovered all the empty joins, we proceeded to perform the query rewrite as described in
Section 5.3. In each case, we only considered the simple rewrites (typea in Figure 8) using an empty join
with the largest overlap with the query. Not surprisingly, the empty joins with the largest overlaps were also
large empty joins themselves. They ranked 1, 3, 3, 17, 12 among the rectangles in the respective datasets for
queries T1-T5. This is important as it indicates that only a few of the largest joins need to be kept to provide
useful optimizations.

Table 5 shows the performance improvement for each of the queries rewritten in this way compared
against the execution time of the original. These optimizations were consistent with our experiments on
synthetic data.
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Query T1 T2 T3 T4 T5
Performance Improvement (%)11 75 31 20 28

Table 5: Improvement in execution time (in %) of the tested queries.

5.5 Selection and Maintenance of Empty Joins

As proposed in Section 5.1, we model empty joins as materialized views. Thus, the choice of the “best”
empty joins could be determined by the same considerations that are used in choosing standard materialized
views for query optimization [2, 17, 3, 42]. In particular, the techniques we developed in [42] are particularly
useful here as they require almost no human intervention. After an initial set of materialized views is
suggested (in our case these would be a set of then largest empty joins;n is the parameter that can be
set experimentally just as it is the case with materialized views), the system automatically selects a set of
views that provide the best ratio of benefit (improvement in workload query performance) versus cost (view
maintenance). Both benefit and cost are computed - through estimation - by a standard database query
optimizer.

Although empty joins do not take space to store (except for their descriptions), there is an associated
maintenance cost. Techniques developed for the maintenance of materialized views [17] can be applied
here as well. Since empty joins are a special case of materialized views, even more efficient maintenance
techniques can be devised for them. For example, empty joinsare immune to deletions (they may become
non-maximal, but they still correctly describe empty regions). For an insertion - if it falls within a range
of an empty rectangle - the rectangle can be simply divided into smaller ones (again, at the expense of
losing optimality). Still, to maintain an optimal set of empty views in the face of frequent updates would
be prohibitive. However, the benefit of using empty views in awarehousing environment - where updates
are infrequent - could be tremendous as our experiments show. Furthermore, there is a growing trend in
industry [30, 15] to store and use new forms of integrity constraints and materialized views that are not
verified or updated (because no updates are expected to violate them). The need for such constraints arises
from the benefits they can have in many applications, in particular, for query optimization through query
rewrites. The maintenance of such constraints is essentially free.

6 Using Empty Joins to Improve Cardinality Estimates

6.1 Soft Constraints

We introduced in [15] the concept ofsoft constraints. The idea is that a soft constraint is a constraint state-
ment which is valid with respect to thecurrentstate of the database. On the next update to the database—in
other words, whenever the state of the database changes—theconstraint may become invalid. If a transac-
tion would invalidate an actual integrity constraint (a so-called “hard” constraint), the transaction is aborted
and the consistency of the database is preserved. On the other hand, if a transaction would invalidate a
soft constraint, it is not aborted for that reason. Instead,if the transaction commits, the soft constraint is
“aborted” since it is no longer consistent with respect to the database. Thus consistency of the database is
still maintained, but by different means.

Soft constraints are not meant to protect the integrity of the database as do integrity constraints, but like
integrity constraints, they do semantically characterizethe database. As integrity constraints are now used
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to an extent in query optimization, soft constraints can be used in the optimizer in the same way. If there are
any useful characterizations of the database that are validwith respect to the current state of the database
and would be useful for the optimizer with respect to the workload, but are not truly integrity constraints
(that is, the database designer has no reason to specify these as rules), then these could be expressed as soft
constraints. Clearly, empty joins can be modeled as soft constraints.

So far in this paper, we have only described empty joins that are valid with respect to the current state of
the database in the same way standard integrity constraintsare. This was necessary to guarantee soundness
of query rewrites. But we can also consider empty joins - or any other soft constraints - that are “soft” in
another way as well: that the soft constraint statement doesnot completely hold with respect to the database.
Instead, some “violations” of the statement are acceptable. Thus, soft constraints can be further divided into:

• absolute soft constraints, which have no violations in the current state of the database (empty joins
described in Section 5 are like that); and

• statistical soft constraints, which can have some degree of violation.

Statistical soft constraints are easier to maintain, sinceit does not matter when they go slightly stale. We
show in this section howempty joins modelled as statisticalsoft constraints can be used for an improved join
cardinality estimates.

6.2 The Strategy

Most commercial database systems adopt theuniform distribution assumption(UDA) [33] for estimating
query result size. This assumption is often incorrect even for a single attribute and is almost never true for a
joint data ditribution of two or more attributes in a relation. This non-uniformity becomes extreme when the
attributes come from different relations and appear together in a join result. Histograms have been shown
to be an effective tool in estimating query selectivity independently of data distribution. However, their use
has been mostly limited to single attribute queries; multidimensional histograms are expensive to construct
and maintain.

We are proposing a new technique (we call itSIEQE for Statistics in Empty Query Expression) for
selectivity estimation of joins which provides much betterprediction quality overUDA without the overhead
associated with histograms. Our strategy is to discover andmaintain several large empty joins and use
information about them to improve the estimates of query selectivity. Although our techniques can be
applied to distributions of several dimensions, we only consider two dimensional queries in this paper.

Let R andS be two relations andR.A andS.B be two attributes referenced in range predicates. The
first step of the technique consists in mining the joinR 1 S for empty joins with respect to attributesA
andB. Only the largest of the empty joins are maintained.5 Next, we compute the total area covered by the
empty joins and adjust the ”density” of the data points in theremaining area. LetN be a number of tuples
in R 1 S and< a1, an > and< b1, bm > be the ranges ofA andB respectively. The density of data points
(which is assumed to be uniform byUDA) can be defined asD = N

(an−a1)∗(bm−b1) . Let Empty be the total
area covered by empty joins. Then the density of data points in the remaining are should be adjusted to be
D′ = N

(an−a1)∗(bm−b1)−Empty
. Once a query is submitted, its overlap with the empty joins is determined and

the size of non-empty area calculated. The number of data points in the non-empty area is then estimated
from the adjusted densityD′. We illustrate the technique on following example.

5The decision as tohow manyof the empty joins to maintain is application dependent; just as the decision on the number of
buckets in a histogram.
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Figure 11: Empty joins and queries for Example 4.

Example 4 Let the range of bothA andB be< 0, 100 > and the join containN = 10, 000 tuples. Assume
that two empty joins have been discovered, one for20 < A < 40 and20 < B < 80, and the second one
with 30 < A < 80 and40 < B < 60 as shown in Figure 11. Thus, the empty joins cover 2,000 unitsof the
entire (two-dimensional) domain. WithUDA, the densityD would be eqal to 1 tuple per square unit. With
the information about the empty areas, we can infer that the density is in fact larger in the non-empty areas
and equal to:

D′ =
10, 000

(100 − 0) ∗ (100 − 0) − 2, 000
= 1.25

Let the first queryQ1, shown in Figure 11, be:

select *
from R, S

where R.X = S.X

and50 < A < 70 and50 < B < 70

Since only half of the query is within the region containing any data points, we can estimate the number
of tuples in the result to be:

1

2
∗ (70 − 50) ∗ (70 − 50) ∗ 1.25 = 250

With UDA, the number of tuples would have been overestimated to be 400.
On the other hand, queries that do not overlap with empty regions would have their selectivities under-

estimated as the density of tuples would have been assumed tobe lower. Consider queryQ2:

select *
from R, S

where R.X = S.X

and10 < A < 30 and70 < B < 90

WithUDA, the estimated number of tuples would have been 400. However, given the existence of empty
joins and consequently higher density of tuples outside theempty areas, that number should be estimated to
be 500.
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We note thatSIEQEwill neverproduce worse estimates thanUDA if the data is uniformly distributed
outside of empty regions. Without that assumption, however, UDA may happen to be more accurate for
some queries.

6.3 Quality of Estimates

We performed experiments on 8 query templates6 from the workload described in Section 4. Each query
template contained a join and two range selections. For eachquery template, we selected randomly 100 sets
of endpoints for the ranges of the two attributes and estimated the result sizes of each such query. We mined
for and maintained only five largest empty joins for each pairof attributes tested.

One difficulty we faced in comparing errors produced bySIEQEandUDA was the fact that for queries
which fall entirely within empty regions the error is either0 or infinite. Thus, whenever the actual number
of tuples was 0, we computed the error as if the number of tuples were equal to .01. Figure 12 shows the
results. Except for one query template,SIEQE’s estimates are orders of magnitude better thanUDA’s.
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Figure 12: Average estimate error for eight query templatesfor SIEQE(white bars) andUDA (black bars).

The observed errors (even after empty queries are eliminated) are quite large.7 The reason is that the
data distribution outside of the empty areas is far from being uniform and there are a few queries for which
the errors are enormous. However, for most of the queries theerrors produced bySIEQEare acceptable.
Figure 13 shows the proportion of queries for which the error(produced both bySIEQEas well asUDA)
was less than a given limit. For over 70% of queries,SIEQEpredicted their cardinality with less than 10%
error;UDA achieved it only for 34% of the queries.

We also compared the prediction quality ofSIEQEto the estimates provided by the query optimizer in
a commercial system (DB2 Enterprise Server Edition, V8.1).As expected, on average, DB2 estimates were
worse than eitherSIEQEor UDA.

We believe that our technique has important advantages overmultidimensional histograms. First, it
allows for an incremantal maintenance of empty joins. The only algorithm for dynamic maintenance of
multidimenional histograms that we are aware of [39] does not apply to queries over joins. In the absence of
incremental maintanance, multidimensional histograms have to be recomputed statically from the data. Our

6The workload queries did not contain actual values for the attribute ranges.
7We emphasize again that the number of maintained empty joinswas very small (less than 5); the errors can be easily reduced

by increasing that number.
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Figure 13: Number of queries for which the error was less thana given limit.

approach is also superior to histograms on that issue: constructing multidimensional histograms incurs a
substantial cost in addition to computing the join (which isthe input to the construction algorithm) [28, 32].
The algorithm for empty join discovery requires only a single scan of the join result.

7 Conclusions

We presented a novel approach to characterizing data that isnot based on detecting and measuring similarity
of values within the data, but is instead based on the discovery of empty regions. We sketched an efficient
and scalable algorithm that discovers all maximal empty joins with a single scan over sorted two dimensional
data set. We presented results from experiments performed on real data, showing the nature and quantity
of empty joins that can occur in large, real databases. Knowledge of empty joins may be valuable in and
of itself as it may reveal unknown correlations between datavalues. In this paper, we considered using this
knowledge in query processing.

In the first technique we model the empty joins as materialized views, and so we exploit existing work
on maintaining and using materialized views for query optimization. We presented experiments showing
how the quality of optimization depends on the types and number of empty joins used in a rewrite.

In the second technique we use knowledge of empty joins for estimating join result size. Our approach
provides a substantial improvement in the quality of estimates overUDA, a standard assumption in database
systems. We also showed that our technique is superior to multidimensional histograms with respect to
construction and maintenance.
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