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 ● So slow
● So cheap
● So heavy

● So fast
● So expensive
● So efficient

 



  

NAND based flash memory
● Retains memory without power

● It works by trapping a small amount of energy that would 
signify a 1 at that memory address

● NAND flash is very difficult to produce

– NAND is generally rather large. This is to make it 
very reliable and durable so that the electronic 
charge can be held with little leakage

– The smaller the NAND transistors become the 
more prone they are to wear

● Smaller power requirement, quiet and resistant to physical 
shock

● DRAM SSDs??



  

SSD Structure

● A small amount of SRAM 
is used to hold code and 
used for buffering

● SSDs have super-blocks 
that are physically 
seperate blocks on 
mapping scheme is based 

● SSDs have interleaved 
access to super-blocks. 
This is similar to how 
RAID arrays work

● The address mapping 
scheme is based on 
super-blocks in order to 
limit the amount of 
information required for 
logical-to-physical 
addressing 

●  A super-block can 
consists of eight erase 
units (or large blocks) of 
128 KBytes or more each

●  Latency 0.2msec for read 
and 0.4 msec for write



  

Solid State Drive Internals



  

Characteristics of SSDs

● Uniform random access speed

● Accessing data is almost proportional to the amount of 
data accessed

● Writing is expensive. Writing can only be done to an 
empty space, it is costly to erase data

– Erasing data can only be done in erase units, 
typically > = 128 kbytes 

● Assymetric speed (reading is ~ twice as fast as writing)

● NAND is truly slow. Speed scales with the number of 
parrallel NAND flash chips used on the device



  

Storage Hard 
Disk

Flash SSD

Average 
latency

8.33 
msec

0.2 
ms(read)
0.4ms(write
)

Sustained 
Transfer rate

110 
MB/sec

56 MB/sec 
(read)
32 MB/sec 
(write)

● SSDs have algorithms in 
the background that are 
garbage collecting and 
performing wear-leveling

Caviets of SSDs

● Can be a problem if 
accessing the same 
super-block or flash block 
repetidly

● Does not have true 
random write

● More susceptible to 
firmware bugs



  

Writing to SSDs

● Writing is very expensive on an SSD

● It is not possible to overwrite data in an SSD (no in-place update)

– Information can only be written to a empty spot on the drive 
(1s can only be changed to 0s)

● To create areas that can be written, the drive will store the data else 
wear and then garbage collection with go back and remove the dirty 
data to create free space

● As mentioned before, data can only be erased in super blocks which 
are 128kbytes or greater on the drive. This becomes an issue if there 
is data on that superblock that is still clean

● Because of this SSDs do not generally store data sequentially, it 
gives the device no advantage

– Remember wear leveling



  

Now onto comparisons



  

Transaction log

● The transaction log is an audit of the updates that have been done to 
the database so the database can recover from unexpected faults

● Commits to the transaction log are a bottleneck of a commercial 
database system

● Although many transactions in a database are asynchronous, the 
transaction log must force-write commit log entries to the tail of the 
log for durability of the database

● Often, the transaction log is stored on a separate disk to further avoid 
this bottleneck and for reliability



  

SSD and HDD comparisons (TPS)

● Embedded SQL program

– Multi-threaded to simulate concurrent transactions

– Each thread updates a single record and commits, and repeats this 
cycle of update and commit continuously 

– The entire table data were cached in memory so that the focus of 
the experiment was to test the transaction log forced write 
efficiency

– Units are messured in Transactions Per Second (TPS)

 



  

TCP-B

● Again, more than enough memory was allocated to allow the 
entire table to be stored in memory

● Difference in log write size is explained by group commit

● SSD throughput is 3.5 times that of HDD which is a result of 
decreased log write time

● Also seen is the increased utilization of CPU. This is because 
the SSD transactions are shorter, in turn locks on resources 
are released quickly



  

Transactions HDD

● Transaction can be in one of the three distinct states. 
Namely, a transaction:

(1) is still active and has not requested to commit

(2) has already requested to commit but is waiting for other 
transactions to complete forced-writes of their log records, or 

(3) has requested to commit and is currently force-writing its 
own log records to stable storage

● When a HDD is used to store the data, there is inceased 
latency of disk writes. This leads to many transactions kept 
in the second and third state. This is the reason transaction 
throughput is low for HDD even for concurent transactions



  

Transactions SSD
● Notice the CPU usage of the computer when using a SSD

● Because of the much smaller latency of SSDs, transactions 
were not kept in the second and third state

● The focus of concurrent transactions benefits the architecture 
of the SDD

● The efficiency of the transactions peeked because of the much 
higher utilization of the SDD, showing that the CPU became a 
limiting factor



  

CPU factor

● The curve for the HDD rises 
steadily with the number of 
concurrent transactions

● The curve for the SSD rises 
quickly and when the 
saturation point of the CPU 
is reached the number of 
transactions levels off

● This shows that the CPU is  
not a limiting factor until the 
saturation point is reached in 
the evaluation of the different 
storage mediums

● “-Quad” is the same 
experiment but with using a 
quad core CPU instead of a 
dual core



  

Multi-Version Concurrancy Control 
(MVCC)

● Traditional concurrent systems are based on locks

● Read consistency is supported by providing multiple versions 
of a data object minimizing the number of locks needed

● However to support updates, versions of objects are stored in 
rollback segments 

● Rollback segments are usually on stable storage to support the 
different images of the data

● Writing an object involves writing its before image to a rollback 
segment in addition to writing undo and redo log records

● Reading an object when using MVCC can be more costly 

● When reading an object, the system needs to check if the 
object has been updated by other transactions, and needs to 
fetch an old version from a rollback segment



  

MVCC Write Performance

● NOTE: The bottom of this 
figure shows the inplace 
updating of meta data 
related to the rollback 
segments

● The rollback segments were 
created in a seperate disk 
drive which stored nothing 
but the rollback segments

● This figure shows the pattern 
of writes we observed in the 
rollback segments of a 
commercial database server 
processing a TPC-C 
workload

● Average time for writing a 
block to a rollback segment 
was 7.1 msec for disk and 
6.8 msec for flash memory 
SSD



  

MVCC Write Performance Cont.

● If a hard disk drive were used as 
storage for rollback segments, 
each write request to a rollback 
segment would likely have to move 
the disk arm to a different track. 
Therefore, the cost of recording 
rollback data for MVCC would be 
significant due to excessive seek 
delay of disk

● Each line segment spanned a 
seperate logical address space 
equivalent to ~ one Mbyte

● This is because one Mbyte was 
allocated every time a rollback 
segment ran out of space on the 
current extent

● Becuase SSDs do not suffer from 
mechanical latency, MVCC would 
benifit from them greatly. Also, 
because the rollback segments are 
written in append-only-fashon, the 
no-inplace-update limitation of 
SSDs has no negative effect

● NOTE: Can be an issue for SSDs if 
no free blocks are available



  

MVCC Read Performance

● MVCC causes an increased 
amount of I/O for read 
consistency

● Read pattern is random

● The correct version must be 
fetched from one of the 
rollback segments belonging 
to the transactions that 
updated the data object

● To understand the 
performace issues, an 
experiment that focused on 
the MVCC reads was done

● Three transactions updated 
every tuple in the table and 
then one transaction 
performed a full table scan

● Clustered but randomly 
scattered across one Gbyte



  

MVCC read performace continued

● Because of the random read accesses, the SSD performs far 
better

● The table was scanned 3 full times in the experiment. This is 
because the data that the full scan sought was the original data 
from the table

● NOTE: CPU time is the same



  

External sorting

● Sequential write (for writing 
sorted runs) followed by 
random read (for merging 
runs)

● Sorting approximately 
2,000,000 tuples

● Flash memory is faster at 
random reads

● SSD and HDD are 
comparable on sequential 
writes

● A trace of I/O requests



  

External Sorting
● Does I/O unit size have an 

effect?

● Sequental read because of 
clustered B+ tree

● First table is a comparision on 
varying block size. SSDs have 
a limited super-block size

● Increasing the total buffer size 
reduces the number of I/O 
operations and increases the 
number of sequential reads 

● Notice that the optimal block 
size for SSDs appears to be 2-
4kbytes



  

Hash Join

● While the dominant I/O pattern 
of sort is sequential write (for 
writing sorted runs) followed by 
random read (for merging 
runs), the dominant I/O pattern 
of hash is said to be random 
write (for writing hash buckets) 
followed by sequential read (for 
probing hash buckets)

● However, this looks like 
sequential write and random 
read

● This become favorable for 
SSDs



  

Sort-Merge Join

● Sort-Merge Join is thought 
to maybe be obsolete but 
here for SSDs it performs 
similarly to Hash Join

● Points toward revisiting 
the sort-merge join 
algorithm  



  

Evaluating example
● SSD

– Read Delay 1msec, Write delay 2.3 msec

– Read time 4kb in 2 sec

– Write time 4kb in 2.7 sec

● Example 2 (more buffer pages)

– I/O cost per run

– 1 + ( 2 x 320) + 2 + ( 2.7 x 320 )

– = 641 + 866 = 1507

– I/O cost

– Reads 2 x ( 2 + 1) 10,000,000

– = 60,000,000

– Writes 2 x ( 2.7 + 2.5 ) 10,000,000

– = 104,000,000

– Total = 162,000,000



  

Evaluating example

Example two (larger buffers)

– Read cost 1 + (2 X 16 pages) = 33

– Each pass 10,000,000 / 16 = 625,000 passes

– Cost of reading is 4 x 625,000 X 33 = 82,500,000

– Write cost 10,000,000/64 x (2 + (2.7 x 64 )) x 4 = 
109,250,000

– Total = 191,750,000



  

B+ trees

● Because NAND flash based SSDs do not 
support completely random writes, how do 
B+ trees work? 

● This would make maintaining a clustered 
B+ tree a true headache. Then again, 
clustering data is obsolete when using an 
SSD 



  

A few thoughts

● What hapens when your records are 1/2 the SSD super-block 
size + 1?

● NAND flash does have a limited number of writes it can handle

– The more space for data on the drive, the smaller the 
NAND cells and the more volitile they can be



  

Price points

● Current

– HDD

– $100 CAD / 2TB

– $0.05/ gb

– SSD

– $100 CAD / 120gb

–  0.83/ gb

– > 16 x more 
expensive

● SSD price does not scale
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