

SSDs vs HDDs for DBMS
by Glen Berseth

York University, Toronto

 ● So slow
● So cheap
● So heavy

● So fast
● So expensive
● So efficient

NAND based flash memory
● Retains memory without power

● It works by trapping a small amount of energy that would
signify a 1 at that memory address

● NAND flash is very difficult to produce

– NAND is generally rather large. This is to make it
very reliable and durable so that the electronic
charge can be held with little leakage

– The smaller the NAND transistors become the
more prone they are to wear

● Smaller power requirement, quiet and resistant to physical
shock

● DRAM SSDs??

SSD Structure

● A small amount of SRAM
is used to hold code and
used for buffering

● SSDs have super-blocks
that are physically
seperate blocks on
mapping scheme is based

● SSDs have interleaved
access to super-blocks.
This is similar to how
RAID arrays work

● The address mapping
scheme is based on
super-blocks in order to
limit the amount of
information required for
logical-to-physical
addressing

● A super-block can
consists of eight erase
units (or large blocks) of
128 KBytes or more each

● Latency 0.2msec for read
and 0.4 msec for write

Solid State Drive Internals

Characteristics of SSDs

● Uniform random access speed

● Accessing data is almost proportional to the amount of
data accessed

● Writing is expensive. Writing can only be done to an
empty space, it is costly to erase data

– Erasing data can only be done in erase units,
typically > = 128 kbytes

● Assymetric speed (reading is ~ twice as fast as writing)

● NAND is truly slow. Speed scales with the number of
parrallel NAND flash chips used on the device

Storage Hard
Disk

Flash SSD

Average
latency

8.33
msec

0.2
ms(read)
0.4ms(write
)

Sustained
Transfer rate

110
MB/sec

56 MB/sec
(read)
32 MB/sec
(write)

● SSDs have algorithms in
the background that are
garbage collecting and
performing wear-leveling

Caviets of SSDs

● Can be a problem if
accessing the same
super-block or flash block
repetidly

● Does not have true
random write

● More susceptible to
firmware bugs

Writing to SSDs

● Writing is very expensive on an SSD

● It is not possible to overwrite data in an SSD (no in-place update)

– Information can only be written to a empty spot on the drive
(1s can only be changed to 0s)

● To create areas that can be written, the drive will store the data else
wear and then garbage collection with go back and remove the dirty
data to create free space

● As mentioned before, data can only be erased in super blocks which
are 128kbytes or greater on the drive. This becomes an issue if there
is data on that superblock that is still clean

● Because of this SSDs do not generally store data sequentially, it
gives the device no advantage

– Remember wear leveling

Now onto comparisons

Transaction log

● The transaction log is an audit of the updates that have been done to
the database so the database can recover from unexpected faults

● Commits to the transaction log are a bottleneck of a commercial
database system

● Although many transactions in a database are asynchronous, the
transaction log must force-write commit log entries to the tail of the
log for durability of the database

● Often, the transaction log is stored on a separate disk to further avoid
this bottleneck and for reliability

SSD and HDD comparisons (TPS)

● Embedded SQL program

– Multi-threaded to simulate concurrent transactions

– Each thread updates a single record and commits, and repeats this
cycle of update and commit continuously

– The entire table data were cached in memory so that the focus of
the experiment was to test the transaction log forced write
efficiency

– Units are messured in Transactions Per Second (TPS)

TCP-B

● Again, more than enough memory was allocated to allow the
entire table to be stored in memory

● Difference in log write size is explained by group commit

● SSD throughput is 3.5 times that of HDD which is a result of
decreased log write time

● Also seen is the increased utilization of CPU. This is because
the SSD transactions are shorter, in turn locks on resources
are released quickly

Transactions HDD

● Transaction can be in one of the three distinct states.
Namely, a transaction:

(1) is still active and has not requested to commit

(2) has already requested to commit but is waiting for other
transactions to complete forced-writes of their log records, or

(3) has requested to commit and is currently force-writing its
own log records to stable storage

● When a HDD is used to store the data, there is inceased
latency of disk writes. This leads to many transactions kept
in the second and third state. This is the reason transaction
throughput is low for HDD even for concurent transactions

Transactions SSD
● Notice the CPU usage of the computer when using a SSD

● Because of the much smaller latency of SSDs, transactions
were not kept in the second and third state

● The focus of concurrent transactions benefits the architecture
of the SDD

● The efficiency of the transactions peeked because of the much
higher utilization of the SDD, showing that the CPU became a
limiting factor

CPU factor

● The curve for the HDD rises
steadily with the number of
concurrent transactions

● The curve for the SSD rises
quickly and when the
saturation point of the CPU
is reached the number of
transactions levels off

● This shows that the CPU is
not a limiting factor until the
saturation point is reached in
the evaluation of the different
storage mediums

● “-Quad” is the same
experiment but with using a
quad core CPU instead of a
dual core

Multi-Version Concurrancy Control
(MVCC)

● Traditional concurrent systems are based on locks

● Read consistency is supported by providing multiple versions
of a data object minimizing the number of locks needed

● However to support updates, versions of objects are stored in
rollback segments

● Rollback segments are usually on stable storage to support the
different images of the data

● Writing an object involves writing its before image to a rollback
segment in addition to writing undo and redo log records

● Reading an object when using MVCC can be more costly

● When reading an object, the system needs to check if the
object has been updated by other transactions, and needs to
fetch an old version from a rollback segment

MVCC Write Performance

● NOTE: The bottom of this
figure shows the inplace
updating of meta data
related to the rollback
segments

● The rollback segments were
created in a seperate disk
drive which stored nothing
but the rollback segments

● This figure shows the pattern
of writes we observed in the
rollback segments of a
commercial database server
processing a TPC-C
workload

● Average time for writing a
block to a rollback segment
was 7.1 msec for disk and
6.8 msec for flash memory
SSD

MVCC Write Performance Cont.

● If a hard disk drive were used as
storage for rollback segments,
each write request to a rollback
segment would likely have to move
the disk arm to a different track.
Therefore, the cost of recording
rollback data for MVCC would be
significant due to excessive seek
delay of disk

● Each line segment spanned a
seperate logical address space
equivalent to ~ one Mbyte

● This is because one Mbyte was
allocated every time a rollback
segment ran out of space on the
current extent

● Becuase SSDs do not suffer from
mechanical latency, MVCC would
benifit from them greatly. Also,
because the rollback segments are
written in append-only-fashon, the
no-inplace-update limitation of
SSDs has no negative effect

● NOTE: Can be an issue for SSDs if
no free blocks are available

MVCC Read Performance

● MVCC causes an increased
amount of I/O for read
consistency

● Read pattern is random

● The correct version must be
fetched from one of the
rollback segments belonging
to the transactions that
updated the data object

● To understand the
performace issues, an
experiment that focused on
the MVCC reads was done

● Three transactions updated
every tuple in the table and
then one transaction
performed a full table scan

● Clustered but randomly
scattered across one Gbyte

MVCC read performace continued

● Because of the random read accesses, the SSD performs far
better

● The table was scanned 3 full times in the experiment. This is
because the data that the full scan sought was the original data
from the table

● NOTE: CPU time is the same

External sorting

● Sequential write (for writing
sorted runs) followed by
random read (for merging
runs)

● Sorting approximately
2,000,000 tuples

● Flash memory is faster at
random reads

● SSD and HDD are
comparable on sequential
writes

● A trace of I/O requests

External Sorting
● Does I/O unit size have an

effect?

● Sequental read because of
clustered B+ tree

● First table is a comparision on
varying block size. SSDs have
a limited super-block size

● Increasing the total buffer size
reduces the number of I/O
operations and increases the
number of sequential reads

● Notice that the optimal block
size for SSDs appears to be 2-
4kbytes

Hash Join

● While the dominant I/O pattern
of sort is sequential write (for
writing sorted runs) followed by
random read (for merging
runs), the dominant I/O pattern
of hash is said to be random
write (for writing hash buckets)
followed by sequential read (for
probing hash buckets)

● However, this looks like
sequential write and random
read

● This become favorable for
SSDs

Sort-Merge Join

● Sort-Merge Join is thought
to maybe be obsolete but
here for SSDs it performs
similarly to Hash Join

● Points toward revisiting
the sort-merge join
algorithm

Evaluating example
● SSD

– Read Delay 1msec, Write delay 2.3 msec

– Read time 4kb in 2 sec

– Write time 4kb in 2.7 sec

● Example 2 (more buffer pages)

– I/O cost per run

– 1 + (2 x 320) + 2 + (2.7 x 320)

– = 641 + 866 = 1507

– I/O cost

– Reads 2 x (2 + 1) 10,000,000

– = 60,000,000

– Writes 2 x (2.7 + 2.5) 10,000,000

– = 104,000,000

– Total = 162,000,000

Evaluating example

Example two (larger buffers)

– Read cost 1 + (2 X 16 pages) = 33

– Each pass 10,000,000 / 16 = 625,000 passes

– Cost of reading is 4 x 625,000 X 33 = 82,500,000

– Write cost 10,000,000/64 x (2 + (2.7 x 64)) x 4 =
109,250,000

– Total = 191,750,000

B+ trees

● Because NAND flash based SSDs do not
support completely random writes, how do
B+ trees work?

● This would make maintaining a clustered
B+ tree a true headache. Then again,
clustering data is obsolete when using an
SSD

A few thoughts

● What hapens when your records are 1/2 the SSD super-block
size + 1?

● NAND flash does have a limited number of writes it can handle

– The more space for data on the drive, the smaller the
NAND cells and the more volitile they can be

Price points

● Current

– HDD

– $100 CAD / 2TB

– $0.05/ gb

– SSD

– $100 CAD / 120gb

– 0.83/ gb

– > 16 x more
expensive

● SSD price does not scale

References

● C.-H. Wu and T.-W. Kuo. An adaptive two-level
management for the flash translation layer in embedded
systems. In Proceedings of ICCAD ’06, 2006.

● S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A
case for flash memory SSD in enterprise database
applications. In SIGMOD, 2008.

● Hongchan Roh, Sanghyun Park, Sungho Kim, Mincheol
Shin, and Sang-Won Lee. 2011. B+-tree index
optimization by exploiting internal parallelism of flash-
based solid state drives. Proc. VLDB Endow. 5, 4
(December 2011), 286-297.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

